Merge branches 'x86/asm', 'x86/cleanups', 'x86/cpudetect', 'x86/debug', 'x86/doc...
[linux-2.6] / arch / x86 / include / asm / system.h
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
3
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
9
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
12
13 /* entries in ARCH_DLINFO: */
14 #ifdef CONFIG_IA32_EMULATION
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
19
20 struct task_struct; /* one of the stranger aspects of C forward declarations */
21 struct task_struct *__switch_to(struct task_struct *prev,
22                                 struct task_struct *next);
23
24 #ifdef CONFIG_X86_32
25
26 /*
27  * Saving eflags is important. It switches not only IOPL between tasks,
28  * it also protects other tasks from NT leaking through sysenter etc.
29  */
30 #define switch_to(prev, next, last)                                     \
31 do {                                                                    \
32         /*                                                              \
33          * Context-switching clobbers all registers, so we clobber      \
34          * them explicitly, via unused output variables.                \
35          * (EAX and EBP is not listed because EBP is saved/restored     \
36          * explicitly for wchan access and EAX is the return value of   \
37          * __switch_to())                                               \
38          */                                                             \
39         unsigned long ebx, ecx, edx, esi, edi;                          \
40                                                                         \
41         asm volatile("pushfl\n\t"               /* save    flags */     \
42                      "pushl %%ebp\n\t"          /* save    EBP   */     \
43                      "movl %%esp,%[prev_sp]\n\t"        /* save    ESP   */ \
44                      "movl %[next_sp],%%esp\n\t"        /* restore ESP   */ \
45                      "movl $1f,%[prev_ip]\n\t"  /* save    EIP   */     \
46                      "pushl %[next_ip]\n\t"     /* restore EIP   */     \
47                      "jmp __switch_to\n"        /* regparm call  */     \
48                      "1:\t"                                             \
49                      "popl %%ebp\n\t"           /* restore EBP   */     \
50                      "popfl\n"                  /* restore flags */     \
51                                                                         \
52                      /* output parameters */                            \
53                      : [prev_sp] "=m" (prev->thread.sp),                \
54                        [prev_ip] "=m" (prev->thread.ip),                \
55                        "=a" (last),                                     \
56                                                                         \
57                        /* clobbered output registers: */                \
58                        "=b" (ebx), "=c" (ecx), "=d" (edx),              \
59                        "=S" (esi), "=D" (edi)                           \
60                                                                         \
61                        /* input parameters: */                          \
62                      : [next_sp]  "m" (next->thread.sp),                \
63                        [next_ip]  "m" (next->thread.ip),                \
64                                                                         \
65                        /* regparm parameters for __switch_to(): */      \
66                        [prev]     "a" (prev),                           \
67                        [next]     "d" (next)                            \
68                                                                         \
69                      : /* reloaded segment registers */                 \
70                         "memory");                                      \
71 } while (0)
72
73 /*
74  * disable hlt during certain critical i/o operations
75  */
76 #define HAVE_DISABLE_HLT
77 #else
78 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
79 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
80
81 /* frame pointer must be last for get_wchan */
82 #define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
83 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
84
85 #define __EXTRA_CLOBBER  \
86         , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
87           "r12", "r13", "r14", "r15"
88
89 #ifdef CONFIG_CC_STACKPROTECTOR
90 #define __switch_canary                                                   \
91         "movq %P[task_canary](%%rsi),%%r8\n\t"                            \
92         "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
93 #define __switch_canary_oparam                                            \
94         , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
95 #define __switch_canary_iparam                                            \
96         , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
97 #else   /* CC_STACKPROTECTOR */
98 #define __switch_canary
99 #define __switch_canary_oparam
100 #define __switch_canary_iparam
101 #endif  /* CC_STACKPROTECTOR */
102
103 /* Save restore flags to clear handle leaking NT */
104 #define switch_to(prev, next, last) \
105         asm volatile(SAVE_CONTEXT                                         \
106              "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */       \
107              "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */    \
108              "call __switch_to\n\t"                                       \
109              ".globl thread_return\n"                                     \
110              "thread_return:\n\t"                                         \
111              "movq "__percpu_arg([current_task])",%%rsi\n\t"              \
112              __switch_canary                                              \
113              "movq %P[thread_info](%%rsi),%%r8\n\t"                       \
114              "movq %%rax,%%rdi\n\t"                                       \
115              "testl  %[_tif_fork],%P[ti_flags](%%r8)\n\t"         \
116              "jnz   ret_from_fork\n\t"                                    \
117              RESTORE_CONTEXT                                              \
118              : "=a" (last)                                                \
119                __switch_canary_oparam                                     \
120              : [next] "S" (next), [prev] "D" (prev),                      \
121                [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
122                [ti_flags] "i" (offsetof(struct thread_info, flags)),      \
123                [_tif_fork] "i" (_TIF_FORK),                               \
124                [thread_info] "i" (offsetof(struct task_struct, stack)),   \
125                [current_task] "m" (per_cpu_var(current_task))             \
126                __switch_canary_iparam                                     \
127              : "memory", "cc" __EXTRA_CLOBBER)
128 #endif
129
130 #ifdef __KERNEL__
131 #define _set_base(addr, base) do { unsigned long __pr; \
132 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
133         "rorl $16,%%edx\n\t" \
134         "movb %%dl,%2\n\t" \
135         "movb %%dh,%3" \
136         :"=&d" (__pr) \
137         :"m" (*((addr)+2)), \
138          "m" (*((addr)+4)), \
139          "m" (*((addr)+7)), \
140          "0" (base) \
141         ); } while (0)
142
143 #define _set_limit(addr, limit) do { unsigned long __lr; \
144 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
145         "rorl $16,%%edx\n\t" \
146         "movb %2,%%dh\n\t" \
147         "andb $0xf0,%%dh\n\t" \
148         "orb %%dh,%%dl\n\t" \
149         "movb %%dl,%2" \
150         :"=&d" (__lr) \
151         :"m" (*(addr)), \
152          "m" (*((addr)+6)), \
153          "0" (limit) \
154         ); } while (0)
155
156 #define set_base(ldt, base) _set_base(((char *)&(ldt)) , (base))
157 #define set_limit(ldt, limit) _set_limit(((char *)&(ldt)) , ((limit)-1))
158
159 extern void native_load_gs_index(unsigned);
160
161 /*
162  * Load a segment. Fall back on loading the zero
163  * segment if something goes wrong..
164  */
165 #define loadsegment(seg, value)                 \
166         asm volatile("\n"                       \
167                      "1:\t"                     \
168                      "movl %k0,%%" #seg "\n"    \
169                      "2:\n"                     \
170                      ".section .fixup,\"ax\"\n" \
171                      "3:\t"                     \
172                      "movl %k1, %%" #seg "\n\t" \
173                      "jmp 2b\n"                 \
174                      ".previous\n"              \
175                      _ASM_EXTABLE(1b,3b)        \
176                      : :"r" (value), "r" (0) : "memory")
177
178
179 /*
180  * Save a segment register away
181  */
182 #define savesegment(seg, value)                         \
183         asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
184
185 static inline unsigned long get_limit(unsigned long segment)
186 {
187         unsigned long __limit;
188         asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
189         return __limit + 1;
190 }
191
192 static inline void native_clts(void)
193 {
194         asm volatile("clts");
195 }
196
197 /*
198  * Volatile isn't enough to prevent the compiler from reordering the
199  * read/write functions for the control registers and messing everything up.
200  * A memory clobber would solve the problem, but would prevent reordering of
201  * all loads stores around it, which can hurt performance. Solution is to
202  * use a variable and mimic reads and writes to it to enforce serialization
203  */
204 static unsigned long __force_order;
205
206 static inline unsigned long native_read_cr0(void)
207 {
208         unsigned long val;
209         asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
210         return val;
211 }
212
213 static inline void native_write_cr0(unsigned long val)
214 {
215         asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
216 }
217
218 static inline unsigned long native_read_cr2(void)
219 {
220         unsigned long val;
221         asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
222         return val;
223 }
224
225 static inline void native_write_cr2(unsigned long val)
226 {
227         asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
228 }
229
230 static inline unsigned long native_read_cr3(void)
231 {
232         unsigned long val;
233         asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
234         return val;
235 }
236
237 static inline void native_write_cr3(unsigned long val)
238 {
239         asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
240 }
241
242 static inline unsigned long native_read_cr4(void)
243 {
244         unsigned long val;
245         asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
246         return val;
247 }
248
249 static inline unsigned long native_read_cr4_safe(void)
250 {
251         unsigned long val;
252         /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
253          * exists, so it will never fail. */
254 #ifdef CONFIG_X86_32
255         asm volatile("1: mov %%cr4, %0\n"
256                      "2:\n"
257                      _ASM_EXTABLE(1b, 2b)
258                      : "=r" (val), "=m" (__force_order) : "0" (0));
259 #else
260         val = native_read_cr4();
261 #endif
262         return val;
263 }
264
265 static inline void native_write_cr4(unsigned long val)
266 {
267         asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
268 }
269
270 #ifdef CONFIG_X86_64
271 static inline unsigned long native_read_cr8(void)
272 {
273         unsigned long cr8;
274         asm volatile("movq %%cr8,%0" : "=r" (cr8));
275         return cr8;
276 }
277
278 static inline void native_write_cr8(unsigned long val)
279 {
280         asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
281 }
282 #endif
283
284 static inline void native_wbinvd(void)
285 {
286         asm volatile("wbinvd": : :"memory");
287 }
288
289 #ifdef CONFIG_PARAVIRT
290 #include <asm/paravirt.h>
291 #else
292 #define read_cr0()      (native_read_cr0())
293 #define write_cr0(x)    (native_write_cr0(x))
294 #define read_cr2()      (native_read_cr2())
295 #define write_cr2(x)    (native_write_cr2(x))
296 #define read_cr3()      (native_read_cr3())
297 #define write_cr3(x)    (native_write_cr3(x))
298 #define read_cr4()      (native_read_cr4())
299 #define read_cr4_safe() (native_read_cr4_safe())
300 #define write_cr4(x)    (native_write_cr4(x))
301 #define wbinvd()        (native_wbinvd())
302 #ifdef CONFIG_X86_64
303 #define read_cr8()      (native_read_cr8())
304 #define write_cr8(x)    (native_write_cr8(x))
305 #define load_gs_index   native_load_gs_index
306 #endif
307
308 /* Clear the 'TS' bit */
309 #define clts()          (native_clts())
310
311 #endif/* CONFIG_PARAVIRT */
312
313 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
314
315 #endif /* __KERNEL__ */
316
317 static inline void clflush(volatile void *__p)
318 {
319         asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
320 }
321
322 #define nop() asm volatile ("nop")
323
324 void disable_hlt(void);
325 void enable_hlt(void);
326
327 void cpu_idle_wait(void);
328
329 extern unsigned long arch_align_stack(unsigned long sp);
330 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
331
332 void default_idle(void);
333
334 void stop_this_cpu(void *dummy);
335
336 /*
337  * Force strict CPU ordering.
338  * And yes, this is required on UP too when we're talking
339  * to devices.
340  */
341 #ifdef CONFIG_X86_32
342 /*
343  * Some non-Intel clones support out of order store. wmb() ceases to be a
344  * nop for these.
345  */
346 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
347 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
348 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
349 #else
350 #define mb()    asm volatile("mfence":::"memory")
351 #define rmb()   asm volatile("lfence":::"memory")
352 #define wmb()   asm volatile("sfence" ::: "memory")
353 #endif
354
355 /**
356  * read_barrier_depends - Flush all pending reads that subsequents reads
357  * depend on.
358  *
359  * No data-dependent reads from memory-like regions are ever reordered
360  * over this barrier.  All reads preceding this primitive are guaranteed
361  * to access memory (but not necessarily other CPUs' caches) before any
362  * reads following this primitive that depend on the data return by
363  * any of the preceding reads.  This primitive is much lighter weight than
364  * rmb() on most CPUs, and is never heavier weight than is
365  * rmb().
366  *
367  * These ordering constraints are respected by both the local CPU
368  * and the compiler.
369  *
370  * Ordering is not guaranteed by anything other than these primitives,
371  * not even by data dependencies.  See the documentation for
372  * memory_barrier() for examples and URLs to more information.
373  *
374  * For example, the following code would force ordering (the initial
375  * value of "a" is zero, "b" is one, and "p" is "&a"):
376  *
377  * <programlisting>
378  *      CPU 0                           CPU 1
379  *
380  *      b = 2;
381  *      memory_barrier();
382  *      p = &b;                         q = p;
383  *                                      read_barrier_depends();
384  *                                      d = *q;
385  * </programlisting>
386  *
387  * because the read of "*q" depends on the read of "p" and these
388  * two reads are separated by a read_barrier_depends().  However,
389  * the following code, with the same initial values for "a" and "b":
390  *
391  * <programlisting>
392  *      CPU 0                           CPU 1
393  *
394  *      a = 2;
395  *      memory_barrier();
396  *      b = 3;                          y = b;
397  *                                      read_barrier_depends();
398  *                                      x = a;
399  * </programlisting>
400  *
401  * does not enforce ordering, since there is no data dependency between
402  * the read of "a" and the read of "b".  Therefore, on some CPUs, such
403  * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb()
404  * in cases like this where there are no data dependencies.
405  **/
406
407 #define read_barrier_depends()  do { } while (0)
408
409 #ifdef CONFIG_SMP
410 #define smp_mb()        mb()
411 #ifdef CONFIG_X86_PPRO_FENCE
412 # define smp_rmb()      rmb()
413 #else
414 # define smp_rmb()      barrier()
415 #endif
416 #ifdef CONFIG_X86_OOSTORE
417 # define smp_wmb()      wmb()
418 #else
419 # define smp_wmb()      barrier()
420 #endif
421 #define smp_read_barrier_depends()      read_barrier_depends()
422 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
423 #else
424 #define smp_mb()        barrier()
425 #define smp_rmb()       barrier()
426 #define smp_wmb()       barrier()
427 #define smp_read_barrier_depends()      do { } while (0)
428 #define set_mb(var, value) do { var = value; barrier(); } while (0)
429 #endif
430
431 /*
432  * Stop RDTSC speculation. This is needed when you need to use RDTSC
433  * (or get_cycles or vread that possibly accesses the TSC) in a defined
434  * code region.
435  *
436  * (Could use an alternative three way for this if there was one.)
437  */
438 static inline void rdtsc_barrier(void)
439 {
440         alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
441         alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
442 }
443
444 #endif /* _ASM_X86_SYSTEM_H */