Merge branch 'upstream-fixes'
[linux-2.6] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *
109  * Known bugs:
110  * We suspect that on some hardware no TX done interrupts are generated.
111  * This means recovery from netif_stop_queue only happens if the hw timer
112  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
113  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
114  * If your hardware reliably generates tx done interrupts, then you can remove
115  * DEV_NEED_TIMERIRQ from the driver_data flags.
116  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
117  * superfluous timer interrupts from the nic.
118  */
119 #define FORCEDETH_VERSION               "0.52"
120 #define DRV_NAME                        "forcedeth"
121
122 #include <linux/module.h>
123 #include <linux/types.h>
124 #include <linux/pci.h>
125 #include <linux/interrupt.h>
126 #include <linux/netdevice.h>
127 #include <linux/etherdevice.h>
128 #include <linux/delay.h>
129 #include <linux/spinlock.h>
130 #include <linux/ethtool.h>
131 #include <linux/timer.h>
132 #include <linux/skbuff.h>
133 #include <linux/mii.h>
134 #include <linux/random.h>
135 #include <linux/init.h>
136 #include <linux/if_vlan.h>
137
138 #include <asm/irq.h>
139 #include <asm/io.h>
140 #include <asm/uaccess.h>
141 #include <asm/system.h>
142
143 #if 0
144 #define dprintk                 printk
145 #else
146 #define dprintk(x...)           do { } while (0)
147 #endif
148
149
150 /*
151  * Hardware access:
152  */
153
154 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
155 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
156 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
157 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
158 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
159 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
160 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
161 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
162
163 enum {
164         NvRegIrqStatus = 0x000,
165 #define NVREG_IRQSTAT_MIIEVENT  0x040
166 #define NVREG_IRQSTAT_MASK              0x1ff
167         NvRegIrqMask = 0x004,
168 #define NVREG_IRQ_RX_ERROR              0x0001
169 #define NVREG_IRQ_RX                    0x0002
170 #define NVREG_IRQ_RX_NOBUF              0x0004
171 #define NVREG_IRQ_TX_ERR                0x0008
172 #define NVREG_IRQ_TX_OK                 0x0010
173 #define NVREG_IRQ_TIMER                 0x0020
174 #define NVREG_IRQ_LINK                  0x0040
175 #define NVREG_IRQ_RX_FORCED             0x0080
176 #define NVREG_IRQ_TX_FORCED             0x0100
177 #define NVREG_IRQMASK_THROUGHPUT        0x00df
178 #define NVREG_IRQMASK_CPU               0x0040
179 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
180 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
181 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
182
183 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
184                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
185                                         NVREG_IRQ_TX_FORCED))
186
187         NvRegUnknownSetupReg6 = 0x008,
188 #define NVREG_UNKSETUP6_VAL             3
189
190 /*
191  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
192  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
193  */
194         NvRegPollingInterval = 0x00c,
195 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
196 #define NVREG_POLL_DEFAULT_CPU  13
197         NvRegMSIMap0 = 0x020,
198         NvRegMSIMap1 = 0x024,
199         NvRegMSIIrqMask = 0x030,
200 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
201         NvRegMisc1 = 0x080,
202 #define NVREG_MISC1_HD          0x02
203 #define NVREG_MISC1_FORCE       0x3b0f3c
204
205         NvRegTransmitterControl = 0x084,
206 #define NVREG_XMITCTL_START     0x01
207         NvRegTransmitterStatus = 0x088,
208 #define NVREG_XMITSTAT_BUSY     0x01
209
210         NvRegPacketFilterFlags = 0x8c,
211 #define NVREG_PFF_ALWAYS        0x7F0008
212 #define NVREG_PFF_PROMISC       0x80
213 #define NVREG_PFF_MYADDR        0x20
214
215         NvRegOffloadConfig = 0x90,
216 #define NVREG_OFFLOAD_HOMEPHY   0x601
217 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
218         NvRegReceiverControl = 0x094,
219 #define NVREG_RCVCTL_START      0x01
220         NvRegReceiverStatus = 0x98,
221 #define NVREG_RCVSTAT_BUSY      0x01
222
223         NvRegRandomSeed = 0x9c,
224 #define NVREG_RNDSEED_MASK      0x00ff
225 #define NVREG_RNDSEED_FORCE     0x7f00
226 #define NVREG_RNDSEED_FORCE2    0x2d00
227 #define NVREG_RNDSEED_FORCE3    0x7400
228
229         NvRegUnknownSetupReg1 = 0xA0,
230 #define NVREG_UNKSETUP1_VAL     0x16070f
231         NvRegUnknownSetupReg2 = 0xA4,
232 #define NVREG_UNKSETUP2_VAL     0x16
233         NvRegMacAddrA = 0xA8,
234         NvRegMacAddrB = 0xAC,
235         NvRegMulticastAddrA = 0xB0,
236 #define NVREG_MCASTADDRA_FORCE  0x01
237         NvRegMulticastAddrB = 0xB4,
238         NvRegMulticastMaskA = 0xB8,
239         NvRegMulticastMaskB = 0xBC,
240
241         NvRegPhyInterface = 0xC0,
242 #define PHY_RGMII               0x10000000
243
244         NvRegTxRingPhysAddr = 0x100,
245         NvRegRxRingPhysAddr = 0x104,
246         NvRegRingSizes = 0x108,
247 #define NVREG_RINGSZ_TXSHIFT 0
248 #define NVREG_RINGSZ_RXSHIFT 16
249         NvRegUnknownTransmitterReg = 0x10c,
250         NvRegLinkSpeed = 0x110,
251 #define NVREG_LINKSPEED_FORCE 0x10000
252 #define NVREG_LINKSPEED_10      1000
253 #define NVREG_LINKSPEED_100     100
254 #define NVREG_LINKSPEED_1000    50
255 #define NVREG_LINKSPEED_MASK    (0xFFF)
256         NvRegUnknownSetupReg5 = 0x130,
257 #define NVREG_UNKSETUP5_BIT31   (1<<31)
258         NvRegUnknownSetupReg3 = 0x13c,
259 #define NVREG_UNKSETUP3_VAL1    0x200010
260         NvRegTxRxControl = 0x144,
261 #define NVREG_TXRXCTL_KICK      0x0001
262 #define NVREG_TXRXCTL_BIT1      0x0002
263 #define NVREG_TXRXCTL_BIT2      0x0004
264 #define NVREG_TXRXCTL_IDLE      0x0008
265 #define NVREG_TXRXCTL_RESET     0x0010
266 #define NVREG_TXRXCTL_RXCHECK   0x0400
267 #define NVREG_TXRXCTL_DESC_1    0
268 #define NVREG_TXRXCTL_DESC_2    0x02100
269 #define NVREG_TXRXCTL_DESC_3    0x02200
270 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
271 #define NVREG_TXRXCTL_VLANINS   0x00080
272         NvRegTxRingPhysAddrHigh = 0x148,
273         NvRegRxRingPhysAddrHigh = 0x14C,
274         NvRegMIIStatus = 0x180,
275 #define NVREG_MIISTAT_ERROR             0x0001
276 #define NVREG_MIISTAT_LINKCHANGE        0x0008
277 #define NVREG_MIISTAT_MASK              0x000f
278 #define NVREG_MIISTAT_MASK2             0x000f
279         NvRegUnknownSetupReg4 = 0x184,
280 #define NVREG_UNKSETUP4_VAL     8
281
282         NvRegAdapterControl = 0x188,
283 #define NVREG_ADAPTCTL_START    0x02
284 #define NVREG_ADAPTCTL_LINKUP   0x04
285 #define NVREG_ADAPTCTL_PHYVALID 0x40000
286 #define NVREG_ADAPTCTL_RUNNING  0x100000
287 #define NVREG_ADAPTCTL_PHYSHIFT 24
288         NvRegMIISpeed = 0x18c,
289 #define NVREG_MIISPEED_BIT8     (1<<8)
290 #define NVREG_MIIDELAY  5
291         NvRegMIIControl = 0x190,
292 #define NVREG_MIICTL_INUSE      0x08000
293 #define NVREG_MIICTL_WRITE      0x00400
294 #define NVREG_MIICTL_ADDRSHIFT  5
295         NvRegMIIData = 0x194,
296         NvRegWakeUpFlags = 0x200,
297 #define NVREG_WAKEUPFLAGS_VAL           0x7770
298 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
299 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
300 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
301 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
302 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
303 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
304 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
305 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
306 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
307 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
308
309         NvRegPatternCRC = 0x204,
310         NvRegPatternMask = 0x208,
311         NvRegPowerCap = 0x268,
312 #define NVREG_POWERCAP_D3SUPP   (1<<30)
313 #define NVREG_POWERCAP_D2SUPP   (1<<26)
314 #define NVREG_POWERCAP_D1SUPP   (1<<25)
315         NvRegPowerState = 0x26c,
316 #define NVREG_POWERSTATE_POWEREDUP      0x8000
317 #define NVREG_POWERSTATE_VALID          0x0100
318 #define NVREG_POWERSTATE_MASK           0x0003
319 #define NVREG_POWERSTATE_D0             0x0000
320 #define NVREG_POWERSTATE_D1             0x0001
321 #define NVREG_POWERSTATE_D2             0x0002
322 #define NVREG_POWERSTATE_D3             0x0003
323         NvRegVlanControl = 0x300,
324 #define NVREG_VLANCONTROL_ENABLE        0x2000
325         NvRegMSIXMap0 = 0x3e0,
326         NvRegMSIXMap1 = 0x3e4,
327         NvRegMSIXIrqStatus = 0x3f0,
328 };
329
330 /* Big endian: should work, but is untested */
331 struct ring_desc {
332         u32 PacketBuffer;
333         u32 FlagLen;
334 };
335
336 struct ring_desc_ex {
337         u32 PacketBufferHigh;
338         u32 PacketBufferLow;
339         u32 TxVlan;
340         u32 FlagLen;
341 };
342
343 typedef union _ring_type {
344         struct ring_desc* orig;
345         struct ring_desc_ex* ex;
346 } ring_type;
347
348 #define FLAG_MASK_V1 0xffff0000
349 #define FLAG_MASK_V2 0xffffc000
350 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
351 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
352
353 #define NV_TX_LASTPACKET        (1<<16)
354 #define NV_TX_RETRYERROR        (1<<19)
355 #define NV_TX_FORCED_INTERRUPT  (1<<24)
356 #define NV_TX_DEFERRED          (1<<26)
357 #define NV_TX_CARRIERLOST       (1<<27)
358 #define NV_TX_LATECOLLISION     (1<<28)
359 #define NV_TX_UNDERFLOW         (1<<29)
360 #define NV_TX_ERROR             (1<<30)
361 #define NV_TX_VALID             (1<<31)
362
363 #define NV_TX2_LASTPACKET       (1<<29)
364 #define NV_TX2_RETRYERROR       (1<<18)
365 #define NV_TX2_FORCED_INTERRUPT (1<<30)
366 #define NV_TX2_DEFERRED         (1<<25)
367 #define NV_TX2_CARRIERLOST      (1<<26)
368 #define NV_TX2_LATECOLLISION    (1<<27)
369 #define NV_TX2_UNDERFLOW        (1<<28)
370 /* error and valid are the same for both */
371 #define NV_TX2_ERROR            (1<<30)
372 #define NV_TX2_VALID            (1<<31)
373 #define NV_TX2_TSO              (1<<28)
374 #define NV_TX2_TSO_SHIFT        14
375 #define NV_TX2_TSO_MAX_SHIFT    14
376 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
377 #define NV_TX2_CHECKSUM_L3      (1<<27)
378 #define NV_TX2_CHECKSUM_L4      (1<<26)
379
380 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
381
382 #define NV_RX_DESCRIPTORVALID   (1<<16)
383 #define NV_RX_MISSEDFRAME       (1<<17)
384 #define NV_RX_SUBSTRACT1        (1<<18)
385 #define NV_RX_ERROR1            (1<<23)
386 #define NV_RX_ERROR2            (1<<24)
387 #define NV_RX_ERROR3            (1<<25)
388 #define NV_RX_ERROR4            (1<<26)
389 #define NV_RX_CRCERR            (1<<27)
390 #define NV_RX_OVERFLOW          (1<<28)
391 #define NV_RX_FRAMINGERR        (1<<29)
392 #define NV_RX_ERROR             (1<<30)
393 #define NV_RX_AVAIL             (1<<31)
394
395 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
396 #define NV_RX2_CHECKSUMOK1      (0x10000000)
397 #define NV_RX2_CHECKSUMOK2      (0x14000000)
398 #define NV_RX2_CHECKSUMOK3      (0x18000000)
399 #define NV_RX2_DESCRIPTORVALID  (1<<29)
400 #define NV_RX2_SUBSTRACT1       (1<<25)
401 #define NV_RX2_ERROR1           (1<<18)
402 #define NV_RX2_ERROR2           (1<<19)
403 #define NV_RX2_ERROR3           (1<<20)
404 #define NV_RX2_ERROR4           (1<<21)
405 #define NV_RX2_CRCERR           (1<<22)
406 #define NV_RX2_OVERFLOW         (1<<23)
407 #define NV_RX2_FRAMINGERR       (1<<24)
408 /* error and avail are the same for both */
409 #define NV_RX2_ERROR            (1<<30)
410 #define NV_RX2_AVAIL            (1<<31)
411
412 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
413 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
414
415 /* Miscelaneous hardware related defines: */
416 #define NV_PCI_REGSZ            0x270
417
418 /* various timeout delays: all in usec */
419 #define NV_TXRX_RESET_DELAY     4
420 #define NV_TXSTOP_DELAY1        10
421 #define NV_TXSTOP_DELAY1MAX     500000
422 #define NV_TXSTOP_DELAY2        100
423 #define NV_RXSTOP_DELAY1        10
424 #define NV_RXSTOP_DELAY1MAX     500000
425 #define NV_RXSTOP_DELAY2        100
426 #define NV_SETUP5_DELAY         5
427 #define NV_SETUP5_DELAYMAX      50000
428 #define NV_POWERUP_DELAY        5
429 #define NV_POWERUP_DELAYMAX     5000
430 #define NV_MIIBUSY_DELAY        50
431 #define NV_MIIPHY_DELAY 10
432 #define NV_MIIPHY_DELAYMAX      10000
433
434 #define NV_WAKEUPPATTERNS       5
435 #define NV_WAKEUPMASKENTRIES    4
436
437 /* General driver defaults */
438 #define NV_WATCHDOG_TIMEO       (5*HZ)
439
440 #define RX_RING         128
441 #define TX_RING         256
442 /* 
443  * If your nic mysteriously hangs then try to reduce the limits
444  * to 1/0: It might be required to set NV_TX_LASTPACKET in the
445  * last valid ring entry. But this would be impossible to
446  * implement - probably a disassembly error.
447  */
448 #define TX_LIMIT_STOP   255
449 #define TX_LIMIT_START  254
450
451 /* rx/tx mac addr + type + vlan + align + slack*/
452 #define NV_RX_HEADERS           (64)
453 /* even more slack. */
454 #define NV_RX_ALLOC_PAD         (64)
455
456 /* maximum mtu size */
457 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
458 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
459
460 #define OOM_REFILL      (1+HZ/20)
461 #define POLL_WAIT       (1+HZ/100)
462 #define LINK_TIMEOUT    (3*HZ)
463
464 /* 
465  * desc_ver values:
466  * The nic supports three different descriptor types:
467  * - DESC_VER_1: Original
468  * - DESC_VER_2: support for jumbo frames.
469  * - DESC_VER_3: 64-bit format.
470  */
471 #define DESC_VER_1      1
472 #define DESC_VER_2      2
473 #define DESC_VER_3      3
474
475 /* PHY defines */
476 #define PHY_OUI_MARVELL 0x5043
477 #define PHY_OUI_CICADA  0x03f1
478 #define PHYID1_OUI_MASK 0x03ff
479 #define PHYID1_OUI_SHFT 6
480 #define PHYID2_OUI_MASK 0xfc00
481 #define PHYID2_OUI_SHFT 10
482 #define PHY_INIT1       0x0f000
483 #define PHY_INIT2       0x0e00
484 #define PHY_INIT3       0x01000
485 #define PHY_INIT4       0x0200
486 #define PHY_INIT5       0x0004
487 #define PHY_INIT6       0x02000
488 #define PHY_GIGABIT     0x0100
489
490 #define PHY_TIMEOUT     0x1
491 #define PHY_ERROR       0x2
492
493 #define PHY_100 0x1
494 #define PHY_1000        0x2
495 #define PHY_HALF        0x100
496
497 /* FIXME: MII defines that should be added to <linux/mii.h> */
498 #define MII_1000BT_CR   0x09
499 #define MII_1000BT_SR   0x0a
500 #define ADVERTISE_1000FULL      0x0200
501 #define ADVERTISE_1000HALF      0x0100
502 #define LPA_1000FULL    0x0800
503 #define LPA_1000HALF    0x0400
504
505 /* MSI/MSI-X defines */
506 #define NV_MSI_X_MAX_VECTORS  8
507 #define NV_MSI_X_VECTORS_MASK 0x000f
508 #define NV_MSI_CAPABLE        0x0010
509 #define NV_MSI_X_CAPABLE      0x0020
510 #define NV_MSI_ENABLED        0x0040
511 #define NV_MSI_X_ENABLED      0x0080
512
513 #define NV_MSI_X_VECTOR_ALL   0x0
514 #define NV_MSI_X_VECTOR_RX    0x0
515 #define NV_MSI_X_VECTOR_TX    0x1
516 #define NV_MSI_X_VECTOR_OTHER 0x2
517
518 /*
519  * SMP locking:
520  * All hardware access under dev->priv->lock, except the performance
521  * critical parts:
522  * - rx is (pseudo-) lockless: it relies on the single-threading provided
523  *      by the arch code for interrupts.
524  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
525  *      needs dev->priv->lock :-(
526  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
527  */
528
529 /* in dev: base, irq */
530 struct fe_priv {
531         spinlock_t lock;
532
533         /* General data:
534          * Locking: spin_lock(&np->lock); */
535         struct net_device_stats stats;
536         int in_shutdown;
537         u32 linkspeed;
538         int duplex;
539         int autoneg;
540         int fixed_mode;
541         int phyaddr;
542         int wolenabled;
543         unsigned int phy_oui;
544         u16 gigabit;
545
546         /* General data: RO fields */
547         dma_addr_t ring_addr;
548         struct pci_dev *pci_dev;
549         u32 orig_mac[2];
550         u32 irqmask;
551         u32 desc_ver;
552         u32 txrxctl_bits;
553         u32 vlanctl_bits;
554
555         void __iomem *base;
556
557         /* rx specific fields.
558          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
559          */
560         ring_type rx_ring;
561         unsigned int cur_rx, refill_rx;
562         struct sk_buff *rx_skbuff[RX_RING];
563         dma_addr_t rx_dma[RX_RING];
564         unsigned int rx_buf_sz;
565         unsigned int pkt_limit;
566         struct timer_list oom_kick;
567         struct timer_list nic_poll;
568         u32 nic_poll_irq;
569
570         /* media detection workaround.
571          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
572          */
573         int need_linktimer;
574         unsigned long link_timeout;
575         /*
576          * tx specific fields.
577          */
578         ring_type tx_ring;
579         unsigned int next_tx, nic_tx;
580         struct sk_buff *tx_skbuff[TX_RING];
581         dma_addr_t tx_dma[TX_RING];
582         unsigned int tx_dma_len[TX_RING];
583         u32 tx_flags;
584
585         /* vlan fields */
586         struct vlan_group *vlangrp;
587
588         /* msi/msi-x fields */
589         u32 msi_flags;
590         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
591 };
592
593 /*
594  * Maximum number of loops until we assume that a bit in the irq mask
595  * is stuck. Overridable with module param.
596  */
597 static int max_interrupt_work = 5;
598
599 /*
600  * Optimization can be either throuput mode or cpu mode
601  * 
602  * Throughput Mode: Every tx and rx packet will generate an interrupt.
603  * CPU Mode: Interrupts are controlled by a timer.
604  */
605 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
606 #define NV_OPTIMIZATION_MODE_CPU        1
607 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
608
609 /*
610  * Poll interval for timer irq
611  *
612  * This interval determines how frequent an interrupt is generated.
613  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
614  * Min = 0, and Max = 65535
615  */
616 static int poll_interval = -1;
617
618 /*
619  * Disable MSI interrupts
620  */
621 static int disable_msi = 0;
622
623 /*
624  * Disable MSIX interrupts
625  */
626 static int disable_msix = 0;
627
628 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
629 {
630         return netdev_priv(dev);
631 }
632
633 static inline u8 __iomem *get_hwbase(struct net_device *dev)
634 {
635         return ((struct fe_priv *)netdev_priv(dev))->base;
636 }
637
638 static inline void pci_push(u8 __iomem *base)
639 {
640         /* force out pending posted writes */
641         readl(base);
642 }
643
644 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
645 {
646         return le32_to_cpu(prd->FlagLen)
647                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
648 }
649
650 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
651 {
652         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
653 }
654
655 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
656                                 int delay, int delaymax, const char *msg)
657 {
658         u8 __iomem *base = get_hwbase(dev);
659
660         pci_push(base);
661         do {
662                 udelay(delay);
663                 delaymax -= delay;
664                 if (delaymax < 0) {
665                         if (msg)
666                                 printk(msg);
667                         return 1;
668                 }
669         } while ((readl(base + offset) & mask) != target);
670         return 0;
671 }
672
673 #define NV_SETUP_RX_RING 0x01
674 #define NV_SETUP_TX_RING 0x02
675
676 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
677 {
678         struct fe_priv *np = get_nvpriv(dev);
679         u8 __iomem *base = get_hwbase(dev);
680
681         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
682                 if (rxtx_flags & NV_SETUP_RX_RING) {
683                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
684                 }
685                 if (rxtx_flags & NV_SETUP_TX_RING) {
686                         writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
687                 }
688         } else {
689                 if (rxtx_flags & NV_SETUP_RX_RING) {
690                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
691                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
692                 }
693                 if (rxtx_flags & NV_SETUP_TX_RING) {
694                         writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
695                         writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
696                 }
697         }
698 }
699
700 #define MII_READ        (-1)
701 /* mii_rw: read/write a register on the PHY.
702  *
703  * Caller must guarantee serialization
704  */
705 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
706 {
707         u8 __iomem *base = get_hwbase(dev);
708         u32 reg;
709         int retval;
710
711         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
712
713         reg = readl(base + NvRegMIIControl);
714         if (reg & NVREG_MIICTL_INUSE) {
715                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
716                 udelay(NV_MIIBUSY_DELAY);
717         }
718
719         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
720         if (value != MII_READ) {
721                 writel(value, base + NvRegMIIData);
722                 reg |= NVREG_MIICTL_WRITE;
723         }
724         writel(reg, base + NvRegMIIControl);
725
726         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
727                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
728                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
729                                 dev->name, miireg, addr);
730                 retval = -1;
731         } else if (value != MII_READ) {
732                 /* it was a write operation - fewer failures are detectable */
733                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
734                                 dev->name, value, miireg, addr);
735                 retval = 0;
736         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
737                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
738                                 dev->name, miireg, addr);
739                 retval = -1;
740         } else {
741                 retval = readl(base + NvRegMIIData);
742                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
743                                 dev->name, miireg, addr, retval);
744         }
745
746         return retval;
747 }
748
749 static int phy_reset(struct net_device *dev)
750 {
751         struct fe_priv *np = netdev_priv(dev);
752         u32 miicontrol;
753         unsigned int tries = 0;
754
755         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
756         miicontrol |= BMCR_RESET;
757         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
758                 return -1;
759         }
760
761         /* wait for 500ms */
762         msleep(500);
763
764         /* must wait till reset is deasserted */
765         while (miicontrol & BMCR_RESET) {
766                 msleep(10);
767                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
768                 /* FIXME: 100 tries seem excessive */
769                 if (tries++ > 100)
770                         return -1;
771         }
772         return 0;
773 }
774
775 static int phy_init(struct net_device *dev)
776 {
777         struct fe_priv *np = get_nvpriv(dev);
778         u8 __iomem *base = get_hwbase(dev);
779         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
780
781         /* set advertise register */
782         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
783         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
784         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
785                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
786                 return PHY_ERROR;
787         }
788
789         /* get phy interface type */
790         phyinterface = readl(base + NvRegPhyInterface);
791
792         /* see if gigabit phy */
793         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
794         if (mii_status & PHY_GIGABIT) {
795                 np->gigabit = PHY_GIGABIT;
796                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
797                 mii_control_1000 &= ~ADVERTISE_1000HALF;
798                 if (phyinterface & PHY_RGMII)
799                         mii_control_1000 |= ADVERTISE_1000FULL;
800                 else
801                         mii_control_1000 &= ~ADVERTISE_1000FULL;
802
803                 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
804                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
805                         return PHY_ERROR;
806                 }
807         }
808         else
809                 np->gigabit = 0;
810
811         /* reset the phy */
812         if (phy_reset(dev)) {
813                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
814                 return PHY_ERROR;
815         }
816
817         /* phy vendor specific configuration */
818         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
819                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
820                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
821                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
822                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
823                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
824                         return PHY_ERROR;
825                 }
826                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
827                 phy_reserved |= PHY_INIT5;
828                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
829                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
830                         return PHY_ERROR;
831                 }
832         }
833         if (np->phy_oui == PHY_OUI_CICADA) {
834                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
835                 phy_reserved |= PHY_INIT6;
836                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
837                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
838                         return PHY_ERROR;
839                 }
840         }
841
842         /* restart auto negotiation */
843         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
844         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
845         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
846                 return PHY_ERROR;
847         }
848
849         return 0;
850 }
851
852 static void nv_start_rx(struct net_device *dev)
853 {
854         struct fe_priv *np = netdev_priv(dev);
855         u8 __iomem *base = get_hwbase(dev);
856
857         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
858         /* Already running? Stop it. */
859         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
860                 writel(0, base + NvRegReceiverControl);
861                 pci_push(base);
862         }
863         writel(np->linkspeed, base + NvRegLinkSpeed);
864         pci_push(base);
865         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
866         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
867                                 dev->name, np->duplex, np->linkspeed);
868         pci_push(base);
869 }
870
871 static void nv_stop_rx(struct net_device *dev)
872 {
873         u8 __iomem *base = get_hwbase(dev);
874
875         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
876         writel(0, base + NvRegReceiverControl);
877         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
878                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
879                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
880
881         udelay(NV_RXSTOP_DELAY2);
882         writel(0, base + NvRegLinkSpeed);
883 }
884
885 static void nv_start_tx(struct net_device *dev)
886 {
887         u8 __iomem *base = get_hwbase(dev);
888
889         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
890         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
891         pci_push(base);
892 }
893
894 static void nv_stop_tx(struct net_device *dev)
895 {
896         u8 __iomem *base = get_hwbase(dev);
897
898         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
899         writel(0, base + NvRegTransmitterControl);
900         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
901                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
902                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
903
904         udelay(NV_TXSTOP_DELAY2);
905         writel(0, base + NvRegUnknownTransmitterReg);
906 }
907
908 static void nv_txrx_reset(struct net_device *dev)
909 {
910         struct fe_priv *np = netdev_priv(dev);
911         u8 __iomem *base = get_hwbase(dev);
912
913         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
914         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
915         pci_push(base);
916         udelay(NV_TXRX_RESET_DELAY);
917         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
918         pci_push(base);
919 }
920
921 /*
922  * nv_get_stats: dev->get_stats function
923  * Get latest stats value from the nic.
924  * Called with read_lock(&dev_base_lock) held for read -
925  * only synchronized against unregister_netdevice.
926  */
927 static struct net_device_stats *nv_get_stats(struct net_device *dev)
928 {
929         struct fe_priv *np = netdev_priv(dev);
930
931         /* It seems that the nic always generates interrupts and doesn't
932          * accumulate errors internally. Thus the current values in np->stats
933          * are already up to date.
934          */
935         return &np->stats;
936 }
937
938 /*
939  * nv_alloc_rx: fill rx ring entries.
940  * Return 1 if the allocations for the skbs failed and the
941  * rx engine is without Available descriptors
942  */
943 static int nv_alloc_rx(struct net_device *dev)
944 {
945         struct fe_priv *np = netdev_priv(dev);
946         unsigned int refill_rx = np->refill_rx;
947         int nr;
948
949         while (np->cur_rx != refill_rx) {
950                 struct sk_buff *skb;
951
952                 nr = refill_rx % RX_RING;
953                 if (np->rx_skbuff[nr] == NULL) {
954
955                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
956                         if (!skb)
957                                 break;
958
959                         skb->dev = dev;
960                         np->rx_skbuff[nr] = skb;
961                 } else {
962                         skb = np->rx_skbuff[nr];
963                 }
964                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
965                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
966                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
967                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
968                         wmb();
969                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
970                 } else {
971                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
972                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
973                         wmb();
974                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
975                 }
976                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
977                                         dev->name, refill_rx);
978                 refill_rx++;
979         }
980         np->refill_rx = refill_rx;
981         if (np->cur_rx - refill_rx == RX_RING)
982                 return 1;
983         return 0;
984 }
985
986 static void nv_do_rx_refill(unsigned long data)
987 {
988         struct net_device *dev = (struct net_device *) data;
989         struct fe_priv *np = netdev_priv(dev);
990
991
992         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
993             ((np->msi_flags & NV_MSI_X_ENABLED) && 
994              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
995                 disable_irq(dev->irq);
996         } else {
997                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
998         }
999         if (nv_alloc_rx(dev)) {
1000                 spin_lock(&np->lock);
1001                 if (!np->in_shutdown)
1002                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1003                 spin_unlock(&np->lock);
1004         }
1005         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1006             ((np->msi_flags & NV_MSI_X_ENABLED) && 
1007              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1008                 enable_irq(dev->irq);
1009         } else {
1010                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1011         }
1012 }
1013
1014 static void nv_init_rx(struct net_device *dev) 
1015 {
1016         struct fe_priv *np = netdev_priv(dev);
1017         int i;
1018
1019         np->cur_rx = RX_RING;
1020         np->refill_rx = 0;
1021         for (i = 0; i < RX_RING; i++)
1022                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1023                         np->rx_ring.orig[i].FlagLen = 0;
1024                 else
1025                         np->rx_ring.ex[i].FlagLen = 0;
1026 }
1027
1028 static void nv_init_tx(struct net_device *dev)
1029 {
1030         struct fe_priv *np = netdev_priv(dev);
1031         int i;
1032
1033         np->next_tx = np->nic_tx = 0;
1034         for (i = 0; i < TX_RING; i++) {
1035                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1036                         np->tx_ring.orig[i].FlagLen = 0;
1037                 else
1038                         np->tx_ring.ex[i].FlagLen = 0;
1039                 np->tx_skbuff[i] = NULL;
1040                 np->tx_dma[i] = 0;
1041         }
1042 }
1043
1044 static int nv_init_ring(struct net_device *dev)
1045 {
1046         nv_init_tx(dev);
1047         nv_init_rx(dev);
1048         return nv_alloc_rx(dev);
1049 }
1050
1051 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1052 {
1053         struct fe_priv *np = netdev_priv(dev);
1054
1055         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1056                 dev->name, skbnr);
1057
1058         if (np->tx_dma[skbnr]) {
1059                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1060                                np->tx_dma_len[skbnr],
1061                                PCI_DMA_TODEVICE);
1062                 np->tx_dma[skbnr] = 0;
1063         }
1064
1065         if (np->tx_skbuff[skbnr]) {
1066                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1067                 np->tx_skbuff[skbnr] = NULL;
1068                 return 1;
1069         } else {
1070                 return 0;
1071         }
1072 }
1073
1074 static void nv_drain_tx(struct net_device *dev)
1075 {
1076         struct fe_priv *np = netdev_priv(dev);
1077         unsigned int i;
1078         
1079         for (i = 0; i < TX_RING; i++) {
1080                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1081                         np->tx_ring.orig[i].FlagLen = 0;
1082                 else
1083                         np->tx_ring.ex[i].FlagLen = 0;
1084                 if (nv_release_txskb(dev, i))
1085                         np->stats.tx_dropped++;
1086         }
1087 }
1088
1089 static void nv_drain_rx(struct net_device *dev)
1090 {
1091         struct fe_priv *np = netdev_priv(dev);
1092         int i;
1093         for (i = 0; i < RX_RING; i++) {
1094                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1095                         np->rx_ring.orig[i].FlagLen = 0;
1096                 else
1097                         np->rx_ring.ex[i].FlagLen = 0;
1098                 wmb();
1099                 if (np->rx_skbuff[i]) {
1100                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1101                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1102                                                 PCI_DMA_FROMDEVICE);
1103                         dev_kfree_skb(np->rx_skbuff[i]);
1104                         np->rx_skbuff[i] = NULL;
1105                 }
1106         }
1107 }
1108
1109 static void drain_ring(struct net_device *dev)
1110 {
1111         nv_drain_tx(dev);
1112         nv_drain_rx(dev);
1113 }
1114
1115 /*
1116  * nv_start_xmit: dev->hard_start_xmit function
1117  * Called with dev->xmit_lock held.
1118  */
1119 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1120 {
1121         struct fe_priv *np = netdev_priv(dev);
1122         u32 tx_flags = 0;
1123         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1124         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1125         unsigned int nr = (np->next_tx - 1) % TX_RING;
1126         unsigned int start_nr = np->next_tx % TX_RING;
1127         unsigned int i;
1128         u32 offset = 0;
1129         u32 bcnt;
1130         u32 size = skb->len-skb->data_len;
1131         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1132         u32 tx_flags_vlan = 0;
1133
1134         /* add fragments to entries count */
1135         for (i = 0; i < fragments; i++) {
1136                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1137                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1138         }
1139
1140         spin_lock_irq(&np->lock);
1141
1142         if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
1143                 spin_unlock_irq(&np->lock);
1144                 netif_stop_queue(dev);
1145                 return NETDEV_TX_BUSY;
1146         }
1147
1148         /* setup the header buffer */
1149         do {
1150                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1151                 nr = (nr + 1) % TX_RING;
1152
1153                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1154                                                 PCI_DMA_TODEVICE);
1155                 np->tx_dma_len[nr] = bcnt;
1156
1157                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1158                         np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1159                         np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1160                 } else {
1161                         np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1162                         np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1163                         np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1164                 }
1165                 tx_flags = np->tx_flags;
1166                 offset += bcnt;
1167                 size -= bcnt;
1168         } while(size);
1169
1170         /* setup the fragments */
1171         for (i = 0; i < fragments; i++) {
1172                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1173                 u32 size = frag->size;
1174                 offset = 0;
1175
1176                 do {
1177                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1178                         nr = (nr + 1) % TX_RING;
1179
1180                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1181                                                       PCI_DMA_TODEVICE);
1182                         np->tx_dma_len[nr] = bcnt;
1183
1184                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1185                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1186                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1187                         } else {
1188                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1189                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1190                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1191                         }
1192                         offset += bcnt;
1193                         size -= bcnt;
1194                 } while (size);
1195         }
1196
1197         /* set last fragment flag  */
1198         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1199                 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1200         } else {
1201                 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1202         }
1203
1204         np->tx_skbuff[nr] = skb;
1205
1206 #ifdef NETIF_F_TSO
1207         if (skb_shinfo(skb)->tso_size)
1208                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1209         else
1210 #endif
1211         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1212
1213         /* vlan tag */
1214         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1215                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1216         }
1217
1218         /* set tx flags */
1219         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1220                 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1221         } else {
1222                 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1223                 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1224         }       
1225
1226         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1227                 dev->name, np->next_tx, entries, tx_flags_extra);
1228         {
1229                 int j;
1230                 for (j=0; j<64; j++) {
1231                         if ((j%16) == 0)
1232                                 dprintk("\n%03x:", j);
1233                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1234                 }
1235                 dprintk("\n");
1236         }
1237
1238         np->next_tx += entries;
1239
1240         dev->trans_start = jiffies;
1241         spin_unlock_irq(&np->lock);
1242         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1243         pci_push(get_hwbase(dev));
1244         return NETDEV_TX_OK;
1245 }
1246
1247 /*
1248  * nv_tx_done: check for completed packets, release the skbs.
1249  *
1250  * Caller must own np->lock.
1251  */
1252 static void nv_tx_done(struct net_device *dev)
1253 {
1254         struct fe_priv *np = netdev_priv(dev);
1255         u32 Flags;
1256         unsigned int i;
1257         struct sk_buff *skb;
1258
1259         while (np->nic_tx != np->next_tx) {
1260                 i = np->nic_tx % TX_RING;
1261
1262                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1263                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1264                 else
1265                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1266
1267                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1268                                         dev->name, np->nic_tx, Flags);
1269                 if (Flags & NV_TX_VALID)
1270                         break;
1271                 if (np->desc_ver == DESC_VER_1) {
1272                         if (Flags & NV_TX_LASTPACKET) {
1273                                 skb = np->tx_skbuff[i];
1274                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1275                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1276                                         if (Flags & NV_TX_UNDERFLOW)
1277                                                 np->stats.tx_fifo_errors++;
1278                                         if (Flags & NV_TX_CARRIERLOST)
1279                                                 np->stats.tx_carrier_errors++;
1280                                         np->stats.tx_errors++;
1281                                 } else {
1282                                         np->stats.tx_packets++;
1283                                         np->stats.tx_bytes += skb->len;
1284                                 }
1285                         }
1286                 } else {
1287                         if (Flags & NV_TX2_LASTPACKET) {
1288                                 skb = np->tx_skbuff[i];
1289                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1290                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1291                                         if (Flags & NV_TX2_UNDERFLOW)
1292                                                 np->stats.tx_fifo_errors++;
1293                                         if (Flags & NV_TX2_CARRIERLOST)
1294                                                 np->stats.tx_carrier_errors++;
1295                                         np->stats.tx_errors++;
1296                                 } else {
1297                                         np->stats.tx_packets++;
1298                                         np->stats.tx_bytes += skb->len;
1299                                 }                               
1300                         }
1301                 }
1302                 nv_release_txskb(dev, i);
1303                 np->nic_tx++;
1304         }
1305         if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1306                 netif_wake_queue(dev);
1307 }
1308
1309 /*
1310  * nv_tx_timeout: dev->tx_timeout function
1311  * Called with dev->xmit_lock held.
1312  */
1313 static void nv_tx_timeout(struct net_device *dev)
1314 {
1315         struct fe_priv *np = netdev_priv(dev);
1316         u8 __iomem *base = get_hwbase(dev);
1317         u32 status;
1318
1319         if (np->msi_flags & NV_MSI_X_ENABLED)
1320                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1321         else
1322                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1323
1324         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1325
1326         {
1327                 int i;
1328
1329                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1330                                 dev->name, (unsigned long)np->ring_addr,
1331                                 np->next_tx, np->nic_tx);
1332                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1333                 for (i=0;i<0x400;i+= 32) {
1334                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1335                                         i,
1336                                         readl(base + i + 0), readl(base + i + 4),
1337                                         readl(base + i + 8), readl(base + i + 12),
1338                                         readl(base + i + 16), readl(base + i + 20),
1339                                         readl(base + i + 24), readl(base + i + 28));
1340                 }
1341                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1342                 for (i=0;i<TX_RING;i+= 4) {
1343                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1344                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1345                                        i, 
1346                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1347                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1348                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1349                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1350                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1351                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1352                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1353                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1354                         } else {
1355                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1356                                        i, 
1357                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1358                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1359                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1360                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1361                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1362                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1363                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1364                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1365                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1366                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1367                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1368                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1369                         }
1370                 }
1371         }
1372
1373         spin_lock_irq(&np->lock);
1374
1375         /* 1) stop tx engine */
1376         nv_stop_tx(dev);
1377
1378         /* 2) check that the packets were not sent already: */
1379         nv_tx_done(dev);
1380
1381         /* 3) if there are dead entries: clear everything */
1382         if (np->next_tx != np->nic_tx) {
1383                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1384                 nv_drain_tx(dev);
1385                 np->next_tx = np->nic_tx = 0;
1386                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1387                 netif_wake_queue(dev);
1388         }
1389
1390         /* 4) restart tx engine */
1391         nv_start_tx(dev);
1392         spin_unlock_irq(&np->lock);
1393 }
1394
1395 /*
1396  * Called when the nic notices a mismatch between the actual data len on the
1397  * wire and the len indicated in the 802 header
1398  */
1399 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1400 {
1401         int hdrlen;     /* length of the 802 header */
1402         int protolen;   /* length as stored in the proto field */
1403
1404         /* 1) calculate len according to header */
1405         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1406                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1407                 hdrlen = VLAN_HLEN;
1408         } else {
1409                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1410                 hdrlen = ETH_HLEN;
1411         }
1412         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1413                                 dev->name, datalen, protolen, hdrlen);
1414         if (protolen > ETH_DATA_LEN)
1415                 return datalen; /* Value in proto field not a len, no checks possible */
1416
1417         protolen += hdrlen;
1418         /* consistency checks: */
1419         if (datalen > ETH_ZLEN) {
1420                 if (datalen >= protolen) {
1421                         /* more data on wire than in 802 header, trim of
1422                          * additional data.
1423                          */
1424                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1425                                         dev->name, protolen);
1426                         return protolen;
1427                 } else {
1428                         /* less data on wire than mentioned in header.
1429                          * Discard the packet.
1430                          */
1431                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1432                                         dev->name);
1433                         return -1;
1434                 }
1435         } else {
1436                 /* short packet. Accept only if 802 values are also short */
1437                 if (protolen > ETH_ZLEN) {
1438                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1439                                         dev->name);
1440                         return -1;
1441                 }
1442                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1443                                 dev->name, datalen);
1444                 return datalen;
1445         }
1446 }
1447
1448 static void nv_rx_process(struct net_device *dev)
1449 {
1450         struct fe_priv *np = netdev_priv(dev);
1451         u32 Flags;
1452         u32 vlanflags = 0;
1453
1454
1455         for (;;) {
1456                 struct sk_buff *skb;
1457                 int len;
1458                 int i;
1459                 if (np->cur_rx - np->refill_rx >= RX_RING)
1460                         break;  /* we scanned the whole ring - do not continue */
1461
1462                 i = np->cur_rx % RX_RING;
1463                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1464                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1465                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1466                 } else {
1467                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1468                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1469                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1470                 }
1471
1472                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1473                                         dev->name, np->cur_rx, Flags);
1474
1475                 if (Flags & NV_RX_AVAIL)
1476                         break;  /* still owned by hardware, */
1477
1478                 /*
1479                  * the packet is for us - immediately tear down the pci mapping.
1480                  * TODO: check if a prefetch of the first cacheline improves
1481                  * the performance.
1482                  */
1483                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1484                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1485                                 PCI_DMA_FROMDEVICE);
1486
1487                 {
1488                         int j;
1489                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1490                         for (j=0; j<64; j++) {
1491                                 if ((j%16) == 0)
1492                                         dprintk("\n%03x:", j);
1493                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1494                         }
1495                         dprintk("\n");
1496                 }
1497                 /* look at what we actually got: */
1498                 if (np->desc_ver == DESC_VER_1) {
1499                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1500                                 goto next_pkt;
1501
1502                         if (Flags & NV_RX_ERROR) {
1503                                 if (Flags & NV_RX_MISSEDFRAME) {
1504                                         np->stats.rx_missed_errors++;
1505                                         np->stats.rx_errors++;
1506                                         goto next_pkt;
1507                                 }
1508                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1509                                         np->stats.rx_errors++;
1510                                         goto next_pkt;
1511                                 }
1512                                 if (Flags & NV_RX_CRCERR) {
1513                                         np->stats.rx_crc_errors++;
1514                                         np->stats.rx_errors++;
1515                                         goto next_pkt;
1516                                 }
1517                                 if (Flags & NV_RX_OVERFLOW) {
1518                                         np->stats.rx_over_errors++;
1519                                         np->stats.rx_errors++;
1520                                         goto next_pkt;
1521                                 }
1522                                 if (Flags & NV_RX_ERROR4) {
1523                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1524                                         if (len < 0) {
1525                                                 np->stats.rx_errors++;
1526                                                 goto next_pkt;
1527                                         }
1528                                 }
1529                                 /* framing errors are soft errors. */
1530                                 if (Flags & NV_RX_FRAMINGERR) {
1531                                         if (Flags & NV_RX_SUBSTRACT1) {
1532                                                 len--;
1533                                         }
1534                                 }
1535                         }
1536                 } else {
1537                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1538                                 goto next_pkt;
1539
1540                         if (Flags & NV_RX2_ERROR) {
1541                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1542                                         np->stats.rx_errors++;
1543                                         goto next_pkt;
1544                                 }
1545                                 if (Flags & NV_RX2_CRCERR) {
1546                                         np->stats.rx_crc_errors++;
1547                                         np->stats.rx_errors++;
1548                                         goto next_pkt;
1549                                 }
1550                                 if (Flags & NV_RX2_OVERFLOW) {
1551                                         np->stats.rx_over_errors++;
1552                                         np->stats.rx_errors++;
1553                                         goto next_pkt;
1554                                 }
1555                                 if (Flags & NV_RX2_ERROR4) {
1556                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1557                                         if (len < 0) {
1558                                                 np->stats.rx_errors++;
1559                                                 goto next_pkt;
1560                                         }
1561                                 }
1562                                 /* framing errors are soft errors */
1563                                 if (Flags & NV_RX2_FRAMINGERR) {
1564                                         if (Flags & NV_RX2_SUBSTRACT1) {
1565                                                 len--;
1566                                         }
1567                                 }
1568                         }
1569                         Flags &= NV_RX2_CHECKSUMMASK;
1570                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1571                                         Flags == NV_RX2_CHECKSUMOK2 ||
1572                                         Flags == NV_RX2_CHECKSUMOK3) {
1573                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1574                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1575                         } else {
1576                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1577                         }
1578                 }
1579                 /* got a valid packet - forward it to the network core */
1580                 skb = np->rx_skbuff[i];
1581                 np->rx_skbuff[i] = NULL;
1582
1583                 skb_put(skb, len);
1584                 skb->protocol = eth_type_trans(skb, dev);
1585                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1586                                         dev->name, np->cur_rx, len, skb->protocol);
1587                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1588                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1589                 } else {
1590                         netif_rx(skb);
1591                 }
1592                 dev->last_rx = jiffies;
1593                 np->stats.rx_packets++;
1594                 np->stats.rx_bytes += len;
1595 next_pkt:
1596                 np->cur_rx++;
1597         }
1598 }
1599
1600 static void set_bufsize(struct net_device *dev)
1601 {
1602         struct fe_priv *np = netdev_priv(dev);
1603
1604         if (dev->mtu <= ETH_DATA_LEN)
1605                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1606         else
1607                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1608 }
1609
1610 /*
1611  * nv_change_mtu: dev->change_mtu function
1612  * Called with dev_base_lock held for read.
1613  */
1614 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1615 {
1616         struct fe_priv *np = netdev_priv(dev);
1617         int old_mtu;
1618
1619         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1620                 return -EINVAL;
1621
1622         old_mtu = dev->mtu;
1623         dev->mtu = new_mtu;
1624
1625         /* return early if the buffer sizes will not change */
1626         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1627                 return 0;
1628         if (old_mtu == new_mtu)
1629                 return 0;
1630
1631         /* synchronized against open : rtnl_lock() held by caller */
1632         if (netif_running(dev)) {
1633                 u8 __iomem *base = get_hwbase(dev);
1634                 /*
1635                  * It seems that the nic preloads valid ring entries into an
1636                  * internal buffer. The procedure for flushing everything is
1637                  * guessed, there is probably a simpler approach.
1638                  * Changing the MTU is a rare event, it shouldn't matter.
1639                  */
1640                 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1641                     ((np->msi_flags & NV_MSI_X_ENABLED) && 
1642                      ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1643                         disable_irq(dev->irq);
1644                 } else {
1645                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1646                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1647                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1648                 }
1649                 spin_lock_bh(&dev->xmit_lock);
1650                 spin_lock(&np->lock);
1651                 /* stop engines */
1652                 nv_stop_rx(dev);
1653                 nv_stop_tx(dev);
1654                 nv_txrx_reset(dev);
1655                 /* drain rx queue */
1656                 nv_drain_rx(dev);
1657                 nv_drain_tx(dev);
1658                 /* reinit driver view of the rx queue */
1659                 nv_init_rx(dev);
1660                 nv_init_tx(dev);
1661                 /* alloc new rx buffers */
1662                 set_bufsize(dev);
1663                 if (nv_alloc_rx(dev)) {
1664                         if (!np->in_shutdown)
1665                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1666                 }
1667                 /* reinit nic view of the rx queue */
1668                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1669                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1670                 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1671                         base + NvRegRingSizes);
1672                 pci_push(base);
1673                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1674                 pci_push(base);
1675
1676                 /* restart rx engine */
1677                 nv_start_rx(dev);
1678                 nv_start_tx(dev);
1679                 spin_unlock(&np->lock);
1680                 spin_unlock_bh(&dev->xmit_lock);
1681                 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1682                     ((np->msi_flags & NV_MSI_X_ENABLED) && 
1683                      ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1684                         enable_irq(dev->irq);
1685                 } else {
1686                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1687                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1688                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1689                 }
1690         }
1691         return 0;
1692 }
1693
1694 static void nv_copy_mac_to_hw(struct net_device *dev)
1695 {
1696         u8 __iomem *base = get_hwbase(dev);
1697         u32 mac[2];
1698
1699         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1700                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1701         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1702
1703         writel(mac[0], base + NvRegMacAddrA);
1704         writel(mac[1], base + NvRegMacAddrB);
1705 }
1706
1707 /*
1708  * nv_set_mac_address: dev->set_mac_address function
1709  * Called with rtnl_lock() held.
1710  */
1711 static int nv_set_mac_address(struct net_device *dev, void *addr)
1712 {
1713         struct fe_priv *np = netdev_priv(dev);
1714         struct sockaddr *macaddr = (struct sockaddr*)addr;
1715
1716         if(!is_valid_ether_addr(macaddr->sa_data))
1717                 return -EADDRNOTAVAIL;
1718
1719         /* synchronized against open : rtnl_lock() held by caller */
1720         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1721
1722         if (netif_running(dev)) {
1723                 spin_lock_bh(&dev->xmit_lock);
1724                 spin_lock_irq(&np->lock);
1725
1726                 /* stop rx engine */
1727                 nv_stop_rx(dev);
1728
1729                 /* set mac address */
1730                 nv_copy_mac_to_hw(dev);
1731
1732                 /* restart rx engine */
1733                 nv_start_rx(dev);
1734                 spin_unlock_irq(&np->lock);
1735                 spin_unlock_bh(&dev->xmit_lock);
1736         } else {
1737                 nv_copy_mac_to_hw(dev);
1738         }
1739         return 0;
1740 }
1741
1742 /*
1743  * nv_set_multicast: dev->set_multicast function
1744  * Called with dev->xmit_lock held.
1745  */
1746 static void nv_set_multicast(struct net_device *dev)
1747 {
1748         struct fe_priv *np = netdev_priv(dev);
1749         u8 __iomem *base = get_hwbase(dev);
1750         u32 addr[2];
1751         u32 mask[2];
1752         u32 pff;
1753
1754         memset(addr, 0, sizeof(addr));
1755         memset(mask, 0, sizeof(mask));
1756
1757         if (dev->flags & IFF_PROMISC) {
1758                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1759                 pff = NVREG_PFF_PROMISC;
1760         } else {
1761                 pff = NVREG_PFF_MYADDR;
1762
1763                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1764                         u32 alwaysOff[2];
1765                         u32 alwaysOn[2];
1766
1767                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1768                         if (dev->flags & IFF_ALLMULTI) {
1769                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1770                         } else {
1771                                 struct dev_mc_list *walk;
1772
1773                                 walk = dev->mc_list;
1774                                 while (walk != NULL) {
1775                                         u32 a, b;
1776                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1777                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1778                                         alwaysOn[0] &= a;
1779                                         alwaysOff[0] &= ~a;
1780                                         alwaysOn[1] &= b;
1781                                         alwaysOff[1] &= ~b;
1782                                         walk = walk->next;
1783                                 }
1784                         }
1785                         addr[0] = alwaysOn[0];
1786                         addr[1] = alwaysOn[1];
1787                         mask[0] = alwaysOn[0] | alwaysOff[0];
1788                         mask[1] = alwaysOn[1] | alwaysOff[1];
1789                 }
1790         }
1791         addr[0] |= NVREG_MCASTADDRA_FORCE;
1792         pff |= NVREG_PFF_ALWAYS;
1793         spin_lock_irq(&np->lock);
1794         nv_stop_rx(dev);
1795         writel(addr[0], base + NvRegMulticastAddrA);
1796         writel(addr[1], base + NvRegMulticastAddrB);
1797         writel(mask[0], base + NvRegMulticastMaskA);
1798         writel(mask[1], base + NvRegMulticastMaskB);
1799         writel(pff, base + NvRegPacketFilterFlags);
1800         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1801                 dev->name);
1802         nv_start_rx(dev);
1803         spin_unlock_irq(&np->lock);
1804 }
1805
1806 /**
1807  * nv_update_linkspeed: Setup the MAC according to the link partner
1808  * @dev: Network device to be configured
1809  *
1810  * The function queries the PHY and checks if there is a link partner.
1811  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1812  * set to 10 MBit HD.
1813  *
1814  * The function returns 0 if there is no link partner and 1 if there is
1815  * a good link partner.
1816  */
1817 static int nv_update_linkspeed(struct net_device *dev)
1818 {
1819         struct fe_priv *np = netdev_priv(dev);
1820         u8 __iomem *base = get_hwbase(dev);
1821         int adv, lpa;
1822         int newls = np->linkspeed;
1823         int newdup = np->duplex;
1824         int mii_status;
1825         int retval = 0;
1826         u32 control_1000, status_1000, phyreg;
1827
1828         /* BMSR_LSTATUS is latched, read it twice:
1829          * we want the current value.
1830          */
1831         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1832         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1833
1834         if (!(mii_status & BMSR_LSTATUS)) {
1835                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1836                                 dev->name);
1837                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1838                 newdup = 0;
1839                 retval = 0;
1840                 goto set_speed;
1841         }
1842
1843         if (np->autoneg == 0) {
1844                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1845                                 dev->name, np->fixed_mode);
1846                 if (np->fixed_mode & LPA_100FULL) {
1847                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1848                         newdup = 1;
1849                 } else if (np->fixed_mode & LPA_100HALF) {
1850                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1851                         newdup = 0;
1852                 } else if (np->fixed_mode & LPA_10FULL) {
1853                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1854                         newdup = 1;
1855                 } else {
1856                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1857                         newdup = 0;
1858                 }
1859                 retval = 1;
1860                 goto set_speed;
1861         }
1862         /* check auto negotiation is complete */
1863         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1864                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1865                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1866                 newdup = 0;
1867                 retval = 0;
1868                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1869                 goto set_speed;
1870         }
1871
1872         retval = 1;
1873         if (np->gigabit == PHY_GIGABIT) {
1874                 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1875                 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1876
1877                 if ((control_1000 & ADVERTISE_1000FULL) &&
1878                         (status_1000 & LPA_1000FULL)) {
1879                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1880                                 dev->name);
1881                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1882                         newdup = 1;
1883                         goto set_speed;
1884                 }
1885         }
1886
1887         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1888         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1889         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1890                                 dev->name, adv, lpa);
1891
1892         /* FIXME: handle parallel detection properly */
1893         lpa = lpa & adv;
1894         if (lpa & LPA_100FULL) {
1895                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1896                 newdup = 1;
1897         } else if (lpa & LPA_100HALF) {
1898                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1899                 newdup = 0;
1900         } else if (lpa & LPA_10FULL) {
1901                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1902                 newdup = 1;
1903         } else if (lpa & LPA_10HALF) {
1904                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1905                 newdup = 0;
1906         } else {
1907                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1908                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1909                 newdup = 0;
1910         }
1911
1912 set_speed:
1913         if (np->duplex == newdup && np->linkspeed == newls)
1914                 return retval;
1915
1916         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1917                         dev->name, np->linkspeed, np->duplex, newls, newdup);
1918
1919         np->duplex = newdup;
1920         np->linkspeed = newls;
1921
1922         if (np->gigabit == PHY_GIGABIT) {
1923                 phyreg = readl(base + NvRegRandomSeed);
1924                 phyreg &= ~(0x3FF00);
1925                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1926                         phyreg |= NVREG_RNDSEED_FORCE3;
1927                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1928                         phyreg |= NVREG_RNDSEED_FORCE2;
1929                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1930                         phyreg |= NVREG_RNDSEED_FORCE;
1931                 writel(phyreg, base + NvRegRandomSeed);
1932         }
1933
1934         phyreg = readl(base + NvRegPhyInterface);
1935         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1936         if (np->duplex == 0)
1937                 phyreg |= PHY_HALF;
1938         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1939                 phyreg |= PHY_100;
1940         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1941                 phyreg |= PHY_1000;
1942         writel(phyreg, base + NvRegPhyInterface);
1943
1944         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1945                 base + NvRegMisc1);
1946         pci_push(base);
1947         writel(np->linkspeed, base + NvRegLinkSpeed);
1948         pci_push(base);
1949
1950         return retval;
1951 }
1952
1953 static void nv_linkchange(struct net_device *dev)
1954 {
1955         if (nv_update_linkspeed(dev)) {
1956                 if (!netif_carrier_ok(dev)) {
1957                         netif_carrier_on(dev);
1958                         printk(KERN_INFO "%s: link up.\n", dev->name);
1959                         nv_start_rx(dev);
1960                 }
1961         } else {
1962                 if (netif_carrier_ok(dev)) {
1963                         netif_carrier_off(dev);
1964                         printk(KERN_INFO "%s: link down.\n", dev->name);
1965                         nv_stop_rx(dev);
1966                 }
1967         }
1968 }
1969
1970 static void nv_link_irq(struct net_device *dev)
1971 {
1972         u8 __iomem *base = get_hwbase(dev);
1973         u32 miistat;
1974
1975         miistat = readl(base + NvRegMIIStatus);
1976         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1977         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1978
1979         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1980                 nv_linkchange(dev);
1981         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1982 }
1983
1984 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1985 {
1986         struct net_device *dev = (struct net_device *) data;
1987         struct fe_priv *np = netdev_priv(dev);
1988         u8 __iomem *base = get_hwbase(dev);
1989         u32 events;
1990         int i;
1991
1992         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1993
1994         for (i=0; ; i++) {
1995                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
1996                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1997                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1998                 } else {
1999                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2000                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2001                 }
2002                 pci_push(base);
2003                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2004                 if (!(events & np->irqmask))
2005                         break;
2006
2007                 spin_lock(&np->lock);
2008                 nv_tx_done(dev);
2009                 spin_unlock(&np->lock);
2010                 
2011                 nv_rx_process(dev);
2012                 if (nv_alloc_rx(dev)) {
2013                         spin_lock(&np->lock);
2014                         if (!np->in_shutdown)
2015                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2016                         spin_unlock(&np->lock);
2017                 }
2018                 
2019                 if (events & NVREG_IRQ_LINK) {
2020                         spin_lock(&np->lock);
2021                         nv_link_irq(dev);
2022                         spin_unlock(&np->lock);
2023                 }
2024                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2025                         spin_lock(&np->lock);
2026                         nv_linkchange(dev);
2027                         spin_unlock(&np->lock);
2028                         np->link_timeout = jiffies + LINK_TIMEOUT;
2029                 }
2030                 if (events & (NVREG_IRQ_TX_ERR)) {
2031                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2032                                                 dev->name, events);
2033                 }
2034                 if (events & (NVREG_IRQ_UNKNOWN)) {
2035                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2036                                                 dev->name, events);
2037                 }
2038                 if (i > max_interrupt_work) {
2039                         spin_lock(&np->lock);
2040                         /* disable interrupts on the nic */
2041                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2042                                 writel(0, base + NvRegIrqMask);
2043                         else
2044                                 writel(np->irqmask, base + NvRegIrqMask);
2045                         pci_push(base);
2046
2047                         if (!np->in_shutdown) {
2048                                 np->nic_poll_irq = np->irqmask;
2049                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2050                         }
2051                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2052                         spin_unlock(&np->lock);
2053                         break;
2054                 }
2055
2056         }
2057         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2058
2059         return IRQ_RETVAL(i);
2060 }
2061
2062 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2063 {
2064         struct net_device *dev = (struct net_device *) data;
2065         struct fe_priv *np = netdev_priv(dev);
2066         u8 __iomem *base = get_hwbase(dev);
2067         u32 events;
2068         int i;
2069
2070         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2071
2072         for (i=0; ; i++) {
2073                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2074                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2075                 pci_push(base);
2076                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2077                 if (!(events & np->irqmask))
2078                         break;
2079
2080                 spin_lock(&np->lock);
2081                 nv_tx_done(dev);
2082                 spin_unlock(&np->lock);
2083                 
2084                 if (events & (NVREG_IRQ_TX_ERR)) {
2085                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2086                                                 dev->name, events);
2087                 }
2088                 if (i > max_interrupt_work) {
2089                         spin_lock(&np->lock);
2090                         /* disable interrupts on the nic */
2091                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2092                         pci_push(base);
2093
2094                         if (!np->in_shutdown) {
2095                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2096                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2097                         }
2098                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2099                         spin_unlock(&np->lock);
2100                         break;
2101                 }
2102
2103         }
2104         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2105
2106         return IRQ_RETVAL(i);
2107 }
2108
2109 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2110 {
2111         struct net_device *dev = (struct net_device *) data;
2112         struct fe_priv *np = netdev_priv(dev);
2113         u8 __iomem *base = get_hwbase(dev);
2114         u32 events;
2115         int i;
2116
2117         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2118
2119         for (i=0; ; i++) {
2120                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2121                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2122                 pci_push(base);
2123                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2124                 if (!(events & np->irqmask))
2125                         break;
2126                 
2127                 nv_rx_process(dev);
2128                 if (nv_alloc_rx(dev)) {
2129                         spin_lock(&np->lock);
2130                         if (!np->in_shutdown)
2131                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2132                         spin_unlock(&np->lock);
2133                 }
2134                 
2135                 if (i > max_interrupt_work) {
2136                         spin_lock(&np->lock);
2137                         /* disable interrupts on the nic */
2138                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2139                         pci_push(base);
2140
2141                         if (!np->in_shutdown) {
2142                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2143                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2144                         }
2145                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2146                         spin_unlock(&np->lock);
2147                         break;
2148                 }
2149
2150         }
2151         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2152
2153         return IRQ_RETVAL(i);
2154 }
2155
2156 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2157 {
2158         struct net_device *dev = (struct net_device *) data;
2159         struct fe_priv *np = netdev_priv(dev);
2160         u8 __iomem *base = get_hwbase(dev);
2161         u32 events;
2162         int i;
2163
2164         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2165
2166         for (i=0; ; i++) {
2167                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2168                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2169                 pci_push(base);
2170                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2171                 if (!(events & np->irqmask))
2172                         break;
2173                 
2174                 if (events & NVREG_IRQ_LINK) {
2175                         spin_lock(&np->lock);
2176                         nv_link_irq(dev);
2177                         spin_unlock(&np->lock);
2178                 }
2179                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2180                         spin_lock(&np->lock);
2181                         nv_linkchange(dev);
2182                         spin_unlock(&np->lock);
2183                         np->link_timeout = jiffies + LINK_TIMEOUT;
2184                 }
2185                 if (events & (NVREG_IRQ_UNKNOWN)) {
2186                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2187                                                 dev->name, events);
2188                 }
2189                 if (i > max_interrupt_work) {
2190                         spin_lock(&np->lock);
2191                         /* disable interrupts on the nic */
2192                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2193                         pci_push(base);
2194
2195                         if (!np->in_shutdown) {
2196                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2197                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2198                         }
2199                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2200                         spin_unlock(&np->lock);
2201                         break;
2202                 }
2203
2204         }
2205         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2206
2207         return IRQ_RETVAL(i);
2208 }
2209
2210 static void nv_do_nic_poll(unsigned long data)
2211 {
2212         struct net_device *dev = (struct net_device *) data;
2213         struct fe_priv *np = netdev_priv(dev);
2214         u8 __iomem *base = get_hwbase(dev);
2215         u32 mask = 0;
2216
2217         /*
2218          * First disable irq(s) and then
2219          * reenable interrupts on the nic, we have to do this before calling
2220          * nv_nic_irq because that may decide to do otherwise
2221          */
2222
2223         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
2224             ((np->msi_flags & NV_MSI_X_ENABLED) && 
2225              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
2226                 disable_irq(dev->irq);
2227                 mask = np->irqmask;
2228         } else {
2229                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2230                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2231                         mask |= NVREG_IRQ_RX_ALL;
2232                 }
2233                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2234                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2235                         mask |= NVREG_IRQ_TX_ALL;
2236                 }
2237                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2238                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2239                         mask |= NVREG_IRQ_OTHER;
2240                 }
2241         }
2242         np->nic_poll_irq = 0;
2243
2244         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2245         
2246         writel(mask, base + NvRegIrqMask);
2247         pci_push(base);
2248
2249         if (!(np->msi_flags & NV_MSI_X_ENABLED) || 
2250             ((np->msi_flags & NV_MSI_X_ENABLED) && 
2251              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
2252                 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2253                 enable_irq(dev->irq);
2254         } else {
2255                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2256                         nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2257                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2258                 }
2259                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2260                         nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2261                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2262                 }
2263                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2264                         nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2265                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2266                 }
2267         }
2268 }
2269
2270 #ifdef CONFIG_NET_POLL_CONTROLLER
2271 static void nv_poll_controller(struct net_device *dev)
2272 {
2273         nv_do_nic_poll((unsigned long) dev);
2274 }
2275 #endif
2276
2277 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2278 {
2279         struct fe_priv *np = netdev_priv(dev);
2280         strcpy(info->driver, "forcedeth");
2281         strcpy(info->version, FORCEDETH_VERSION);
2282         strcpy(info->bus_info, pci_name(np->pci_dev));
2283 }
2284
2285 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2286 {
2287         struct fe_priv *np = netdev_priv(dev);
2288         wolinfo->supported = WAKE_MAGIC;
2289
2290         spin_lock_irq(&np->lock);
2291         if (np->wolenabled)
2292                 wolinfo->wolopts = WAKE_MAGIC;
2293         spin_unlock_irq(&np->lock);
2294 }
2295
2296 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2297 {
2298         struct fe_priv *np = netdev_priv(dev);
2299         u8 __iomem *base = get_hwbase(dev);
2300
2301         spin_lock_irq(&np->lock);
2302         if (wolinfo->wolopts == 0) {
2303                 writel(0, base + NvRegWakeUpFlags);
2304                 np->wolenabled = 0;
2305         }
2306         if (wolinfo->wolopts & WAKE_MAGIC) {
2307                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
2308                 np->wolenabled = 1;
2309         }
2310         spin_unlock_irq(&np->lock);
2311         return 0;
2312 }
2313
2314 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2315 {
2316         struct fe_priv *np = netdev_priv(dev);
2317         int adv;
2318
2319         spin_lock_irq(&np->lock);
2320         ecmd->port = PORT_MII;
2321         if (!netif_running(dev)) {
2322                 /* We do not track link speed / duplex setting if the
2323                  * interface is disabled. Force a link check */
2324                 nv_update_linkspeed(dev);
2325         }
2326         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2327                 case NVREG_LINKSPEED_10:
2328                         ecmd->speed = SPEED_10;
2329                         break;
2330                 case NVREG_LINKSPEED_100:
2331                         ecmd->speed = SPEED_100;
2332                         break;
2333                 case NVREG_LINKSPEED_1000:
2334                         ecmd->speed = SPEED_1000;
2335                         break;
2336         }
2337         ecmd->duplex = DUPLEX_HALF;
2338         if (np->duplex)
2339                 ecmd->duplex = DUPLEX_FULL;
2340
2341         ecmd->autoneg = np->autoneg;
2342
2343         ecmd->advertising = ADVERTISED_MII;
2344         if (np->autoneg) {
2345                 ecmd->advertising |= ADVERTISED_Autoneg;
2346                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2347         } else {
2348                 adv = np->fixed_mode;
2349         }
2350         if (adv & ADVERTISE_10HALF)
2351                 ecmd->advertising |= ADVERTISED_10baseT_Half;
2352         if (adv & ADVERTISE_10FULL)
2353                 ecmd->advertising |= ADVERTISED_10baseT_Full;
2354         if (adv & ADVERTISE_100HALF)
2355                 ecmd->advertising |= ADVERTISED_100baseT_Half;
2356         if (adv & ADVERTISE_100FULL)
2357                 ecmd->advertising |= ADVERTISED_100baseT_Full;
2358         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
2359                 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2360                 if (adv & ADVERTISE_1000FULL)
2361                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
2362         }
2363
2364         ecmd->supported = (SUPPORTED_Autoneg |
2365                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2366                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2367                 SUPPORTED_MII);
2368         if (np->gigabit == PHY_GIGABIT)
2369                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2370
2371         ecmd->phy_address = np->phyaddr;
2372         ecmd->transceiver = XCVR_EXTERNAL;
2373
2374         /* ignore maxtxpkt, maxrxpkt for now */
2375         spin_unlock_irq(&np->lock);
2376         return 0;
2377 }
2378
2379 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2380 {
2381         struct fe_priv *np = netdev_priv(dev);
2382
2383         if (ecmd->port != PORT_MII)
2384                 return -EINVAL;
2385         if (ecmd->transceiver != XCVR_EXTERNAL)
2386                 return -EINVAL;
2387         if (ecmd->phy_address != np->phyaddr) {
2388                 /* TODO: support switching between multiple phys. Should be
2389                  * trivial, but not enabled due to lack of test hardware. */
2390                 return -EINVAL;
2391         }
2392         if (ecmd->autoneg == AUTONEG_ENABLE) {
2393                 u32 mask;
2394
2395                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2396                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2397                 if (np->gigabit == PHY_GIGABIT)
2398                         mask |= ADVERTISED_1000baseT_Full;
2399
2400                 if ((ecmd->advertising & mask) == 0)
2401                         return -EINVAL;
2402
2403         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2404                 /* Note: autonegotiation disable, speed 1000 intentionally
2405                  * forbidden - noone should need that. */
2406
2407                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2408                         return -EINVAL;
2409                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2410                         return -EINVAL;
2411         } else {
2412                 return -EINVAL;
2413         }
2414
2415         spin_lock_irq(&np->lock);
2416         if (ecmd->autoneg == AUTONEG_ENABLE) {
2417                 int adv, bmcr;
2418
2419                 np->autoneg = 1;
2420
2421                 /* advertise only what has been requested */
2422                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2423                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2424                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2425                         adv |= ADVERTISE_10HALF;
2426                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2427                         adv |= ADVERTISE_10FULL;
2428                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2429                         adv |= ADVERTISE_100HALF;
2430                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2431                         adv |= ADVERTISE_100FULL;
2432                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2433
2434                 if (np->gigabit == PHY_GIGABIT) {
2435                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2436                         adv &= ~ADVERTISE_1000FULL;
2437                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2438                                 adv |= ADVERTISE_1000FULL;
2439                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2440                 }
2441
2442                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2443                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2444                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2445
2446         } else {
2447                 int adv, bmcr;
2448
2449                 np->autoneg = 0;
2450
2451                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2452                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2453                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2454                         adv |= ADVERTISE_10HALF;
2455                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2456                         adv |= ADVERTISE_10FULL;
2457                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2458                         adv |= ADVERTISE_100HALF;
2459                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2460                         adv |= ADVERTISE_100FULL;
2461                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2462                 np->fixed_mode = adv;
2463
2464                 if (np->gigabit == PHY_GIGABIT) {
2465                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2466                         adv &= ~ADVERTISE_1000FULL;
2467                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2468                 }
2469
2470                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2471                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2472                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2473                         bmcr |= BMCR_FULLDPLX;
2474                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2475                         bmcr |= BMCR_SPEED100;
2476                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2477
2478                 if (netif_running(dev)) {
2479                         /* Wait a bit and then reconfigure the nic. */
2480                         udelay(10);
2481                         nv_linkchange(dev);
2482                 }
2483         }
2484         spin_unlock_irq(&np->lock);
2485
2486         return 0;
2487 }
2488
2489 #define FORCEDETH_REGS_VER      1
2490 #define FORCEDETH_REGS_SIZE     0x400 /* 256 32-bit registers */
2491
2492 static int nv_get_regs_len(struct net_device *dev)
2493 {
2494         return FORCEDETH_REGS_SIZE;
2495 }
2496
2497 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2498 {
2499         struct fe_priv *np = netdev_priv(dev);
2500         u8 __iomem *base = get_hwbase(dev);
2501         u32 *rbuf = buf;
2502         int i;
2503
2504         regs->version = FORCEDETH_REGS_VER;
2505         spin_lock_irq(&np->lock);
2506         for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2507                 rbuf[i] = readl(base + i*sizeof(u32));
2508         spin_unlock_irq(&np->lock);
2509 }
2510
2511 static int nv_nway_reset(struct net_device *dev)
2512 {
2513         struct fe_priv *np = netdev_priv(dev);
2514         int ret;
2515
2516         spin_lock_irq(&np->lock);
2517         if (np->autoneg) {
2518                 int bmcr;
2519
2520                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2521                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2522                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2523
2524                 ret = 0;
2525         } else {
2526                 ret = -EINVAL;
2527         }
2528         spin_unlock_irq(&np->lock);
2529
2530         return ret;
2531 }
2532
2533 static struct ethtool_ops ops = {
2534         .get_drvinfo = nv_get_drvinfo,
2535         .get_link = ethtool_op_get_link,
2536         .get_wol = nv_get_wol,
2537         .set_wol = nv_set_wol,
2538         .get_settings = nv_get_settings,
2539         .set_settings = nv_set_settings,
2540         .get_regs_len = nv_get_regs_len,
2541         .get_regs = nv_get_regs,
2542         .nway_reset = nv_nway_reset,
2543         .get_perm_addr = ethtool_op_get_perm_addr,
2544 };
2545
2546 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2547 {
2548         struct fe_priv *np = get_nvpriv(dev);
2549
2550         spin_lock_irq(&np->lock);
2551
2552         /* save vlan group */
2553         np->vlangrp = grp;
2554
2555         if (grp) {
2556                 /* enable vlan on MAC */
2557                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
2558         } else {
2559                 /* disable vlan on MAC */
2560                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
2561                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
2562         }
2563
2564         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2565
2566         spin_unlock_irq(&np->lock);
2567 };
2568
2569 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2570 {
2571         /* nothing to do */
2572 };
2573
2574 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2575 {
2576         u8 __iomem *base = get_hwbase(dev);
2577         int i;
2578         u32 msixmap = 0;
2579
2580         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2581          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2582          * the remaining 8 interrupts.
2583          */
2584         for (i = 0; i < 8; i++) {
2585                 if ((irqmask >> i) & 0x1) {
2586                         msixmap |= vector << (i << 2);
2587                 }
2588         }
2589         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2590
2591         msixmap = 0;
2592         for (i = 0; i < 8; i++) {
2593                 if ((irqmask >> (i + 8)) & 0x1) {
2594                         msixmap |= vector << (i << 2);
2595                 }
2596         }
2597         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2598 }
2599
2600 static int nv_open(struct net_device *dev)
2601 {
2602         struct fe_priv *np = netdev_priv(dev);
2603         u8 __iomem *base = get_hwbase(dev);
2604         int ret = 1;
2605         int oom, i;
2606
2607         dprintk(KERN_DEBUG "nv_open: begin\n");
2608
2609         /* 1) erase previous misconfiguration */
2610         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2611         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2612         writel(0, base + NvRegMulticastAddrB);
2613         writel(0, base + NvRegMulticastMaskA);
2614         writel(0, base + NvRegMulticastMaskB);
2615         writel(0, base + NvRegPacketFilterFlags);
2616
2617         writel(0, base + NvRegTransmitterControl);
2618         writel(0, base + NvRegReceiverControl);
2619
2620         writel(0, base + NvRegAdapterControl);
2621
2622         /* 2) initialize descriptor rings */
2623         set_bufsize(dev);
2624         oom = nv_init_ring(dev);
2625
2626         writel(0, base + NvRegLinkSpeed);
2627         writel(0, base + NvRegUnknownTransmitterReg);
2628         nv_txrx_reset(dev);
2629         writel(0, base + NvRegUnknownSetupReg6);
2630
2631         np->in_shutdown = 0;
2632
2633         /* 3) set mac address */
2634         nv_copy_mac_to_hw(dev);
2635
2636         /* 4) give hw rings */
2637         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2638         writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2639                 base + NvRegRingSizes);
2640
2641         /* 5) continue setup */
2642         writel(np->linkspeed, base + NvRegLinkSpeed);
2643         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2644         writel(np->txrxctl_bits, base + NvRegTxRxControl);
2645         writel(np->vlanctl_bits, base + NvRegVlanControl);
2646         pci_push(base);
2647         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2648         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2649                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2650                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2651
2652         writel(0, base + NvRegUnknownSetupReg4);
2653         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2654         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2655
2656         /* 6) continue setup */
2657         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2658         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2659         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2660         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2661
2662         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2663         get_random_bytes(&i, sizeof(i));
2664         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2665         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2666         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2667         if (poll_interval == -1) {
2668                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2669                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
2670                 else
2671                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
2672         }
2673         else
2674                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
2675         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2676         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2677                         base + NvRegAdapterControl);
2678         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2679         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2680         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2681
2682         i = readl(base + NvRegPowerState);
2683         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2684                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2685
2686         pci_push(base);
2687         udelay(10);
2688         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2689
2690         writel(0, base + NvRegIrqMask);
2691         pci_push(base);
2692         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2693         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2694         pci_push(base);
2695
2696         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2697                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2698                         np->msi_x_entry[i].entry = i;
2699                 }
2700                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2701                         np->msi_flags |= NV_MSI_X_ENABLED;
2702                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
2703                                 /* Request irq for rx handling */
2704                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2705                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2706                                         pci_disable_msix(np->pci_dev);
2707                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2708                                         goto out_drain;
2709                                 }
2710                                 /* Request irq for tx handling */
2711                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2712                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2713                                         pci_disable_msix(np->pci_dev);
2714                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2715                                         goto out_drain;
2716                                 }
2717                                 /* Request irq for link and timer handling */
2718                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2719                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2720                                         pci_disable_msix(np->pci_dev);
2721                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2722                                         goto out_drain;
2723                                 }
2724
2725                                 /* map interrupts to their respective vector */
2726                                 writel(0, base + NvRegMSIXMap0);
2727                                 writel(0, base + NvRegMSIXMap1);
2728                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2729                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2730                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2731                         } else {
2732                                 /* Request irq for all interrupts */
2733                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2734                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2735                                         pci_disable_msix(np->pci_dev);
2736                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2737                                         goto out_drain;
2738                                 }
2739
2740                                 /* map interrupts to vector 0 */
2741                                 writel(0, base + NvRegMSIXMap0);
2742                                 writel(0, base + NvRegMSIXMap1);
2743                         }
2744                 }
2745         }
2746         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2747                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2748                         np->msi_flags |= NV_MSI_ENABLED;
2749                         if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2750                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2751                                 pci_disable_msi(np->pci_dev);
2752                                 np->msi_flags &= ~NV_MSI_ENABLED;
2753                                 goto out_drain;
2754                         }
2755
2756                         /* map interrupts to vector 0 */
2757                         writel(0, base + NvRegMSIMap0);
2758                         writel(0, base + NvRegMSIMap1);
2759                         /* enable msi vector 0 */
2760                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2761                 }
2762         }
2763         if (ret != 0) {
2764                 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
2765                         goto out_drain;
2766         }
2767
2768         /* ask for interrupts */
2769         writel(np->irqmask, base + NvRegIrqMask);
2770
2771         spin_lock_irq(&np->lock);
2772         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2773         writel(0, base + NvRegMulticastAddrB);
2774         writel(0, base + NvRegMulticastMaskA);
2775         writel(0, base + NvRegMulticastMaskB);
2776         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2777         /* One manual link speed update: Interrupts are enabled, future link
2778          * speed changes cause interrupts and are handled by nv_link_irq().
2779          */
2780         {
2781                 u32 miistat;
2782                 miistat = readl(base + NvRegMIIStatus);
2783                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2784                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2785         }
2786         /* set linkspeed to invalid value, thus force nv_update_linkspeed
2787          * to init hw */
2788         np->linkspeed = 0;
2789         ret = nv_update_linkspeed(dev);
2790         nv_start_rx(dev);
2791         nv_start_tx(dev);
2792         netif_start_queue(dev);
2793         if (ret) {
2794                 netif_carrier_on(dev);
2795         } else {
2796                 printk("%s: no link during initialization.\n", dev->name);
2797                 netif_carrier_off(dev);
2798         }
2799         if (oom)
2800                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2801         spin_unlock_irq(&np->lock);
2802
2803         return 0;
2804 out_drain:
2805         drain_ring(dev);
2806         return ret;
2807 }
2808
2809 static int nv_close(struct net_device *dev)
2810 {
2811         struct fe_priv *np = netdev_priv(dev);
2812         u8 __iomem *base;
2813         int i;
2814
2815         spin_lock_irq(&np->lock);
2816         np->in_shutdown = 1;
2817         spin_unlock_irq(&np->lock);
2818         synchronize_irq(dev->irq);
2819
2820         del_timer_sync(&np->oom_kick);
2821         del_timer_sync(&np->nic_poll);
2822
2823         netif_stop_queue(dev);
2824         spin_lock_irq(&np->lock);
2825         nv_stop_tx(dev);
2826         nv_stop_rx(dev);
2827         nv_txrx_reset(dev);
2828
2829         /* disable interrupts on the nic or we will lock up */
2830         base = get_hwbase(dev);
2831         if (np->msi_flags & NV_MSI_X_ENABLED) {
2832                 writel(np->irqmask, base + NvRegIrqMask);
2833         } else {
2834                 if (np->msi_flags & NV_MSI_ENABLED)
2835                         writel(0, base + NvRegMSIIrqMask);
2836                 writel(0, base + NvRegIrqMask);
2837         }
2838         pci_push(base);
2839         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2840
2841         spin_unlock_irq(&np->lock);
2842
2843         if (np->msi_flags & NV_MSI_X_ENABLED) {
2844                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2845                         free_irq(np->msi_x_entry[i].vector, dev);
2846                 }
2847                 pci_disable_msix(np->pci_dev);
2848                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2849         } else {
2850                 free_irq(np->pci_dev->irq, dev);
2851                 if (np->msi_flags & NV_MSI_ENABLED) {
2852                         pci_disable_msi(np->pci_dev);
2853                         np->msi_flags &= ~NV_MSI_ENABLED;
2854                 }
2855         }
2856
2857         drain_ring(dev);
2858
2859         if (np->wolenabled)
2860                 nv_start_rx(dev);
2861
2862         /* special op: write back the misordered MAC address - otherwise
2863          * the next nv_probe would see a wrong address.
2864          */
2865         writel(np->orig_mac[0], base + NvRegMacAddrA);
2866         writel(np->orig_mac[1], base + NvRegMacAddrB);
2867
2868         /* FIXME: power down nic */
2869
2870         return 0;
2871 }
2872
2873 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2874 {
2875         struct net_device *dev;
2876         struct fe_priv *np;
2877         unsigned long addr;
2878         u8 __iomem *base;
2879         int err, i;
2880
2881         dev = alloc_etherdev(sizeof(struct fe_priv));
2882         err = -ENOMEM;
2883         if (!dev)
2884                 goto out;
2885
2886         np = netdev_priv(dev);
2887         np->pci_dev = pci_dev;
2888         spin_lock_init(&np->lock);
2889         SET_MODULE_OWNER(dev);
2890         SET_NETDEV_DEV(dev, &pci_dev->dev);
2891
2892         init_timer(&np->oom_kick);
2893         np->oom_kick.data = (unsigned long) dev;
2894         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
2895         init_timer(&np->nic_poll);
2896         np->nic_poll.data = (unsigned long) dev;
2897         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
2898
2899         err = pci_enable_device(pci_dev);
2900         if (err) {
2901                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2902                                 err, pci_name(pci_dev));
2903                 goto out_free;
2904         }
2905
2906         pci_set_master(pci_dev);
2907
2908         err = pci_request_regions(pci_dev, DRV_NAME);
2909         if (err < 0)
2910                 goto out_disable;
2911
2912         err = -EINVAL;
2913         addr = 0;
2914         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2915                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2916                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2917                                 pci_resource_len(pci_dev, i),
2918                                 pci_resource_flags(pci_dev, i));
2919                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2920                                 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2921                         addr = pci_resource_start(pci_dev, i);
2922                         break;
2923                 }
2924         }
2925         if (i == DEVICE_COUNT_RESOURCE) {
2926                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2927                                         pci_name(pci_dev));
2928                 goto out_relreg;
2929         }
2930
2931         /* handle different descriptor versions */
2932         if (id->driver_data & DEV_HAS_HIGH_DMA) {
2933                 /* packet format 3: supports 40-bit addressing */
2934                 np->desc_ver = DESC_VER_3;
2935                 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2936                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2937                                         pci_name(pci_dev));
2938                 } else {
2939                         if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2940                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
2941                                         pci_name(pci_dev));
2942                                 goto out_relreg;
2943                         } else {
2944                                 dev->features |= NETIF_F_HIGHDMA;
2945                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
2946                         }
2947                 }
2948                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
2949         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2950                 /* packet format 2: supports jumbo frames */
2951                 np->desc_ver = DESC_VER_2;
2952                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
2953         } else {
2954                 /* original packet format */
2955                 np->desc_ver = DESC_VER_1;
2956                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
2957         }
2958
2959         np->pkt_limit = NV_PKTLIMIT_1;
2960         if (id->driver_data & DEV_HAS_LARGEDESC)
2961                 np->pkt_limit = NV_PKTLIMIT_2;
2962
2963         if (id->driver_data & DEV_HAS_CHECKSUM) {
2964                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
2965                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
2966 #ifdef NETIF_F_TSO
2967                 dev->features |= NETIF_F_TSO;
2968 #endif
2969         }
2970
2971         np->vlanctl_bits = 0;
2972         if (id->driver_data & DEV_HAS_VLAN) {
2973                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
2974                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
2975                 dev->vlan_rx_register = nv_vlan_rx_register;
2976                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
2977         }
2978
2979         np->msi_flags = 0;
2980         if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
2981                 np->msi_flags |= NV_MSI_CAPABLE;
2982         }
2983         if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
2984                 np->msi_flags |= NV_MSI_X_CAPABLE;
2985         }
2986
2987         err = -ENOMEM;
2988         np->base = ioremap(addr, NV_PCI_REGSZ);
2989         if (!np->base)
2990                 goto out_relreg;
2991         dev->base_addr = (unsigned long)np->base;
2992
2993         dev->irq = pci_dev->irq;
2994
2995         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2996                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2997                                         sizeof(struct ring_desc) * (RX_RING + TX_RING),
2998                                         &np->ring_addr);
2999                 if (!np->rx_ring.orig)
3000                         goto out_unmap;
3001                 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
3002         } else {
3003                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
3004                                         sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
3005                                         &np->ring_addr);
3006                 if (!np->rx_ring.ex)
3007                         goto out_unmap;
3008                 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
3009         }
3010
3011         dev->open = nv_open;
3012         dev->stop = nv_close;
3013         dev->hard_start_xmit = nv_start_xmit;
3014         dev->get_stats = nv_get_stats;
3015         dev->change_mtu = nv_change_mtu;
3016         dev->set_mac_address = nv_set_mac_address;
3017         dev->set_multicast_list = nv_set_multicast;
3018 #ifdef CONFIG_NET_POLL_CONTROLLER
3019         dev->poll_controller = nv_poll_controller;
3020 #endif
3021         SET_ETHTOOL_OPS(dev, &ops);
3022         dev->tx_timeout = nv_tx_timeout;
3023         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
3024
3025         pci_set_drvdata(pci_dev, dev);
3026
3027         /* read the mac address */
3028         base = get_hwbase(dev);
3029         np->orig_mac[0] = readl(base + NvRegMacAddrA);
3030         np->orig_mac[1] = readl(base + NvRegMacAddrB);
3031
3032         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
3033         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
3034         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
3035         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
3036         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
3037         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
3038         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3039
3040         if (!is_valid_ether_addr(dev->perm_addr)) {
3041                 /*
3042                  * Bad mac address. At least one bios sets the mac address
3043                  * to 01:23:45:67:89:ab
3044                  */
3045                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
3046                         pci_name(pci_dev),
3047                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3048                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3049                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
3050                 dev->dev_addr[0] = 0x00;
3051                 dev->dev_addr[1] = 0x00;
3052                 dev->dev_addr[2] = 0x6c;
3053                 get_random_bytes(&dev->dev_addr[3], 3);
3054         }
3055
3056         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
3057                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3058                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3059
3060         /* disable WOL */
3061         writel(0, base + NvRegWakeUpFlags);
3062         np->wolenabled = 0;
3063
3064         if (np->desc_ver == DESC_VER_1) {
3065                 np->tx_flags = NV_TX_VALID;
3066         } else {
3067                 np->tx_flags = NV_TX2_VALID;
3068         }
3069         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3070                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3071                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3072                         np->msi_flags |= 0x0003;
3073         } else {
3074                 np->irqmask = NVREG_IRQMASK_CPU;
3075                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3076                         np->msi_flags |= 0x0001;
3077         }
3078
3079         if (id->driver_data & DEV_NEED_TIMERIRQ)
3080                 np->irqmask |= NVREG_IRQ_TIMER;
3081         if (id->driver_data & DEV_NEED_LINKTIMER) {
3082                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
3083                 np->need_linktimer = 1;
3084                 np->link_timeout = jiffies + LINK_TIMEOUT;
3085         } else {
3086                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
3087                 np->need_linktimer = 0;
3088         }
3089
3090         /* find a suitable phy */
3091         for (i = 1; i <= 32; i++) {
3092                 int id1, id2;
3093                 int phyaddr = i & 0x1F;
3094
3095                 spin_lock_irq(&np->lock);
3096                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
3097                 spin_unlock_irq(&np->lock);
3098                 if (id1 < 0 || id1 == 0xffff)
3099                         continue;
3100                 spin_lock_irq(&np->lock);
3101                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
3102                 spin_unlock_irq(&np->lock);
3103                 if (id2 < 0 || id2 == 0xffff)
3104                         continue;
3105
3106                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
3107                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
3108                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
3109                         pci_name(pci_dev), id1, id2, phyaddr);
3110                 np->phyaddr = phyaddr;
3111                 np->phy_oui = id1 | id2;
3112                 break;
3113         }
3114         if (i == 33) {
3115                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
3116                        pci_name(pci_dev));
3117                 goto out_freering;
3118         }
3119         
3120         /* reset it */
3121         phy_init(dev);
3122
3123         /* set default link speed settings */
3124         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3125         np->duplex = 0;
3126         np->autoneg = 1;
3127
3128         err = register_netdev(dev);
3129         if (err) {
3130                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
3131                 goto out_freering;
3132         }
3133         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
3134                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
3135                         pci_name(pci_dev));
3136
3137         return 0;
3138
3139 out_freering:
3140         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3141                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
3142                                     np->rx_ring.orig, np->ring_addr);
3143         else
3144                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
3145                                     np->rx_ring.ex, np->ring_addr);
3146         pci_set_drvdata(pci_dev, NULL);
3147 out_unmap:
3148         iounmap(get_hwbase(dev));
3149 out_relreg:
3150         pci_release_regions(pci_dev);
3151 out_disable:
3152         pci_disable_device(pci_dev);
3153 out_free:
3154         free_netdev(dev);
3155 out:
3156         return err;
3157 }
3158
3159 static void __devexit nv_remove(struct pci_dev *pci_dev)
3160 {
3161         struct net_device *dev = pci_get_drvdata(pci_dev);
3162         struct fe_priv *np = netdev_priv(dev);
3163
3164         unregister_netdev(dev);
3165
3166         /* free all structures */
3167         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3168                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
3169         else
3170                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
3171         iounmap(get_hwbase(dev));
3172         pci_release_regions(pci_dev);
3173         pci_disable_device(pci_dev);
3174         free_netdev(dev);
3175         pci_set_drvdata(pci_dev, NULL);
3176 }
3177
3178 static struct pci_device_id pci_tbl[] = {
3179         {       /* nForce Ethernet Controller */
3180                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
3181                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3182         },
3183         {       /* nForce2 Ethernet Controller */
3184                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
3185                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3186         },
3187         {       /* nForce3 Ethernet Controller */
3188                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
3189                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3190         },
3191         {       /* nForce3 Ethernet Controller */
3192                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
3193                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3194         },
3195         {       /* nForce3 Ethernet Controller */
3196                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
3197                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3198         },
3199         {       /* nForce3 Ethernet Controller */
3200                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
3201                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3202         },
3203         {       /* nForce3 Ethernet Controller */
3204                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
3205                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3206         },
3207         {       /* CK804 Ethernet Controller */
3208                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
3209                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3210         },
3211         {       /* CK804 Ethernet Controller */
3212                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
3213                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3214         },
3215         {       /* MCP04 Ethernet Controller */
3216                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
3217                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3218         },
3219         {       /* MCP04 Ethernet Controller */
3220                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
3221                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3222         },
3223         {       /* MCP51 Ethernet Controller */
3224                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
3225                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
3226         },
3227         {       /* MCP51 Ethernet Controller */
3228                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
3229                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
3230         },
3231         {       /* MCP55 Ethernet Controller */
3232                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
3233                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X,
3234         },
3235         {       /* MCP55 Ethernet Controller */
3236                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
3237                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X,
3238         },
3239         {0,},
3240 };
3241
3242 static struct pci_driver driver = {
3243         .name = "forcedeth",
3244         .id_table = pci_tbl,
3245         .probe = nv_probe,
3246         .remove = __devexit_p(nv_remove),
3247 };
3248
3249
3250 static int __init init_nic(void)
3251 {
3252         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
3253         return pci_module_init(&driver);
3254 }
3255
3256 static void __exit exit_nic(void)
3257 {
3258         pci_unregister_driver(&driver);
3259 }
3260
3261 module_param(max_interrupt_work, int, 0);
3262 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
3263 module_param(optimization_mode, int, 0);
3264 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
3265 module_param(poll_interval, int, 0);
3266 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
3267 module_param(disable_msi, int, 0);
3268 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
3269 module_param(disable_msix, int, 0);
3270 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
3271
3272 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
3273 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
3274 MODULE_LICENSE("GPL");
3275
3276 MODULE_DEVICE_TABLE(pci, pci_tbl);
3277
3278 module_init(init_nic);
3279 module_exit(exit_nic);