2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_log_priv.h"
42 #include "xfs_buf_item.h"
43 #include "xfs_log_recover.h"
44 #include "xfs_extfree_item.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_quota.h"
48 #include "xfs_utils.h"
50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 xlog_recover_item_t *item);
55 STATIC void xlog_recover_check_summary(xlog_t *);
57 #define xlog_recover_check_summary(log)
62 * Sector aligned buffer routines for buffer create/read/write/access
65 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
66 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
67 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
68 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
75 ASSERT(num_bblks > 0);
77 if (log->l_sectbb_log) {
79 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
80 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
82 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
94 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
105 if (log->l_sectbb_log) {
106 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
107 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
111 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
118 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
120 xfsbdstrat(log->l_mp, bp);
121 error = xfs_iowait(bp);
123 xfs_ioerror_alert("xlog_bread", log->l_mp,
124 bp, XFS_BUF_ADDR(bp));
129 * Write out the buffer at the given block for the given number of blocks.
130 * The buffer is kept locked across the write and is returned locked.
131 * This can only be used for synchronous log writes.
142 if (log->l_sectbb_log) {
143 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
144 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
148 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
151 XFS_BUF_ZEROFLAGS(bp);
154 XFS_BUF_PSEMA(bp, PRIBIO);
155 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
156 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158 if ((error = xfs_bwrite(log->l_mp, bp)))
159 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
160 bp, XFS_BUF_ADDR(bp));
173 if (!log->l_sectbb_log)
174 return XFS_BUF_PTR(bp);
176 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
177 ASSERT(XFS_BUF_SIZE(bp) >=
178 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
184 * dump debug superblock and log record information
187 xlog_header_check_dump(
189 xlog_rec_header_t *head)
193 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
194 for (b = 0; b < 16; b++)
195 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
196 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
197 cmn_err(CE_DEBUG, " log : uuid = ");
198 for (b = 0; b < 16; b++)
199 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
200 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
203 #define xlog_header_check_dump(mp, head)
207 * check log record header for recovery
210 xlog_header_check_recover(
212 xlog_rec_header_t *head)
214 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
217 * IRIX doesn't write the h_fmt field and leaves it zeroed
218 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
219 * a dirty log created in IRIX.
221 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
223 "XFS: dirty log written in incompatible format - can't recover");
224 xlog_header_check_dump(mp, head);
225 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
226 XFS_ERRLEVEL_HIGH, mp);
227 return XFS_ERROR(EFSCORRUPTED);
228 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 "XFS: dirty log entry has mismatched uuid - can't recover");
231 xlog_header_check_dump(mp, head);
232 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
233 XFS_ERRLEVEL_HIGH, mp);
234 return XFS_ERROR(EFSCORRUPTED);
240 * read the head block of the log and check the header
243 xlog_header_check_mount(
245 xlog_rec_header_t *head)
247 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
249 if (uuid_is_nil(&head->h_fs_uuid)) {
251 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
252 * h_fs_uuid is nil, we assume this log was last mounted
253 * by IRIX and continue.
255 xlog_warn("XFS: nil uuid in log - IRIX style log");
256 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
257 xlog_warn("XFS: log has mismatched uuid - can't recover");
258 xlog_header_check_dump(mp, head);
259 XFS_ERROR_REPORT("xlog_header_check_mount",
260 XFS_ERRLEVEL_HIGH, mp);
261 return XFS_ERROR(EFSCORRUPTED);
270 if (XFS_BUF_GETERROR(bp)) {
272 * We're not going to bother about retrying
273 * this during recovery. One strike!
275 xfs_ioerror_alert("xlog_recover_iodone",
276 bp->b_mount, bp, XFS_BUF_ADDR(bp));
277 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
280 XFS_BUF_CLR_IODONE_FUNC(bp);
285 * This routine finds (to an approximation) the first block in the physical
286 * log which contains the given cycle. It uses a binary search algorithm.
287 * Note that the algorithm can not be perfect because the disk will not
288 * necessarily be perfect.
291 xlog_find_cycle_start(
294 xfs_daddr_t first_blk,
295 xfs_daddr_t *last_blk,
303 mid_blk = BLK_AVG(first_blk, *last_blk);
304 while (mid_blk != first_blk && mid_blk != *last_blk) {
305 if ((error = xlog_bread(log, mid_blk, 1, bp)))
307 offset = xlog_align(log, mid_blk, 1, bp);
308 mid_cycle = xlog_get_cycle(offset);
309 if (mid_cycle == cycle) {
311 /* last_half_cycle == mid_cycle */
314 /* first_half_cycle == mid_cycle */
316 mid_blk = BLK_AVG(first_blk, *last_blk);
318 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
319 (mid_blk == *last_blk && mid_blk-1 == first_blk));
325 * Check that the range of blocks does not contain the cycle number
326 * given. The scan needs to occur from front to back and the ptr into the
327 * region must be updated since a later routine will need to perform another
328 * test. If the region is completely good, we end up returning the same
331 * Set blkno to -1 if we encounter no errors. This is an invalid block number
332 * since we don't ever expect logs to get this large.
335 xlog_find_verify_cycle(
337 xfs_daddr_t start_blk,
339 uint stop_on_cycle_no,
340 xfs_daddr_t *new_blk)
346 xfs_caddr_t buf = NULL;
349 bufblks = 1 << ffs(nbblks);
351 while (!(bp = xlog_get_bp(log, bufblks))) {
352 /* can't get enough memory to do everything in one big buffer */
354 if (bufblks <= log->l_sectbb_log)
358 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
361 bcount = min(bufblks, (start_blk + nbblks - i));
363 if ((error = xlog_bread(log, i, bcount, bp)))
366 buf = xlog_align(log, i, bcount, bp);
367 for (j = 0; j < bcount; j++) {
368 cycle = xlog_get_cycle(buf);
369 if (cycle == stop_on_cycle_no) {
386 * Potentially backup over partial log record write.
388 * In the typical case, last_blk is the number of the block directly after
389 * a good log record. Therefore, we subtract one to get the block number
390 * of the last block in the given buffer. extra_bblks contains the number
391 * of blocks we would have read on a previous read. This happens when the
392 * last log record is split over the end of the physical log.
394 * extra_bblks is the number of blocks potentially verified on a previous
395 * call to this routine.
398 xlog_find_verify_log_record(
400 xfs_daddr_t start_blk,
401 xfs_daddr_t *last_blk,
406 xfs_caddr_t offset = NULL;
407 xlog_rec_header_t *head = NULL;
410 int num_blks = *last_blk - start_blk;
413 ASSERT(start_blk != 0 || *last_blk != start_blk);
415 if (!(bp = xlog_get_bp(log, num_blks))) {
416 if (!(bp = xlog_get_bp(log, 1)))
420 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
422 offset = xlog_align(log, start_blk, num_blks, bp);
423 offset += ((num_blks - 1) << BBSHIFT);
426 for (i = (*last_blk) - 1; i >= 0; i--) {
428 /* valid log record not found */
430 "XFS: Log inconsistent (didn't find previous header)");
432 error = XFS_ERROR(EIO);
437 if ((error = xlog_bread(log, i, 1, bp)))
439 offset = xlog_align(log, i, 1, bp);
442 head = (xlog_rec_header_t *)offset;
444 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
452 * We hit the beginning of the physical log & still no header. Return
453 * to caller. If caller can handle a return of -1, then this routine
454 * will be called again for the end of the physical log.
462 * We have the final block of the good log (the first block
463 * of the log record _before_ the head. So we check the uuid.
465 if ((error = xlog_header_check_mount(log->l_mp, head)))
469 * We may have found a log record header before we expected one.
470 * last_blk will be the 1st block # with a given cycle #. We may end
471 * up reading an entire log record. In this case, we don't want to
472 * reset last_blk. Only when last_blk points in the middle of a log
473 * record do we update last_blk.
475 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
476 uint h_size = be32_to_cpu(head->h_size);
478 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
479 if (h_size % XLOG_HEADER_CYCLE_SIZE)
485 if (*last_blk - i + extra_bblks !=
486 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
495 * Head is defined to be the point of the log where the next log write
496 * write could go. This means that incomplete LR writes at the end are
497 * eliminated when calculating the head. We aren't guaranteed that previous
498 * LR have complete transactions. We only know that a cycle number of
499 * current cycle number -1 won't be present in the log if we start writing
500 * from our current block number.
502 * last_blk contains the block number of the first block with a given
505 * Return: zero if normal, non-zero if error.
510 xfs_daddr_t *return_head_blk)
514 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
516 uint first_half_cycle, last_half_cycle;
518 int error, log_bbnum = log->l_logBBsize;
520 /* Is the end of the log device zeroed? */
521 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
522 *return_head_blk = first_blk;
524 /* Is the whole lot zeroed? */
526 /* Linux XFS shouldn't generate totally zeroed logs -
527 * mkfs etc write a dummy unmount record to a fresh
528 * log so we can store the uuid in there
530 xlog_warn("XFS: totally zeroed log");
535 xlog_warn("XFS: empty log check failed");
539 first_blk = 0; /* get cycle # of 1st block */
540 bp = xlog_get_bp(log, 1);
543 if ((error = xlog_bread(log, 0, 1, bp)))
545 offset = xlog_align(log, 0, 1, bp);
546 first_half_cycle = xlog_get_cycle(offset);
548 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
549 if ((error = xlog_bread(log, last_blk, 1, bp)))
551 offset = xlog_align(log, last_blk, 1, bp);
552 last_half_cycle = xlog_get_cycle(offset);
553 ASSERT(last_half_cycle != 0);
556 * If the 1st half cycle number is equal to the last half cycle number,
557 * then the entire log is stamped with the same cycle number. In this
558 * case, head_blk can't be set to zero (which makes sense). The below
559 * math doesn't work out properly with head_blk equal to zero. Instead,
560 * we set it to log_bbnum which is an invalid block number, but this
561 * value makes the math correct. If head_blk doesn't changed through
562 * all the tests below, *head_blk is set to zero at the very end rather
563 * than log_bbnum. In a sense, log_bbnum and zero are the same block
564 * in a circular file.
566 if (first_half_cycle == last_half_cycle) {
568 * In this case we believe that the entire log should have
569 * cycle number last_half_cycle. We need to scan backwards
570 * from the end verifying that there are no holes still
571 * containing last_half_cycle - 1. If we find such a hole,
572 * then the start of that hole will be the new head. The
573 * simple case looks like
574 * x | x ... | x - 1 | x
575 * Another case that fits this picture would be
576 * x | x + 1 | x ... | x
577 * In this case the head really is somewhere at the end of the
578 * log, as one of the latest writes at the beginning was
581 * x | x + 1 | x ... | x - 1 | x
582 * This is really the combination of the above two cases, and
583 * the head has to end up at the start of the x-1 hole at the
586 * In the 256k log case, we will read from the beginning to the
587 * end of the log and search for cycle numbers equal to x-1.
588 * We don't worry about the x+1 blocks that we encounter,
589 * because we know that they cannot be the head since the log
592 head_blk = log_bbnum;
593 stop_on_cycle = last_half_cycle - 1;
596 * In this case we want to find the first block with cycle
597 * number matching last_half_cycle. We expect the log to be
600 * The first block with cycle number x (last_half_cycle) will
601 * be where the new head belongs. First we do a binary search
602 * for the first occurrence of last_half_cycle. The binary
603 * search may not be totally accurate, so then we scan back
604 * from there looking for occurrences of last_half_cycle before
605 * us. If that backwards scan wraps around the beginning of
606 * the log, then we look for occurrences of last_half_cycle - 1
607 * at the end of the log. The cases we're looking for look
609 * x + 1 ... | x | x + 1 | x ...
610 * ^ binary search stopped here
612 * x + 1 ... | x ... | x - 1 | x
613 * <---------> less than scan distance
615 stop_on_cycle = last_half_cycle;
616 if ((error = xlog_find_cycle_start(log, bp, first_blk,
617 &head_blk, last_half_cycle)))
622 * Now validate the answer. Scan back some number of maximum possible
623 * blocks and make sure each one has the expected cycle number. The
624 * maximum is determined by the total possible amount of buffering
625 * in the in-core log. The following number can be made tighter if
626 * we actually look at the block size of the filesystem.
628 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
629 if (head_blk >= num_scan_bblks) {
631 * We are guaranteed that the entire check can be performed
634 start_blk = head_blk - num_scan_bblks;
635 if ((error = xlog_find_verify_cycle(log,
636 start_blk, num_scan_bblks,
637 stop_on_cycle, &new_blk)))
641 } else { /* need to read 2 parts of log */
643 * We are going to scan backwards in the log in two parts.
644 * First we scan the physical end of the log. In this part
645 * of the log, we are looking for blocks with cycle number
646 * last_half_cycle - 1.
647 * If we find one, then we know that the log starts there, as
648 * we've found a hole that didn't get written in going around
649 * the end of the physical log. The simple case for this is
650 * x + 1 ... | x ... | x - 1 | x
651 * <---------> less than scan distance
652 * If all of the blocks at the end of the log have cycle number
653 * last_half_cycle, then we check the blocks at the start of
654 * the log looking for occurrences of last_half_cycle. If we
655 * find one, then our current estimate for the location of the
656 * first occurrence of last_half_cycle is wrong and we move
657 * back to the hole we've found. This case looks like
658 * x + 1 ... | x | x + 1 | x ...
659 * ^ binary search stopped here
660 * Another case we need to handle that only occurs in 256k
662 * x + 1 ... | x ... | x+1 | x ...
663 * ^ binary search stops here
664 * In a 256k log, the scan at the end of the log will see the
665 * x + 1 blocks. We need to skip past those since that is
666 * certainly not the head of the log. By searching for
667 * last_half_cycle-1 we accomplish that.
669 start_blk = log_bbnum - num_scan_bblks + head_blk;
670 ASSERT(head_blk <= INT_MAX &&
671 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
672 if ((error = xlog_find_verify_cycle(log, start_blk,
673 num_scan_bblks - (int)head_blk,
674 (stop_on_cycle - 1), &new_blk)))
682 * Scan beginning of log now. The last part of the physical
683 * log is good. This scan needs to verify that it doesn't find
684 * the last_half_cycle.
687 ASSERT(head_blk <= INT_MAX);
688 if ((error = xlog_find_verify_cycle(log,
689 start_blk, (int)head_blk,
690 stop_on_cycle, &new_blk)))
698 * Now we need to make sure head_blk is not pointing to a block in
699 * the middle of a log record.
701 num_scan_bblks = XLOG_REC_SHIFT(log);
702 if (head_blk >= num_scan_bblks) {
703 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
705 /* start ptr at last block ptr before head_blk */
706 if ((error = xlog_find_verify_log_record(log, start_blk,
707 &head_blk, 0)) == -1) {
708 error = XFS_ERROR(EIO);
714 ASSERT(head_blk <= INT_MAX);
715 if ((error = xlog_find_verify_log_record(log, start_blk,
716 &head_blk, 0)) == -1) {
717 /* We hit the beginning of the log during our search */
718 start_blk = log_bbnum - num_scan_bblks + head_blk;
720 ASSERT(start_blk <= INT_MAX &&
721 (xfs_daddr_t) log_bbnum-start_blk >= 0);
722 ASSERT(head_blk <= INT_MAX);
723 if ((error = xlog_find_verify_log_record(log,
725 (int)head_blk)) == -1) {
726 error = XFS_ERROR(EIO);
730 if (new_blk != log_bbnum)
737 if (head_blk == log_bbnum)
738 *return_head_blk = 0;
740 *return_head_blk = head_blk;
742 * When returning here, we have a good block number. Bad block
743 * means that during a previous crash, we didn't have a clean break
744 * from cycle number N to cycle number N-1. In this case, we need
745 * to find the first block with cycle number N-1.
753 xlog_warn("XFS: failed to find log head");
758 * Find the sync block number or the tail of the log.
760 * This will be the block number of the last record to have its
761 * associated buffers synced to disk. Every log record header has
762 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
763 * to get a sync block number. The only concern is to figure out which
764 * log record header to believe.
766 * The following algorithm uses the log record header with the largest
767 * lsn. The entire log record does not need to be valid. We only care
768 * that the header is valid.
770 * We could speed up search by using current head_blk buffer, but it is not
776 xfs_daddr_t *head_blk,
777 xfs_daddr_t *tail_blk)
779 xlog_rec_header_t *rhead;
780 xlog_op_header_t *op_head;
781 xfs_caddr_t offset = NULL;
784 xfs_daddr_t umount_data_blk;
785 xfs_daddr_t after_umount_blk;
792 * Find previous log record
794 if ((error = xlog_find_head(log, head_blk)))
797 bp = xlog_get_bp(log, 1);
800 if (*head_blk == 0) { /* special case */
801 if ((error = xlog_bread(log, 0, 1, bp)))
803 offset = xlog_align(log, 0, 1, bp);
804 if (xlog_get_cycle(offset) == 0) {
806 /* leave all other log inited values alone */
812 * Search backwards looking for log record header block
814 ASSERT(*head_blk < INT_MAX);
815 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
816 if ((error = xlog_bread(log, i, 1, bp)))
818 offset = xlog_align(log, i, 1, bp);
819 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
825 * If we haven't found the log record header block, start looking
826 * again from the end of the physical log. XXXmiken: There should be
827 * a check here to make sure we didn't search more than N blocks in
831 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
832 if ((error = xlog_bread(log, i, 1, bp)))
834 offset = xlog_align(log, i, 1, bp);
835 if (XLOG_HEADER_MAGIC_NUM ==
836 be32_to_cpu(*(__be32 *)offset)) {
843 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
845 return XFS_ERROR(EIO);
848 /* find blk_no of tail of log */
849 rhead = (xlog_rec_header_t *)offset;
850 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
853 * Reset log values according to the state of the log when we
854 * crashed. In the case where head_blk == 0, we bump curr_cycle
855 * one because the next write starts a new cycle rather than
856 * continuing the cycle of the last good log record. At this
857 * point we have guaranteed that all partial log records have been
858 * accounted for. Therefore, we know that the last good log record
859 * written was complete and ended exactly on the end boundary
860 * of the physical log.
862 log->l_prev_block = i;
863 log->l_curr_block = (int)*head_blk;
864 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
867 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
868 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
869 log->l_grant_reserve_cycle = log->l_curr_cycle;
870 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
871 log->l_grant_write_cycle = log->l_curr_cycle;
872 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
875 * Look for unmount record. If we find it, then we know there
876 * was a clean unmount. Since 'i' could be the last block in
877 * the physical log, we convert to a log block before comparing
880 * Save the current tail lsn to use to pass to
881 * xlog_clear_stale_blocks() below. We won't want to clear the
882 * unmount record if there is one, so we pass the lsn of the
883 * unmount record rather than the block after it.
885 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
886 int h_size = be32_to_cpu(rhead->h_size);
887 int h_version = be32_to_cpu(rhead->h_version);
889 if ((h_version & XLOG_VERSION_2) &&
890 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
891 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
892 if (h_size % XLOG_HEADER_CYCLE_SIZE)
900 after_umount_blk = (i + hblks + (int)
901 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
902 tail_lsn = log->l_tail_lsn;
903 if (*head_blk == after_umount_blk &&
904 be32_to_cpu(rhead->h_num_logops) == 1) {
905 umount_data_blk = (i + hblks) % log->l_logBBsize;
906 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
909 offset = xlog_align(log, umount_data_blk, 1, bp);
910 op_head = (xlog_op_header_t *)offset;
911 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
913 * Set tail and last sync so that newly written
914 * log records will point recovery to after the
915 * current unmount record.
918 xlog_assign_lsn(log->l_curr_cycle,
920 log->l_last_sync_lsn =
921 xlog_assign_lsn(log->l_curr_cycle,
923 *tail_blk = after_umount_blk;
926 * Note that the unmount was clean. If the unmount
927 * was not clean, we need to know this to rebuild the
928 * superblock counters from the perag headers if we
929 * have a filesystem using non-persistent counters.
931 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
936 * Make sure that there are no blocks in front of the head
937 * with the same cycle number as the head. This can happen
938 * because we allow multiple outstanding log writes concurrently,
939 * and the later writes might make it out before earlier ones.
941 * We use the lsn from before modifying it so that we'll never
942 * overwrite the unmount record after a clean unmount.
944 * Do this only if we are going to recover the filesystem
946 * NOTE: This used to say "if (!readonly)"
947 * However on Linux, we can & do recover a read-only filesystem.
948 * We only skip recovery if NORECOVERY is specified on mount,
949 * in which case we would not be here.
951 * But... if the -device- itself is readonly, just skip this.
952 * We can't recover this device anyway, so it won't matter.
954 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
955 error = xlog_clear_stale_blocks(log, tail_lsn);
963 xlog_warn("XFS: failed to locate log tail");
968 * Is the log zeroed at all?
970 * The last binary search should be changed to perform an X block read
971 * once X becomes small enough. You can then search linearly through
972 * the X blocks. This will cut down on the number of reads we need to do.
974 * If the log is partially zeroed, this routine will pass back the blkno
975 * of the first block with cycle number 0. It won't have a complete LR
979 * 0 => the log is completely written to
980 * -1 => use *blk_no as the first block of the log
981 * >0 => error has occurred
990 uint first_cycle, last_cycle;
991 xfs_daddr_t new_blk, last_blk, start_blk;
992 xfs_daddr_t num_scan_bblks;
993 int error, log_bbnum = log->l_logBBsize;
997 /* check totally zeroed log */
998 bp = xlog_get_bp(log, 1);
1001 if ((error = xlog_bread(log, 0, 1, bp)))
1003 offset = xlog_align(log, 0, 1, bp);
1004 first_cycle = xlog_get_cycle(offset);
1005 if (first_cycle == 0) { /* completely zeroed log */
1011 /* check partially zeroed log */
1012 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1014 offset = xlog_align(log, log_bbnum-1, 1, bp);
1015 last_cycle = xlog_get_cycle(offset);
1016 if (last_cycle != 0) { /* log completely written to */
1019 } else if (first_cycle != 1) {
1021 * If the cycle of the last block is zero, the cycle of
1022 * the first block must be 1. If it's not, maybe we're
1023 * not looking at a log... Bail out.
1025 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1026 return XFS_ERROR(EINVAL);
1029 /* we have a partially zeroed log */
1030 last_blk = log_bbnum-1;
1031 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1035 * Validate the answer. Because there is no way to guarantee that
1036 * the entire log is made up of log records which are the same size,
1037 * we scan over the defined maximum blocks. At this point, the maximum
1038 * is not chosen to mean anything special. XXXmiken
1040 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1041 ASSERT(num_scan_bblks <= INT_MAX);
1043 if (last_blk < num_scan_bblks)
1044 num_scan_bblks = last_blk;
1045 start_blk = last_blk - num_scan_bblks;
1048 * We search for any instances of cycle number 0 that occur before
1049 * our current estimate of the head. What we're trying to detect is
1050 * 1 ... | 0 | 1 | 0...
1051 * ^ binary search ends here
1053 if ((error = xlog_find_verify_cycle(log, start_blk,
1054 (int)num_scan_bblks, 0, &new_blk)))
1060 * Potentially backup over partial log record write. We don't need
1061 * to search the end of the log because we know it is zero.
1063 if ((error = xlog_find_verify_log_record(log, start_blk,
1064 &last_blk, 0)) == -1) {
1065 error = XFS_ERROR(EIO);
1079 * These are simple subroutines used by xlog_clear_stale_blocks() below
1080 * to initialize a buffer full of empty log record headers and write
1081 * them into the log.
1092 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1094 memset(buf, 0, BBSIZE);
1095 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1096 recp->h_cycle = cpu_to_be32(cycle);
1097 recp->h_version = cpu_to_be32(
1098 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1099 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1100 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1101 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1102 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1106 xlog_write_log_records(
1117 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1118 int end_block = start_block + blocks;
1123 bufblks = 1 << ffs(blocks);
1124 while (!(bp = xlog_get_bp(log, bufblks))) {
1126 if (bufblks <= log->l_sectbb_log)
1130 /* We may need to do a read at the start to fill in part of
1131 * the buffer in the starting sector not covered by the first
1134 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1135 if (balign != start_block) {
1136 if ((error = xlog_bread(log, start_block, 1, bp))) {
1140 j = start_block - balign;
1143 for (i = start_block; i < end_block; i += bufblks) {
1144 int bcount, endcount;
1146 bcount = min(bufblks, end_block - start_block);
1147 endcount = bcount - j;
1149 /* We may need to do a read at the end to fill in part of
1150 * the buffer in the final sector not covered by the write.
1151 * If this is the same sector as the above read, skip it.
1153 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1154 if (j == 0 && (start_block + endcount > ealign)) {
1155 offset = XFS_BUF_PTR(bp);
1156 balign = BBTOB(ealign - start_block);
1157 error = XFS_BUF_SET_PTR(bp, offset + balign,
1160 error = xlog_bread(log, ealign, sectbb, bp);
1162 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1167 offset = xlog_align(log, start_block, endcount, bp);
1168 for (; j < endcount; j++) {
1169 xlog_add_record(log, offset, cycle, i+j,
1170 tail_cycle, tail_block);
1173 error = xlog_bwrite(log, start_block, endcount, bp);
1176 start_block += endcount;
1184 * This routine is called to blow away any incomplete log writes out
1185 * in front of the log head. We do this so that we won't become confused
1186 * if we come up, write only a little bit more, and then crash again.
1187 * If we leave the partial log records out there, this situation could
1188 * cause us to think those partial writes are valid blocks since they
1189 * have the current cycle number. We get rid of them by overwriting them
1190 * with empty log records with the old cycle number rather than the
1193 * The tail lsn is passed in rather than taken from
1194 * the log so that we will not write over the unmount record after a
1195 * clean unmount in a 512 block log. Doing so would leave the log without
1196 * any valid log records in it until a new one was written. If we crashed
1197 * during that time we would not be able to recover.
1200 xlog_clear_stale_blocks(
1204 int tail_cycle, head_cycle;
1205 int tail_block, head_block;
1206 int tail_distance, max_distance;
1210 tail_cycle = CYCLE_LSN(tail_lsn);
1211 tail_block = BLOCK_LSN(tail_lsn);
1212 head_cycle = log->l_curr_cycle;
1213 head_block = log->l_curr_block;
1216 * Figure out the distance between the new head of the log
1217 * and the tail. We want to write over any blocks beyond the
1218 * head that we may have written just before the crash, but
1219 * we don't want to overwrite the tail of the log.
1221 if (head_cycle == tail_cycle) {
1223 * The tail is behind the head in the physical log,
1224 * so the distance from the head to the tail is the
1225 * distance from the head to the end of the log plus
1226 * the distance from the beginning of the log to the
1229 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1230 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1231 XFS_ERRLEVEL_LOW, log->l_mp);
1232 return XFS_ERROR(EFSCORRUPTED);
1234 tail_distance = tail_block + (log->l_logBBsize - head_block);
1237 * The head is behind the tail in the physical log,
1238 * so the distance from the head to the tail is just
1239 * the tail block minus the head block.
1241 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1242 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1243 XFS_ERRLEVEL_LOW, log->l_mp);
1244 return XFS_ERROR(EFSCORRUPTED);
1246 tail_distance = tail_block - head_block;
1250 * If the head is right up against the tail, we can't clear
1253 if (tail_distance <= 0) {
1254 ASSERT(tail_distance == 0);
1258 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1260 * Take the smaller of the maximum amount of outstanding I/O
1261 * we could have and the distance to the tail to clear out.
1262 * We take the smaller so that we don't overwrite the tail and
1263 * we don't waste all day writing from the head to the tail
1266 max_distance = MIN(max_distance, tail_distance);
1268 if ((head_block + max_distance) <= log->l_logBBsize) {
1270 * We can stomp all the blocks we need to without
1271 * wrapping around the end of the log. Just do it
1272 * in a single write. Use the cycle number of the
1273 * current cycle minus one so that the log will look like:
1276 error = xlog_write_log_records(log, (head_cycle - 1),
1277 head_block, max_distance, tail_cycle,
1283 * We need to wrap around the end of the physical log in
1284 * order to clear all the blocks. Do it in two separate
1285 * I/Os. The first write should be from the head to the
1286 * end of the physical log, and it should use the current
1287 * cycle number minus one just like above.
1289 distance = log->l_logBBsize - head_block;
1290 error = xlog_write_log_records(log, (head_cycle - 1),
1291 head_block, distance, tail_cycle,
1298 * Now write the blocks at the start of the physical log.
1299 * This writes the remainder of the blocks we want to clear.
1300 * It uses the current cycle number since we're now on the
1301 * same cycle as the head so that we get:
1302 * n ... n ... | n - 1 ...
1303 * ^^^^^ blocks we're writing
1305 distance = max_distance - (log->l_logBBsize - head_block);
1306 error = xlog_write_log_records(log, head_cycle, 0, distance,
1307 tail_cycle, tail_block);
1315 /******************************************************************************
1317 * Log recover routines
1319 ******************************************************************************
1322 STATIC xlog_recover_t *
1323 xlog_recover_find_tid(
1327 xlog_recover_t *p = q;
1330 if (p->r_log_tid == tid)
1338 xlog_recover_put_hashq(
1340 xlog_recover_t *trans)
1347 xlog_recover_add_item(
1348 xlog_recover_item_t **itemq)
1350 xlog_recover_item_t *item;
1352 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1353 xlog_recover_insert_item_backq(itemq, item);
1357 xlog_recover_add_to_cont_trans(
1358 xlog_recover_t *trans,
1362 xlog_recover_item_t *item;
1363 xfs_caddr_t ptr, old_ptr;
1366 item = trans->r_itemq;
1368 /* finish copying rest of trans header */
1369 xlog_recover_add_item(&trans->r_itemq);
1370 ptr = (xfs_caddr_t) &trans->r_theader +
1371 sizeof(xfs_trans_header_t) - len;
1372 memcpy(ptr, dp, len); /* d, s, l */
1375 item = item->ri_prev;
1377 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1378 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1380 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1381 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1382 item->ri_buf[item->ri_cnt-1].i_len += len;
1383 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1388 * The next region to add is the start of a new region. It could be
1389 * a whole region or it could be the first part of a new region. Because
1390 * of this, the assumption here is that the type and size fields of all
1391 * format structures fit into the first 32 bits of the structure.
1393 * This works because all regions must be 32 bit aligned. Therefore, we
1394 * either have both fields or we have neither field. In the case we have
1395 * neither field, the data part of the region is zero length. We only have
1396 * a log_op_header and can throw away the header since a new one will appear
1397 * later. If we have at least 4 bytes, then we can determine how many regions
1398 * will appear in the current log item.
1401 xlog_recover_add_to_trans(
1402 xlog_recover_t *trans,
1406 xfs_inode_log_format_t *in_f; /* any will do */
1407 xlog_recover_item_t *item;
1412 item = trans->r_itemq;
1414 /* we need to catch log corruptions here */
1415 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1416 xlog_warn("XFS: xlog_recover_add_to_trans: "
1417 "bad header magic number");
1419 return XFS_ERROR(EIO);
1421 if (len == sizeof(xfs_trans_header_t))
1422 xlog_recover_add_item(&trans->r_itemq);
1423 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1427 ptr = kmem_alloc(len, KM_SLEEP);
1428 memcpy(ptr, dp, len);
1429 in_f = (xfs_inode_log_format_t *)ptr;
1431 if (item->ri_prev->ri_total != 0 &&
1432 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1433 xlog_recover_add_item(&trans->r_itemq);
1435 item = trans->r_itemq;
1436 item = item->ri_prev;
1438 if (item->ri_total == 0) { /* first region to be added */
1439 item->ri_total = in_f->ilf_size;
1440 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1441 item->ri_buf = kmem_zalloc((item->ri_total *
1442 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1444 ASSERT(item->ri_total > item->ri_cnt);
1445 /* Description region is ri_buf[0] */
1446 item->ri_buf[item->ri_cnt].i_addr = ptr;
1447 item->ri_buf[item->ri_cnt].i_len = len;
1453 xlog_recover_new_tid(
1458 xlog_recover_t *trans;
1460 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1461 trans->r_log_tid = tid;
1463 xlog_recover_put_hashq(q, trans);
1467 xlog_recover_unlink_tid(
1469 xlog_recover_t *trans)
1474 ASSERT(trans != NULL);
1480 if (tp->r_next == trans) {
1488 "XFS: xlog_recover_unlink_tid: trans not found");
1490 return XFS_ERROR(EIO);
1492 tp->r_next = tp->r_next->r_next;
1498 xlog_recover_insert_item_backq(
1499 xlog_recover_item_t **q,
1500 xlog_recover_item_t *item)
1503 item->ri_prev = item->ri_next = item;
1507 item->ri_prev = (*q)->ri_prev;
1508 (*q)->ri_prev = item;
1509 item->ri_prev->ri_next = item;
1514 xlog_recover_insert_item_frontq(
1515 xlog_recover_item_t **q,
1516 xlog_recover_item_t *item)
1518 xlog_recover_insert_item_backq(q, item);
1523 xlog_recover_reorder_trans(
1524 xlog_recover_t *trans)
1526 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1527 xfs_buf_log_format_t *buf_f;
1530 first_item = itemq = trans->r_itemq;
1531 trans->r_itemq = NULL;
1533 itemq_next = itemq->ri_next;
1534 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1536 switch (ITEM_TYPE(itemq)) {
1538 flags = buf_f->blf_flags;
1539 if (!(flags & XFS_BLI_CANCEL)) {
1540 xlog_recover_insert_item_frontq(&trans->r_itemq,
1546 case XFS_LI_QUOTAOFF:
1549 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1553 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1555 return XFS_ERROR(EIO);
1558 } while (first_item != itemq);
1563 * Build up the table of buf cancel records so that we don't replay
1564 * cancelled data in the second pass. For buffer records that are
1565 * not cancel records, there is nothing to do here so we just return.
1567 * If we get a cancel record which is already in the table, this indicates
1568 * that the buffer was cancelled multiple times. In order to ensure
1569 * that during pass 2 we keep the record in the table until we reach its
1570 * last occurrence in the log, we keep a reference count in the cancel
1571 * record in the table to tell us how many times we expect to see this
1572 * record during the second pass.
1575 xlog_recover_do_buffer_pass1(
1577 xfs_buf_log_format_t *buf_f)
1579 xfs_buf_cancel_t *bcp;
1580 xfs_buf_cancel_t *nextp;
1581 xfs_buf_cancel_t *prevp;
1582 xfs_buf_cancel_t **bucket;
1583 xfs_daddr_t blkno = 0;
1587 switch (buf_f->blf_type) {
1589 blkno = buf_f->blf_blkno;
1590 len = buf_f->blf_len;
1591 flags = buf_f->blf_flags;
1596 * If this isn't a cancel buffer item, then just return.
1598 if (!(flags & XFS_BLI_CANCEL))
1602 * Insert an xfs_buf_cancel record into the hash table of
1603 * them. If there is already an identical record, bump
1604 * its reference count.
1606 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1607 XLOG_BC_TABLE_SIZE];
1609 * If the hash bucket is empty then just insert a new record into
1612 if (*bucket == NULL) {
1613 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1615 bcp->bc_blkno = blkno;
1617 bcp->bc_refcount = 1;
1618 bcp->bc_next = NULL;
1624 * The hash bucket is not empty, so search for duplicates of our
1625 * record. If we find one them just bump its refcount. If not
1626 * then add us at the end of the list.
1630 while (nextp != NULL) {
1631 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1632 nextp->bc_refcount++;
1636 nextp = nextp->bc_next;
1638 ASSERT(prevp != NULL);
1639 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1641 bcp->bc_blkno = blkno;
1643 bcp->bc_refcount = 1;
1644 bcp->bc_next = NULL;
1645 prevp->bc_next = bcp;
1649 * Check to see whether the buffer being recovered has a corresponding
1650 * entry in the buffer cancel record table. If it does then return 1
1651 * so that it will be cancelled, otherwise return 0. If the buffer is
1652 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1653 * the refcount on the entry in the table and remove it from the table
1654 * if this is the last reference.
1656 * We remove the cancel record from the table when we encounter its
1657 * last occurrence in the log so that if the same buffer is re-used
1658 * again after its last cancellation we actually replay the changes
1659 * made at that point.
1662 xlog_check_buffer_cancelled(
1668 xfs_buf_cancel_t *bcp;
1669 xfs_buf_cancel_t *prevp;
1670 xfs_buf_cancel_t **bucket;
1672 if (log->l_buf_cancel_table == NULL) {
1674 * There is nothing in the table built in pass one,
1675 * so this buffer must not be cancelled.
1677 ASSERT(!(flags & XFS_BLI_CANCEL));
1681 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1682 XLOG_BC_TABLE_SIZE];
1686 * There is no corresponding entry in the table built
1687 * in pass one, so this buffer has not been cancelled.
1689 ASSERT(!(flags & XFS_BLI_CANCEL));
1694 * Search for an entry in the buffer cancel table that
1695 * matches our buffer.
1698 while (bcp != NULL) {
1699 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1701 * We've go a match, so return 1 so that the
1702 * recovery of this buffer is cancelled.
1703 * If this buffer is actually a buffer cancel
1704 * log item, then decrement the refcount on the
1705 * one in the table and remove it if this is the
1708 if (flags & XFS_BLI_CANCEL) {
1710 if (bcp->bc_refcount == 0) {
1711 if (prevp == NULL) {
1712 *bucket = bcp->bc_next;
1714 prevp->bc_next = bcp->bc_next;
1725 * We didn't find a corresponding entry in the table, so
1726 * return 0 so that the buffer is NOT cancelled.
1728 ASSERT(!(flags & XFS_BLI_CANCEL));
1733 xlog_recover_do_buffer_pass2(
1735 xfs_buf_log_format_t *buf_f)
1737 xfs_daddr_t blkno = 0;
1741 switch (buf_f->blf_type) {
1743 blkno = buf_f->blf_blkno;
1744 flags = buf_f->blf_flags;
1745 len = buf_f->blf_len;
1749 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1753 * Perform recovery for a buffer full of inodes. In these buffers,
1754 * the only data which should be recovered is that which corresponds
1755 * to the di_next_unlinked pointers in the on disk inode structures.
1756 * The rest of the data for the inodes is always logged through the
1757 * inodes themselves rather than the inode buffer and is recovered
1758 * in xlog_recover_do_inode_trans().
1760 * The only time when buffers full of inodes are fully recovered is
1761 * when the buffer is full of newly allocated inodes. In this case
1762 * the buffer will not be marked as an inode buffer and so will be
1763 * sent to xlog_recover_do_reg_buffer() below during recovery.
1766 xlog_recover_do_inode_buffer(
1768 xlog_recover_item_t *item,
1770 xfs_buf_log_format_t *buf_f)
1778 int next_unlinked_offset;
1780 xfs_agino_t *logged_nextp;
1781 xfs_agino_t *buffer_nextp;
1782 unsigned int *data_map = NULL;
1783 unsigned int map_size = 0;
1785 switch (buf_f->blf_type) {
1787 data_map = buf_f->blf_data_map;
1788 map_size = buf_f->blf_map_size;
1792 * Set the variables corresponding to the current region to
1793 * 0 so that we'll initialize them on the first pass through
1801 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1802 for (i = 0; i < inodes_per_buf; i++) {
1803 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1804 offsetof(xfs_dinode_t, di_next_unlinked);
1806 while (next_unlinked_offset >=
1807 (reg_buf_offset + reg_buf_bytes)) {
1809 * The next di_next_unlinked field is beyond
1810 * the current logged region. Find the next
1811 * logged region that contains or is beyond
1812 * the current di_next_unlinked field.
1815 bit = xfs_next_bit(data_map, map_size, bit);
1818 * If there are no more logged regions in the
1819 * buffer, then we're done.
1825 nbits = xfs_contig_bits(data_map, map_size,
1828 reg_buf_offset = bit << XFS_BLI_SHIFT;
1829 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1834 * If the current logged region starts after the current
1835 * di_next_unlinked field, then move on to the next
1836 * di_next_unlinked field.
1838 if (next_unlinked_offset < reg_buf_offset) {
1842 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1843 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1844 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1847 * The current logged region contains a copy of the
1848 * current di_next_unlinked field. Extract its value
1849 * and copy it to the buffer copy.
1851 logged_nextp = (xfs_agino_t *)
1852 ((char *)(item->ri_buf[item_index].i_addr) +
1853 (next_unlinked_offset - reg_buf_offset));
1854 if (unlikely(*logged_nextp == 0)) {
1855 xfs_fs_cmn_err(CE_ALERT, mp,
1856 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1858 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1859 XFS_ERRLEVEL_LOW, mp);
1860 return XFS_ERROR(EFSCORRUPTED);
1863 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1864 next_unlinked_offset);
1865 *buffer_nextp = *logged_nextp;
1872 * Perform a 'normal' buffer recovery. Each logged region of the
1873 * buffer should be copied over the corresponding region in the
1874 * given buffer. The bitmap in the buf log format structure indicates
1875 * where to place the logged data.
1879 xlog_recover_do_reg_buffer(
1880 xlog_recover_item_t *item,
1882 xfs_buf_log_format_t *buf_f)
1887 unsigned int *data_map = NULL;
1888 unsigned int map_size = 0;
1891 switch (buf_f->blf_type) {
1893 data_map = buf_f->blf_data_map;
1894 map_size = buf_f->blf_map_size;
1898 i = 1; /* 0 is the buf format structure */
1900 bit = xfs_next_bit(data_map, map_size, bit);
1903 nbits = xfs_contig_bits(data_map, map_size, bit);
1905 ASSERT(item->ri_buf[i].i_addr != NULL);
1906 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1907 ASSERT(XFS_BUF_COUNT(bp) >=
1908 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1911 * Do a sanity check if this is a dquot buffer. Just checking
1912 * the first dquot in the buffer should do. XXXThis is
1913 * probably a good thing to do for other buf types also.
1916 if (buf_f->blf_flags &
1917 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1918 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1919 item->ri_buf[i].i_addr,
1920 -1, 0, XFS_QMOPT_DOWARN,
1921 "dquot_buf_recover");
1924 memcpy(xfs_buf_offset(bp,
1925 (uint)bit << XFS_BLI_SHIFT), /* dest */
1926 item->ri_buf[i].i_addr, /* source */
1927 nbits<<XFS_BLI_SHIFT); /* length */
1932 /* Shouldn't be any more regions */
1933 ASSERT(i == item->ri_total);
1937 * Do some primitive error checking on ondisk dquot data structures.
1941 xfs_disk_dquot_t *ddq,
1943 uint type, /* used only when IO_dorepair is true */
1947 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1951 * We can encounter an uninitialized dquot buffer for 2 reasons:
1952 * 1. If we crash while deleting the quotainode(s), and those blks got
1953 * used for user data. This is because we take the path of regular
1954 * file deletion; however, the size field of quotainodes is never
1955 * updated, so all the tricks that we play in itruncate_finish
1956 * don't quite matter.
1958 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1959 * But the allocation will be replayed so we'll end up with an
1960 * uninitialized quota block.
1962 * This is all fine; things are still consistent, and we haven't lost
1963 * any quota information. Just don't complain about bad dquot blks.
1965 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1966 if (flags & XFS_QMOPT_DOWARN)
1968 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1969 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1972 if (ddq->d_version != XFS_DQUOT_VERSION) {
1973 if (flags & XFS_QMOPT_DOWARN)
1975 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1976 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1980 if (ddq->d_flags != XFS_DQ_USER &&
1981 ddq->d_flags != XFS_DQ_PROJ &&
1982 ddq->d_flags != XFS_DQ_GROUP) {
1983 if (flags & XFS_QMOPT_DOWARN)
1985 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1986 str, id, ddq->d_flags);
1990 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1991 if (flags & XFS_QMOPT_DOWARN)
1993 "%s : ondisk-dquot 0x%p, ID mismatch: "
1994 "0x%x expected, found id 0x%x",
1995 str, ddq, id, be32_to_cpu(ddq->d_id));
1999 if (!errs && ddq->d_id) {
2000 if (ddq->d_blk_softlimit &&
2001 be64_to_cpu(ddq->d_bcount) >=
2002 be64_to_cpu(ddq->d_blk_softlimit)) {
2003 if (!ddq->d_btimer) {
2004 if (flags & XFS_QMOPT_DOWARN)
2006 "%s : Dquot ID 0x%x (0x%p) "
2007 "BLK TIMER NOT STARTED",
2008 str, (int)be32_to_cpu(ddq->d_id), ddq);
2012 if (ddq->d_ino_softlimit &&
2013 be64_to_cpu(ddq->d_icount) >=
2014 be64_to_cpu(ddq->d_ino_softlimit)) {
2015 if (!ddq->d_itimer) {
2016 if (flags & XFS_QMOPT_DOWARN)
2018 "%s : Dquot ID 0x%x (0x%p) "
2019 "INODE TIMER NOT STARTED",
2020 str, (int)be32_to_cpu(ddq->d_id), ddq);
2024 if (ddq->d_rtb_softlimit &&
2025 be64_to_cpu(ddq->d_rtbcount) >=
2026 be64_to_cpu(ddq->d_rtb_softlimit)) {
2027 if (!ddq->d_rtbtimer) {
2028 if (flags & XFS_QMOPT_DOWARN)
2030 "%s : Dquot ID 0x%x (0x%p) "
2031 "RTBLK TIMER NOT STARTED",
2032 str, (int)be32_to_cpu(ddq->d_id), ddq);
2038 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2041 if (flags & XFS_QMOPT_DOWARN)
2042 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2045 * Typically, a repair is only requested by quotacheck.
2048 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2049 memset(d, 0, sizeof(xfs_dqblk_t));
2051 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2052 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2053 d->dd_diskdq.d_flags = type;
2054 d->dd_diskdq.d_id = cpu_to_be32(id);
2060 * Perform a dquot buffer recovery.
2061 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2062 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2063 * Else, treat it as a regular buffer and do recovery.
2066 xlog_recover_do_dquot_buffer(
2069 xlog_recover_item_t *item,
2071 xfs_buf_log_format_t *buf_f)
2076 * Filesystems are required to send in quota flags at mount time.
2078 if (mp->m_qflags == 0) {
2083 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2084 type |= XFS_DQ_USER;
2085 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2086 type |= XFS_DQ_PROJ;
2087 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2088 type |= XFS_DQ_GROUP;
2090 * This type of quotas was turned off, so ignore this buffer
2092 if (log->l_quotaoffs_flag & type)
2095 xlog_recover_do_reg_buffer(item, bp, buf_f);
2099 * This routine replays a modification made to a buffer at runtime.
2100 * There are actually two types of buffer, regular and inode, which
2101 * are handled differently. Inode buffers are handled differently
2102 * in that we only recover a specific set of data from them, namely
2103 * the inode di_next_unlinked fields. This is because all other inode
2104 * data is actually logged via inode records and any data we replay
2105 * here which overlaps that may be stale.
2107 * When meta-data buffers are freed at run time we log a buffer item
2108 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2109 * of the buffer in the log should not be replayed at recovery time.
2110 * This is so that if the blocks covered by the buffer are reused for
2111 * file data before we crash we don't end up replaying old, freed
2112 * meta-data into a user's file.
2114 * To handle the cancellation of buffer log items, we make two passes
2115 * over the log during recovery. During the first we build a table of
2116 * those buffers which have been cancelled, and during the second we
2117 * only replay those buffers which do not have corresponding cancel
2118 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2119 * for more details on the implementation of the table of cancel records.
2122 xlog_recover_do_buffer_trans(
2124 xlog_recover_item_t *item,
2127 xfs_buf_log_format_t *buf_f;
2136 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2138 if (pass == XLOG_RECOVER_PASS1) {
2140 * In this pass we're only looking for buf items
2141 * with the XFS_BLI_CANCEL bit set.
2143 xlog_recover_do_buffer_pass1(log, buf_f);
2147 * In this pass we want to recover all the buffers
2148 * which have not been cancelled and are not
2149 * cancellation buffers themselves. The routine
2150 * we call here will tell us whether or not to
2151 * continue with the replay of this buffer.
2153 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2158 switch (buf_f->blf_type) {
2160 blkno = buf_f->blf_blkno;
2161 len = buf_f->blf_len;
2162 flags = buf_f->blf_flags;
2165 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2166 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2167 buf_f->blf_type, log->l_mp->m_logname ?
2168 log->l_mp->m_logname : "internal");
2169 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2170 XFS_ERRLEVEL_LOW, log->l_mp);
2171 return XFS_ERROR(EFSCORRUPTED);
2175 if (flags & XFS_BLI_INODE_BUF) {
2176 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2179 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2181 if (XFS_BUF_ISERROR(bp)) {
2182 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2184 error = XFS_BUF_GETERROR(bp);
2190 if (flags & XFS_BLI_INODE_BUF) {
2191 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2193 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2194 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2196 xlog_recover_do_reg_buffer(item, bp, buf_f);
2199 return XFS_ERROR(error);
2202 * Perform delayed write on the buffer. Asynchronous writes will be
2203 * slower when taking into account all the buffers to be flushed.
2205 * Also make sure that only inode buffers with good sizes stay in
2206 * the buffer cache. The kernel moves inodes in buffers of 1 block
2207 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2208 * buffers in the log can be a different size if the log was generated
2209 * by an older kernel using unclustered inode buffers or a newer kernel
2210 * running with a different inode cluster size. Regardless, if the
2211 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2212 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2213 * the buffer out of the buffer cache so that the buffer won't
2214 * overlap with future reads of those inodes.
2216 if (XFS_DINODE_MAGIC ==
2217 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2218 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2219 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2221 error = xfs_bwrite(mp, bp);
2223 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2225 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2226 xfs_bdwrite(mp, bp);
2233 xlog_recover_do_inode_trans(
2235 xlog_recover_item_t *item,
2238 xfs_inode_log_format_t *in_f;
2249 xfs_icdinode_t *dicp;
2252 if (pass == XLOG_RECOVER_PASS1) {
2256 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2257 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2259 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2260 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2262 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2266 ino = in_f->ilf_ino;
2270 * Inode buffers can be freed, look out for it,
2271 * and do not replay the inode.
2273 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2274 in_f->ilf_len, 0)) {
2279 bp = xfs_buf_read_flags(mp->m_ddev_targp, in_f->ilf_blkno,
2280 in_f->ilf_len, XFS_BUF_LOCK);
2281 if (XFS_BUF_ISERROR(bp)) {
2282 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2283 bp, in_f->ilf_blkno);
2284 error = XFS_BUF_GETERROR(bp);
2289 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2290 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2293 * Make sure the place we're flushing out to really looks
2296 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2298 xfs_fs_cmn_err(CE_ALERT, mp,
2299 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2301 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2302 XFS_ERRLEVEL_LOW, mp);
2303 error = EFSCORRUPTED;
2306 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
2307 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2309 xfs_fs_cmn_err(CE_ALERT, mp,
2310 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2312 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2313 XFS_ERRLEVEL_LOW, mp);
2314 error = EFSCORRUPTED;
2318 /* Skip replay when the on disk inode is newer than the log one */
2319 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2321 * Deal with the wrap case, DI_MAX_FLUSH is less
2322 * than smaller numbers
2324 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2325 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2333 /* Take the opportunity to reset the flush iteration count */
2334 dicp->di_flushiter = 0;
2336 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2337 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2338 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2339 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2340 XFS_ERRLEVEL_LOW, mp, dicp);
2342 xfs_fs_cmn_err(CE_ALERT, mp,
2343 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2344 item, dip, bp, ino);
2345 error = EFSCORRUPTED;
2348 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2349 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2350 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2351 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2352 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2353 XFS_ERRLEVEL_LOW, mp, dicp);
2355 xfs_fs_cmn_err(CE_ALERT, mp,
2356 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2357 item, dip, bp, ino);
2358 error = EFSCORRUPTED;
2362 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2363 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2364 XFS_ERRLEVEL_LOW, mp, dicp);
2366 xfs_fs_cmn_err(CE_ALERT, mp,
2367 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2369 dicp->di_nextents + dicp->di_anextents,
2371 error = EFSCORRUPTED;
2374 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2375 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2376 XFS_ERRLEVEL_LOW, mp, dicp);
2378 xfs_fs_cmn_err(CE_ALERT, mp,
2379 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2380 item, dip, bp, ino, dicp->di_forkoff);
2381 error = EFSCORRUPTED;
2384 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2385 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2386 XFS_ERRLEVEL_LOW, mp, dicp);
2388 xfs_fs_cmn_err(CE_ALERT, mp,
2389 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2390 item->ri_buf[1].i_len, item);
2391 error = EFSCORRUPTED;
2395 /* The core is in in-core format */
2396 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
2398 /* the rest is in on-disk format */
2399 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2400 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2401 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2402 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2405 fields = in_f->ilf_fields;
2406 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2408 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2411 memcpy(XFS_DFORK_DPTR(dip),
2412 &in_f->ilf_u.ilfu_uuid,
2417 if (in_f->ilf_size == 2)
2418 goto write_inode_buffer;
2419 len = item->ri_buf[2].i_len;
2420 src = item->ri_buf[2].i_addr;
2421 ASSERT(in_f->ilf_size <= 4);
2422 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2423 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2424 (len == in_f->ilf_dsize));
2426 switch (fields & XFS_ILOG_DFORK) {
2427 case XFS_ILOG_DDATA:
2429 memcpy(XFS_DFORK_DPTR(dip), src, len);
2432 case XFS_ILOG_DBROOT:
2433 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2434 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2435 XFS_DFORK_DSIZE(dip, mp));
2440 * There are no data fork flags set.
2442 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2447 * If we logged any attribute data, recover it. There may or
2448 * may not have been any other non-core data logged in this
2451 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2452 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2457 len = item->ri_buf[attr_index].i_len;
2458 src = item->ri_buf[attr_index].i_addr;
2459 ASSERT(len == in_f->ilf_asize);
2461 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2462 case XFS_ILOG_ADATA:
2464 dest = XFS_DFORK_APTR(dip);
2465 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2466 memcpy(dest, src, len);
2469 case XFS_ILOG_ABROOT:
2470 dest = XFS_DFORK_APTR(dip);
2471 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2472 len, (xfs_bmdr_block_t*)dest,
2473 XFS_DFORK_ASIZE(dip, mp));
2477 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2486 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2487 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2489 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2490 xfs_bdwrite(mp, bp);
2493 error = xfs_bwrite(mp, bp);
2499 return XFS_ERROR(error);
2503 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2504 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2508 xlog_recover_do_quotaoff_trans(
2510 xlog_recover_item_t *item,
2513 xfs_qoff_logformat_t *qoff_f;
2515 if (pass == XLOG_RECOVER_PASS2) {
2519 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2523 * The logitem format's flag tells us if this was user quotaoff,
2524 * group/project quotaoff or both.
2526 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2527 log->l_quotaoffs_flag |= XFS_DQ_USER;
2528 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2529 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2530 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2531 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2537 * Recover a dquot record
2540 xlog_recover_do_dquot_trans(
2542 xlog_recover_item_t *item,
2547 struct xfs_disk_dquot *ddq, *recddq;
2549 xfs_dq_logformat_t *dq_f;
2552 if (pass == XLOG_RECOVER_PASS1) {
2558 * Filesystems are required to send in quota flags at mount time.
2560 if (mp->m_qflags == 0)
2563 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2566 * This type of quotas was turned off, so ignore this record.
2568 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2570 if (log->l_quotaoffs_flag & type)
2574 * At this point we know that quota was _not_ turned off.
2575 * Since the mount flags are not indicating to us otherwise, this
2576 * must mean that quota is on, and the dquot needs to be replayed.
2577 * Remember that we may not have fully recovered the superblock yet,
2578 * so we can't do the usual trick of looking at the SB quota bits.
2580 * The other possibility, of course, is that the quota subsystem was
2581 * removed since the last mount - ENOSYS.
2583 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2585 if ((error = xfs_qm_dqcheck(recddq,
2587 0, XFS_QMOPT_DOWARN,
2588 "xlog_recover_do_dquot_trans (log copy)"))) {
2589 return XFS_ERROR(EIO);
2591 ASSERT(dq_f->qlf_len == 1);
2593 error = xfs_read_buf(mp, mp->m_ddev_targp,
2595 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2598 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2599 bp, dq_f->qlf_blkno);
2603 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2606 * At least the magic num portion should be on disk because this
2607 * was among a chunk of dquots created earlier, and we did some
2608 * minimal initialization then.
2610 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2611 "xlog_recover_do_dquot_trans")) {
2613 return XFS_ERROR(EIO);
2616 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2618 ASSERT(dq_f->qlf_size == 2);
2619 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2621 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2622 xfs_bdwrite(mp, bp);
2628 * This routine is called to create an in-core extent free intent
2629 * item from the efi format structure which was logged on disk.
2630 * It allocates an in-core efi, copies the extents from the format
2631 * structure into it, and adds the efi to the AIL with the given
2635 xlog_recover_do_efi_trans(
2637 xlog_recover_item_t *item,
2643 xfs_efi_log_item_t *efip;
2644 xfs_efi_log_format_t *efi_formatp;
2646 if (pass == XLOG_RECOVER_PASS1) {
2650 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2653 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2654 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2655 &(efip->efi_format)))) {
2656 xfs_efi_item_free(efip);
2659 efip->efi_next_extent = efi_formatp->efi_nextents;
2660 efip->efi_flags |= XFS_EFI_COMMITTED;
2662 spin_lock(&log->l_ailp->xa_lock);
2664 * xfs_trans_ail_update() drops the AIL lock.
2666 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
2672 * This routine is called when an efd format structure is found in
2673 * a committed transaction in the log. It's purpose is to cancel
2674 * the corresponding efi if it was still in the log. To do this
2675 * it searches the AIL for the efi with an id equal to that in the
2676 * efd format structure. If we find it, we remove the efi from the
2680 xlog_recover_do_efd_trans(
2682 xlog_recover_item_t *item,
2685 xfs_efd_log_format_t *efd_formatp;
2686 xfs_efi_log_item_t *efip = NULL;
2687 xfs_log_item_t *lip;
2689 struct xfs_ail_cursor cur;
2690 struct xfs_ail *ailp = log->l_ailp;
2692 if (pass == XLOG_RECOVER_PASS1) {
2696 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2697 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2698 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2699 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2700 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2701 efi_id = efd_formatp->efd_efi_id;
2704 * Search for the efi with the id in the efd format structure
2707 spin_lock(&ailp->xa_lock);
2708 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2709 while (lip != NULL) {
2710 if (lip->li_type == XFS_LI_EFI) {
2711 efip = (xfs_efi_log_item_t *)lip;
2712 if (efip->efi_format.efi_id == efi_id) {
2714 * xfs_trans_ail_delete() drops the
2717 xfs_trans_ail_delete(ailp, lip);
2718 xfs_efi_item_free(efip);
2719 spin_lock(&ailp->xa_lock);
2723 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2725 xfs_trans_ail_cursor_done(ailp, &cur);
2726 spin_unlock(&ailp->xa_lock);
2730 * Perform the transaction
2732 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2733 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2736 xlog_recover_do_trans(
2738 xlog_recover_t *trans,
2742 xlog_recover_item_t *item, *first_item;
2744 if ((error = xlog_recover_reorder_trans(trans)))
2746 first_item = item = trans->r_itemq;
2749 * we don't need to worry about the block number being
2750 * truncated in > 1 TB buffers because in user-land,
2751 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2752 * the blknos will get through the user-mode buffer
2753 * cache properly. The only bad case is o32 kernels
2754 * where xfs_daddr_t is 32-bits but mount will warn us
2755 * off a > 1 TB filesystem before we get here.
2757 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
2758 if ((error = xlog_recover_do_buffer_trans(log, item,
2761 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2762 if ((error = xlog_recover_do_inode_trans(log, item,
2765 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2766 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2769 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2770 xlog_recover_do_efd_trans(log, item, pass);
2771 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2772 if ((error = xlog_recover_do_dquot_trans(log, item,
2775 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2776 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2780 xlog_warn("XFS: xlog_recover_do_trans");
2782 error = XFS_ERROR(EIO);
2785 item = item->ri_next;
2786 } while (first_item != item);
2792 * Free up any resources allocated by the transaction
2794 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2797 xlog_recover_free_trans(
2798 xlog_recover_t *trans)
2800 xlog_recover_item_t *first_item, *item, *free_item;
2803 item = first_item = trans->r_itemq;
2806 item = item->ri_next;
2807 /* Free the regions in the item. */
2808 for (i = 0; i < free_item->ri_cnt; i++) {
2809 kmem_free(free_item->ri_buf[i].i_addr);
2811 /* Free the item itself */
2812 kmem_free(free_item->ri_buf);
2813 kmem_free(free_item);
2814 } while (first_item != item);
2815 /* Free the transaction recover structure */
2820 xlog_recover_commit_trans(
2823 xlog_recover_t *trans,
2828 if ((error = xlog_recover_unlink_tid(q, trans)))
2830 if ((error = xlog_recover_do_trans(log, trans, pass)))
2832 xlog_recover_free_trans(trans); /* no error */
2837 xlog_recover_unmount_trans(
2838 xlog_recover_t *trans)
2840 /* Do nothing now */
2841 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2846 * There are two valid states of the r_state field. 0 indicates that the
2847 * transaction structure is in a normal state. We have either seen the
2848 * start of the transaction or the last operation we added was not a partial
2849 * operation. If the last operation we added to the transaction was a
2850 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2852 * NOTE: skip LRs with 0 data length.
2855 xlog_recover_process_data(
2857 xlog_recover_t *rhash[],
2858 xlog_rec_header_t *rhead,
2864 xlog_op_header_t *ohead;
2865 xlog_recover_t *trans;
2871 lp = dp + be32_to_cpu(rhead->h_len);
2872 num_logops = be32_to_cpu(rhead->h_num_logops);
2874 /* check the log format matches our own - else we can't recover */
2875 if (xlog_header_check_recover(log->l_mp, rhead))
2876 return (XFS_ERROR(EIO));
2878 while ((dp < lp) && num_logops) {
2879 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2880 ohead = (xlog_op_header_t *)dp;
2881 dp += sizeof(xlog_op_header_t);
2882 if (ohead->oh_clientid != XFS_TRANSACTION &&
2883 ohead->oh_clientid != XFS_LOG) {
2885 "XFS: xlog_recover_process_data: bad clientid");
2887 return (XFS_ERROR(EIO));
2889 tid = be32_to_cpu(ohead->oh_tid);
2890 hash = XLOG_RHASH(tid);
2891 trans = xlog_recover_find_tid(rhash[hash], tid);
2892 if (trans == NULL) { /* not found; add new tid */
2893 if (ohead->oh_flags & XLOG_START_TRANS)
2894 xlog_recover_new_tid(&rhash[hash], tid,
2895 be64_to_cpu(rhead->h_lsn));
2897 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2899 "XFS: xlog_recover_process_data: bad length");
2901 return (XFS_ERROR(EIO));
2903 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2904 if (flags & XLOG_WAS_CONT_TRANS)
2905 flags &= ~XLOG_CONTINUE_TRANS;
2907 case XLOG_COMMIT_TRANS:
2908 error = xlog_recover_commit_trans(log,
2909 &rhash[hash], trans, pass);
2911 case XLOG_UNMOUNT_TRANS:
2912 error = xlog_recover_unmount_trans(trans);
2914 case XLOG_WAS_CONT_TRANS:
2915 error = xlog_recover_add_to_cont_trans(trans,
2916 dp, be32_to_cpu(ohead->oh_len));
2918 case XLOG_START_TRANS:
2920 "XFS: xlog_recover_process_data: bad transaction");
2922 error = XFS_ERROR(EIO);
2925 case XLOG_CONTINUE_TRANS:
2926 error = xlog_recover_add_to_trans(trans,
2927 dp, be32_to_cpu(ohead->oh_len));
2931 "XFS: xlog_recover_process_data: bad flag");
2933 error = XFS_ERROR(EIO);
2939 dp += be32_to_cpu(ohead->oh_len);
2946 * Process an extent free intent item that was recovered from
2947 * the log. We need to free the extents that it describes.
2950 xlog_recover_process_efi(
2952 xfs_efi_log_item_t *efip)
2954 xfs_efd_log_item_t *efdp;
2959 xfs_fsblock_t startblock_fsb;
2961 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2964 * First check the validity of the extents described by the
2965 * EFI. If any are bad, then assume that all are bad and
2966 * just toss the EFI.
2968 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2969 extp = &(efip->efi_format.efi_extents[i]);
2970 startblock_fsb = XFS_BB_TO_FSB(mp,
2971 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2972 if ((startblock_fsb == 0) ||
2973 (extp->ext_len == 0) ||
2974 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2975 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2977 * This will pull the EFI from the AIL and
2978 * free the memory associated with it.
2980 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2981 return XFS_ERROR(EIO);
2985 tp = xfs_trans_alloc(mp, 0);
2986 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2989 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2991 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2992 extp = &(efip->efi_format.efi_extents[i]);
2993 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2996 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3000 efip->efi_flags |= XFS_EFI_RECOVERED;
3001 error = xfs_trans_commit(tp, 0);
3005 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3010 * When this is called, all of the EFIs which did not have
3011 * corresponding EFDs should be in the AIL. What we do now
3012 * is free the extents associated with each one.
3014 * Since we process the EFIs in normal transactions, they
3015 * will be removed at some point after the commit. This prevents
3016 * us from just walking down the list processing each one.
3017 * We'll use a flag in the EFI to skip those that we've already
3018 * processed and use the AIL iteration mechanism's generation
3019 * count to try to speed this up at least a bit.
3021 * When we start, we know that the EFIs are the only things in
3022 * the AIL. As we process them, however, other items are added
3023 * to the AIL. Since everything added to the AIL must come after
3024 * everything already in the AIL, we stop processing as soon as
3025 * we see something other than an EFI in the AIL.
3028 xlog_recover_process_efis(
3031 xfs_log_item_t *lip;
3032 xfs_efi_log_item_t *efip;
3034 struct xfs_ail_cursor cur;
3035 struct xfs_ail *ailp;
3038 spin_lock(&ailp->xa_lock);
3039 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3040 while (lip != NULL) {
3042 * We're done when we see something other than an EFI.
3043 * There should be no EFIs left in the AIL now.
3045 if (lip->li_type != XFS_LI_EFI) {
3047 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3048 ASSERT(lip->li_type != XFS_LI_EFI);
3054 * Skip EFIs that we've already processed.
3056 efip = (xfs_efi_log_item_t *)lip;
3057 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3058 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3062 spin_unlock(&ailp->xa_lock);
3063 error = xlog_recover_process_efi(log->l_mp, efip);
3064 spin_lock(&ailp->xa_lock);
3067 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3070 xfs_trans_ail_cursor_done(ailp, &cur);
3071 spin_unlock(&ailp->xa_lock);
3076 * This routine performs a transaction to null out a bad inode pointer
3077 * in an agi unlinked inode hash bucket.
3080 xlog_recover_clear_agi_bucket(
3082 xfs_agnumber_t agno,
3091 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3092 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3097 error = xfs_read_agi(mp, tp, agno, &agibp);
3101 agi = XFS_BUF_TO_AGI(agibp);
3102 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3103 offset = offsetof(xfs_agi_t, agi_unlinked) +
3104 (sizeof(xfs_agino_t) * bucket);
3105 xfs_trans_log_buf(tp, agibp, offset,
3106 (offset + sizeof(xfs_agino_t) - 1));
3108 error = xfs_trans_commit(tp, 0);
3114 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3116 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3117 "failed to clear agi %d. Continuing.", agno);
3122 xlog_recover_process_one_iunlink(
3123 struct xfs_mount *mp,
3124 xfs_agnumber_t agno,
3128 struct xfs_buf *ibp;
3129 struct xfs_dinode *dip;
3130 struct xfs_inode *ip;
3134 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3135 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3140 * Get the on disk inode to find the next inode in the bucket.
3142 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XFS_BUF_LOCK);
3146 ASSERT(ip->i_d.di_nlink == 0);
3147 ASSERT(ip->i_d.di_mode != 0);
3149 /* setup for the next pass */
3150 agino = be32_to_cpu(dip->di_next_unlinked);
3154 * Prevent any DMAPI event from being sent when the reference on
3155 * the inode is dropped.
3157 ip->i_d.di_dmevmask = 0;
3166 * We can't read in the inode this bucket points to, or this inode
3167 * is messed up. Just ditch this bucket of inodes. We will lose
3168 * some inodes and space, but at least we won't hang.
3170 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3171 * clear the inode pointer in the bucket.
3173 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3178 * xlog_iunlink_recover
3180 * This is called during recovery to process any inodes which
3181 * we unlinked but not freed when the system crashed. These
3182 * inodes will be on the lists in the AGI blocks. What we do
3183 * here is scan all the AGIs and fully truncate and free any
3184 * inodes found on the lists. Each inode is removed from the
3185 * lists when it has been fully truncated and is freed. The
3186 * freeing of the inode and its removal from the list must be
3190 xlog_recover_process_iunlinks(
3194 xfs_agnumber_t agno;
3205 * Prevent any DMAPI event from being sent while in this function.
3207 mp_dmevmask = mp->m_dmevmask;
3210 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3212 * Find the agi for this ag.
3214 error = xfs_read_agi(mp, NULL, agno, &agibp);
3217 * AGI is b0rked. Don't process it.
3219 * We should probably mark the filesystem as corrupt
3220 * after we've recovered all the ag's we can....
3224 agi = XFS_BUF_TO_AGI(agibp);
3226 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3227 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3228 while (agino != NULLAGINO) {
3230 * Release the agi buffer so that it can
3231 * be acquired in the normal course of the
3232 * transaction to truncate and free the inode.
3234 xfs_buf_relse(agibp);
3236 agino = xlog_recover_process_one_iunlink(mp,
3237 agno, agino, bucket);
3240 * Reacquire the agibuffer and continue around
3241 * the loop. This should never fail as we know
3242 * the buffer was good earlier on.
3244 error = xfs_read_agi(mp, NULL, agno, &agibp);
3246 agi = XFS_BUF_TO_AGI(agibp);
3251 * Release the buffer for the current agi so we can
3252 * go on to the next one.
3254 xfs_buf_relse(agibp);
3257 mp->m_dmevmask = mp_dmevmask;
3263 xlog_pack_data_checksum(
3265 xlog_in_core_t *iclog,
3272 up = (__be32 *)iclog->ic_datap;
3273 /* divide length by 4 to get # words */
3274 for (i = 0; i < (size >> 2); i++) {
3275 chksum ^= be32_to_cpu(*up);
3278 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3281 #define xlog_pack_data_checksum(log, iclog, size)
3285 * Stamp cycle number in every block
3290 xlog_in_core_t *iclog,
3294 int size = iclog->ic_offset + roundoff;
3298 xlog_pack_data_checksum(log, iclog, size);
3300 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3302 dp = iclog->ic_datap;
3303 for (i = 0; i < BTOBB(size) &&
3304 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3305 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3306 *(__be32 *)dp = cycle_lsn;
3310 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3311 xlog_in_core_2_t *xhdr = iclog->ic_data;
3313 for ( ; i < BTOBB(size); i++) {
3314 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3315 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3316 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3317 *(__be32 *)dp = cycle_lsn;
3321 for (i = 1; i < log->l_iclog_heads; i++) {
3322 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3327 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3329 xlog_unpack_data_checksum(
3330 xlog_rec_header_t *rhead,
3334 __be32 *up = (__be32 *)dp;
3338 /* divide length by 4 to get # words */
3339 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3340 chksum ^= be32_to_cpu(*up);
3343 if (chksum != be32_to_cpu(rhead->h_chksum)) {
3344 if (rhead->h_chksum ||
3345 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3347 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3348 be32_to_cpu(rhead->h_chksum), chksum);
3350 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3351 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3353 "XFS: LogR this is a LogV2 filesystem\n");
3355 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3360 #define xlog_unpack_data_checksum(rhead, dp, log)
3365 xlog_rec_header_t *rhead,
3371 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3372 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3373 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3377 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3378 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3379 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3380 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3381 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3382 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3387 xlog_unpack_data_checksum(rhead, dp, log);
3391 xlog_valid_rec_header(
3393 xlog_rec_header_t *rhead,
3398 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3399 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3400 XFS_ERRLEVEL_LOW, log->l_mp);
3401 return XFS_ERROR(EFSCORRUPTED);
3404 (!rhead->h_version ||
3405 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3406 xlog_warn("XFS: %s: unrecognised log version (%d).",
3407 __func__, be32_to_cpu(rhead->h_version));
3408 return XFS_ERROR(EIO);
3411 /* LR body must have data or it wouldn't have been written */
3412 hlen = be32_to_cpu(rhead->h_len);
3413 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3414 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3415 XFS_ERRLEVEL_LOW, log->l_mp);
3416 return XFS_ERROR(EFSCORRUPTED);
3418 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3419 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3420 XFS_ERRLEVEL_LOW, log->l_mp);
3421 return XFS_ERROR(EFSCORRUPTED);
3427 * Read the log from tail to head and process the log records found.
3428 * Handle the two cases where the tail and head are in the same cycle
3429 * and where the active portion of the log wraps around the end of
3430 * the physical log separately. The pass parameter is passed through
3431 * to the routines called to process the data and is not looked at
3435 xlog_do_recovery_pass(
3437 xfs_daddr_t head_blk,
3438 xfs_daddr_t tail_blk,
3441 xlog_rec_header_t *rhead;
3443 xfs_caddr_t bufaddr, offset;
3444 xfs_buf_t *hbp, *dbp;
3445 int error = 0, h_size;
3446 int bblks, split_bblks;
3447 int hblks, split_hblks, wrapped_hblks;
3448 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3450 ASSERT(head_blk != tail_blk);
3453 * Read the header of the tail block and get the iclog buffer size from
3454 * h_size. Use this to tell how many sectors make up the log header.
3456 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3458 * When using variable length iclogs, read first sector of
3459 * iclog header and extract the header size from it. Get a
3460 * new hbp that is the correct size.
3462 hbp = xlog_get_bp(log, 1);
3465 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3467 offset = xlog_align(log, tail_blk, 1, hbp);
3468 rhead = (xlog_rec_header_t *)offset;
3469 error = xlog_valid_rec_header(log, rhead, tail_blk);
3472 h_size = be32_to_cpu(rhead->h_size);
3473 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3474 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3475 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3476 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3479 hbp = xlog_get_bp(log, hblks);
3484 ASSERT(log->l_sectbb_log == 0);
3486 hbp = xlog_get_bp(log, 1);
3487 h_size = XLOG_BIG_RECORD_BSIZE;
3492 dbp = xlog_get_bp(log, BTOBB(h_size));
3498 memset(rhash, 0, sizeof(rhash));
3499 if (tail_blk <= head_blk) {
3500 for (blk_no = tail_blk; blk_no < head_blk; ) {
3501 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3503 offset = xlog_align(log, blk_no, hblks, hbp);
3504 rhead = (xlog_rec_header_t *)offset;
3505 error = xlog_valid_rec_header(log, rhead, blk_no);
3509 /* blocks in data section */
3510 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3511 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3514 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3515 xlog_unpack_data(rhead, offset, log);
3516 if ((error = xlog_recover_process_data(log,
3517 rhash, rhead, offset, pass)))
3519 blk_no += bblks + hblks;
3523 * Perform recovery around the end of the physical log.
3524 * When the head is not on the same cycle number as the tail,
3525 * we can't do a sequential recovery as above.
3528 while (blk_no < log->l_logBBsize) {
3530 * Check for header wrapping around physical end-of-log
3535 if (blk_no + hblks <= log->l_logBBsize) {
3536 /* Read header in one read */
3537 error = xlog_bread(log, blk_no, hblks, hbp);
3540 offset = xlog_align(log, blk_no, hblks, hbp);
3542 /* This LR is split across physical log end */
3543 if (blk_no != log->l_logBBsize) {
3544 /* some data before physical log end */
3545 ASSERT(blk_no <= INT_MAX);
3546 split_hblks = log->l_logBBsize - (int)blk_no;
3547 ASSERT(split_hblks > 0);
3548 if ((error = xlog_bread(log, blk_no,
3551 offset = xlog_align(log, blk_no,
3555 * Note: this black magic still works with
3556 * large sector sizes (non-512) only because:
3557 * - we increased the buffer size originally
3558 * by 1 sector giving us enough extra space
3559 * for the second read;
3560 * - the log start is guaranteed to be sector
3562 * - we read the log end (LR header start)
3563 * _first_, then the log start (LR header end)
3564 * - order is important.
3566 wrapped_hblks = hblks - split_hblks;
3567 bufaddr = XFS_BUF_PTR(hbp);
3568 error = XFS_BUF_SET_PTR(hbp,
3569 bufaddr + BBTOB(split_hblks),
3570 BBTOB(hblks - split_hblks));
3572 error = xlog_bread(log, 0,
3573 wrapped_hblks, hbp);
3575 error = XFS_BUF_SET_PTR(hbp, bufaddr,
3580 offset = xlog_align(log, 0,
3581 wrapped_hblks, hbp);
3583 rhead = (xlog_rec_header_t *)offset;
3584 error = xlog_valid_rec_header(log, rhead,
3585 split_hblks ? blk_no : 0);
3589 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3592 /* Read in data for log record */
3593 if (blk_no + bblks <= log->l_logBBsize) {
3594 error = xlog_bread(log, blk_no, bblks, dbp);
3597 offset = xlog_align(log, blk_no, bblks, dbp);
3599 /* This log record is split across the
3600 * physical end of log */
3603 if (blk_no != log->l_logBBsize) {
3604 /* some data is before the physical
3606 ASSERT(!wrapped_hblks);
3607 ASSERT(blk_no <= INT_MAX);
3609 log->l_logBBsize - (int)blk_no;
3610 ASSERT(split_bblks > 0);
3611 if ((error = xlog_bread(log, blk_no,
3614 offset = xlog_align(log, blk_no,
3618 * Note: this black magic still works with
3619 * large sector sizes (non-512) only because:
3620 * - we increased the buffer size originally
3621 * by 1 sector giving us enough extra space
3622 * for the second read;
3623 * - the log start is guaranteed to be sector
3625 * - we read the log end (LR header start)
3626 * _first_, then the log start (LR header end)
3627 * - order is important.
3629 bufaddr = XFS_BUF_PTR(dbp);
3630 error = XFS_BUF_SET_PTR(dbp,
3631 bufaddr + BBTOB(split_bblks),
3632 BBTOB(bblks - split_bblks));
3634 error = xlog_bread(log, wrapped_hblks,
3635 bblks - split_bblks,
3638 error = XFS_BUF_SET_PTR(dbp, bufaddr,
3643 offset = xlog_align(log, wrapped_hblks,
3644 bblks - split_bblks, dbp);
3646 xlog_unpack_data(rhead, offset, log);
3647 if ((error = xlog_recover_process_data(log, rhash,
3648 rhead, offset, pass)))
3653 ASSERT(blk_no >= log->l_logBBsize);
3654 blk_no -= log->l_logBBsize;
3656 /* read first part of physical log */
3657 while (blk_no < head_blk) {
3658 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3660 offset = xlog_align(log, blk_no, hblks, hbp);
3661 rhead = (xlog_rec_header_t *)offset;
3662 error = xlog_valid_rec_header(log, rhead, blk_no);
3665 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3666 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3668 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3669 xlog_unpack_data(rhead, offset, log);
3670 if ((error = xlog_recover_process_data(log, rhash,
3671 rhead, offset, pass)))
3673 blk_no += bblks + hblks;
3685 * Do the recovery of the log. We actually do this in two phases.
3686 * The two passes are necessary in order to implement the function
3687 * of cancelling a record written into the log. The first pass
3688 * determines those things which have been cancelled, and the
3689 * second pass replays log items normally except for those which
3690 * have been cancelled. The handling of the replay and cancellations
3691 * takes place in the log item type specific routines.
3693 * The table of items which have cancel records in the log is allocated
3694 * and freed at this level, since only here do we know when all of
3695 * the log recovery has been completed.
3698 xlog_do_log_recovery(
3700 xfs_daddr_t head_blk,
3701 xfs_daddr_t tail_blk)
3705 ASSERT(head_blk != tail_blk);
3708 * First do a pass to find all of the cancelled buf log items.
3709 * Store them in the buf_cancel_table for use in the second pass.
3711 log->l_buf_cancel_table =
3712 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3713 sizeof(xfs_buf_cancel_t*),
3715 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3716 XLOG_RECOVER_PASS1);
3718 kmem_free(log->l_buf_cancel_table);
3719 log->l_buf_cancel_table = NULL;
3723 * Then do a second pass to actually recover the items in the log.
3724 * When it is complete free the table of buf cancel items.
3726 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3727 XLOG_RECOVER_PASS2);
3732 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3733 ASSERT(log->l_buf_cancel_table[i] == NULL);
3737 kmem_free(log->l_buf_cancel_table);
3738 log->l_buf_cancel_table = NULL;
3744 * Do the actual recovery
3749 xfs_daddr_t head_blk,
3750 xfs_daddr_t tail_blk)
3757 * First replay the images in the log.
3759 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3764 XFS_bflush(log->l_mp->m_ddev_targp);
3767 * If IO errors happened during recovery, bail out.
3769 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3774 * We now update the tail_lsn since much of the recovery has completed
3775 * and there may be space available to use. If there were no extent
3776 * or iunlinks, we can free up the entire log and set the tail_lsn to
3777 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3778 * lsn of the last known good LR on disk. If there are extent frees
3779 * or iunlinks they will have some entries in the AIL; so we look at
3780 * the AIL to determine how to set the tail_lsn.
3782 xlog_assign_tail_lsn(log->l_mp);
3785 * Now that we've finished replaying all buffer and inode
3786 * updates, re-read in the superblock.
3788 bp = xfs_getsb(log->l_mp, 0);
3790 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3791 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3793 XFS_BUF_UNASYNC(bp);
3794 xfsbdstrat(log->l_mp, bp);
3795 error = xfs_iowait(bp);
3797 xfs_ioerror_alert("xlog_do_recover",
3798 log->l_mp, bp, XFS_BUF_ADDR(bp));
3804 /* Convert superblock from on-disk format */
3805 sbp = &log->l_mp->m_sb;
3806 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3807 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3808 ASSERT(xfs_sb_good_version(sbp));
3811 /* We've re-read the superblock so re-initialize per-cpu counters */
3812 xfs_icsb_reinit_counters(log->l_mp);
3814 xlog_recover_check_summary(log);
3816 /* Normal transactions can now occur */
3817 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3822 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3824 * Return error or zero.
3830 xfs_daddr_t head_blk, tail_blk;
3833 /* find the tail of the log */
3834 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3837 if (tail_blk != head_blk) {
3838 /* There used to be a comment here:
3840 * disallow recovery on read-only mounts. note -- mount
3841 * checks for ENOSPC and turns it into an intelligent
3843 * ...but this is no longer true. Now, unless you specify
3844 * NORECOVERY (in which case this function would never be
3845 * called), we just go ahead and recover. We do this all
3846 * under the vfs layer, so we can get away with it unless
3847 * the device itself is read-only, in which case we fail.
3849 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3854 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3855 log->l_mp->m_fsname, log->l_mp->m_logname ?
3856 log->l_mp->m_logname : "internal");
3858 error = xlog_do_recover(log, head_blk, tail_blk);
3859 log->l_flags |= XLOG_RECOVERY_NEEDED;
3865 * In the first part of recovery we replay inodes and buffers and build
3866 * up the list of extent free items which need to be processed. Here
3867 * we process the extent free items and clean up the on disk unlinked
3868 * inode lists. This is separated from the first part of recovery so
3869 * that the root and real-time bitmap inodes can be read in from disk in
3870 * between the two stages. This is necessary so that we can free space
3871 * in the real-time portion of the file system.
3874 xlog_recover_finish(
3878 * Now we're ready to do the transactions needed for the
3879 * rest of recovery. Start with completing all the extent
3880 * free intent records and then process the unlinked inode
3881 * lists. At this point, we essentially run in normal mode
3882 * except that we're still performing recovery actions
3883 * rather than accepting new requests.
3885 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3887 error = xlog_recover_process_efis(log);
3890 "Failed to recover EFIs on filesystem: %s",
3891 log->l_mp->m_fsname);
3895 * Sync the log to get all the EFIs out of the AIL.
3896 * This isn't absolutely necessary, but it helps in
3897 * case the unlink transactions would have problems
3898 * pushing the EFIs out of the way.
3900 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3901 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3903 xlog_recover_process_iunlinks(log);
3905 xlog_recover_check_summary(log);
3908 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3909 log->l_mp->m_fsname, log->l_mp->m_logname ?
3910 log->l_mp->m_logname : "internal");
3911 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3914 "!Ending clean XFS mount for filesystem: %s\n",
3915 log->l_mp->m_fsname);
3923 * Read all of the agf and agi counters and check that they
3924 * are consistent with the superblock counters.
3927 xlog_recover_check_summary(
3935 #ifdef XFS_LOUD_RECOVERY
3938 xfs_agnumber_t agno;
3939 __uint64_t freeblks;
3949 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3950 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3952 xfs_fs_cmn_err(CE_ALERT, mp,
3953 "xlog_recover_check_summary(agf)"
3954 "agf read failed agno %d error %d",
3957 agfp = XFS_BUF_TO_AGF(agfbp);
3958 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3959 be32_to_cpu(agfp->agf_flcount);
3960 xfs_buf_relse(agfbp);
3963 error = xfs_read_agi(mp, NULL, agno, &agibp);
3965 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3967 itotal += be32_to_cpu(agi->agi_count);
3968 ifree += be32_to_cpu(agi->agi_freecount);
3969 xfs_buf_relse(agibp);
3973 sbbp = xfs_getsb(mp, 0);
3974 #ifdef XFS_LOUD_RECOVERY
3976 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
3978 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
3979 sbp->sb_icount, itotal);
3981 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
3982 sbp->sb_ifree, ifree);
3984 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
3985 sbp->sb_fdblocks, freeblks);
3988 * This is turned off until I account for the allocation
3989 * btree blocks which live in free space.
3991 ASSERT(sbp->sb_icount == itotal);
3992 ASSERT(sbp->sb_ifree == ifree);
3993 ASSERT(sbp->sb_fdblocks == freeblks);
3996 xfs_buf_relse(sbbp);