[TG3]: add 5780 fiber support
[linux-2.6] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/raid/raid10.h>
22
23 /*
24  * RAID10 provides a combination of RAID0 and RAID1 functionality.
25  * The layout of data is defined by
26  *    chunk_size
27  *    raid_disks
28  *    near_copies (stored in low byte of layout)
29  *    far_copies (stored in second byte of layout)
30  *
31  * The data to be stored is divided into chunks using chunksize.
32  * Each device is divided into far_copies sections.
33  * In each section, chunks are laid out in a style similar to raid0, but
34  * near_copies copies of each chunk is stored (each on a different drive).
35  * The starting device for each section is offset near_copies from the starting
36  * device of the previous section.
37  * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38  * drive.
39  * near_copies and far_copies must be at least one, and their product is at most
40  * raid_disks.
41  */
42
43 /*
44  * Number of guaranteed r10bios in case of extreme VM load:
45  */
46 #define NR_RAID10_BIOS 256
47
48 static void unplug_slaves(mddev_t *mddev);
49
50 static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
51 {
52         conf_t *conf = data;
53         r10bio_t *r10_bio;
54         int size = offsetof(struct r10bio_s, devs[conf->copies]);
55
56         /* allocate a r10bio with room for raid_disks entries in the bios array */
57         r10_bio = kmalloc(size, gfp_flags);
58         if (r10_bio)
59                 memset(r10_bio, 0, size);
60         else
61                 unplug_slaves(conf->mddev);
62
63         return r10_bio;
64 }
65
66 static void r10bio_pool_free(void *r10_bio, void *data)
67 {
68         kfree(r10_bio);
69 }
70
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
76
77 /*
78  * When performing a resync, we need to read and compare, so
79  * we need as many pages are there are copies.
80  * When performing a recovery, we need 2 bios, one for read,
81  * one for write (we recover only one drive per r10buf)
82  *
83  */
84 static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
85 {
86         conf_t *conf = data;
87         struct page *page;
88         r10bio_t *r10_bio;
89         struct bio *bio;
90         int i, j;
91         int nalloc;
92
93         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94         if (!r10_bio) {
95                 unplug_slaves(conf->mddev);
96                 return NULL;
97         }
98
99         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100                 nalloc = conf->copies; /* resync */
101         else
102                 nalloc = 2; /* recovery */
103
104         /*
105          * Allocate bios.
106          */
107         for (j = nalloc ; j-- ; ) {
108                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109                 if (!bio)
110                         goto out_free_bio;
111                 r10_bio->devs[j].bio = bio;
112         }
113         /*
114          * Allocate RESYNC_PAGES data pages and attach them
115          * where needed.
116          */
117         for (j = 0 ; j < nalloc; j++) {
118                 bio = r10_bio->devs[j].bio;
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                 }
126         }
127
128         return r10_bio;
129
130 out_free_pages:
131         for ( ; i > 0 ; i--)
132                 __free_page(bio->bi_io_vec[i-1].bv_page);
133         while (j--)
134                 for (i = 0; i < RESYNC_PAGES ; i++)
135                         __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136         j = -1;
137 out_free_bio:
138         while ( ++j < nalloc )
139                 bio_put(r10_bio->devs[j].bio);
140         r10bio_pool_free(r10_bio, conf);
141         return NULL;
142 }
143
144 static void r10buf_pool_free(void *__r10_bio, void *data)
145 {
146         int i;
147         conf_t *conf = data;
148         r10bio_t *r10bio = __r10_bio;
149         int j;
150
151         for (j=0; j < conf->copies; j++) {
152                 struct bio *bio = r10bio->devs[j].bio;
153                 if (bio) {
154                         for (i = 0; i < RESYNC_PAGES; i++) {
155                                 __free_page(bio->bi_io_vec[i].bv_page);
156                                 bio->bi_io_vec[i].bv_page = NULL;
157                         }
158                         bio_put(bio);
159                 }
160         }
161         r10bio_pool_free(r10bio, conf);
162 }
163
164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165 {
166         int i;
167
168         for (i = 0; i < conf->copies; i++) {
169                 struct bio **bio = & r10_bio->devs[i].bio;
170                 if (*bio)
171                         bio_put(*bio);
172                 *bio = NULL;
173         }
174 }
175
176 static inline void free_r10bio(r10bio_t *r10_bio)
177 {
178         unsigned long flags;
179
180         conf_t *conf = mddev_to_conf(r10_bio->mddev);
181
182         /*
183          * Wake up any possible resync thread that waits for the device
184          * to go idle.
185          */
186         spin_lock_irqsave(&conf->resync_lock, flags);
187         if (!--conf->nr_pending) {
188                 wake_up(&conf->wait_idle);
189                 wake_up(&conf->wait_resume);
190         }
191         spin_unlock_irqrestore(&conf->resync_lock, flags);
192
193         put_all_bios(conf, r10_bio);
194         mempool_free(r10_bio, conf->r10bio_pool);
195 }
196
197 static inline void put_buf(r10bio_t *r10_bio)
198 {
199         conf_t *conf = mddev_to_conf(r10_bio->mddev);
200         unsigned long flags;
201
202         mempool_free(r10_bio, conf->r10buf_pool);
203
204         spin_lock_irqsave(&conf->resync_lock, flags);
205         if (!conf->barrier)
206                 BUG();
207         --conf->barrier;
208         wake_up(&conf->wait_resume);
209         wake_up(&conf->wait_idle);
210
211         if (!--conf->nr_pending) {
212                 wake_up(&conf->wait_idle);
213                 wake_up(&conf->wait_resume);
214         }
215         spin_unlock_irqrestore(&conf->resync_lock, flags);
216 }
217
218 static void reschedule_retry(r10bio_t *r10_bio)
219 {
220         unsigned long flags;
221         mddev_t *mddev = r10_bio->mddev;
222         conf_t *conf = mddev_to_conf(mddev);
223
224         spin_lock_irqsave(&conf->device_lock, flags);
225         list_add(&r10_bio->retry_list, &conf->retry_list);
226         spin_unlock_irqrestore(&conf->device_lock, flags);
227
228         md_wakeup_thread(mddev->thread);
229 }
230
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238         struct bio *bio = r10_bio->master_bio;
239
240         bio_endio(bio, bio->bi_size,
241                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242         free_r10bio(r10_bio);
243 }
244
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250         conf_t *conf = mddev_to_conf(r10_bio->mddev);
251
252         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253                 r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255
256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257 {
258         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260         int slot, dev;
261         conf_t *conf = mddev_to_conf(r10_bio->mddev);
262
263         if (bio->bi_size)
264                 return 1;
265
266         slot = r10_bio->read_slot;
267         dev = r10_bio->devs[slot].devnum;
268         /*
269          * this branch is our 'one mirror IO has finished' event handler:
270          */
271         if (!uptodate)
272                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273         else
274                 /*
275                  * Set R10BIO_Uptodate in our master bio, so that
276                  * we will return a good error code to the higher
277                  * levels even if IO on some other mirrored buffer fails.
278                  *
279                  * The 'master' represents the composite IO operation to
280                  * user-side. So if something waits for IO, then it will
281                  * wait for the 'master' bio.
282                  */
283                 set_bit(R10BIO_Uptodate, &r10_bio->state);
284
285         update_head_pos(slot, r10_bio);
286
287         /*
288          * we have only one bio on the read side
289          */
290         if (uptodate)
291                 raid_end_bio_io(r10_bio);
292         else {
293                 /*
294                  * oops, read error:
295                  */
296                 char b[BDEVNAME_SIZE];
297                 if (printk_ratelimit())
298                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300                 reschedule_retry(r10_bio);
301         }
302
303         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304         return 0;
305 }
306
307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311         int slot, dev;
312         conf_t *conf = mddev_to_conf(r10_bio->mddev);
313
314         if (bio->bi_size)
315                 return 1;
316
317         for (slot = 0; slot < conf->copies; slot++)
318                 if (r10_bio->devs[slot].bio == bio)
319                         break;
320         dev = r10_bio->devs[slot].devnum;
321
322         /*
323          * this branch is our 'one mirror IO has finished' event handler:
324          */
325         if (!uptodate)
326                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327         else
328                 /*
329                  * Set R10BIO_Uptodate in our master bio, so that
330                  * we will return a good error code for to the higher
331                  * levels even if IO on some other mirrored buffer fails.
332                  *
333                  * The 'master' represents the composite IO operation to
334                  * user-side. So if something waits for IO, then it will
335                  * wait for the 'master' bio.
336                  */
337                 set_bit(R10BIO_Uptodate, &r10_bio->state);
338
339         update_head_pos(slot, r10_bio);
340
341         /*
342          *
343          * Let's see if all mirrored write operations have finished
344          * already.
345          */
346         if (atomic_dec_and_test(&r10_bio->remaining)) {
347                 md_write_end(r10_bio->mddev);
348                 raid_end_bio_io(r10_bio);
349         }
350
351         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352         return 0;
353 }
354
355
356 /*
357  * RAID10 layout manager
358  * Aswell as the chunksize and raid_disks count, there are two
359  * parameters: near_copies and far_copies.
360  * near_copies * far_copies must be <= raid_disks.
361  * Normally one of these will be 1.
362  * If both are 1, we get raid0.
363  * If near_copies == raid_disks, we get raid1.
364  *
365  * Chunks are layed out in raid0 style with near_copies copies of the
366  * first chunk, followed by near_copies copies of the next chunk and
367  * so on.
368  * If far_copies > 1, then after 1/far_copies of the array has been assigned
369  * as described above, we start again with a device offset of near_copies.
370  * So we effectively have another copy of the whole array further down all
371  * the drives, but with blocks on different drives.
372  * With this layout, and block is never stored twice on the one device.
373  *
374  * raid10_find_phys finds the sector offset of a given virtual sector
375  * on each device that it is on. If a block isn't on a device,
376  * that entry in the array is set to MaxSector.
377  *
378  * raid10_find_virt does the reverse mapping, from a device and a
379  * sector offset to a virtual address
380  */
381
382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383 {
384         int n,f;
385         sector_t sector;
386         sector_t chunk;
387         sector_t stripe;
388         int dev;
389
390         int slot = 0;
391
392         /* now calculate first sector/dev */
393         chunk = r10bio->sector >> conf->chunk_shift;
394         sector = r10bio->sector & conf->chunk_mask;
395
396         chunk *= conf->near_copies;
397         stripe = chunk;
398         dev = sector_div(stripe, conf->raid_disks);
399
400         sector += stripe << conf->chunk_shift;
401
402         /* and calculate all the others */
403         for (n=0; n < conf->near_copies; n++) {
404                 int d = dev;
405                 sector_t s = sector;
406                 r10bio->devs[slot].addr = sector;
407                 r10bio->devs[slot].devnum = d;
408                 slot++;
409
410                 for (f = 1; f < conf->far_copies; f++) {
411                         d += conf->near_copies;
412                         if (d >= conf->raid_disks)
413                                 d -= conf->raid_disks;
414                         s += conf->stride;
415                         r10bio->devs[slot].devnum = d;
416                         r10bio->devs[slot].addr = s;
417                         slot++;
418                 }
419                 dev++;
420                 if (dev >= conf->raid_disks) {
421                         dev = 0;
422                         sector += (conf->chunk_mask + 1);
423                 }
424         }
425         BUG_ON(slot != conf->copies);
426 }
427
428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429 {
430         sector_t offset, chunk, vchunk;
431
432         while (sector > conf->stride) {
433                 sector -= conf->stride;
434                 if (dev < conf->near_copies)
435                         dev += conf->raid_disks - conf->near_copies;
436                 else
437                         dev -= conf->near_copies;
438         }
439
440         offset = sector & conf->chunk_mask;
441         chunk = sector >> conf->chunk_shift;
442         vchunk = chunk * conf->raid_disks + dev;
443         sector_div(vchunk, conf->near_copies);
444         return (vchunk << conf->chunk_shift) + offset;
445 }
446
447 /**
448  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *      @q: request queue
450  *      @bio: the buffer head that's been built up so far
451  *      @biovec: the request that could be merged to it.
452  *
453  *      Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458                                 struct bio_vec *bio_vec)
459 {
460         mddev_t *mddev = q->queuedata;
461         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462         int max;
463         unsigned int chunk_sectors = mddev->chunk_size >> 9;
464         unsigned int bio_sectors = bio->bi_size >> 9;
465
466         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468         if (max <= bio_vec->bv_len && bio_sectors == 0)
469                 return bio_vec->bv_len;
470         else
471                 return max;
472 }
473
474 /*
475  * This routine returns the disk from which the requested read should
476  * be done. There is a per-array 'next expected sequential IO' sector
477  * number - if this matches on the next IO then we use the last disk.
478  * There is also a per-disk 'last know head position' sector that is
479  * maintained from IRQ contexts, both the normal and the resync IO
480  * completion handlers update this position correctly. If there is no
481  * perfect sequential match then we pick the disk whose head is closest.
482  *
483  * If there are 2 mirrors in the same 2 devices, performance degrades
484  * because position is mirror, not device based.
485  *
486  * The rdev for the device selected will have nr_pending incremented.
487  */
488
489 /*
490  * FIXME: possibly should rethink readbalancing and do it differently
491  * depending on near_copies / far_copies geometry.
492  */
493 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494 {
495         const unsigned long this_sector = r10_bio->sector;
496         int disk, slot, nslot;
497         const int sectors = r10_bio->sectors;
498         sector_t new_distance, current_distance;
499
500         raid10_find_phys(conf, r10_bio);
501         rcu_read_lock();
502         /*
503          * Check if we can balance. We can balance on the whole
504          * device if no resync is going on, or below the resync window.
505          * We take the first readable disk when above the resync window.
506          */
507         if (conf->mddev->recovery_cp < MaxSector
508             && (this_sector + sectors >= conf->next_resync)) {
509                 /* make sure that disk is operational */
510                 slot = 0;
511                 disk = r10_bio->devs[slot].devnum;
512
513                 while (!conf->mirrors[disk].rdev ||
514                        !conf->mirrors[disk].rdev->in_sync) {
515                         slot++;
516                         if (slot == conf->copies) {
517                                 slot = 0;
518                                 disk = -1;
519                                 break;
520                         }
521                         disk = r10_bio->devs[slot].devnum;
522                 }
523                 goto rb_out;
524         }
525
526
527         /* make sure the disk is operational */
528         slot = 0;
529         disk = r10_bio->devs[slot].devnum;
530         while (!conf->mirrors[disk].rdev ||
531                !conf->mirrors[disk].rdev->in_sync) {
532                 slot ++;
533                 if (slot == conf->copies) {
534                         disk = -1;
535                         goto rb_out;
536                 }
537                 disk = r10_bio->devs[slot].devnum;
538         }
539
540
541         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
542
543         /* Find the disk whose head is closest */
544
545         for (nslot = slot; nslot < conf->copies; nslot++) {
546                 int ndisk = r10_bio->devs[nslot].devnum;
547
548
549                 if (!conf->mirrors[ndisk].rdev ||
550                     !conf->mirrors[ndisk].rdev->in_sync)
551                         continue;
552
553                 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
554                         disk = ndisk;
555                         slot = nslot;
556                         break;
557                 }
558                 new_distance = abs(r10_bio->devs[nslot].addr -
559                                    conf->mirrors[ndisk].head_position);
560                 if (new_distance < current_distance) {
561                         current_distance = new_distance;
562                         disk = ndisk;
563                         slot = nslot;
564                 }
565         }
566
567 rb_out:
568         r10_bio->read_slot = slot;
569 /*      conf->next_seq_sect = this_sector + sectors;*/
570
571         if (disk >= 0 && conf->mirrors[disk].rdev)
572                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
573         rcu_read_unlock();
574
575         return disk;
576 }
577
578 static void unplug_slaves(mddev_t *mddev)
579 {
580         conf_t *conf = mddev_to_conf(mddev);
581         int i;
582
583         rcu_read_lock();
584         for (i=0; i<mddev->raid_disks; i++) {
585                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
586                 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
587                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
588
589                         atomic_inc(&rdev->nr_pending);
590                         rcu_read_unlock();
591
592                         if (r_queue->unplug_fn)
593                                 r_queue->unplug_fn(r_queue);
594
595                         rdev_dec_pending(rdev, mddev);
596                         rcu_read_lock();
597                 }
598         }
599         rcu_read_unlock();
600 }
601
602 static void raid10_unplug(request_queue_t *q)
603 {
604         unplug_slaves(q->queuedata);
605 }
606
607 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
608                              sector_t *error_sector)
609 {
610         mddev_t *mddev = q->queuedata;
611         conf_t *conf = mddev_to_conf(mddev);
612         int i, ret = 0;
613
614         rcu_read_lock();
615         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
616                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
617                 if (rdev && !rdev->faulty) {
618                         struct block_device *bdev = rdev->bdev;
619                         request_queue_t *r_queue = bdev_get_queue(bdev);
620
621                         if (!r_queue->issue_flush_fn)
622                                 ret = -EOPNOTSUPP;
623                         else {
624                                 atomic_inc(&rdev->nr_pending);
625                                 rcu_read_unlock();
626                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
627                                                               error_sector);
628                                 rdev_dec_pending(rdev, mddev);
629                                 rcu_read_lock();
630                         }
631                 }
632         }
633         rcu_read_unlock();
634         return ret;
635 }
636
637 /*
638  * Throttle resync depth, so that we can both get proper overlapping of
639  * requests, but are still able to handle normal requests quickly.
640  */
641 #define RESYNC_DEPTH 32
642
643 static void device_barrier(conf_t *conf, sector_t sect)
644 {
645         spin_lock_irq(&conf->resync_lock);
646         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
647                             conf->resync_lock, unplug_slaves(conf->mddev));
648
649         if (!conf->barrier++) {
650                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
651                                     conf->resync_lock, unplug_slaves(conf->mddev));
652                 if (conf->nr_pending)
653                         BUG();
654         }
655         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
656                             conf->resync_lock, unplug_slaves(conf->mddev));
657         conf->next_resync = sect;
658         spin_unlock_irq(&conf->resync_lock);
659 }
660
661 static int make_request(request_queue_t *q, struct bio * bio)
662 {
663         mddev_t *mddev = q->queuedata;
664         conf_t *conf = mddev_to_conf(mddev);
665         mirror_info_t *mirror;
666         r10bio_t *r10_bio;
667         struct bio *read_bio;
668         int i;
669         int chunk_sects = conf->chunk_mask + 1;
670
671         /* If this request crosses a chunk boundary, we need to
672          * split it.  This will only happen for 1 PAGE (or less) requests.
673          */
674         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
675                       > chunk_sects &&
676                     conf->near_copies < conf->raid_disks)) {
677                 struct bio_pair *bp;
678                 /* Sanity check -- queue functions should prevent this happening */
679                 if (bio->bi_vcnt != 1 ||
680                     bio->bi_idx != 0)
681                         goto bad_map;
682                 /* This is a one page bio that upper layers
683                  * refuse to split for us, so we need to split it.
684                  */
685                 bp = bio_split(bio, bio_split_pool,
686                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
687                 if (make_request(q, &bp->bio1))
688                         generic_make_request(&bp->bio1);
689                 if (make_request(q, &bp->bio2))
690                         generic_make_request(&bp->bio2);
691
692                 bio_pair_release(bp);
693                 return 0;
694         bad_map:
695                 printk("raid10_make_request bug: can't convert block across chunks"
696                        " or bigger than %dk %llu %d\n", chunk_sects/2,
697                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
698
699                 bio_io_error(bio, bio->bi_size);
700                 return 0;
701         }
702
703         md_write_start(mddev, bio);
704
705         /*
706          * Register the new request and wait if the reconstruction
707          * thread has put up a bar for new requests.
708          * Continue immediately if no resync is active currently.
709          */
710         spin_lock_irq(&conf->resync_lock);
711         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
712         conf->nr_pending++;
713         spin_unlock_irq(&conf->resync_lock);
714
715         if (bio_data_dir(bio)==WRITE) {
716                 disk_stat_inc(mddev->gendisk, writes);
717                 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
718         } else {
719                 disk_stat_inc(mddev->gendisk, reads);
720                 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
721         }
722
723         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
724
725         r10_bio->master_bio = bio;
726         r10_bio->sectors = bio->bi_size >> 9;
727
728         r10_bio->mddev = mddev;
729         r10_bio->sector = bio->bi_sector;
730
731         if (bio_data_dir(bio) == READ) {
732                 /*
733                  * read balancing logic:
734                  */
735                 int disk = read_balance(conf, r10_bio);
736                 int slot = r10_bio->read_slot;
737                 if (disk < 0) {
738                         raid_end_bio_io(r10_bio);
739                         return 0;
740                 }
741                 mirror = conf->mirrors + disk;
742
743                 read_bio = bio_clone(bio, GFP_NOIO);
744
745                 r10_bio->devs[slot].bio = read_bio;
746
747                 read_bio->bi_sector = r10_bio->devs[slot].addr +
748                         mirror->rdev->data_offset;
749                 read_bio->bi_bdev = mirror->rdev->bdev;
750                 read_bio->bi_end_io = raid10_end_read_request;
751                 read_bio->bi_rw = READ;
752                 read_bio->bi_private = r10_bio;
753
754                 generic_make_request(read_bio);
755                 return 0;
756         }
757
758         /*
759          * WRITE:
760          */
761         /* first select target devices under spinlock and
762          * inc refcount on their rdev.  Record them by setting
763          * bios[x] to bio
764          */
765         raid10_find_phys(conf, r10_bio);
766         rcu_read_lock();
767         for (i = 0;  i < conf->copies; i++) {
768                 int d = r10_bio->devs[i].devnum;
769                 if (conf->mirrors[d].rdev &&
770                     !conf->mirrors[d].rdev->faulty) {
771                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
772                         r10_bio->devs[i].bio = bio;
773                 } else
774                         r10_bio->devs[i].bio = NULL;
775         }
776         rcu_read_unlock();
777
778         atomic_set(&r10_bio->remaining, 1);
779
780         for (i = 0; i < conf->copies; i++) {
781                 struct bio *mbio;
782                 int d = r10_bio->devs[i].devnum;
783                 if (!r10_bio->devs[i].bio)
784                         continue;
785
786                 mbio = bio_clone(bio, GFP_NOIO);
787                 r10_bio->devs[i].bio = mbio;
788
789                 mbio->bi_sector = r10_bio->devs[i].addr+
790                         conf->mirrors[d].rdev->data_offset;
791                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
792                 mbio->bi_end_io = raid10_end_write_request;
793                 mbio->bi_rw = WRITE;
794                 mbio->bi_private = r10_bio;
795
796                 atomic_inc(&r10_bio->remaining);
797                 generic_make_request(mbio);
798         }
799
800         if (atomic_dec_and_test(&r10_bio->remaining)) {
801                 md_write_end(mddev);
802                 raid_end_bio_io(r10_bio);
803         }
804
805         return 0;
806 }
807
808 static void status(struct seq_file *seq, mddev_t *mddev)
809 {
810         conf_t *conf = mddev_to_conf(mddev);
811         int i;
812
813         if (conf->near_copies < conf->raid_disks)
814                 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
815         if (conf->near_copies > 1)
816                 seq_printf(seq, " %d near-copies", conf->near_copies);
817         if (conf->far_copies > 1)
818                 seq_printf(seq, " %d far-copies", conf->far_copies);
819
820         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
821                                                 conf->working_disks);
822         for (i = 0; i < conf->raid_disks; i++)
823                 seq_printf(seq, "%s",
824                               conf->mirrors[i].rdev &&
825                               conf->mirrors[i].rdev->in_sync ? "U" : "_");
826         seq_printf(seq, "]");
827 }
828
829 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
830 {
831         char b[BDEVNAME_SIZE];
832         conf_t *conf = mddev_to_conf(mddev);
833
834         /*
835          * If it is not operational, then we have already marked it as dead
836          * else if it is the last working disks, ignore the error, let the
837          * next level up know.
838          * else mark the drive as failed
839          */
840         if (rdev->in_sync
841             && conf->working_disks == 1)
842                 /*
843                  * Don't fail the drive, just return an IO error.
844                  * The test should really be more sophisticated than
845                  * "working_disks == 1", but it isn't critical, and
846                  * can wait until we do more sophisticated "is the drive
847                  * really dead" tests...
848                  */
849                 return;
850         if (rdev->in_sync) {
851                 mddev->degraded++;
852                 conf->working_disks--;
853                 /*
854                  * if recovery is running, make sure it aborts.
855                  */
856                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
857         }
858         rdev->in_sync = 0;
859         rdev->faulty = 1;
860         mddev->sb_dirty = 1;
861         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
862                 "       Operation continuing on %d devices\n",
863                 bdevname(rdev->bdev,b), conf->working_disks);
864 }
865
866 static void print_conf(conf_t *conf)
867 {
868         int i;
869         mirror_info_t *tmp;
870
871         printk("RAID10 conf printout:\n");
872         if (!conf) {
873                 printk("(!conf)\n");
874                 return;
875         }
876         printk(" --- wd:%d rd:%d\n", conf->working_disks,
877                 conf->raid_disks);
878
879         for (i = 0; i < conf->raid_disks; i++) {
880                 char b[BDEVNAME_SIZE];
881                 tmp = conf->mirrors + i;
882                 if (tmp->rdev)
883                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
884                                 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
885                                 bdevname(tmp->rdev->bdev,b));
886         }
887 }
888
889 static void close_sync(conf_t *conf)
890 {
891         spin_lock_irq(&conf->resync_lock);
892         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
893                             conf->resync_lock,  unplug_slaves(conf->mddev));
894         spin_unlock_irq(&conf->resync_lock);
895
896         if (conf->barrier) BUG();
897         if (waitqueue_active(&conf->wait_idle)) BUG();
898
899         mempool_destroy(conf->r10buf_pool);
900         conf->r10buf_pool = NULL;
901 }
902
903 static int raid10_spare_active(mddev_t *mddev)
904 {
905         int i;
906         conf_t *conf = mddev->private;
907         mirror_info_t *tmp;
908
909         /*
910          * Find all non-in_sync disks within the RAID10 configuration
911          * and mark them in_sync
912          */
913         for (i = 0; i < conf->raid_disks; i++) {
914                 tmp = conf->mirrors + i;
915                 if (tmp->rdev
916                     && !tmp->rdev->faulty
917                     && !tmp->rdev->in_sync) {
918                         conf->working_disks++;
919                         mddev->degraded--;
920                         tmp->rdev->in_sync = 1;
921                 }
922         }
923
924         print_conf(conf);
925         return 0;
926 }
927
928
929 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
930 {
931         conf_t *conf = mddev->private;
932         int found = 0;
933         int mirror;
934         mirror_info_t *p;
935
936         if (mddev->recovery_cp < MaxSector)
937                 /* only hot-add to in-sync arrays, as recovery is
938                  * very different from resync
939                  */
940                 return 0;
941
942         for (mirror=0; mirror < mddev->raid_disks; mirror++)
943                 if ( !(p=conf->mirrors+mirror)->rdev) {
944
945                         blk_queue_stack_limits(mddev->queue,
946                                                rdev->bdev->bd_disk->queue);
947                         /* as we don't honour merge_bvec_fn, we must never risk
948                          * violating it, so limit ->max_sector to one PAGE, as
949                          * a one page request is never in violation.
950                          */
951                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
952                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
953                                 mddev->queue->max_sectors = (PAGE_SIZE>>9);
954
955                         p->head_position = 0;
956                         rdev->raid_disk = mirror;
957                         found = 1;
958                         p->rdev = rdev;
959                         break;
960                 }
961
962         print_conf(conf);
963         return found;
964 }
965
966 static int raid10_remove_disk(mddev_t *mddev, int number)
967 {
968         conf_t *conf = mddev->private;
969         int err = 0;
970         mdk_rdev_t *rdev;
971         mirror_info_t *p = conf->mirrors+ number;
972
973         print_conf(conf);
974         rdev = p->rdev;
975         if (rdev) {
976                 if (rdev->in_sync ||
977                     atomic_read(&rdev->nr_pending)) {
978                         err = -EBUSY;
979                         goto abort;
980                 }
981                 p->rdev = NULL;
982                 synchronize_rcu();
983                 if (atomic_read(&rdev->nr_pending)) {
984                         /* lost the race, try later */
985                         err = -EBUSY;
986                         p->rdev = rdev;
987                 }
988         }
989 abort:
990
991         print_conf(conf);
992         return err;
993 }
994
995
996 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
997 {
998         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
999         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1000         conf_t *conf = mddev_to_conf(r10_bio->mddev);
1001         int i,d;
1002
1003         if (bio->bi_size)
1004                 return 1;
1005
1006         for (i=0; i<conf->copies; i++)
1007                 if (r10_bio->devs[i].bio == bio)
1008                         break;
1009         if (i == conf->copies)
1010                 BUG();
1011         update_head_pos(i, r10_bio);
1012         d = r10_bio->devs[i].devnum;
1013         if (!uptodate)
1014                 md_error(r10_bio->mddev,
1015                          conf->mirrors[d].rdev);
1016
1017         /* for reconstruct, we always reschedule after a read.
1018          * for resync, only after all reads
1019          */
1020         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1021             atomic_dec_and_test(&r10_bio->remaining)) {
1022                 /* we have read all the blocks,
1023                  * do the comparison in process context in raid10d
1024                  */
1025                 reschedule_retry(r10_bio);
1026         }
1027         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1028         return 0;
1029 }
1030
1031 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1032 {
1033         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1034         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1035         mddev_t *mddev = r10_bio->mddev;
1036         conf_t *conf = mddev_to_conf(mddev);
1037         int i,d;
1038
1039         if (bio->bi_size)
1040                 return 1;
1041
1042         for (i = 0; i < conf->copies; i++)
1043                 if (r10_bio->devs[i].bio == bio)
1044                         break;
1045         d = r10_bio->devs[i].devnum;
1046
1047         if (!uptodate)
1048                 md_error(mddev, conf->mirrors[d].rdev);
1049         update_head_pos(i, r10_bio);
1050
1051         while (atomic_dec_and_test(&r10_bio->remaining)) {
1052                 if (r10_bio->master_bio == NULL) {
1053                         /* the primary of several recovery bios */
1054                         md_done_sync(mddev, r10_bio->sectors, 1);
1055                         put_buf(r10_bio);
1056                         break;
1057                 } else {
1058                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1059                         put_buf(r10_bio);
1060                         r10_bio = r10_bio2;
1061                 }
1062         }
1063         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1064         return 0;
1065 }
1066
1067 /*
1068  * Note: sync and recover and handled very differently for raid10
1069  * This code is for resync.
1070  * For resync, we read through virtual addresses and read all blocks.
1071  * If there is any error, we schedule a write.  The lowest numbered
1072  * drive is authoritative.
1073  * However requests come for physical address, so we need to map.
1074  * For every physical address there are raid_disks/copies virtual addresses,
1075  * which is always are least one, but is not necessarly an integer.
1076  * This means that a physical address can span multiple chunks, so we may
1077  * have to submit multiple io requests for a single sync request.
1078  */
1079 /*
1080  * We check if all blocks are in-sync and only write to blocks that
1081  * aren't in sync
1082  */
1083 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1084 {
1085         conf_t *conf = mddev_to_conf(mddev);
1086         int i, first;
1087         struct bio *tbio, *fbio;
1088
1089         atomic_set(&r10_bio->remaining, 1);
1090
1091         /* find the first device with a block */
1092         for (i=0; i<conf->copies; i++)
1093                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1094                         break;
1095
1096         if (i == conf->copies)
1097                 goto done;
1098
1099         first = i;
1100         fbio = r10_bio->devs[i].bio;
1101
1102         /* now find blocks with errors */
1103         for (i=first+1 ; i < conf->copies ; i++) {
1104                 int vcnt, j, d;
1105
1106                 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1107                         continue;
1108                 /* We know that the bi_io_vec layout is the same for
1109                  * both 'first' and 'i', so we just compare them.
1110                  * All vec entries are PAGE_SIZE;
1111                  */
1112                 tbio = r10_bio->devs[i].bio;
1113                 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1114                 for (j = 0; j < vcnt; j++)
1115                         if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1116                                    page_address(tbio->bi_io_vec[j].bv_page),
1117                                    PAGE_SIZE))
1118                                 break;
1119                 if (j == vcnt)
1120                         continue;
1121                 /* Ok, we need to write this bio
1122                  * First we need to fixup bv_offset, bv_len and
1123                  * bi_vecs, as the read request might have corrupted these
1124                  */
1125                 tbio->bi_vcnt = vcnt;
1126                 tbio->bi_size = r10_bio->sectors << 9;
1127                 tbio->bi_idx = 0;
1128                 tbio->bi_phys_segments = 0;
1129                 tbio->bi_hw_segments = 0;
1130                 tbio->bi_hw_front_size = 0;
1131                 tbio->bi_hw_back_size = 0;
1132                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1133                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1134                 tbio->bi_next = NULL;
1135                 tbio->bi_rw = WRITE;
1136                 tbio->bi_private = r10_bio;
1137                 tbio->bi_sector = r10_bio->devs[i].addr;
1138
1139                 for (j=0; j < vcnt ; j++) {
1140                         tbio->bi_io_vec[j].bv_offset = 0;
1141                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1142
1143                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1144                                page_address(fbio->bi_io_vec[j].bv_page),
1145                                PAGE_SIZE);
1146                 }
1147                 tbio->bi_end_io = end_sync_write;
1148
1149                 d = r10_bio->devs[i].devnum;
1150                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1151                 atomic_inc(&r10_bio->remaining);
1152                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1153
1154                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1155                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1156                 generic_make_request(tbio);
1157         }
1158
1159 done:
1160         if (atomic_dec_and_test(&r10_bio->remaining)) {
1161                 md_done_sync(mddev, r10_bio->sectors, 1);
1162                 put_buf(r10_bio);
1163         }
1164 }
1165
1166 /*
1167  * Now for the recovery code.
1168  * Recovery happens across physical sectors.
1169  * We recover all non-is_sync drives by finding the virtual address of
1170  * each, and then choose a working drive that also has that virt address.
1171  * There is a separate r10_bio for each non-in_sync drive.
1172  * Only the first two slots are in use. The first for reading,
1173  * The second for writing.
1174  *
1175  */
1176
1177 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1178 {
1179         conf_t *conf = mddev_to_conf(mddev);
1180         int i, d;
1181         struct bio *bio, *wbio;
1182
1183
1184         /* move the pages across to the second bio
1185          * and submit the write request
1186          */
1187         bio = r10_bio->devs[0].bio;
1188         wbio = r10_bio->devs[1].bio;
1189         for (i=0; i < wbio->bi_vcnt; i++) {
1190                 struct page *p = bio->bi_io_vec[i].bv_page;
1191                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1192                 wbio->bi_io_vec[i].bv_page = p;
1193         }
1194         d = r10_bio->devs[1].devnum;
1195
1196         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1197         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1198         generic_make_request(wbio);
1199 }
1200
1201
1202 /*
1203  * This is a kernel thread which:
1204  *
1205  *      1.      Retries failed read operations on working mirrors.
1206  *      2.      Updates the raid superblock when problems encounter.
1207  *      3.      Performs writes following reads for array syncronising.
1208  */
1209
1210 static void raid10d(mddev_t *mddev)
1211 {
1212         r10bio_t *r10_bio;
1213         struct bio *bio;
1214         unsigned long flags;
1215         conf_t *conf = mddev_to_conf(mddev);
1216         struct list_head *head = &conf->retry_list;
1217         int unplug=0;
1218         mdk_rdev_t *rdev;
1219
1220         md_check_recovery(mddev);
1221
1222         for (;;) {
1223                 char b[BDEVNAME_SIZE];
1224                 spin_lock_irqsave(&conf->device_lock, flags);
1225                 if (list_empty(head))
1226                         break;
1227                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1228                 list_del(head->prev);
1229                 spin_unlock_irqrestore(&conf->device_lock, flags);
1230
1231                 mddev = r10_bio->mddev;
1232                 conf = mddev_to_conf(mddev);
1233                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1234                         sync_request_write(mddev, r10_bio);
1235                         unplug = 1;
1236                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1237                         recovery_request_write(mddev, r10_bio);
1238                         unplug = 1;
1239                 } else {
1240                         int mirror;
1241                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1242                         r10_bio->devs[r10_bio->read_slot].bio = NULL;
1243                         bio_put(bio);
1244                         mirror = read_balance(conf, r10_bio);
1245                         if (mirror == -1) {
1246                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1247                                        " read error for block %llu\n",
1248                                        bdevname(bio->bi_bdev,b),
1249                                        (unsigned long long)r10_bio->sector);
1250                                 raid_end_bio_io(r10_bio);
1251                         } else {
1252                                 rdev = conf->mirrors[mirror].rdev;
1253                                 if (printk_ratelimit())
1254                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1255                                                " another mirror\n",
1256                                                bdevname(rdev->bdev,b),
1257                                                (unsigned long long)r10_bio->sector);
1258                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1259                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1260                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1261                                         + rdev->data_offset;
1262                                 bio->bi_bdev = rdev->bdev;
1263                                 bio->bi_rw = READ;
1264                                 bio->bi_private = r10_bio;
1265                                 bio->bi_end_io = raid10_end_read_request;
1266                                 unplug = 1;
1267                                 generic_make_request(bio);
1268                         }
1269                 }
1270         }
1271         spin_unlock_irqrestore(&conf->device_lock, flags);
1272         if (unplug)
1273                 unplug_slaves(mddev);
1274 }
1275
1276
1277 static int init_resync(conf_t *conf)
1278 {
1279         int buffs;
1280
1281         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1282         if (conf->r10buf_pool)
1283                 BUG();
1284         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1285         if (!conf->r10buf_pool)
1286                 return -ENOMEM;
1287         conf->next_resync = 0;
1288         return 0;
1289 }
1290
1291 /*
1292  * perform a "sync" on one "block"
1293  *
1294  * We need to make sure that no normal I/O request - particularly write
1295  * requests - conflict with active sync requests.
1296  *
1297  * This is achieved by tracking pending requests and a 'barrier' concept
1298  * that can be installed to exclude normal IO requests.
1299  *
1300  * Resync and recovery are handled very differently.
1301  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1302  *
1303  * For resync, we iterate over virtual addresses, read all copies,
1304  * and update if there are differences.  If only one copy is live,
1305  * skip it.
1306  * For recovery, we iterate over physical addresses, read a good
1307  * value for each non-in_sync drive, and over-write.
1308  *
1309  * So, for recovery we may have several outstanding complex requests for a
1310  * given address, one for each out-of-sync device.  We model this by allocating
1311  * a number of r10_bio structures, one for each out-of-sync device.
1312  * As we setup these structures, we collect all bio's together into a list
1313  * which we then process collectively to add pages, and then process again
1314  * to pass to generic_make_request.
1315  *
1316  * The r10_bio structures are linked using a borrowed master_bio pointer.
1317  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1318  * has its remaining count decremented to 0, the whole complex operation
1319  * is complete.
1320  *
1321  */
1322
1323 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1324 {
1325         conf_t *conf = mddev_to_conf(mddev);
1326         r10bio_t *r10_bio;
1327         struct bio *biolist = NULL, *bio;
1328         sector_t max_sector, nr_sectors;
1329         int disk;
1330         int i;
1331
1332         sector_t sectors_skipped = 0;
1333         int chunks_skipped = 0;
1334
1335         if (!conf->r10buf_pool)
1336                 if (init_resync(conf))
1337                         return 0;
1338
1339  skipped:
1340         max_sector = mddev->size << 1;
1341         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1342                 max_sector = mddev->resync_max_sectors;
1343         if (sector_nr >= max_sector) {
1344                 close_sync(conf);
1345                 *skipped = 1;
1346                 return sectors_skipped;
1347         }
1348         if (chunks_skipped >= conf->raid_disks) {
1349                 /* if there has been nothing to do on any drive,
1350                  * then there is nothing to do at all..
1351                  */
1352                 *skipped = 1;
1353                 return (max_sector - sector_nr) + sectors_skipped;
1354         }
1355
1356         /* make sure whole request will fit in a chunk - if chunks
1357          * are meaningful
1358          */
1359         if (conf->near_copies < conf->raid_disks &&
1360             max_sector > (sector_nr | conf->chunk_mask))
1361                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1362         /*
1363          * If there is non-resync activity waiting for us then
1364          * put in a delay to throttle resync.
1365          */
1366         if (!go_faster && waitqueue_active(&conf->wait_resume))
1367                 msleep_interruptible(1000);
1368         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1369
1370         /* Again, very different code for resync and recovery.
1371          * Both must result in an r10bio with a list of bios that
1372          * have bi_end_io, bi_sector, bi_bdev set,
1373          * and bi_private set to the r10bio.
1374          * For recovery, we may actually create several r10bios
1375          * with 2 bios in each, that correspond to the bios in the main one.
1376          * In this case, the subordinate r10bios link back through a
1377          * borrowed master_bio pointer, and the counter in the master
1378          * includes a ref from each subordinate.
1379          */
1380         /* First, we decide what to do and set ->bi_end_io
1381          * To end_sync_read if we want to read, and
1382          * end_sync_write if we will want to write.
1383          */
1384
1385         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1386                 /* recovery... the complicated one */
1387                 int i, j, k;
1388                 r10_bio = NULL;
1389
1390                 for (i=0 ; i<conf->raid_disks; i++)
1391                         if (conf->mirrors[i].rdev &&
1392                             !conf->mirrors[i].rdev->in_sync) {
1393                                 /* want to reconstruct this device */
1394                                 r10bio_t *rb2 = r10_bio;
1395
1396                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1397                                 spin_lock_irq(&conf->resync_lock);
1398                                 conf->nr_pending++;
1399                                 if (rb2) conf->barrier++;
1400                                 spin_unlock_irq(&conf->resync_lock);
1401                                 atomic_set(&r10_bio->remaining, 0);
1402
1403                                 r10_bio->master_bio = (struct bio*)rb2;
1404                                 if (rb2)
1405                                         atomic_inc(&rb2->remaining);
1406                                 r10_bio->mddev = mddev;
1407                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1408                                 r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1409                                 raid10_find_phys(conf, r10_bio);
1410                                 for (j=0; j<conf->copies;j++) {
1411                                         int d = r10_bio->devs[j].devnum;
1412                                         if (conf->mirrors[d].rdev &&
1413                                             conf->mirrors[d].rdev->in_sync) {
1414                                                 /* This is where we read from */
1415                                                 bio = r10_bio->devs[0].bio;
1416                                                 bio->bi_next = biolist;
1417                                                 biolist = bio;
1418                                                 bio->bi_private = r10_bio;
1419                                                 bio->bi_end_io = end_sync_read;
1420                                                 bio->bi_rw = 0;
1421                                                 bio->bi_sector = r10_bio->devs[j].addr +
1422                                                         conf->mirrors[d].rdev->data_offset;
1423                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1424                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1425                                                 atomic_inc(&r10_bio->remaining);
1426                                                 /* and we write to 'i' */
1427
1428                                                 for (k=0; k<conf->copies; k++)
1429                                                         if (r10_bio->devs[k].devnum == i)
1430                                                                 break;
1431                                                 bio = r10_bio->devs[1].bio;
1432                                                 bio->bi_next = biolist;
1433                                                 biolist = bio;
1434                                                 bio->bi_private = r10_bio;
1435                                                 bio->bi_end_io = end_sync_write;
1436                                                 bio->bi_rw = 1;
1437                                                 bio->bi_sector = r10_bio->devs[k].addr +
1438                                                         conf->mirrors[i].rdev->data_offset;
1439                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1440
1441                                                 r10_bio->devs[0].devnum = d;
1442                                                 r10_bio->devs[1].devnum = i;
1443
1444                                                 break;
1445                                         }
1446                                 }
1447                                 if (j == conf->copies) {
1448                                         BUG();
1449                                 }
1450                         }
1451                 if (biolist == NULL) {
1452                         while (r10_bio) {
1453                                 r10bio_t *rb2 = r10_bio;
1454                                 r10_bio = (r10bio_t*) rb2->master_bio;
1455                                 rb2->master_bio = NULL;
1456                                 put_buf(rb2);
1457                         }
1458                         goto giveup;
1459                 }
1460         } else {
1461                 /* resync. Schedule a read for every block at this virt offset */
1462                 int count = 0;
1463                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1464
1465                 spin_lock_irq(&conf->resync_lock);
1466                 conf->nr_pending++;
1467                 spin_unlock_irq(&conf->resync_lock);
1468
1469                 r10_bio->mddev = mddev;
1470                 atomic_set(&r10_bio->remaining, 0);
1471
1472                 r10_bio->master_bio = NULL;
1473                 r10_bio->sector = sector_nr;
1474                 set_bit(R10BIO_IsSync, &r10_bio->state);
1475                 raid10_find_phys(conf, r10_bio);
1476                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1477
1478                 for (i=0; i<conf->copies; i++) {
1479                         int d = r10_bio->devs[i].devnum;
1480                         bio = r10_bio->devs[i].bio;
1481                         bio->bi_end_io = NULL;
1482                         if (conf->mirrors[d].rdev == NULL ||
1483                             conf->mirrors[d].rdev->faulty)
1484                                 continue;
1485                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1486                         atomic_inc(&r10_bio->remaining);
1487                         bio->bi_next = biolist;
1488                         biolist = bio;
1489                         bio->bi_private = r10_bio;
1490                         bio->bi_end_io = end_sync_read;
1491                         bio->bi_rw = 0;
1492                         bio->bi_sector = r10_bio->devs[i].addr +
1493                                 conf->mirrors[d].rdev->data_offset;
1494                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1495                         count++;
1496                 }
1497
1498                 if (count < 2) {
1499                         for (i=0; i<conf->copies; i++) {
1500                                 int d = r10_bio->devs[i].devnum;
1501                                 if (r10_bio->devs[i].bio->bi_end_io)
1502                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1503                         }
1504                         put_buf(r10_bio);
1505                         biolist = NULL;
1506                         goto giveup;
1507                 }
1508         }
1509
1510         for (bio = biolist; bio ; bio=bio->bi_next) {
1511
1512                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1513                 if (bio->bi_end_io)
1514                         bio->bi_flags |= 1 << BIO_UPTODATE;
1515                 bio->bi_vcnt = 0;
1516                 bio->bi_idx = 0;
1517                 bio->bi_phys_segments = 0;
1518                 bio->bi_hw_segments = 0;
1519                 bio->bi_size = 0;
1520         }
1521
1522         nr_sectors = 0;
1523         do {
1524                 struct page *page;
1525                 int len = PAGE_SIZE;
1526                 disk = 0;
1527                 if (sector_nr + (len>>9) > max_sector)
1528                         len = (max_sector - sector_nr) << 9;
1529                 if (len == 0)
1530                         break;
1531                 for (bio= biolist ; bio ; bio=bio->bi_next) {
1532                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1533                         if (bio_add_page(bio, page, len, 0) == 0) {
1534                                 /* stop here */
1535                                 struct bio *bio2;
1536                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1537                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1538                                         /* remove last page from this bio */
1539                                         bio2->bi_vcnt--;
1540                                         bio2->bi_size -= len;
1541                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1542                                 }
1543                                 goto bio_full;
1544                         }
1545                         disk = i;
1546                 }
1547                 nr_sectors += len>>9;
1548                 sector_nr += len>>9;
1549         } while (biolist->bi_vcnt < RESYNC_PAGES);
1550  bio_full:
1551         r10_bio->sectors = nr_sectors;
1552
1553         while (biolist) {
1554                 bio = biolist;
1555                 biolist = biolist->bi_next;
1556
1557                 bio->bi_next = NULL;
1558                 r10_bio = bio->bi_private;
1559                 r10_bio->sectors = nr_sectors;
1560
1561                 if (bio->bi_end_io == end_sync_read) {
1562                         md_sync_acct(bio->bi_bdev, nr_sectors);
1563                         generic_make_request(bio);
1564                 }
1565         }
1566
1567         if (sectors_skipped)
1568                 /* pretend they weren't skipped, it makes
1569                  * no important difference in this case
1570                  */
1571                 md_done_sync(mddev, sectors_skipped, 1);
1572
1573         return sectors_skipped + nr_sectors;
1574  giveup:
1575         /* There is nowhere to write, so all non-sync
1576          * drives must be failed, so try the next chunk...
1577          */
1578         {
1579         sector_t sec = max_sector - sector_nr;
1580         sectors_skipped += sec;
1581         chunks_skipped ++;
1582         sector_nr = max_sector;
1583         goto skipped;
1584         }
1585 }
1586
1587 static int run(mddev_t *mddev)
1588 {
1589         conf_t *conf;
1590         int i, disk_idx;
1591         mirror_info_t *disk;
1592         mdk_rdev_t *rdev;
1593         struct list_head *tmp;
1594         int nc, fc;
1595         sector_t stride, size;
1596
1597         if (mddev->level != 10) {
1598                 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1599                        mdname(mddev), mddev->level);
1600                 goto out;
1601         }
1602         nc = mddev->layout & 255;
1603         fc = (mddev->layout >> 8) & 255;
1604         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1605             (mddev->layout >> 16)) {
1606                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1607                        mdname(mddev), mddev->layout);
1608                 goto out;
1609         }
1610         /*
1611          * copy the already verified devices into our private RAID10
1612          * bookkeeping area. [whatever we allocate in run(),
1613          * should be freed in stop()]
1614          */
1615         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1616         mddev->private = conf;
1617         if (!conf) {
1618                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1619                         mdname(mddev));
1620                 goto out;
1621         }
1622         memset(conf, 0, sizeof(*conf));
1623         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1624                                  GFP_KERNEL);
1625         if (!conf->mirrors) {
1626                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1627                        mdname(mddev));
1628                 goto out_free_conf;
1629         }
1630         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1631
1632         conf->near_copies = nc;
1633         conf->far_copies = fc;
1634         conf->copies = nc*fc;
1635         conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1636         conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1637         stride = mddev->size >> (conf->chunk_shift-1);
1638         sector_div(stride, fc);
1639         conf->stride = stride << conf->chunk_shift;
1640
1641         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1642                                                 r10bio_pool_free, conf);
1643         if (!conf->r10bio_pool) {
1644                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1645                         mdname(mddev));
1646                 goto out_free_conf;
1647         }
1648
1649         ITERATE_RDEV(mddev, rdev, tmp) {
1650                 disk_idx = rdev->raid_disk;
1651                 if (disk_idx >= mddev->raid_disks
1652                     || disk_idx < 0)
1653                         continue;
1654                 disk = conf->mirrors + disk_idx;
1655
1656                 disk->rdev = rdev;
1657
1658                 blk_queue_stack_limits(mddev->queue,
1659                                        rdev->bdev->bd_disk->queue);
1660                 /* as we don't honour merge_bvec_fn, we must never risk
1661                  * violating it, so limit ->max_sector to one PAGE, as
1662                  * a one page request is never in violation.
1663                  */
1664                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1665                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1666                         mddev->queue->max_sectors = (PAGE_SIZE>>9);
1667
1668                 disk->head_position = 0;
1669                 if (!rdev->faulty && rdev->in_sync)
1670                         conf->working_disks++;
1671         }
1672         conf->raid_disks = mddev->raid_disks;
1673         conf->mddev = mddev;
1674         spin_lock_init(&conf->device_lock);
1675         INIT_LIST_HEAD(&conf->retry_list);
1676
1677         spin_lock_init(&conf->resync_lock);
1678         init_waitqueue_head(&conf->wait_idle);
1679         init_waitqueue_head(&conf->wait_resume);
1680
1681         if (!conf->working_disks) {
1682                 printk(KERN_ERR "raid10: no operational mirrors for %s\n",
1683                         mdname(mddev));
1684                 goto out_free_conf;
1685         }
1686
1687         mddev->degraded = 0;
1688         for (i = 0; i < conf->raid_disks; i++) {
1689
1690                 disk = conf->mirrors + i;
1691
1692                 if (!disk->rdev) {
1693                         disk->head_position = 0;
1694                         mddev->degraded++;
1695                 }
1696         }
1697
1698
1699         mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1700         if (!mddev->thread) {
1701                 printk(KERN_ERR
1702                        "raid10: couldn't allocate thread for %s\n",
1703                        mdname(mddev));
1704                 goto out_free_conf;
1705         }
1706
1707         printk(KERN_INFO
1708                 "raid10: raid set %s active with %d out of %d devices\n",
1709                 mdname(mddev), mddev->raid_disks - mddev->degraded,
1710                 mddev->raid_disks);
1711         /*
1712          * Ok, everything is just fine now
1713          */
1714         size = conf->stride * conf->raid_disks;
1715         sector_div(size, conf->near_copies);
1716         mddev->array_size = size/2;
1717         mddev->resync_max_sectors = size;
1718
1719         mddev->queue->unplug_fn = raid10_unplug;
1720         mddev->queue->issue_flush_fn = raid10_issue_flush;
1721
1722         /* Calculate max read-ahead size.
1723          * We need to readahead at least twice a whole stripe....
1724          * maybe...
1725          */
1726         {
1727                 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1728                 stripe /= conf->near_copies;
1729                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1730                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1731         }
1732
1733         if (conf->near_copies < mddev->raid_disks)
1734                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1735         return 0;
1736
1737 out_free_conf:
1738         if (conf->r10bio_pool)
1739                 mempool_destroy(conf->r10bio_pool);
1740         kfree(conf->mirrors);
1741         kfree(conf);
1742         mddev->private = NULL;
1743 out:
1744         return -EIO;
1745 }
1746
1747 static int stop(mddev_t *mddev)
1748 {
1749         conf_t *conf = mddev_to_conf(mddev);
1750
1751         md_unregister_thread(mddev->thread);
1752         mddev->thread = NULL;
1753         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1754         if (conf->r10bio_pool)
1755                 mempool_destroy(conf->r10bio_pool);
1756         kfree(conf->mirrors);
1757         kfree(conf);
1758         mddev->private = NULL;
1759         return 0;
1760 }
1761
1762
1763 static mdk_personality_t raid10_personality =
1764 {
1765         .name           = "raid10",
1766         .owner          = THIS_MODULE,
1767         .make_request   = make_request,
1768         .run            = run,
1769         .stop           = stop,
1770         .status         = status,
1771         .error_handler  = error,
1772         .hot_add_disk   = raid10_add_disk,
1773         .hot_remove_disk= raid10_remove_disk,
1774         .spare_active   = raid10_spare_active,
1775         .sync_request   = sync_request,
1776 };
1777
1778 static int __init raid_init(void)
1779 {
1780         return register_md_personality(RAID10, &raid10_personality);
1781 }
1782
1783 static void raid_exit(void)
1784 {
1785         unregister_md_personality(RAID10);
1786 }
1787
1788 module_init(raid_init);
1789 module_exit(raid_exit);
1790 MODULE_LICENSE("GPL");
1791 MODULE_ALIAS("md-personality-9"); /* RAID10 */