Change on-disk format to support 2^15 uninitialized extents
[linux-2.6] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/fs.h>
14 #include <linux/mutex.h>
15 #include <linux/debug_locks.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mm_types.h>
18
19 struct mempolicy;
20 struct anon_vma;
21 struct user_struct;
22
23 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
26
27 extern unsigned long num_physpages;
28 extern void * high_memory;
29 extern int page_cluster;
30
31 #ifdef CONFIG_SYSCTL
32 extern int sysctl_legacy_va_layout;
33 #else
34 #define sysctl_legacy_va_layout 0
35 #endif
36
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40
41 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
42
43 /*
44  * Linux kernel virtual memory manager primitives.
45  * The idea being to have a "virtual" mm in the same way
46  * we have a virtual fs - giving a cleaner interface to the
47  * mm details, and allowing different kinds of memory mappings
48  * (from shared memory to executable loading to arbitrary
49  * mmap() functions).
50  */
51
52 /*
53  * This struct defines a memory VMM memory area. There is one of these
54  * per VM-area/task.  A VM area is any part of the process virtual memory
55  * space that has a special rule for the page-fault handlers (ie a shared
56  * library, the executable area etc).
57  */
58 struct vm_area_struct {
59         struct mm_struct * vm_mm;       /* The address space we belong to. */
60         unsigned long vm_start;         /* Our start address within vm_mm. */
61         unsigned long vm_end;           /* The first byte after our end address
62                                            within vm_mm. */
63
64         /* linked list of VM areas per task, sorted by address */
65         struct vm_area_struct *vm_next;
66
67         pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
68         unsigned long vm_flags;         /* Flags, listed below. */
69
70         struct rb_node vm_rb;
71
72         /*
73          * For areas with an address space and backing store,
74          * linkage into the address_space->i_mmap prio tree, or
75          * linkage to the list of like vmas hanging off its node, or
76          * linkage of vma in the address_space->i_mmap_nonlinear list.
77          */
78         union {
79                 struct {
80                         struct list_head list;
81                         void *parent;   /* aligns with prio_tree_node parent */
82                         struct vm_area_struct *head;
83                 } vm_set;
84
85                 struct raw_prio_tree_node prio_tree_node;
86         } shared;
87
88         /*
89          * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
90          * list, after a COW of one of the file pages.  A MAP_SHARED vma
91          * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
92          * or brk vma (with NULL file) can only be in an anon_vma list.
93          */
94         struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
95         struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
96
97         /* Function pointers to deal with this struct. */
98         struct vm_operations_struct * vm_ops;
99
100         /* Information about our backing store: */
101         unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
102                                            units, *not* PAGE_CACHE_SIZE */
103         struct file * vm_file;          /* File we map to (can be NULL). */
104         void * vm_private_data;         /* was vm_pte (shared mem) */
105         unsigned long vm_truncate_count;/* truncate_count or restart_addr */
106
107 #ifndef CONFIG_MMU
108         atomic_t vm_usage;              /* refcount (VMAs shared if !MMU) */
109 #endif
110 #ifdef CONFIG_NUMA
111         struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
112 #endif
113 };
114
115 extern struct kmem_cache *vm_area_cachep;
116
117 /*
118  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
119  * disabled, then there's a single shared list of VMAs maintained by the
120  * system, and mm's subscribe to these individually
121  */
122 struct vm_list_struct {
123         struct vm_list_struct   *next;
124         struct vm_area_struct   *vma;
125 };
126
127 #ifndef CONFIG_MMU
128 extern struct rb_root nommu_vma_tree;
129 extern struct rw_semaphore nommu_vma_sem;
130
131 extern unsigned int kobjsize(const void *objp);
132 #endif
133
134 /*
135  * vm_flags..
136  */
137 #define VM_READ         0x00000001      /* currently active flags */
138 #define VM_WRITE        0x00000002
139 #define VM_EXEC         0x00000004
140 #define VM_SHARED       0x00000008
141
142 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
143 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
144 #define VM_MAYWRITE     0x00000020
145 #define VM_MAYEXEC      0x00000040
146 #define VM_MAYSHARE     0x00000080
147
148 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
149 #define VM_GROWSUP      0x00000200
150 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
151 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
152
153 #define VM_EXECUTABLE   0x00001000
154 #define VM_LOCKED       0x00002000
155 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
156
157                                         /* Used by sys_madvise() */
158 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
159 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
160
161 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
162 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
163 #define VM_RESERVED     0x00080000      /* Count as reserved_vm like IO */
164 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
165 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
166 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
167 #define VM_MAPPED_COPY  0x01000000      /* T if mapped copy of data (nommu mmap) */
168 #define VM_INSERTPAGE   0x02000000      /* The vma has had "vm_insert_page()" done on it */
169 #define VM_ALWAYSDUMP   0x04000000      /* Always include in core dumps */
170
171 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
172 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
173 #endif
174
175 #ifdef CONFIG_STACK_GROWSUP
176 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
177 #else
178 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179 #endif
180
181 #define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
182 #define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
183 #define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
184 #define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
185 #define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
186
187 /*
188  * mapping from the currently active vm_flags protection bits (the
189  * low four bits) to a page protection mask..
190  */
191 extern pgprot_t protection_map[16];
192
193
194 /*
195  * These are the virtual MM functions - opening of an area, closing and
196  * unmapping it (needed to keep files on disk up-to-date etc), pointer
197  * to the functions called when a no-page or a wp-page exception occurs. 
198  */
199 struct vm_operations_struct {
200         void (*open)(struct vm_area_struct * area);
201         void (*close)(struct vm_area_struct * area);
202         struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
203         unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
204         int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
205
206         /* notification that a previously read-only page is about to become
207          * writable, if an error is returned it will cause a SIGBUS */
208         int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
209 #ifdef CONFIG_NUMA
210         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
211         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
212                                         unsigned long addr);
213         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
214                 const nodemask_t *to, unsigned long flags);
215 #endif
216 };
217
218 struct mmu_gather;
219 struct inode;
220
221 #define page_private(page)              ((page)->private)
222 #define set_page_private(page, v)       ((page)->private = (v))
223
224 /*
225  * FIXME: take this include out, include page-flags.h in
226  * files which need it (119 of them)
227  */
228 #include <linux/page-flags.h>
229
230 #ifdef CONFIG_DEBUG_VM
231 #define VM_BUG_ON(cond) BUG_ON(cond)
232 #else
233 #define VM_BUG_ON(condition) do { } while(0)
234 #endif
235
236 /*
237  * Methods to modify the page usage count.
238  *
239  * What counts for a page usage:
240  * - cache mapping   (page->mapping)
241  * - private data    (page->private)
242  * - page mapped in a task's page tables, each mapping
243  *   is counted separately
244  *
245  * Also, many kernel routines increase the page count before a critical
246  * routine so they can be sure the page doesn't go away from under them.
247  */
248
249 /*
250  * Drop a ref, return true if the refcount fell to zero (the page has no users)
251  */
252 static inline int put_page_testzero(struct page *page)
253 {
254         VM_BUG_ON(atomic_read(&page->_count) == 0);
255         return atomic_dec_and_test(&page->_count);
256 }
257
258 /*
259  * Try to grab a ref unless the page has a refcount of zero, return false if
260  * that is the case.
261  */
262 static inline int get_page_unless_zero(struct page *page)
263 {
264         VM_BUG_ON(PageCompound(page));
265         return atomic_inc_not_zero(&page->_count);
266 }
267
268 static inline struct page *compound_head(struct page *page)
269 {
270         if (unlikely(PageTail(page)))
271                 return page->first_page;
272         return page;
273 }
274
275 static inline int page_count(struct page *page)
276 {
277         return atomic_read(&compound_head(page)->_count);
278 }
279
280 static inline void get_page(struct page *page)
281 {
282         page = compound_head(page);
283         VM_BUG_ON(atomic_read(&page->_count) == 0);
284         atomic_inc(&page->_count);
285 }
286
287 static inline struct page *virt_to_head_page(const void *x)
288 {
289         struct page *page = virt_to_page(x);
290         return compound_head(page);
291 }
292
293 /*
294  * Setup the page count before being freed into the page allocator for
295  * the first time (boot or memory hotplug)
296  */
297 static inline void init_page_count(struct page *page)
298 {
299         atomic_set(&page->_count, 1);
300 }
301
302 void put_page(struct page *page);
303 void put_pages_list(struct list_head *pages);
304
305 void split_page(struct page *page, unsigned int order);
306
307 /*
308  * Compound pages have a destructor function.  Provide a
309  * prototype for that function and accessor functions.
310  * These are _only_ valid on the head of a PG_compound page.
311  */
312 typedef void compound_page_dtor(struct page *);
313
314 static inline void set_compound_page_dtor(struct page *page,
315                                                 compound_page_dtor *dtor)
316 {
317         page[1].lru.next = (void *)dtor;
318 }
319
320 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
321 {
322         return (compound_page_dtor *)page[1].lru.next;
323 }
324
325 static inline int compound_order(struct page *page)
326 {
327         if (!PageHead(page))
328                 return 0;
329         return (unsigned long)page[1].lru.prev;
330 }
331
332 static inline void set_compound_order(struct page *page, unsigned long order)
333 {
334         page[1].lru.prev = (void *)order;
335 }
336
337 /*
338  * Multiple processes may "see" the same page. E.g. for untouched
339  * mappings of /dev/null, all processes see the same page full of
340  * zeroes, and text pages of executables and shared libraries have
341  * only one copy in memory, at most, normally.
342  *
343  * For the non-reserved pages, page_count(page) denotes a reference count.
344  *   page_count() == 0 means the page is free. page->lru is then used for
345  *   freelist management in the buddy allocator.
346  *   page_count() > 0  means the page has been allocated.
347  *
348  * Pages are allocated by the slab allocator in order to provide memory
349  * to kmalloc and kmem_cache_alloc. In this case, the management of the
350  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
351  * unless a particular usage is carefully commented. (the responsibility of
352  * freeing the kmalloc memory is the caller's, of course).
353  *
354  * A page may be used by anyone else who does a __get_free_page().
355  * In this case, page_count still tracks the references, and should only
356  * be used through the normal accessor functions. The top bits of page->flags
357  * and page->virtual store page management information, but all other fields
358  * are unused and could be used privately, carefully. The management of this
359  * page is the responsibility of the one who allocated it, and those who have
360  * subsequently been given references to it.
361  *
362  * The other pages (we may call them "pagecache pages") are completely
363  * managed by the Linux memory manager: I/O, buffers, swapping etc.
364  * The following discussion applies only to them.
365  *
366  * A pagecache page contains an opaque `private' member, which belongs to the
367  * page's address_space. Usually, this is the address of a circular list of
368  * the page's disk buffers. PG_private must be set to tell the VM to call
369  * into the filesystem to release these pages.
370  *
371  * A page may belong to an inode's memory mapping. In this case, page->mapping
372  * is the pointer to the inode, and page->index is the file offset of the page,
373  * in units of PAGE_CACHE_SIZE.
374  *
375  * If pagecache pages are not associated with an inode, they are said to be
376  * anonymous pages. These may become associated with the swapcache, and in that
377  * case PG_swapcache is set, and page->private is an offset into the swapcache.
378  *
379  * In either case (swapcache or inode backed), the pagecache itself holds one
380  * reference to the page. Setting PG_private should also increment the
381  * refcount. The each user mapping also has a reference to the page.
382  *
383  * The pagecache pages are stored in a per-mapping radix tree, which is
384  * rooted at mapping->page_tree, and indexed by offset.
385  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
386  * lists, we instead now tag pages as dirty/writeback in the radix tree.
387  *
388  * All pagecache pages may be subject to I/O:
389  * - inode pages may need to be read from disk,
390  * - inode pages which have been modified and are MAP_SHARED may need
391  *   to be written back to the inode on disk,
392  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
393  *   modified may need to be swapped out to swap space and (later) to be read
394  *   back into memory.
395  */
396
397 /*
398  * The zone field is never updated after free_area_init_core()
399  * sets it, so none of the operations on it need to be atomic.
400  */
401
402
403 /*
404  * page->flags layout:
405  *
406  * There are three possibilities for how page->flags get
407  * laid out.  The first is for the normal case, without
408  * sparsemem.  The second is for sparsemem when there is
409  * plenty of space for node and section.  The last is when
410  * we have run out of space and have to fall back to an
411  * alternate (slower) way of determining the node.
412  *
413  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
414  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
415  *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
416  */
417 #ifdef CONFIG_SPARSEMEM
418 #define SECTIONS_WIDTH          SECTIONS_SHIFT
419 #else
420 #define SECTIONS_WIDTH          0
421 #endif
422
423 #define ZONES_WIDTH             ZONES_SHIFT
424
425 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
426 #define NODES_WIDTH             NODES_SHIFT
427 #else
428 #define NODES_WIDTH             0
429 #endif
430
431 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
432 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
433 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
434 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
435
436 /*
437  * We are going to use the flags for the page to node mapping if its in
438  * there.  This includes the case where there is no node, so it is implicit.
439  */
440 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
441 #define NODE_NOT_IN_PAGE_FLAGS
442 #endif
443
444 #ifndef PFN_SECTION_SHIFT
445 #define PFN_SECTION_SHIFT 0
446 #endif
447
448 /*
449  * Define the bit shifts to access each section.  For non-existant
450  * sections we define the shift as 0; that plus a 0 mask ensures
451  * the compiler will optimise away reference to them.
452  */
453 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
454 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
455 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
456
457 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
458 #ifdef NODE_NOT_IN_PAGEFLAGS
459 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
460 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
461                                                 SECTIONS_PGOFF : ZONES_PGOFF)
462 #else
463 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
464 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
465                                                 NODES_PGOFF : ZONES_PGOFF)
466 #endif
467
468 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
469
470 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
471 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
472 #endif
473
474 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
475 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
476 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
477 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
478
479 static inline enum zone_type page_zonenum(struct page *page)
480 {
481         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
482 }
483
484 /*
485  * The identification function is only used by the buddy allocator for
486  * determining if two pages could be buddies. We are not really
487  * identifying a zone since we could be using a the section number
488  * id if we have not node id available in page flags.
489  * We guarantee only that it will return the same value for two
490  * combinable pages in a zone.
491  */
492 static inline int page_zone_id(struct page *page)
493 {
494         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
495 }
496
497 static inline int zone_to_nid(struct zone *zone)
498 {
499 #ifdef CONFIG_NUMA
500         return zone->node;
501 #else
502         return 0;
503 #endif
504 }
505
506 #ifdef NODE_NOT_IN_PAGE_FLAGS
507 extern int page_to_nid(struct page *page);
508 #else
509 static inline int page_to_nid(struct page *page)
510 {
511         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
512 }
513 #endif
514
515 static inline struct zone *page_zone(struct page *page)
516 {
517         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
518 }
519
520 static inline unsigned long page_to_section(struct page *page)
521 {
522         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
523 }
524
525 static inline void set_page_zone(struct page *page, enum zone_type zone)
526 {
527         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
528         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
529 }
530
531 static inline void set_page_node(struct page *page, unsigned long node)
532 {
533         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
534         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
535 }
536
537 static inline void set_page_section(struct page *page, unsigned long section)
538 {
539         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
540         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
541 }
542
543 static inline void set_page_links(struct page *page, enum zone_type zone,
544         unsigned long node, unsigned long pfn)
545 {
546         set_page_zone(page, zone);
547         set_page_node(page, node);
548         set_page_section(page, pfn_to_section_nr(pfn));
549 }
550
551 /*
552  * Some inline functions in vmstat.h depend on page_zone()
553  */
554 #include <linux/vmstat.h>
555
556 static __always_inline void *lowmem_page_address(struct page *page)
557 {
558         return __va(page_to_pfn(page) << PAGE_SHIFT);
559 }
560
561 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
562 #define HASHED_PAGE_VIRTUAL
563 #endif
564
565 #if defined(WANT_PAGE_VIRTUAL)
566 #define page_address(page) ((page)->virtual)
567 #define set_page_address(page, address)                 \
568         do {                                            \
569                 (page)->virtual = (address);            \
570         } while(0)
571 #define page_address_init()  do { } while(0)
572 #endif
573
574 #if defined(HASHED_PAGE_VIRTUAL)
575 void *page_address(struct page *page);
576 void set_page_address(struct page *page, void *virtual);
577 void page_address_init(void);
578 #endif
579
580 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
581 #define page_address(page) lowmem_page_address(page)
582 #define set_page_address(page, address)  do { } while(0)
583 #define page_address_init()  do { } while(0)
584 #endif
585
586 /*
587  * On an anonymous page mapped into a user virtual memory area,
588  * page->mapping points to its anon_vma, not to a struct address_space;
589  * with the PAGE_MAPPING_ANON bit set to distinguish it.
590  *
591  * Please note that, confusingly, "page_mapping" refers to the inode
592  * address_space which maps the page from disk; whereas "page_mapped"
593  * refers to user virtual address space into which the page is mapped.
594  */
595 #define PAGE_MAPPING_ANON       1
596
597 extern struct address_space swapper_space;
598 static inline struct address_space *page_mapping(struct page *page)
599 {
600         struct address_space *mapping = page->mapping;
601
602         VM_BUG_ON(PageSlab(page));
603         if (unlikely(PageSwapCache(page)))
604                 mapping = &swapper_space;
605 #ifdef CONFIG_SLUB
606         else if (unlikely(PageSlab(page)))
607                 mapping = NULL;
608 #endif
609         else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
610                 mapping = NULL;
611         return mapping;
612 }
613
614 static inline int PageAnon(struct page *page)
615 {
616         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
617 }
618
619 /*
620  * Return the pagecache index of the passed page.  Regular pagecache pages
621  * use ->index whereas swapcache pages use ->private
622  */
623 static inline pgoff_t page_index(struct page *page)
624 {
625         if (unlikely(PageSwapCache(page)))
626                 return page_private(page);
627         return page->index;
628 }
629
630 /*
631  * The atomic page->_mapcount, like _count, starts from -1:
632  * so that transitions both from it and to it can be tracked,
633  * using atomic_inc_and_test and atomic_add_negative(-1).
634  */
635 static inline void reset_page_mapcount(struct page *page)
636 {
637         atomic_set(&(page)->_mapcount, -1);
638 }
639
640 static inline int page_mapcount(struct page *page)
641 {
642         return atomic_read(&(page)->_mapcount) + 1;
643 }
644
645 /*
646  * Return true if this page is mapped into pagetables.
647  */
648 static inline int page_mapped(struct page *page)
649 {
650         return atomic_read(&(page)->_mapcount) >= 0;
651 }
652
653 /*
654  * Error return values for the *_nopage functions
655  */
656 #define NOPAGE_SIGBUS   (NULL)
657 #define NOPAGE_OOM      ((struct page *) (-1))
658 #define NOPAGE_REFAULT  ((struct page *) (-2))  /* Return to userspace, rerun */
659
660 /*
661  * Error return values for the *_nopfn functions
662  */
663 #define NOPFN_SIGBUS    ((unsigned long) -1)
664 #define NOPFN_OOM       ((unsigned long) -2)
665 #define NOPFN_REFAULT   ((unsigned long) -3)
666
667 /*
668  * Different kinds of faults, as returned by handle_mm_fault().
669  * Used to decide whether a process gets delivered SIGBUS or
670  * just gets major/minor fault counters bumped up.
671  */
672 #define VM_FAULT_OOM    0x00
673 #define VM_FAULT_SIGBUS 0x01
674 #define VM_FAULT_MINOR  0x02
675 #define VM_FAULT_MAJOR  0x03
676
677 /* 
678  * Special case for get_user_pages.
679  * Must be in a distinct bit from the above VM_FAULT_ flags.
680  */
681 #define VM_FAULT_WRITE  0x10
682
683 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
684
685 extern void show_free_areas(void);
686
687 #ifdef CONFIG_SHMEM
688 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
689 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
690                                         unsigned long addr);
691 int shmem_lock(struct file *file, int lock, struct user_struct *user);
692 #else
693 static inline int shmem_lock(struct file *file, int lock,
694                              struct user_struct *user)
695 {
696         return 0;
697 }
698
699 static inline int shmem_set_policy(struct vm_area_struct *vma,
700                                    struct mempolicy *new)
701 {
702         return 0;
703 }
704
705 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
706                                                  unsigned long addr)
707 {
708         return NULL;
709 }
710 #endif
711 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
712
713 int shmem_zero_setup(struct vm_area_struct *);
714
715 #ifndef CONFIG_MMU
716 extern unsigned long shmem_get_unmapped_area(struct file *file,
717                                              unsigned long addr,
718                                              unsigned long len,
719                                              unsigned long pgoff,
720                                              unsigned long flags);
721 #endif
722
723 extern int can_do_mlock(void);
724 extern int user_shm_lock(size_t, struct user_struct *);
725 extern void user_shm_unlock(size_t, struct user_struct *);
726
727 /*
728  * Parameter block passed down to zap_pte_range in exceptional cases.
729  */
730 struct zap_details {
731         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
732         struct address_space *check_mapping;    /* Check page->mapping if set */
733         pgoff_t first_index;                    /* Lowest page->index to unmap */
734         pgoff_t last_index;                     /* Highest page->index to unmap */
735         spinlock_t *i_mmap_lock;                /* For unmap_mapping_range: */
736         unsigned long truncate_count;           /* Compare vm_truncate_count */
737 };
738
739 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
740 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
741                 unsigned long size, struct zap_details *);
742 unsigned long unmap_vmas(struct mmu_gather **tlb,
743                 struct vm_area_struct *start_vma, unsigned long start_addr,
744                 unsigned long end_addr, unsigned long *nr_accounted,
745                 struct zap_details *);
746 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
747                 unsigned long end, unsigned long floor, unsigned long ceiling);
748 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
749                 unsigned long floor, unsigned long ceiling);
750 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
751                         struct vm_area_struct *vma);
752 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
753                         unsigned long size, pgprot_t prot);
754 void unmap_mapping_range(struct address_space *mapping,
755                 loff_t const holebegin, loff_t const holelen, int even_cows);
756
757 static inline void unmap_shared_mapping_range(struct address_space *mapping,
758                 loff_t const holebegin, loff_t const holelen)
759 {
760         unmap_mapping_range(mapping, holebegin, holelen, 0);
761 }
762
763 extern int vmtruncate(struct inode * inode, loff_t offset);
764 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
765 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
766 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
767
768 #ifdef CONFIG_MMU
769 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
770                         unsigned long address, int write_access);
771
772 static inline int handle_mm_fault(struct mm_struct *mm,
773                         struct vm_area_struct *vma, unsigned long address,
774                         int write_access)
775 {
776         return __handle_mm_fault(mm, vma, address, write_access) &
777                                 (~VM_FAULT_WRITE);
778 }
779 #else
780 static inline int handle_mm_fault(struct mm_struct *mm,
781                         struct vm_area_struct *vma, unsigned long address,
782                         int write_access)
783 {
784         /* should never happen if there's no MMU */
785         BUG();
786         return VM_FAULT_SIGBUS;
787 }
788 #endif
789
790 extern int make_pages_present(unsigned long addr, unsigned long end);
791 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
792 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
793
794 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
795                 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
796 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
797
798 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
799 extern void do_invalidatepage(struct page *page, unsigned long offset);
800
801 int __set_page_dirty_nobuffers(struct page *page);
802 int __set_page_dirty_no_writeback(struct page *page);
803 int redirty_page_for_writepage(struct writeback_control *wbc,
804                                 struct page *page);
805 int FASTCALL(set_page_dirty(struct page *page));
806 int set_page_dirty_lock(struct page *page);
807 int clear_page_dirty_for_io(struct page *page);
808
809 extern unsigned long do_mremap(unsigned long addr,
810                                unsigned long old_len, unsigned long new_len,
811                                unsigned long flags, unsigned long new_addr);
812
813 /*
814  * A callback you can register to apply pressure to ageable caches.
815  *
816  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
817  * look through the least-recently-used 'nr_to_scan' entries and
818  * attempt to free them up.  It should return the number of objects
819  * which remain in the cache.  If it returns -1, it means it cannot do
820  * any scanning at this time (eg. there is a risk of deadlock).
821  *
822  * The 'gfpmask' refers to the allocation we are currently trying to
823  * fulfil.
824  *
825  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
826  * querying the cache size, so a fastpath for that case is appropriate.
827  */
828 struct shrinker {
829         int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
830         int seeks;      /* seeks to recreate an obj */
831
832         /* These are for internal use */
833         struct list_head list;
834         long nr;        /* objs pending delete */
835 };
836 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
837 extern void register_shrinker(struct shrinker *);
838 extern void unregister_shrinker(struct shrinker *);
839
840 /*
841  * Some shared mappigns will want the pages marked read-only
842  * to track write events. If so, we'll downgrade vm_page_prot
843  * to the private version (using protection_map[] without the
844  * VM_SHARED bit).
845  */
846 static inline int vma_wants_writenotify(struct vm_area_struct *vma)
847 {
848         unsigned int vm_flags = vma->vm_flags;
849
850         /* If it was private or non-writable, the write bit is already clear */
851         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
852                 return 0;
853
854         /* The backer wishes to know when pages are first written to? */
855         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
856                 return 1;
857
858         /* The open routine did something to the protections already? */
859         if (pgprot_val(vma->vm_page_prot) !=
860             pgprot_val(protection_map[vm_flags &
861                     (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
862                 return 0;
863
864         /* Specialty mapping? */
865         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
866                 return 0;
867
868         /* Can the mapping track the dirty pages? */
869         return vma->vm_file && vma->vm_file->f_mapping &&
870                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
871 }
872
873 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
874
875 #ifdef __PAGETABLE_PUD_FOLDED
876 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
877                                                 unsigned long address)
878 {
879         return 0;
880 }
881 #else
882 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
883 #endif
884
885 #ifdef __PAGETABLE_PMD_FOLDED
886 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
887                                                 unsigned long address)
888 {
889         return 0;
890 }
891 #else
892 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
893 #endif
894
895 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
896 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
897
898 /*
899  * The following ifdef needed to get the 4level-fixup.h header to work.
900  * Remove it when 4level-fixup.h has been removed.
901  */
902 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
903 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
904 {
905         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
906                 NULL: pud_offset(pgd, address);
907 }
908
909 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
910 {
911         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
912                 NULL: pmd_offset(pud, address);
913 }
914 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
915
916 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
917 /*
918  * We tuck a spinlock to guard each pagetable page into its struct page,
919  * at page->private, with BUILD_BUG_ON to make sure that this will not
920  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
921  * When freeing, reset page->mapping so free_pages_check won't complain.
922  */
923 #define __pte_lockptr(page)     &((page)->ptl)
924 #define pte_lock_init(_page)    do {                                    \
925         spin_lock_init(__pte_lockptr(_page));                           \
926 } while (0)
927 #define pte_lock_deinit(page)   ((page)->mapping = NULL)
928 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
929 #else
930 /*
931  * We use mm->page_table_lock to guard all pagetable pages of the mm.
932  */
933 #define pte_lock_init(page)     do {} while (0)
934 #define pte_lock_deinit(page)   do {} while (0)
935 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
936 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
937
938 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
939 ({                                                      \
940         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
941         pte_t *__pte = pte_offset_map(pmd, address);    \
942         *(ptlp) = __ptl;                                \
943         spin_lock(__ptl);                               \
944         __pte;                                          \
945 })
946
947 #define pte_unmap_unlock(pte, ptl)      do {            \
948         spin_unlock(ptl);                               \
949         pte_unmap(pte);                                 \
950 } while (0)
951
952 #define pte_alloc_map(mm, pmd, address)                 \
953         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
954                 NULL: pte_offset_map(pmd, address))
955
956 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
957         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
958                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
959
960 #define pte_alloc_kernel(pmd, address)                  \
961         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
962                 NULL: pte_offset_kernel(pmd, address))
963
964 extern void free_area_init(unsigned long * zones_size);
965 extern void free_area_init_node(int nid, pg_data_t *pgdat,
966         unsigned long * zones_size, unsigned long zone_start_pfn, 
967         unsigned long *zholes_size);
968 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
969 /*
970  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
971  * zones, allocate the backing mem_map and account for memory holes in a more
972  * architecture independent manner. This is a substitute for creating the
973  * zone_sizes[] and zholes_size[] arrays and passing them to
974  * free_area_init_node()
975  *
976  * An architecture is expected to register range of page frames backed by
977  * physical memory with add_active_range() before calling
978  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
979  * usage, an architecture is expected to do something like
980  *
981  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
982  *                                                       max_highmem_pfn};
983  * for_each_valid_physical_page_range()
984  *      add_active_range(node_id, start_pfn, end_pfn)
985  * free_area_init_nodes(max_zone_pfns);
986  *
987  * If the architecture guarantees that there are no holes in the ranges
988  * registered with add_active_range(), free_bootmem_active_regions()
989  * will call free_bootmem_node() for each registered physical page range.
990  * Similarly sparse_memory_present_with_active_regions() calls
991  * memory_present() for each range when SPARSEMEM is enabled.
992  *
993  * See mm/page_alloc.c for more information on each function exposed by
994  * CONFIG_ARCH_POPULATES_NODE_MAP
995  */
996 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
997 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
998                                         unsigned long end_pfn);
999 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
1000                                                 unsigned long new_end_pfn);
1001 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1002                                         unsigned long end_pfn);
1003 extern void remove_all_active_ranges(void);
1004 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1005                                                 unsigned long end_pfn);
1006 extern void get_pfn_range_for_nid(unsigned int nid,
1007                         unsigned long *start_pfn, unsigned long *end_pfn);
1008 extern unsigned long find_min_pfn_with_active_regions(void);
1009 extern unsigned long find_max_pfn_with_active_regions(void);
1010 extern void free_bootmem_with_active_regions(int nid,
1011                                                 unsigned long max_low_pfn);
1012 extern void sparse_memory_present_with_active_regions(int nid);
1013 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1014 extern int early_pfn_to_nid(unsigned long pfn);
1015 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1016 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1017 extern void set_dma_reserve(unsigned long new_dma_reserve);
1018 extern void memmap_init_zone(unsigned long, int, unsigned long,
1019                                 unsigned long, enum memmap_context);
1020 extern void setup_per_zone_pages_min(void);
1021 extern void mem_init(void);
1022 extern void show_mem(void);
1023 extern void si_meminfo(struct sysinfo * val);
1024 extern void si_meminfo_node(struct sysinfo *val, int nid);
1025
1026 #ifdef CONFIG_NUMA
1027 extern void setup_per_cpu_pageset(void);
1028 #else
1029 static inline void setup_per_cpu_pageset(void) {}
1030 #endif
1031
1032 /* prio_tree.c */
1033 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1034 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1035 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1036 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1037         struct prio_tree_iter *iter);
1038
1039 #define vma_prio_tree_foreach(vma, iter, root, begin, end)      \
1040         for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;   \
1041                 (vma = vma_prio_tree_next(vma, iter)); )
1042
1043 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1044                                         struct list_head *list)
1045 {
1046         vma->shared.vm_set.parent = NULL;
1047         list_add_tail(&vma->shared.vm_set.list, list);
1048 }
1049
1050 /* mmap.c */
1051 extern int __vm_enough_memory(long pages, int cap_sys_admin);
1052 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1053         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1054 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1055         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1056         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1057         struct mempolicy *);
1058 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1059 extern int split_vma(struct mm_struct *,
1060         struct vm_area_struct *, unsigned long addr, int new_below);
1061 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1062 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1063         struct rb_node **, struct rb_node *);
1064 extern void unlink_file_vma(struct vm_area_struct *);
1065 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1066         unsigned long addr, unsigned long len, pgoff_t pgoff);
1067 extern void exit_mmap(struct mm_struct *);
1068 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1069 extern int install_special_mapping(struct mm_struct *mm,
1070                                    unsigned long addr, unsigned long len,
1071                                    unsigned long flags, struct page **pages);
1072
1073 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1074
1075 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1076         unsigned long len, unsigned long prot,
1077         unsigned long flag, unsigned long pgoff);
1078 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1079         unsigned long len, unsigned long flags,
1080         unsigned int vm_flags, unsigned long pgoff,
1081         int accountable);
1082
1083 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1084         unsigned long len, unsigned long prot,
1085         unsigned long flag, unsigned long offset)
1086 {
1087         unsigned long ret = -EINVAL;
1088         if ((offset + PAGE_ALIGN(len)) < offset)
1089                 goto out;
1090         if (!(offset & ~PAGE_MASK))
1091                 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1092 out:
1093         return ret;
1094 }
1095
1096 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1097
1098 extern unsigned long do_brk(unsigned long, unsigned long);
1099
1100 /* filemap.c */
1101 extern unsigned long page_unuse(struct page *);
1102 extern void truncate_inode_pages(struct address_space *, loff_t);
1103 extern void truncate_inode_pages_range(struct address_space *,
1104                                        loff_t lstart, loff_t lend);
1105
1106 /* generic vm_area_ops exported for stackable file systems */
1107 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1108 extern int filemap_populate(struct vm_area_struct *, unsigned long,
1109                 unsigned long, pgprot_t, unsigned long, int);
1110
1111 /* mm/page-writeback.c */
1112 int write_one_page(struct page *page, int wait);
1113
1114 /* readahead.c */
1115 #define VM_MAX_READAHEAD        128     /* kbytes */
1116 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1117 #define VM_MAX_CACHE_HIT        256     /* max pages in a row in cache before
1118                                          * turning readahead off */
1119
1120 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1121                         pgoff_t offset, unsigned long nr_to_read);
1122 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1123                         pgoff_t offset, unsigned long nr_to_read);
1124 unsigned long page_cache_readahead(struct address_space *mapping,
1125                           struct file_ra_state *ra,
1126                           struct file *filp,
1127                           pgoff_t offset,
1128                           unsigned long size);
1129 void handle_ra_miss(struct address_space *mapping, 
1130                     struct file_ra_state *ra, pgoff_t offset);
1131 unsigned long max_sane_readahead(unsigned long nr);
1132
1133 /* Do stack extension */
1134 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1135 #ifdef CONFIG_IA64
1136 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1137 #endif
1138
1139 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1140 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1141 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1142                                              struct vm_area_struct **pprev);
1143
1144 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1145    NULL if none.  Assume start_addr < end_addr. */
1146 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1147 {
1148         struct vm_area_struct * vma = find_vma(mm,start_addr);
1149
1150         if (vma && end_addr <= vma->vm_start)
1151                 vma = NULL;
1152         return vma;
1153 }
1154
1155 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1156 {
1157         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1158 }
1159
1160 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1161 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1162 struct page *vmalloc_to_page(void *addr);
1163 unsigned long vmalloc_to_pfn(void *addr);
1164 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1165                         unsigned long pfn, unsigned long size, pgprot_t);
1166 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1167 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1168                         unsigned long pfn);
1169
1170 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1171                         unsigned int foll_flags);
1172 #define FOLL_WRITE      0x01    /* check pte is writable */
1173 #define FOLL_TOUCH      0x02    /* mark page accessed */
1174 #define FOLL_GET        0x04    /* do get_page on page */
1175 #define FOLL_ANON       0x08    /* give ZERO_PAGE if no pgtable */
1176
1177 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1178                         void *data);
1179 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1180                                unsigned long size, pte_fn_t fn, void *data);
1181
1182 #ifdef CONFIG_PROC_FS
1183 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1184 #else
1185 static inline void vm_stat_account(struct mm_struct *mm,
1186                         unsigned long flags, struct file *file, long pages)
1187 {
1188 }
1189 #endif /* CONFIG_PROC_FS */
1190
1191 #ifndef CONFIG_DEBUG_PAGEALLOC
1192 static inline void
1193 kernel_map_pages(struct page *page, int numpages, int enable) {}
1194 #endif
1195
1196 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1197 #ifdef  __HAVE_ARCH_GATE_AREA
1198 int in_gate_area_no_task(unsigned long addr);
1199 int in_gate_area(struct task_struct *task, unsigned long addr);
1200 #else
1201 int in_gate_area_no_task(unsigned long addr);
1202 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1203 #endif  /* __HAVE_ARCH_GATE_AREA */
1204
1205 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1206                                         void __user *, size_t *, loff_t *);
1207 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1208                         unsigned long lru_pages);
1209 void drop_pagecache(void);
1210 void drop_slab(void);
1211
1212 #ifndef CONFIG_MMU
1213 #define randomize_va_space 0
1214 #else
1215 extern int randomize_va_space;
1216 #endif
1217
1218 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
1219
1220 #endif /* __KERNEL__ */
1221 #endif /* _LINUX_MM_H */