[PATCH] Fix compilation errors in maps/dc21285.c
[linux-2.6] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  *
25  * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
26  */
27
28 #include <linux/config.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/vmalloc.h>
34 #include <linux/slab.h>
35 #include <linux/errno.h>
36 #include <linux/string.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/nand.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/delay.h>
41 #ifdef CONFIG_NS_ABS_POS
42 #include <asm/io.h>
43 #endif
44
45
46 /* Default simulator parameters values */
47 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
48     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
50     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
52 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
54 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
55 #endif
56
57 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
58 #define CONFIG_NANDSIM_ACCESS_DELAY 25
59 #endif
60 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62 #endif
63 #ifndef CONFIG_NANDSIM_ERASE_DELAY
64 #define CONFIG_NANDSIM_ERASE_DELAY 2
65 #endif
66 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68 #endif
69 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
70 #define CONFIG_NANDSIM_INPUT_CYCLE  50
71 #endif
72 #ifndef CONFIG_NANDSIM_BUS_WIDTH
73 #define CONFIG_NANDSIM_BUS_WIDTH  8
74 #endif
75 #ifndef CONFIG_NANDSIM_DO_DELAYS
76 #define CONFIG_NANDSIM_DO_DELAYS  0
77 #endif
78 #ifndef CONFIG_NANDSIM_LOG
79 #define CONFIG_NANDSIM_LOG        0
80 #endif
81 #ifndef CONFIG_NANDSIM_DBG
82 #define CONFIG_NANDSIM_DBG        0
83 #endif
84
85 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
86 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
87 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
88 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
89 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
90 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
91 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
92 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
93 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
94 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
95 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
96 static uint log            = CONFIG_NANDSIM_LOG;
97 static uint dbg            = CONFIG_NANDSIM_DBG;
98
99 module_param(first_id_byte,  uint, 0400);
100 module_param(second_id_byte, uint, 0400);
101 module_param(third_id_byte,  uint, 0400);
102 module_param(fourth_id_byte, uint, 0400);
103 module_param(access_delay,   uint, 0400);
104 module_param(programm_delay, uint, 0400);
105 module_param(erase_delay,    uint, 0400);
106 module_param(output_cycle,   uint, 0400);
107 module_param(input_cycle,    uint, 0400);
108 module_param(bus_width,      uint, 0400);
109 module_param(do_delays,      uint, 0400);
110 module_param(log,            uint, 0400);
111 module_param(dbg,            uint, 0400);
112
113 MODULE_PARM_DESC(first_id_byte,  "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
114 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
115 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
116 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
117 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)");
118 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
119 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
120 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
121 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
122 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
123 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
124 MODULE_PARM_DESC(log,            "Perform logging if not zero");
125 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
126
127 /* The largest possible page size */
128 #define NS_LARGEST_PAGE_SIZE    2048
129
130 /* The prefix for simulator output */
131 #define NS_OUTPUT_PREFIX "[nandsim]"
132
133 /* Simulator's output macros (logging, debugging, warning, error) */
134 #define NS_LOG(args...) \
135         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
136 #define NS_DBG(args...) \
137         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
138 #define NS_WARN(args...) \
139         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
140 #define NS_ERR(args...) \
141         do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
142
143 /* Busy-wait delay macros (microseconds, milliseconds) */
144 #define NS_UDELAY(us) \
145         do { if (do_delays) udelay(us); } while(0)
146 #define NS_MDELAY(us) \
147         do { if (do_delays) mdelay(us); } while(0)
148
149 /* Is the nandsim structure initialized ? */
150 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
151
152 /* Good operation completion status */
153 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
154
155 /* Operation failed completion status */
156 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
157
158 /* Calculate the page offset in flash RAM image by (row, column) address */
159 #define NS_RAW_OFFSET(ns) \
160         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
161
162 /* Calculate the OOB offset in flash RAM image by (row, column) address */
163 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
164
165 /* After a command is input, the simulator goes to one of the following states */
166 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
167 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
168 #define STATE_CMD_READSTART      0x00000003 /* read data second command (large page devices) */
169 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
170 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
171 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
172 #define STATE_CMD_STATUS       0x00000007 /* read status */
173 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
174 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
175 #define STATE_CMD_READID       0x0000000A /* read ID */
176 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
177 #define STATE_CMD_RESET        0x0000000C /* reset */
178 #define STATE_CMD_MASK         0x0000000F /* command states mask */
179
180 /* After an addres is input, the simulator goes to one of these states */
181 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
182 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
183 #define STATE_ADDR_ZERO        0x00000030 /* one byte zero address was accepted */
184 #define STATE_ADDR_MASK        0x00000030 /* address states mask */
185
186 /* Durind data input/output the simulator is in these states */
187 #define STATE_DATAIN           0x00000100 /* waiting for data input */
188 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
189
190 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
191 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
192 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
193 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
194 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
195
196 /* Previous operation is done, ready to accept new requests */
197 #define STATE_READY            0x00000000
198
199 /* This state is used to mark that the next state isn't known yet */
200 #define STATE_UNKNOWN          0x10000000
201
202 /* Simulator's actions bit masks */
203 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
204 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
205 #define ACTION_SECERASE  0x00300000 /* erase sector */
206 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
207 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
208 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
209 #define ACTION_MASK      0x00700000 /* action mask */
210
211 #define NS_OPER_NUM      12 /* Number of operations supported by the simulator */
212 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
213
214 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
215 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
216 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
217 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
218 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
219 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
220 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
221 #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
222 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
223
224 /* Remove action bits ftom state */
225 #define NS_STATE(x) ((x) & ~ACTION_MASK)
226
227 /*
228  * Maximum previous states which need to be saved. Currently saving is
229  * only needed for page programm operation with preceeded read command
230  * (which is only valid for 512-byte pages).
231  */
232 #define NS_MAX_PREVSTATES 1
233
234 /*
235  * The structure which describes all the internal simulator data.
236  */
237 struct nandsim {
238         struct mtd_partition part;
239
240         uint busw;              /* flash chip bus width (8 or 16) */
241         u_char ids[4];          /* chip's ID bytes */
242         uint32_t options;       /* chip's characteristic bits */
243         uint32_t state;         /* current chip state */
244         uint32_t nxstate;       /* next expected state */
245
246         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
247         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
248         uint16_t npstates;      /* number of previous states saved */
249         uint16_t stateidx;      /* current state index */
250
251         /* The simulated NAND flash image */
252         union flash_media {
253                 u_char *byte;
254                 uint16_t    *word;
255         } mem;
256
257         /* Internal buffer of page + OOB size bytes */
258         union internal_buffer {
259                 u_char *byte;    /* for byte access */
260                 uint16_t *word;  /* for 16-bit word access */
261         } buf;
262
263         /* NAND flash "geometry" */
264         struct nandsin_geometry {
265                 uint32_t totsz;     /* total flash size, bytes */
266                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
267                 uint pgsz;          /* NAND flash page size, bytes */
268                 uint oobsz;         /* page OOB area size, bytes */
269                 uint32_t totszoob;  /* total flash size including OOB, bytes */
270                 uint pgszoob;       /* page size including OOB , bytes*/
271                 uint secszoob;      /* sector size including OOB, bytes */
272                 uint pgnum;         /* total number of pages */
273                 uint pgsec;         /* number of pages per sector */
274                 uint secshift;      /* bits number in sector size */
275                 uint pgshift;       /* bits number in page size */
276                 uint oobshift;      /* bits number in OOB size */
277                 uint pgaddrbytes;   /* bytes per page address */
278                 uint secaddrbytes;  /* bytes per sector address */
279                 uint idbytes;       /* the number ID bytes that this chip outputs */
280         } geom;
281
282         /* NAND flash internal registers */
283         struct nandsim_regs {
284                 unsigned command; /* the command register */
285                 u_char   status;  /* the status register */
286                 uint     row;     /* the page number */
287                 uint     column;  /* the offset within page */
288                 uint     count;   /* internal counter */
289                 uint     num;     /* number of bytes which must be processed */
290                 uint     off;     /* fixed page offset */
291         } regs;
292
293         /* NAND flash lines state */
294         struct ns_lines_status {
295                 int ce;  /* chip Enable */
296                 int cle; /* command Latch Enable */
297                 int ale; /* address Latch Enable */
298                 int wp;  /* write Protect */
299         } lines;
300 };
301
302 /*
303  * Operations array. To perform any operation the simulator must pass
304  * through the correspondent states chain.
305  */
306 static struct nandsim_operations {
307         uint32_t reqopts;  /* options which are required to perform the operation */
308         uint32_t states[NS_OPER_STATES]; /* operation's states */
309 } ops[NS_OPER_NUM] = {
310         /* Read page + OOB from the beginning */
311         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
312                         STATE_DATAOUT, STATE_READY}},
313         /* Read page + OOB from the second half */
314         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
315                         STATE_DATAOUT, STATE_READY}},
316         /* Read OOB */
317         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
318                         STATE_DATAOUT, STATE_READY}},
319         /* Programm page starting from the beginning */
320         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
321                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
322         /* Programm page starting from the beginning */
323         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
324                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
325         /* Programm page starting from the second half */
326         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
327                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
328         /* Programm OOB */
329         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
330                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
331         /* Erase sector */
332         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
333         /* Read status */
334         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
335         /* Read multi-plane status */
336         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
337         /* Read ID */
338         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
339         /* Large page devices read page */
340         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
341                                STATE_DATAOUT, STATE_READY}}
342 };
343
344 /* MTD structure for NAND controller */
345 static struct mtd_info *nsmtd;
346
347 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
348
349 /*
350  * Initialize the nandsim structure.
351  *
352  * RETURNS: 0 if success, -ERRNO if failure.
353  */
354 static int
355 init_nandsim(struct mtd_info *mtd)
356 {
357         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
358         struct nandsim   *ns   = (struct nandsim *)(chip->priv);
359         int i;
360
361         if (NS_IS_INITIALIZED(ns)) {
362                 NS_ERR("init_nandsim: nandsim is already initialized\n");
363                 return -EIO;
364         }
365
366         /* Force mtd to not do delays */
367         chip->chip_delay = 0;
368
369         /* Initialize the NAND flash parameters */
370         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
371         ns->geom.totsz    = mtd->size;
372         ns->geom.pgsz     = mtd->oobblock;
373         ns->geom.oobsz    = mtd->oobsize;
374         ns->geom.secsz    = mtd->erasesize;
375         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
376         ns->geom.pgnum    = ns->geom.totsz / ns->geom.pgsz;
377         ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
378         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
379         ns->geom.pgshift  = chip->page_shift;
380         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
381         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
382         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
383         ns->options = 0;
384
385         if (ns->geom.pgsz == 256) {
386                 ns->options |= OPT_PAGE256;
387         }
388         else if (ns->geom.pgsz == 512) {
389                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
390                 if (ns->busw == 8)
391                         ns->options |= OPT_PAGE512_8BIT;
392         } else if (ns->geom.pgsz == 2048) {
393                 ns->options |= OPT_PAGE2048;
394         } else {
395                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
396                 return -EIO;
397         }
398
399         if (ns->options & OPT_SMALLPAGE) {
400                 if (ns->geom.totsz < (64 << 20)) {
401                         ns->geom.pgaddrbytes  = 3;
402                         ns->geom.secaddrbytes = 2;
403                 } else {
404                         ns->geom.pgaddrbytes  = 4;
405                         ns->geom.secaddrbytes = 3;
406                 }
407         } else {
408                 if (ns->geom.totsz <= (128 << 20)) {
409                         ns->geom.pgaddrbytes  = 5;
410                         ns->geom.secaddrbytes = 2;
411                 } else {
412                         ns->geom.pgaddrbytes  = 5;
413                         ns->geom.secaddrbytes = 3;
414                 }
415         }
416
417         /* Detect how many ID bytes the NAND chip outputs */
418         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
419                 if (second_id_byte != nand_flash_ids[i].id)
420                         continue;
421                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
422                         ns->options |= OPT_AUTOINCR;
423         }
424
425         if (ns->busw == 16)
426                 NS_WARN("16-bit flashes support wasn't tested\n");
427
428         printk("flash size: %u MiB\n",          ns->geom.totsz >> 20);
429         printk("page size: %u bytes\n",         ns->geom.pgsz);
430         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
431         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
432         printk("pages number: %u\n",            ns->geom.pgnum);
433         printk("pages per sector: %u\n",        ns->geom.pgsec);
434         printk("bus width: %u\n",               ns->busw);
435         printk("bits in sector size: %u\n",     ns->geom.secshift);
436         printk("bits in page size: %u\n",       ns->geom.pgshift);
437         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
438         printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
439         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
440         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
441         printk("options: %#x\n",                ns->options);
442
443         /* Map / allocate and initialize the flash image */
444 #ifdef CONFIG_NS_ABS_POS
445         ns->mem.byte = ioremap(CONFIG_NS_ABS_POS, ns->geom.totszoob);
446         if (!ns->mem.byte) {
447                 NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n",
448                         (void *)CONFIG_NS_ABS_POS);
449                 return -ENOMEM;
450         }
451 #else
452         ns->mem.byte = vmalloc(ns->geom.totszoob);
453         if (!ns->mem.byte) {
454                 NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
455                         ns->geom.totszoob);
456                 return -ENOMEM;
457         }
458         memset(ns->mem.byte, 0xFF, ns->geom.totszoob);
459 #endif
460
461         /* Allocate / initialize the internal buffer */
462         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
463         if (!ns->buf.byte) {
464                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
465                         ns->geom.pgszoob);
466                 goto error;
467         }
468         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
469
470         /* Fill the partition_info structure */
471         ns->part.name   = "NAND simulator partition";
472         ns->part.offset = 0;
473         ns->part.size   = ns->geom.totsz;
474
475         return 0;
476
477 error:
478 #ifdef CONFIG_NS_ABS_POS
479         iounmap(ns->mem.byte);
480 #else
481         vfree(ns->mem.byte);
482 #endif
483
484         return -ENOMEM;
485 }
486
487 /*
488  * Free the nandsim structure.
489  */
490 static void
491 free_nandsim(struct nandsim *ns)
492 {
493         kfree(ns->buf.byte);
494
495 #ifdef CONFIG_NS_ABS_POS
496         iounmap(ns->mem.byte);
497 #else
498         vfree(ns->mem.byte);
499 #endif
500
501         return;
502 }
503
504 /*
505  * Returns the string representation of 'state' state.
506  */
507 static char *
508 get_state_name(uint32_t state)
509 {
510         switch (NS_STATE(state)) {
511                 case STATE_CMD_READ0:
512                         return "STATE_CMD_READ0";
513                 case STATE_CMD_READ1:
514                         return "STATE_CMD_READ1";
515                 case STATE_CMD_PAGEPROG:
516                         return "STATE_CMD_PAGEPROG";
517                 case STATE_CMD_READOOB:
518                         return "STATE_CMD_READOOB";
519                 case STATE_CMD_READSTART:
520                         return "STATE_CMD_READSTART";
521                 case STATE_CMD_ERASE1:
522                         return "STATE_CMD_ERASE1";
523                 case STATE_CMD_STATUS:
524                         return "STATE_CMD_STATUS";
525                 case STATE_CMD_STATUS_M:
526                         return "STATE_CMD_STATUS_M";
527                 case STATE_CMD_SEQIN:
528                         return "STATE_CMD_SEQIN";
529                 case STATE_CMD_READID:
530                         return "STATE_CMD_READID";
531                 case STATE_CMD_ERASE2:
532                         return "STATE_CMD_ERASE2";
533                 case STATE_CMD_RESET:
534                         return "STATE_CMD_RESET";
535                 case STATE_ADDR_PAGE:
536                         return "STATE_ADDR_PAGE";
537                 case STATE_ADDR_SEC:
538                         return "STATE_ADDR_SEC";
539                 case STATE_ADDR_ZERO:
540                         return "STATE_ADDR_ZERO";
541                 case STATE_DATAIN:
542                         return "STATE_DATAIN";
543                 case STATE_DATAOUT:
544                         return "STATE_DATAOUT";
545                 case STATE_DATAOUT_ID:
546                         return "STATE_DATAOUT_ID";
547                 case STATE_DATAOUT_STATUS:
548                         return "STATE_DATAOUT_STATUS";
549                 case STATE_DATAOUT_STATUS_M:
550                         return "STATE_DATAOUT_STATUS_M";
551                 case STATE_READY:
552                         return "STATE_READY";
553                 case STATE_UNKNOWN:
554                         return "STATE_UNKNOWN";
555         }
556
557         NS_ERR("get_state_name: unknown state, BUG\n");
558         return NULL;
559 }
560
561 /*
562  * Check if command is valid.
563  *
564  * RETURNS: 1 if wrong command, 0 if right.
565  */
566 static int
567 check_command(int cmd)
568 {
569         switch (cmd) {
570
571         case NAND_CMD_READ0:
572         case NAND_CMD_READSTART:
573         case NAND_CMD_PAGEPROG:
574         case NAND_CMD_READOOB:
575         case NAND_CMD_ERASE1:
576         case NAND_CMD_STATUS:
577         case NAND_CMD_SEQIN:
578         case NAND_CMD_READID:
579         case NAND_CMD_ERASE2:
580         case NAND_CMD_RESET:
581         case NAND_CMD_READ1:
582                 return 0;
583
584         case NAND_CMD_STATUS_MULTI:
585         default:
586                 return 1;
587         }
588 }
589
590 /*
591  * Returns state after command is accepted by command number.
592  */
593 static uint32_t
594 get_state_by_command(unsigned command)
595 {
596         switch (command) {
597                 case NAND_CMD_READ0:
598                         return STATE_CMD_READ0;
599                 case NAND_CMD_READ1:
600                         return STATE_CMD_READ1;
601                 case NAND_CMD_PAGEPROG:
602                         return STATE_CMD_PAGEPROG;
603                 case NAND_CMD_READSTART:
604                         return STATE_CMD_READSTART;
605                 case NAND_CMD_READOOB:
606                         return STATE_CMD_READOOB;
607                 case NAND_CMD_ERASE1:
608                         return STATE_CMD_ERASE1;
609                 case NAND_CMD_STATUS:
610                         return STATE_CMD_STATUS;
611                 case NAND_CMD_STATUS_MULTI:
612                         return STATE_CMD_STATUS_M;
613                 case NAND_CMD_SEQIN:
614                         return STATE_CMD_SEQIN;
615                 case NAND_CMD_READID:
616                         return STATE_CMD_READID;
617                 case NAND_CMD_ERASE2:
618                         return STATE_CMD_ERASE2;
619                 case NAND_CMD_RESET:
620                         return STATE_CMD_RESET;
621         }
622
623         NS_ERR("get_state_by_command: unknown command, BUG\n");
624         return 0;
625 }
626
627 /*
628  * Move an address byte to the correspondent internal register.
629  */
630 static inline void
631 accept_addr_byte(struct nandsim *ns, u_char bt)
632 {
633         uint byte = (uint)bt;
634
635         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
636                 ns->regs.column |= (byte << 8 * ns->regs.count);
637         else {
638                 ns->regs.row |= (byte << 8 * (ns->regs.count -
639                                                 ns->geom.pgaddrbytes +
640                                                 ns->geom.secaddrbytes));
641         }
642
643         return;
644 }
645
646 /*
647  * Switch to STATE_READY state.
648  */
649 static inline void
650 switch_to_ready_state(struct nandsim *ns, u_char status)
651 {
652         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
653
654         ns->state       = STATE_READY;
655         ns->nxstate     = STATE_UNKNOWN;
656         ns->op          = NULL;
657         ns->npstates    = 0;
658         ns->stateidx    = 0;
659         ns->regs.num    = 0;
660         ns->regs.count  = 0;
661         ns->regs.off    = 0;
662         ns->regs.row    = 0;
663         ns->regs.column = 0;
664         ns->regs.status = status;
665 }
666
667 /*
668  * If the operation isn't known yet, try to find it in the global array
669  * of supported operations.
670  *
671  * Operation can be unknown because of the following.
672  *   1. New command was accepted and this is the firs call to find the
673  *      correspondent states chain. In this case ns->npstates = 0;
674  *   2. There is several operations which begin with the same command(s)
675  *      (for example program from the second half and read from the
676  *      second half operations both begin with the READ1 command). In this
677  *      case the ns->pstates[] array contains previous states.
678  *
679  * Thus, the function tries to find operation containing the following
680  * states (if the 'flag' parameter is 0):
681  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
682  *
683  * If (one and only one) matching operation is found, it is accepted (
684  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
685  * zeroed).
686  *
687  * If there are several maches, the current state is pushed to the
688  * ns->pstates.
689  *
690  * The operation can be unknown only while commands are input to the chip.
691  * As soon as address command is accepted, the operation must be known.
692  * In such situation the function is called with 'flag' != 0, and the
693  * operation is searched using the following pattern:
694  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
695  *
696  * It is supposed that this pattern must either match one operation on
697  * none. There can't be ambiguity in that case.
698  *
699  * If no matches found, the functions does the following:
700  *   1. if there are saved states present, try to ignore them and search
701  *      again only using the last command. If nothing was found, switch
702  *      to the STATE_READY state.
703  *   2. if there are no saved states, switch to the STATE_READY state.
704  *
705  * RETURNS: -2 - no matched operations found.
706  *          -1 - several matches.
707  *           0 - operation is found.
708  */
709 static int
710 find_operation(struct nandsim *ns, uint32_t flag)
711 {
712         int opsfound = 0;
713         int i, j, idx = 0;
714
715         for (i = 0; i < NS_OPER_NUM; i++) {
716
717                 int found = 1;
718
719                 if (!(ns->options & ops[i].reqopts))
720                         /* Ignore operations we can't perform */
721                         continue;
722
723                 if (flag) {
724                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
725                                 continue;
726                 } else {
727                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
728                                 continue;
729                 }
730
731                 for (j = 0; j < ns->npstates; j++)
732                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
733                                 && (ns->options & ops[idx].reqopts)) {
734                                 found = 0;
735                                 break;
736                         }
737
738                 if (found) {
739                         idx = i;
740                         opsfound += 1;
741                 }
742         }
743
744         if (opsfound == 1) {
745                 /* Exact match */
746                 ns->op = &ops[idx].states[0];
747                 if (flag) {
748                         /*
749                          * In this case the find_operation function was
750                          * called when address has just began input. But it isn't
751                          * yet fully input and the current state must
752                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
753                          * state must be the next state (ns->nxstate).
754                          */
755                         ns->stateidx = ns->npstates - 1;
756                 } else {
757                         ns->stateidx = ns->npstates;
758                 }
759                 ns->npstates = 0;
760                 ns->state = ns->op[ns->stateidx];
761                 ns->nxstate = ns->op[ns->stateidx + 1];
762                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
763                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
764                 return 0;
765         }
766
767         if (opsfound == 0) {
768                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
769                 if (ns->npstates != 0) {
770                         NS_DBG("find_operation: no operation found, try again with state %s\n",
771                                         get_state_name(ns->state));
772                         ns->npstates = 0;
773                         return find_operation(ns, 0);
774
775                 }
776                 NS_DBG("find_operation: no operations found\n");
777                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
778                 return -2;
779         }
780
781         if (flag) {
782                 /* This shouldn't happen */
783                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
784                 return -2;
785         }
786
787         NS_DBG("find_operation: there is still ambiguity\n");
788
789         ns->pstates[ns->npstates++] = ns->state;
790
791         return -1;
792 }
793
794 /*
795  * If state has any action bit, perform this action.
796  *
797  * RETURNS: 0 if success, -1 if error.
798  */
799 static int
800 do_state_action(struct nandsim *ns, uint32_t action)
801 {
802         int i, num;
803         int busdiv = ns->busw == 8 ? 1 : 2;
804
805         action &= ACTION_MASK;
806
807         /* Check that page address input is correct */
808         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
809                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
810                 return -1;
811         }
812
813         switch (action) {
814
815         case ACTION_CPY:
816                 /*
817                  * Copy page data to the internal buffer.
818                  */
819
820                 /* Column shouldn't be very large */
821                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
822                         NS_ERR("do_state_action: column number is too large\n");
823                         break;
824                 }
825                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
826                 memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num);
827
828                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
829                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
830
831                 if (ns->regs.off == 0)
832                         NS_LOG("read page %d\n", ns->regs.row);
833                 else if (ns->regs.off < ns->geom.pgsz)
834                         NS_LOG("read page %d (second half)\n", ns->regs.row);
835                 else
836                         NS_LOG("read OOB of page %d\n", ns->regs.row);
837
838                 NS_UDELAY(access_delay);
839                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
840
841                 break;
842
843         case ACTION_SECERASE:
844                 /*
845                  * Erase sector.
846                  */
847
848                 if (ns->lines.wp) {
849                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
850                         return -1;
851                 }
852
853                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
854                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
855                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
856                         return -1;
857                 }
858
859                 ns->regs.row = (ns->regs.row <<
860                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
861                 ns->regs.column = 0;
862
863                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
864                                 ns->regs.row, NS_RAW_OFFSET(ns));
865                 NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift));
866
867                 memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob);
868
869                 NS_MDELAY(erase_delay);
870
871                 break;
872
873         case ACTION_PRGPAGE:
874                 /*
875                  * Programm page - move internal buffer data to the page.
876                  */
877
878                 if (ns->lines.wp) {
879                         NS_WARN("do_state_action: device is write-protected, programm\n");
880                         return -1;
881                 }
882
883                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
884                 if (num != ns->regs.count) {
885                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
886                                         ns->regs.count, num);
887                         return -1;
888                 }
889
890                 for (i = 0; i < num; i++)
891                         ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i];
892
893                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
894                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
895                 NS_LOG("programm page %d\n", ns->regs.row);
896
897                 NS_UDELAY(programm_delay);
898                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
899
900                 break;
901
902         case ACTION_ZEROOFF:
903                 NS_DBG("do_state_action: set internal offset to 0\n");
904                 ns->regs.off = 0;
905                 break;
906
907         case ACTION_HALFOFF:
908                 if (!(ns->options & OPT_PAGE512_8BIT)) {
909                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
910                                 "byte page size 8x chips\n");
911                         return -1;
912                 }
913                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
914                 ns->regs.off = ns->geom.pgsz/2;
915                 break;
916
917         case ACTION_OOBOFF:
918                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
919                 ns->regs.off = ns->geom.pgsz;
920                 break;
921
922         default:
923                 NS_DBG("do_state_action: BUG! unknown action\n");
924         }
925
926         return 0;
927 }
928
929 /*
930  * Switch simulator's state.
931  */
932 static void
933 switch_state(struct nandsim *ns)
934 {
935         if (ns->op) {
936                 /*
937                  * The current operation have already been identified.
938                  * Just follow the states chain.
939                  */
940
941                 ns->stateidx += 1;
942                 ns->state = ns->nxstate;
943                 ns->nxstate = ns->op[ns->stateidx + 1];
944
945                 NS_DBG("switch_state: operation is known, switch to the next state, "
946                         "state: %s, nxstate: %s\n",
947                         get_state_name(ns->state), get_state_name(ns->nxstate));
948
949                 /* See, whether we need to do some action */
950                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
951                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
952                         return;
953                 }
954
955         } else {
956                 /*
957                  * We don't yet know which operation we perform.
958                  * Try to identify it.
959                  */
960
961                 /*
962                  *  The only event causing the switch_state function to
963                  *  be called with yet unknown operation is new command.
964                  */
965                 ns->state = get_state_by_command(ns->regs.command);
966
967                 NS_DBG("switch_state: operation is unknown, try to find it\n");
968
969                 if (find_operation(ns, 0) != 0)
970                         return;
971
972                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
973                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
974                         return;
975                 }
976         }
977
978         /* For 16x devices column means the page offset in words */
979         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
980                 NS_DBG("switch_state: double the column number for 16x device\n");
981                 ns->regs.column <<= 1;
982         }
983
984         if (NS_STATE(ns->nxstate) == STATE_READY) {
985                 /*
986                  * The current state is the last. Return to STATE_READY
987                  */
988
989                 u_char status = NS_STATUS_OK(ns);
990
991                 /* In case of data states, see if all bytes were input/output */
992                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
993                         && ns->regs.count != ns->regs.num) {
994                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
995                                         ns->regs.num - ns->regs.count);
996                         status = NS_STATUS_FAILED(ns);
997                 }
998
999                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1000
1001                 switch_to_ready_state(ns, status);
1002
1003                 return;
1004         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1005                 /*
1006                  * If the next state is data input/output, switch to it now
1007                  */
1008
1009                 ns->state      = ns->nxstate;
1010                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1011                 ns->regs.num   = ns->regs.count = 0;
1012
1013                 NS_DBG("switch_state: the next state is data I/O, switch, "
1014                         "state: %s, nxstate: %s\n",
1015                         get_state_name(ns->state), get_state_name(ns->nxstate));
1016
1017                 /*
1018                  * Set the internal register to the count of bytes which
1019                  * are expected to be input or output
1020                  */
1021                 switch (NS_STATE(ns->state)) {
1022                         case STATE_DATAIN:
1023                         case STATE_DATAOUT:
1024                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1025                                 break;
1026
1027                         case STATE_DATAOUT_ID:
1028                                 ns->regs.num = ns->geom.idbytes;
1029                                 break;
1030
1031                         case STATE_DATAOUT_STATUS:
1032                         case STATE_DATAOUT_STATUS_M:
1033                                 ns->regs.count = ns->regs.num = 0;
1034                                 break;
1035
1036                         default:
1037                                 NS_ERR("switch_state: BUG! unknown data state\n");
1038                 }
1039
1040         } else if (ns->nxstate & STATE_ADDR_MASK) {
1041                 /*
1042                  * If the next state is address input, set the internal
1043                  * register to the number of expected address bytes
1044                  */
1045
1046                 ns->regs.count = 0;
1047
1048                 switch (NS_STATE(ns->nxstate)) {
1049                         case STATE_ADDR_PAGE:
1050                                 ns->regs.num = ns->geom.pgaddrbytes;
1051
1052                                 break;
1053                         case STATE_ADDR_SEC:
1054                                 ns->regs.num = ns->geom.secaddrbytes;
1055                                 break;
1056
1057                         case STATE_ADDR_ZERO:
1058                                 ns->regs.num = 1;
1059                                 break;
1060
1061                         default:
1062                                 NS_ERR("switch_state: BUG! unknown address state\n");
1063                 }
1064         } else {
1065                 /*
1066                  * Just reset internal counters.
1067                  */
1068
1069                 ns->regs.num = 0;
1070                 ns->regs.count = 0;
1071         }
1072 }
1073
1074 static void
1075 ns_hwcontrol(struct mtd_info *mtd, int cmd)
1076 {
1077         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1078
1079         switch (cmd) {
1080
1081         /* set CLE line high */
1082         case NAND_CTL_SETCLE:
1083                 NS_DBG("ns_hwcontrol: start command latch cycles\n");
1084                 ns->lines.cle  = 1;
1085                 break;
1086
1087         /* set CLE line low */
1088         case NAND_CTL_CLRCLE:
1089                 NS_DBG("ns_hwcontrol: stop command latch cycles\n");
1090                 ns->lines.cle  = 0;
1091                 break;
1092
1093         /* set ALE line high */
1094         case NAND_CTL_SETALE:
1095                 NS_DBG("ns_hwcontrol: start address latch cycles\n");
1096                 ns->lines.ale   = 1;
1097                 break;
1098
1099         /* set ALE line low */
1100         case NAND_CTL_CLRALE:
1101                 NS_DBG("ns_hwcontrol: stop address latch cycles\n");
1102                 ns->lines.ale  = 0;
1103                 break;
1104
1105         /* set WP line high */
1106         case NAND_CTL_SETWP:
1107                 NS_DBG("ns_hwcontrol: enable write protection\n");
1108                 ns->lines.wp = 1;
1109                 break;
1110
1111         /* set WP line low */
1112         case NAND_CTL_CLRWP:
1113                 NS_DBG("ns_hwcontrol: disable write protection\n");
1114                 ns->lines.wp = 0;
1115                 break;
1116
1117         /* set CE line low */
1118         case NAND_CTL_SETNCE:
1119                 NS_DBG("ns_hwcontrol: enable chip\n");
1120                 ns->lines.ce = 1;
1121                 break;
1122
1123         /* set CE line high */
1124         case NAND_CTL_CLRNCE:
1125                 NS_DBG("ns_hwcontrol: disable chip\n");
1126                 ns->lines.ce = 0;
1127                 break;
1128
1129         default:
1130                 NS_ERR("hwcontrol: unknown command\n");
1131         }
1132
1133         return;
1134 }
1135
1136 static u_char
1137 ns_nand_read_byte(struct mtd_info *mtd)
1138 {
1139         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1140         u_char outb = 0x00;
1141
1142         /* Sanity and correctness checks */
1143         if (!ns->lines.ce) {
1144                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1145                 return outb;
1146         }
1147         if (ns->lines.ale || ns->lines.cle) {
1148                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1149                 return outb;
1150         }
1151         if (!(ns->state & STATE_DATAOUT_MASK)) {
1152                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1153                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1154                 return outb;
1155         }
1156
1157         /* Status register may be read as many times as it is wanted */
1158         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1159                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1160                 return ns->regs.status;
1161         }
1162
1163         /* Check if there is any data in the internal buffer which may be read */
1164         if (ns->regs.count == ns->regs.num) {
1165                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1166                 return outb;
1167         }
1168
1169         switch (NS_STATE(ns->state)) {
1170                 case STATE_DATAOUT:
1171                         if (ns->busw == 8) {
1172                                 outb = ns->buf.byte[ns->regs.count];
1173                                 ns->regs.count += 1;
1174                         } else {
1175                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1176                                 ns->regs.count += 2;
1177                         }
1178                         break;
1179                 case STATE_DATAOUT_ID:
1180                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1181                         outb = ns->ids[ns->regs.count];
1182                         ns->regs.count += 1;
1183                         break;
1184                 default:
1185                         BUG();
1186         }
1187
1188         if (ns->regs.count == ns->regs.num) {
1189                 NS_DBG("read_byte: all bytes were read\n");
1190
1191                 /*
1192                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1193                  * new read operation cycle.
1194                  */
1195                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1196                         ns->regs.count = 0;
1197                         if (ns->regs.row + 1 < ns->geom.pgnum)
1198                                 ns->regs.row += 1;
1199                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1200                         do_state_action(ns, ACTION_CPY);
1201                 }
1202                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1203                         switch_state(ns);
1204
1205         }
1206
1207         return outb;
1208 }
1209
1210 static void
1211 ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1212 {
1213         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1214
1215         /* Sanity and correctness checks */
1216         if (!ns->lines.ce) {
1217                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1218                 return;
1219         }
1220         if (ns->lines.ale && ns->lines.cle) {
1221                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1222                 return;
1223         }
1224
1225         if (ns->lines.cle == 1) {
1226                 /*
1227                  * The byte written is a command.
1228                  */
1229
1230                 if (byte == NAND_CMD_RESET) {
1231                         NS_LOG("reset chip\n");
1232                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1233                         return;
1234                 }
1235
1236                 /*
1237                  * Chip might still be in STATE_DATAOUT
1238                  * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1239                  * STATE_DATAOUT_STATUS_M state. If so, switch state.
1240                  */
1241                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1242                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1243                         || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1244                         switch_state(ns);
1245
1246                 /* Check if chip is expecting command */
1247                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1248                         /*
1249                          * We are in situation when something else (not command)
1250                          * was expected but command was input. In this case ignore
1251                          * previous command(s)/state(s) and accept the last one.
1252                          */
1253                         NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1254                                 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1255                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1256                 }
1257
1258                 /* Check that the command byte is correct */
1259                 if (check_command(byte)) {
1260                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1261                         return;
1262                 }
1263
1264                 NS_DBG("command byte corresponding to %s state accepted\n",
1265                         get_state_name(get_state_by_command(byte)));
1266                 ns->regs.command = byte;
1267                 switch_state(ns);
1268
1269         } else if (ns->lines.ale == 1) {
1270                 /*
1271                  * The byte written is an address.
1272                  */
1273
1274                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1275
1276                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
1277
1278                         if (find_operation(ns, 1) < 0)
1279                                 return;
1280
1281                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1282                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1283                                 return;
1284                         }
1285
1286                         ns->regs.count = 0;
1287                         switch (NS_STATE(ns->nxstate)) {
1288                                 case STATE_ADDR_PAGE:
1289                                         ns->regs.num = ns->geom.pgaddrbytes;
1290                                         break;
1291                                 case STATE_ADDR_SEC:
1292                                         ns->regs.num = ns->geom.secaddrbytes;
1293                                         break;
1294                                 case STATE_ADDR_ZERO:
1295                                         ns->regs.num = 1;
1296                                         break;
1297                                 default:
1298                                         BUG();
1299                         }
1300                 }
1301
1302                 /* Check that chip is expecting address */
1303                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1304                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1305                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1306                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1307                         return;
1308                 }
1309
1310                 /* Check if this is expected byte */
1311                 if (ns->regs.count == ns->regs.num) {
1312                         NS_ERR("write_byte: no more address bytes expected\n");
1313                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1314                         return;
1315                 }
1316
1317                 accept_addr_byte(ns, byte);
1318
1319                 ns->regs.count += 1;
1320
1321                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1322                                 (uint)byte, ns->regs.count, ns->regs.num);
1323
1324                 if (ns->regs.count == ns->regs.num) {
1325                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1326                         switch_state(ns);
1327                 }
1328
1329         } else {
1330                 /*
1331                  * The byte written is an input data.
1332                  */
1333
1334                 /* Check that chip is expecting data input */
1335                 if (!(ns->state & STATE_DATAIN_MASK)) {
1336                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1337                                 "switch to %s\n", (uint)byte,
1338                                 get_state_name(ns->state), get_state_name(STATE_READY));
1339                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1340                         return;
1341                 }
1342
1343                 /* Check if this is expected byte */
1344                 if (ns->regs.count == ns->regs.num) {
1345                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1346                                         ns->regs.num);
1347                         return;
1348                 }
1349
1350                 if (ns->busw == 8) {
1351                         ns->buf.byte[ns->regs.count] = byte;
1352                         ns->regs.count += 1;
1353                 } else {
1354                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1355                         ns->regs.count += 2;
1356                 }
1357         }
1358
1359         return;
1360 }
1361
1362 static int
1363 ns_device_ready(struct mtd_info *mtd)
1364 {
1365         NS_DBG("device_ready\n");
1366         return 1;
1367 }
1368
1369 static uint16_t
1370 ns_nand_read_word(struct mtd_info *mtd)
1371 {
1372         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1373
1374         NS_DBG("read_word\n");
1375
1376         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1377 }
1378
1379 static void
1380 ns_nand_write_word(struct mtd_info *mtd, uint16_t word)
1381 {
1382         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1383
1384         NS_DBG("write_word\n");
1385
1386         chip->write_byte(mtd, word & 0xFF);
1387         chip->write_byte(mtd, word >> 8);
1388 }
1389
1390 static void
1391 ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1392 {
1393         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1394
1395         /* Check that chip is expecting data input */
1396         if (!(ns->state & STATE_DATAIN_MASK)) {
1397                 NS_ERR("write_buf: data input isn't expected, state is %s, "
1398                         "switch to STATE_READY\n", get_state_name(ns->state));
1399                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1400                 return;
1401         }
1402
1403         /* Check if these are expected bytes */
1404         if (ns->regs.count + len > ns->regs.num) {
1405                 NS_ERR("write_buf: too many input bytes\n");
1406                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1407                 return;
1408         }
1409
1410         memcpy(ns->buf.byte + ns->regs.count, buf, len);
1411         ns->regs.count += len;
1412
1413         if (ns->regs.count == ns->regs.num) {
1414                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1415         }
1416 }
1417
1418 static void
1419 ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1420 {
1421         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1422
1423         /* Sanity and correctness checks */
1424         if (!ns->lines.ce) {
1425                 NS_ERR("read_buf: chip is disabled\n");
1426                 return;
1427         }
1428         if (ns->lines.ale || ns->lines.cle) {
1429                 NS_ERR("read_buf: ALE or CLE pin is high\n");
1430                 return;
1431         }
1432         if (!(ns->state & STATE_DATAOUT_MASK)) {
1433                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1434                         get_state_name(ns->state));
1435                 return;
1436         }
1437
1438         if (NS_STATE(ns->state) != STATE_DATAOUT) {
1439                 int i;
1440
1441                 for (i = 0; i < len; i++)
1442                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1443
1444                 return;
1445         }
1446
1447         /* Check if these are expected bytes */
1448         if (ns->regs.count + len > ns->regs.num) {
1449                 NS_ERR("read_buf: too many bytes to read\n");
1450                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1451                 return;
1452         }
1453
1454         memcpy(buf, ns->buf.byte + ns->regs.count, len);
1455         ns->regs.count += len;
1456
1457         if (ns->regs.count == ns->regs.num) {
1458                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1459                         ns->regs.count = 0;
1460                         if (ns->regs.row + 1 < ns->geom.pgnum)
1461                                 ns->regs.row += 1;
1462                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1463                         do_state_action(ns, ACTION_CPY);
1464                 }
1465                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1466                         switch_state(ns);
1467         }
1468
1469         return;
1470 }
1471
1472 static int
1473 ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1474 {
1475         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1476
1477         if (!memcmp(buf, &ns_verify_buf[0], len)) {
1478                 NS_DBG("verify_buf: the buffer is OK\n");
1479                 return 0;
1480         } else {
1481                 NS_DBG("verify_buf: the buffer is wrong\n");
1482                 return -EFAULT;
1483         }
1484 }
1485
1486 /*
1487  * Module initialization function
1488  */
1489 static int __init ns_init_module(void)
1490 {
1491         struct nand_chip *chip;
1492         struct nandsim *nand;
1493         int retval = -ENOMEM;
1494
1495         if (bus_width != 8 && bus_width != 16) {
1496                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1497                 return -EINVAL;
1498         }
1499
1500         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1501         nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1502                                 + sizeof(struct nandsim), GFP_KERNEL);
1503         if (!nsmtd) {
1504                 NS_ERR("unable to allocate core structures.\n");
1505                 return -ENOMEM;
1506         }
1507         memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1508                         sizeof(struct nandsim));
1509         chip        = (struct nand_chip *)(nsmtd + 1);
1510         nsmtd->priv = (void *)chip;
1511         nand        = (struct nandsim *)(chip + 1);
1512         chip->priv  = (void *)nand;
1513
1514         /*
1515          * Register simulator's callbacks.
1516          */
1517         chip->hwcontrol  = ns_hwcontrol;
1518         chip->read_byte  = ns_nand_read_byte;
1519         chip->dev_ready  = ns_device_ready;
1520         chip->write_byte = ns_nand_write_byte;
1521         chip->write_buf  = ns_nand_write_buf;
1522         chip->read_buf   = ns_nand_read_buf;
1523         chip->verify_buf = ns_nand_verify_buf;
1524         chip->write_word = ns_nand_write_word;
1525         chip->read_word  = ns_nand_read_word;
1526         chip->eccmode    = NAND_ECC_SOFT;
1527         chip->options   |= NAND_SKIP_BBTSCAN;
1528
1529         /*
1530          * Perform minimum nandsim structure initialization to handle
1531          * the initial ID read command correctly
1532          */
1533         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1534                 nand->geom.idbytes = 4;
1535         else
1536                 nand->geom.idbytes = 2;
1537         nand->regs.status = NS_STATUS_OK(nand);
1538         nand->nxstate = STATE_UNKNOWN;
1539         nand->options |= OPT_PAGE256; /* temporary value */
1540         nand->ids[0] = first_id_byte;
1541         nand->ids[1] = second_id_byte;
1542         nand->ids[2] = third_id_byte;
1543         nand->ids[3] = fourth_id_byte;
1544         if (bus_width == 16) {
1545                 nand->busw = 16;
1546                 chip->options |= NAND_BUSWIDTH_16;
1547         }
1548
1549         if ((retval = nand_scan(nsmtd, 1)) != 0) {
1550                 NS_ERR("can't register NAND Simulator\n");
1551                 if (retval > 0)
1552                         retval = -ENXIO;
1553                 goto error;
1554         }
1555
1556         if ((retval = init_nandsim(nsmtd)) != 0) {
1557                 NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
1558                 goto error;
1559         }
1560
1561         if ((retval = nand_default_bbt(nsmtd)) != 0) {
1562                 free_nandsim(nand);
1563                 goto error;
1564         }
1565
1566         /* Register NAND as one big partition */
1567         add_mtd_partitions(nsmtd, &nand->part, 1);
1568
1569         return 0;
1570
1571 error:
1572         kfree(nsmtd);
1573
1574         return retval;
1575 }
1576
1577 module_init(ns_init_module);
1578
1579 /*
1580  * Module clean-up function
1581  */
1582 static void __exit ns_cleanup_module(void)
1583 {
1584         struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
1585
1586         free_nandsim(ns);    /* Free nandsim private resources */
1587         nand_release(nsmtd); /* Unregisterd drived */
1588         kfree(nsmtd);        /* Free other structures */
1589 }
1590
1591 module_exit(ns_cleanup_module);
1592
1593 MODULE_LICENSE ("GPL");
1594 MODULE_AUTHOR ("Artem B. Bityuckiy");
1595 MODULE_DESCRIPTION ("The NAND flash simulator");
1596