2 * Performance counter support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
22 struct cpu_hw_counters {
29 struct perf_counter *counter[MAX_HWCOUNTERS];
30 u64 events[MAX_HWCOUNTERS];
31 unsigned int flags[MAX_HWCOUNTERS];
33 struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
36 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
38 struct power_pmu *ppmu;
41 * Normally, to ignore kernel events we set the FCS (freeze counters
42 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43 * hypervisor bit set in the MSR, or if we are running on a processor
44 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45 * then we need to use the FCHV bit to ignore kernel events.
47 static unsigned int freeze_counters_kernel = MMCR0_FCS;
49 static void perf_counter_interrupt(struct pt_regs *regs);
51 void perf_counter_print_debug(void)
56 * Read one performance monitor counter (PMC).
58 static unsigned long read_pmc(int idx)
64 val = mfspr(SPRN_PMC1);
67 val = mfspr(SPRN_PMC2);
70 val = mfspr(SPRN_PMC3);
73 val = mfspr(SPRN_PMC4);
76 val = mfspr(SPRN_PMC5);
79 val = mfspr(SPRN_PMC6);
82 val = mfspr(SPRN_PMC7);
85 val = mfspr(SPRN_PMC8);
88 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
97 static void write_pmc(int idx, unsigned long val)
101 mtspr(SPRN_PMC1, val);
104 mtspr(SPRN_PMC2, val);
107 mtspr(SPRN_PMC3, val);
110 mtspr(SPRN_PMC4, val);
113 mtspr(SPRN_PMC5, val);
116 mtspr(SPRN_PMC6, val);
119 mtspr(SPRN_PMC7, val);
122 mtspr(SPRN_PMC8, val);
125 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
130 * Check if a set of events can all go on the PMU at once.
131 * If they can't, this will look at alternative codes for the events
132 * and see if any combination of alternative codes is feasible.
133 * The feasible set is returned in event[].
135 static int power_check_constraints(u64 event[], unsigned int cflags[],
139 u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
142 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
143 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
145 u64 addf = ppmu->add_fields;
146 u64 tadd = ppmu->test_adder;
148 if (n_ev > ppmu->n_counter)
151 /* First see if the events will go on as-is */
152 for (i = 0; i < n_ev; ++i) {
153 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
154 && !ppmu->limited_pmc_event(event[i])) {
155 ppmu->get_alternatives(event[i], cflags[i],
157 event[i] = alternatives[i][0];
159 if (ppmu->get_constraint(event[i], &amasks[i][0],
164 for (i = 0; i < n_ev; ++i) {
165 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
166 if ((((nv + tadd) ^ value) & mask) != 0 ||
167 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
170 mask |= amasks[i][0];
173 return 0; /* all OK */
175 /* doesn't work, gather alternatives... */
176 if (!ppmu->get_alternatives)
178 for (i = 0; i < n_ev; ++i) {
180 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
182 for (j = 1; j < n_alt[i]; ++j)
183 ppmu->get_constraint(alternatives[i][j],
184 &amasks[i][j], &avalues[i][j]);
187 /* enumerate all possibilities and see if any will work */
190 value = mask = nv = 0;
193 /* we're backtracking, restore context */
199 * See if any alternative k for event i,
200 * where k > j, will satisfy the constraints.
202 while (++j < n_alt[i]) {
203 nv = (value | avalues[i][j]) +
204 (value & avalues[i][j] & addf);
205 if ((((nv + tadd) ^ value) & mask) == 0 &&
206 (((nv + tadd) ^ avalues[i][j])
207 & amasks[i][j]) == 0)
212 * No feasible alternative, backtrack
213 * to event i-1 and continue enumerating its
214 * alternatives from where we got up to.
220 * Found a feasible alternative for event i,
221 * remember where we got up to with this event,
222 * go on to the next event, and start with
223 * the first alternative for it.
229 mask |= amasks[i][j];
235 /* OK, we have a feasible combination, tell the caller the solution */
236 for (i = 0; i < n_ev; ++i)
237 event[i] = alternatives[i][choice[i]];
242 * Check if newly-added counters have consistent settings for
243 * exclude_{user,kernel,hv} with each other and any previously
246 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
247 int n_prev, int n_new)
249 int eu = 0, ek = 0, eh = 0;
251 struct perf_counter *counter;
258 for (i = 0; i < n; ++i) {
259 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
260 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
265 eu = counter->attr.exclude_user;
266 ek = counter->attr.exclude_kernel;
267 eh = counter->attr.exclude_hv;
269 } else if (counter->attr.exclude_user != eu ||
270 counter->attr.exclude_kernel != ek ||
271 counter->attr.exclude_hv != eh) {
277 for (i = 0; i < n; ++i)
278 if (cflags[i] & PPMU_LIMITED_PMC_OK)
279 cflags[i] |= PPMU_LIMITED_PMC_REQD;
284 static void power_pmu_read(struct perf_counter *counter)
286 long val, delta, prev;
288 if (!counter->hw.idx)
291 * Performance monitor interrupts come even when interrupts
292 * are soft-disabled, as long as interrupts are hard-enabled.
293 * Therefore we treat them like NMIs.
296 prev = atomic64_read(&counter->hw.prev_count);
298 val = read_pmc(counter->hw.idx);
299 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
301 /* The counters are only 32 bits wide */
302 delta = (val - prev) & 0xfffffffful;
303 atomic64_add(delta, &counter->count);
304 atomic64_sub(delta, &counter->hw.period_left);
308 * On some machines, PMC5 and PMC6 can't be written, don't respect
309 * the freeze conditions, and don't generate interrupts. This tells
310 * us if `counter' is using such a PMC.
312 static int is_limited_pmc(int pmcnum)
314 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
315 && (pmcnum == 5 || pmcnum == 6);
318 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
319 unsigned long pmc5, unsigned long pmc6)
321 struct perf_counter *counter;
322 u64 val, prev, delta;
325 for (i = 0; i < cpuhw->n_limited; ++i) {
326 counter = cpuhw->limited_counter[i];
327 if (!counter->hw.idx)
329 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
330 prev = atomic64_read(&counter->hw.prev_count);
332 delta = (val - prev) & 0xfffffffful;
333 atomic64_add(delta, &counter->count);
337 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
338 unsigned long pmc5, unsigned long pmc6)
340 struct perf_counter *counter;
344 for (i = 0; i < cpuhw->n_limited; ++i) {
345 counter = cpuhw->limited_counter[i];
346 counter->hw.idx = cpuhw->limited_hwidx[i];
347 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
348 atomic64_set(&counter->hw.prev_count, val);
349 perf_counter_update_userpage(counter);
354 * Since limited counters don't respect the freeze conditions, we
355 * have to read them immediately after freezing or unfreezing the
356 * other counters. We try to keep the values from the limited
357 * counters as consistent as possible by keeping the delay (in
358 * cycles and instructions) between freezing/unfreezing and reading
359 * the limited counters as small and consistent as possible.
360 * Therefore, if any limited counters are in use, we read them
361 * both, and always in the same order, to minimize variability,
362 * and do it inside the same asm that writes MMCR0.
364 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
366 unsigned long pmc5, pmc6;
368 if (!cpuhw->n_limited) {
369 mtspr(SPRN_MMCR0, mmcr0);
374 * Write MMCR0, then read PMC5 and PMC6 immediately.
375 * To ensure we don't get a performance monitor interrupt
376 * between writing MMCR0 and freezing/thawing the limited
377 * counters, we first write MMCR0 with the counter overflow
378 * interrupt enable bits turned off.
380 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
381 : "=&r" (pmc5), "=&r" (pmc6)
382 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
384 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
386 if (mmcr0 & MMCR0_FC)
387 freeze_limited_counters(cpuhw, pmc5, pmc6);
389 thaw_limited_counters(cpuhw, pmc5, pmc6);
392 * Write the full MMCR0 including the counter overflow interrupt
393 * enable bits, if necessary.
395 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
396 mtspr(SPRN_MMCR0, mmcr0);
400 * Disable all counters to prevent PMU interrupts and to allow
401 * counters to be added or removed.
403 void hw_perf_disable(void)
405 struct cpu_hw_counters *cpuhw;
409 local_irq_save(flags);
410 cpuhw = &__get_cpu_var(cpu_hw_counters);
412 ret = cpuhw->disabled;
418 * Check if we ever enabled the PMU on this cpu.
420 if (!cpuhw->pmcs_enabled) {
421 if (ppc_md.enable_pmcs)
422 ppc_md.enable_pmcs();
423 cpuhw->pmcs_enabled = 1;
427 * Disable instruction sampling if it was enabled
429 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
431 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
436 * Set the 'freeze counters' bit.
437 * The barrier is to make sure the mtspr has been
438 * executed and the PMU has frozen the counters
441 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
444 local_irq_restore(flags);
448 * Re-enable all counters if disable == 0.
449 * If we were previously disabled and counters were added, then
450 * put the new config on the PMU.
452 void hw_perf_enable(void)
454 struct perf_counter *counter;
455 struct cpu_hw_counters *cpuhw;
460 unsigned int hwc_index[MAX_HWCOUNTERS];
464 local_irq_save(flags);
465 cpuhw = &__get_cpu_var(cpu_hw_counters);
466 if (!cpuhw->disabled) {
467 local_irq_restore(flags);
473 * If we didn't change anything, or only removed counters,
474 * no need to recalculate MMCR* settings and reset the PMCs.
475 * Just reenable the PMU with the current MMCR* settings
476 * (possibly updated for removal of counters).
478 if (!cpuhw->n_added) {
479 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
480 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
481 if (cpuhw->n_counters == 0)
482 get_lppaca()->pmcregs_in_use = 0;
487 * Compute MMCR* values for the new set of counters
489 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
491 /* shouldn't ever get here */
492 printk(KERN_ERR "oops compute_mmcr failed\n");
497 * Add in MMCR0 freeze bits corresponding to the
498 * attr.exclude_* bits for the first counter.
499 * We have already checked that all counters have the
500 * same values for these bits as the first counter.
502 counter = cpuhw->counter[0];
503 if (counter->attr.exclude_user)
504 cpuhw->mmcr[0] |= MMCR0_FCP;
505 if (counter->attr.exclude_kernel)
506 cpuhw->mmcr[0] |= freeze_counters_kernel;
507 if (counter->attr.exclude_hv)
508 cpuhw->mmcr[0] |= MMCR0_FCHV;
511 * Write the new configuration to MMCR* with the freeze
512 * bit set and set the hardware counters to their initial values.
513 * Then unfreeze the counters.
515 get_lppaca()->pmcregs_in_use = 1;
516 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
517 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
518 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
522 * Read off any pre-existing counters that need to move
525 for (i = 0; i < cpuhw->n_counters; ++i) {
526 counter = cpuhw->counter[i];
527 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
528 power_pmu_read(counter);
529 write_pmc(counter->hw.idx, 0);
535 * Initialize the PMCs for all the new and moved counters.
537 cpuhw->n_limited = n_lim = 0;
538 for (i = 0; i < cpuhw->n_counters; ++i) {
539 counter = cpuhw->counter[i];
542 idx = hwc_index[i] + 1;
543 if (is_limited_pmc(idx)) {
544 cpuhw->limited_counter[n_lim] = counter;
545 cpuhw->limited_hwidx[n_lim] = idx;
550 if (counter->hw.sample_period) {
551 left = atomic64_read(&counter->hw.period_left);
552 if (left < 0x80000000L)
553 val = 0x80000000L - left;
555 atomic64_set(&counter->hw.prev_count, val);
556 counter->hw.idx = idx;
558 perf_counter_update_userpage(counter);
560 cpuhw->n_limited = n_lim;
561 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
565 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
568 * Enable instruction sampling if necessary
570 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
572 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
576 local_irq_restore(flags);
579 static int collect_events(struct perf_counter *group, int max_count,
580 struct perf_counter *ctrs[], u64 *events,
584 struct perf_counter *counter;
586 if (!is_software_counter(group)) {
590 flags[n] = group->hw.counter_base;
591 events[n++] = group->hw.config;
593 list_for_each_entry(counter, &group->sibling_list, list_entry) {
594 if (!is_software_counter(counter) &&
595 counter->state != PERF_COUNTER_STATE_OFF) {
599 flags[n] = counter->hw.counter_base;
600 events[n++] = counter->hw.config;
606 static void counter_sched_in(struct perf_counter *counter, int cpu)
608 counter->state = PERF_COUNTER_STATE_ACTIVE;
609 counter->oncpu = cpu;
610 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
611 if (is_software_counter(counter))
612 counter->pmu->enable(counter);
616 * Called to enable a whole group of counters.
617 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
618 * Assumes the caller has disabled interrupts and has
619 * frozen the PMU with hw_perf_save_disable.
621 int hw_perf_group_sched_in(struct perf_counter *group_leader,
622 struct perf_cpu_context *cpuctx,
623 struct perf_counter_context *ctx, int cpu)
625 struct cpu_hw_counters *cpuhw;
627 struct perf_counter *sub;
629 cpuhw = &__get_cpu_var(cpu_hw_counters);
630 n0 = cpuhw->n_counters;
631 n = collect_events(group_leader, ppmu->n_counter - n0,
632 &cpuhw->counter[n0], &cpuhw->events[n0],
636 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
638 i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
641 cpuhw->n_counters = n0 + n;
645 * OK, this group can go on; update counter states etc.,
646 * and enable any software counters
648 for (i = n0; i < n0 + n; ++i)
649 cpuhw->counter[i]->hw.config = cpuhw->events[i];
650 cpuctx->active_oncpu += n;
652 counter_sched_in(group_leader, cpu);
653 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
654 if (sub->state != PERF_COUNTER_STATE_OFF) {
655 counter_sched_in(sub, cpu);
665 * Add a counter to the PMU.
666 * If all counters are not already frozen, then we disable and
667 * re-enable the PMU in order to get hw_perf_enable to do the
668 * actual work of reconfiguring the PMU.
670 static int power_pmu_enable(struct perf_counter *counter)
672 struct cpu_hw_counters *cpuhw;
677 local_irq_save(flags);
681 * Add the counter to the list (if there is room)
682 * and check whether the total set is still feasible.
684 cpuhw = &__get_cpu_var(cpu_hw_counters);
685 n0 = cpuhw->n_counters;
686 if (n0 >= ppmu->n_counter)
688 cpuhw->counter[n0] = counter;
689 cpuhw->events[n0] = counter->hw.config;
690 cpuhw->flags[n0] = counter->hw.counter_base;
691 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
693 if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
696 counter->hw.config = cpuhw->events[n0];
703 local_irq_restore(flags);
708 * Remove a counter from the PMU.
710 static void power_pmu_disable(struct perf_counter *counter)
712 struct cpu_hw_counters *cpuhw;
716 local_irq_save(flags);
719 power_pmu_read(counter);
721 cpuhw = &__get_cpu_var(cpu_hw_counters);
722 for (i = 0; i < cpuhw->n_counters; ++i) {
723 if (counter == cpuhw->counter[i]) {
724 while (++i < cpuhw->n_counters)
725 cpuhw->counter[i-1] = cpuhw->counter[i];
727 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
728 if (counter->hw.idx) {
729 write_pmc(counter->hw.idx, 0);
732 perf_counter_update_userpage(counter);
736 for (i = 0; i < cpuhw->n_limited; ++i)
737 if (counter == cpuhw->limited_counter[i])
739 if (i < cpuhw->n_limited) {
740 while (++i < cpuhw->n_limited) {
741 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
742 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
746 if (cpuhw->n_counters == 0) {
747 /* disable exceptions if no counters are running */
748 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
752 local_irq_restore(flags);
756 * Re-enable interrupts on a counter after they were throttled
757 * because they were coming too fast.
759 static void power_pmu_unthrottle(struct perf_counter *counter)
764 if (!counter->hw.idx || !counter->hw.sample_period)
766 local_irq_save(flags);
768 power_pmu_read(counter);
769 left = counter->hw.sample_period;
771 if (left < 0x80000000L)
772 val = 0x80000000L - left;
773 write_pmc(counter->hw.idx, val);
774 atomic64_set(&counter->hw.prev_count, val);
775 atomic64_set(&counter->hw.period_left, left);
776 perf_counter_update_userpage(counter);
778 local_irq_restore(flags);
781 struct pmu power_pmu = {
782 .enable = power_pmu_enable,
783 .disable = power_pmu_disable,
784 .read = power_pmu_read,
785 .unthrottle = power_pmu_unthrottle,
789 * Return 1 if we might be able to put counter on a limited PMC,
791 * A counter can only go on a limited PMC if it counts something
792 * that a limited PMC can count, doesn't require interrupts, and
793 * doesn't exclude any processor mode.
795 static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
799 u64 alt[MAX_EVENT_ALTERNATIVES];
801 if (counter->attr.exclude_user
802 || counter->attr.exclude_kernel
803 || counter->attr.exclude_hv
804 || counter->attr.sample_period)
807 if (ppmu->limited_pmc_event(ev))
811 * The requested event isn't on a limited PMC already;
812 * see if any alternative code goes on a limited PMC.
814 if (!ppmu->get_alternatives)
817 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
818 n = ppmu->get_alternatives(ev, flags, alt);
824 * Find an alternative event that goes on a normal PMC, if possible,
825 * and return the event code, or 0 if there is no such alternative.
826 * (Note: event code 0 is "don't count" on all machines.)
828 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
830 u64 alt[MAX_EVENT_ALTERNATIVES];
833 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
834 n = ppmu->get_alternatives(ev, flags, alt);
840 /* Number of perf_counters counting hardware events */
841 static atomic_t num_counters;
842 /* Used to avoid races in calling reserve/release_pmc_hardware */
843 static DEFINE_MUTEX(pmc_reserve_mutex);
846 * Release the PMU if this is the last perf_counter.
848 static void hw_perf_counter_destroy(struct perf_counter *counter)
850 if (!atomic_add_unless(&num_counters, -1, 1)) {
851 mutex_lock(&pmc_reserve_mutex);
852 if (atomic_dec_return(&num_counters) == 0)
853 release_pmc_hardware();
854 mutex_unlock(&pmc_reserve_mutex);
858 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
862 struct perf_counter *ctrs[MAX_HWCOUNTERS];
863 u64 events[MAX_HWCOUNTERS];
864 unsigned int cflags[MAX_HWCOUNTERS];
869 return ERR_PTR(-ENXIO);
870 if (counter->attr.type != PERF_TYPE_RAW) {
871 ev = counter->attr.config;
872 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
873 return ERR_PTR(-EOPNOTSUPP);
874 ev = ppmu->generic_events[ev];
876 ev = counter->attr.config;
878 counter->hw.config_base = ev;
882 * If we are not running on a hypervisor, force the
883 * exclude_hv bit to 0 so that we don't care what
884 * the user set it to.
886 if (!firmware_has_feature(FW_FEATURE_LPAR))
887 counter->attr.exclude_hv = 0;
890 * If this is a per-task counter, then we can use
891 * PM_RUN_* events interchangeably with their non RUN_*
892 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
893 * XXX we should check if the task is an idle task.
896 if (counter->ctx->task)
897 flags |= PPMU_ONLY_COUNT_RUN;
900 * If this machine has limited counters, check whether this
901 * event could go on a limited counter.
903 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
904 if (can_go_on_limited_pmc(counter, ev, flags)) {
905 flags |= PPMU_LIMITED_PMC_OK;
906 } else if (ppmu->limited_pmc_event(ev)) {
908 * The requested event is on a limited PMC,
909 * but we can't use a limited PMC; see if any
910 * alternative goes on a normal PMC.
912 ev = normal_pmc_alternative(ev, flags);
914 return ERR_PTR(-EINVAL);
919 * If this is in a group, check if it can go on with all the
920 * other hardware counters in the group. We assume the counter
921 * hasn't been linked into its leader's sibling list at this point.
924 if (counter->group_leader != counter) {
925 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
926 ctrs, events, cflags);
928 return ERR_PTR(-EINVAL);
933 if (check_excludes(ctrs, cflags, n, 1))
934 return ERR_PTR(-EINVAL);
935 if (power_check_constraints(events, cflags, n + 1))
936 return ERR_PTR(-EINVAL);
938 counter->hw.config = events[n];
939 counter->hw.counter_base = cflags[n];
940 atomic64_set(&counter->hw.period_left, counter->hw.sample_period);
943 * See if we need to reserve the PMU.
944 * If no counters are currently in use, then we have to take a
945 * mutex to ensure that we don't race with another task doing
946 * reserve_pmc_hardware or release_pmc_hardware.
949 if (!atomic_inc_not_zero(&num_counters)) {
950 mutex_lock(&pmc_reserve_mutex);
951 if (atomic_read(&num_counters) == 0 &&
952 reserve_pmc_hardware(perf_counter_interrupt))
955 atomic_inc(&num_counters);
956 mutex_unlock(&pmc_reserve_mutex);
958 counter->destroy = hw_perf_counter_destroy;
966 * A counter has overflowed; update its count and record
967 * things if requested. Note that interrupts are hard-disabled
968 * here so there is no possibility of being interrupted.
970 static void record_and_restart(struct perf_counter *counter, long val,
971 struct pt_regs *regs, int nmi)
973 u64 period = counter->hw.sample_period;
974 s64 prev, delta, left;
976 u64 addr, mmcra, sdsync;
978 /* we don't have to worry about interrupts here */
979 prev = atomic64_read(&counter->hw.prev_count);
980 delta = (val - prev) & 0xfffffffful;
981 atomic64_add(delta, &counter->count);
984 * See if the total period for this counter has expired,
985 * and update for the next period.
988 left = atomic64_read(&counter->hw.period_left) - delta;
996 if (left < 0x80000000L)
997 val = 0x80000000L - left;
1001 * Finally record data if requested.
1005 if (counter->attr.sample_type & PERF_SAMPLE_ADDR) {
1007 * The user wants a data address recorded.
1008 * If we're not doing instruction sampling,
1009 * give them the SDAR (sampled data address).
1010 * If we are doing instruction sampling, then only
1011 * give them the SDAR if it corresponds to the
1012 * instruction pointed to by SIAR; this is indicated
1013 * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA.
1015 mmcra = regs->dsisr;
1016 sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
1017 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
1018 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
1019 addr = mfspr(SPRN_SDAR);
1021 if (perf_counter_overflow(counter, nmi, regs, addr)) {
1023 * Interrupts are coming too fast - throttle them
1024 * by setting the counter to 0, so it will be
1025 * at least 2^30 cycles until the next interrupt
1026 * (assuming each counter counts at most 2 counts
1034 write_pmc(counter->hw.idx, val);
1035 atomic64_set(&counter->hw.prev_count, val);
1036 atomic64_set(&counter->hw.period_left, left);
1037 perf_counter_update_userpage(counter);
1041 * Called from generic code to get the misc flags (i.e. processor mode)
1044 unsigned long perf_misc_flags(struct pt_regs *regs)
1046 unsigned long mmcra;
1048 if (TRAP(regs) != 0xf00) {
1049 /* not a PMU interrupt */
1050 return user_mode(regs) ? PERF_EVENT_MISC_USER :
1051 PERF_EVENT_MISC_KERNEL;
1054 mmcra = regs->dsisr;
1055 if (ppmu->flags & PPMU_ALT_SIPR) {
1056 if (mmcra & POWER6_MMCRA_SIHV)
1057 return PERF_EVENT_MISC_HYPERVISOR;
1058 return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1059 PERF_EVENT_MISC_KERNEL;
1061 if (mmcra & MMCRA_SIHV)
1062 return PERF_EVENT_MISC_HYPERVISOR;
1063 return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1064 PERF_EVENT_MISC_KERNEL;
1068 * Called from generic code to get the instruction pointer
1071 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1073 unsigned long mmcra;
1077 if (TRAP(regs) != 0xf00)
1078 return regs->nip; /* not a PMU interrupt */
1080 ip = mfspr(SPRN_SIAR);
1081 mmcra = regs->dsisr;
1082 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
1083 slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
1085 ip += 4 * (slot - 1);
1091 * Performance monitor interrupt stuff
1093 static void perf_counter_interrupt(struct pt_regs *regs)
1096 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1097 struct perf_counter *counter;
1102 if (cpuhw->n_limited)
1103 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1107 * Overload regs->dsisr to store MMCRA so we only need to read it once.
1109 regs->dsisr = mfspr(SPRN_MMCRA);
1112 * If interrupts were soft-disabled when this PMU interrupt
1113 * occurred, treat it as an NMI.
1121 for (i = 0; i < cpuhw->n_counters; ++i) {
1122 counter = cpuhw->counter[i];
1123 if (!counter->hw.idx || is_limited_pmc(counter->hw.idx))
1125 val = read_pmc(counter->hw.idx);
1127 /* counter has overflowed */
1129 record_and_restart(counter, val, regs, nmi);
1134 * In case we didn't find and reset the counter that caused
1135 * the interrupt, scan all counters and reset any that are
1136 * negative, to avoid getting continual interrupts.
1137 * Any that we processed in the previous loop will not be negative.
1140 for (i = 0; i < ppmu->n_counter; ++i) {
1141 if (is_limited_pmc(i + 1))
1143 val = read_pmc(i + 1);
1145 write_pmc(i + 1, 0);
1150 * Reset MMCR0 to its normal value. This will set PMXE and
1151 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1152 * and thus allow interrupts to occur again.
1153 * XXX might want to use MSR.PM to keep the counters frozen until
1154 * we get back out of this interrupt.
1156 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1164 void hw_perf_counter_setup(int cpu)
1166 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1168 memset(cpuhw, 0, sizeof(*cpuhw));
1169 cpuhw->mmcr[0] = MMCR0_FC;
1172 extern struct power_pmu power4_pmu;
1173 extern struct power_pmu ppc970_pmu;
1174 extern struct power_pmu power5_pmu;
1175 extern struct power_pmu power5p_pmu;
1176 extern struct power_pmu power6_pmu;
1178 static int init_perf_counters(void)
1182 /* XXX should get this from cputable */
1183 pvr = mfspr(SPRN_PVR);
1184 switch (PVR_VER(pvr)) {
1198 ppmu = &power5p_pmu;
1206 * Use FCHV to ignore kernel events if MSR.HV is set.
1208 if (mfmsr() & MSR_HV)
1209 freeze_counters_kernel = MMCR0_FCHV;
1214 arch_initcall(init_perf_counters);