firewire: fw-ohci: log regAccessFail events
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         u32 version;
175         __iomem char *registers;
176         dma_addr_t self_id_bus;
177         __le32 *self_id_cpu;
178         struct tasklet_struct bus_reset_tasklet;
179         int node_id;
180         int generation;
181         int request_generation;
182         u32 bus_seconds;
183         bool old_uninorth;
184
185         /*
186          * Spinlock for accessing fw_ohci data.  Never call out of
187          * this driver with this lock held.
188          */
189         spinlock_t lock;
190         u32 self_id_buffer[512];
191
192         /* Config rom buffers */
193         __be32 *config_rom;
194         dma_addr_t config_rom_bus;
195         __be32 *next_config_rom;
196         dma_addr_t next_config_rom_bus;
197         u32 next_header;
198
199         struct ar_context ar_request_ctx;
200         struct ar_context ar_response_ctx;
201         struct context at_request_ctx;
202         struct context at_response_ctx;
203
204         u32 it_context_mask;
205         struct iso_context *it_context_list;
206         u32 ir_context_mask;
207         struct iso_context *ir_context_list;
208 };
209
210 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
211 {
212         return container_of(card, struct fw_ohci, card);
213 }
214
215 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
216 #define IR_CONTEXT_BUFFER_FILL          0x80000000
217 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
218 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
219 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
220 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
221
222 #define CONTEXT_RUN     0x8000
223 #define CONTEXT_WAKE    0x1000
224 #define CONTEXT_DEAD    0x0800
225 #define CONTEXT_ACTIVE  0x0400
226
227 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
228 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
229 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
230
231 #define FW_OHCI_MAJOR                   240
232 #define OHCI1394_REGISTER_SIZE          0x800
233 #define OHCI_LOOP_COUNT                 500
234 #define OHCI1394_PCI_HCI_Control        0x40
235 #define SELF_ID_BUF_SIZE                0x800
236 #define OHCI_TCODE_PHY_PACKET           0x0e
237 #define OHCI_VERSION_1_1                0x010010
238
239 static char ohci_driver_name[] = KBUILD_MODNAME;
240
241 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
242
243 #define OHCI_PARAM_DEBUG_IRQS           1
244 #define OHCI_PARAM_DEBUG_SELFIDS        2
245 #define OHCI_PARAM_DEBUG_AT_AR          4
246
247 static int param_debug;
248 module_param_named(debug, param_debug, int, 0644);
249 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
250         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
251         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
252         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
253         ", or a combination, or all = -1)");
254
255 static void log_irqs(u32 evt)
256 {
257         if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
258                 return;
259
260         printk(KERN_DEBUG KBUILD_MODNAME ": IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s\n",
261                evt,
262                evt & OHCI1394_selfIDComplete    ? " selfID"             : "",
263                evt & OHCI1394_RQPkt             ? " AR_req"             : "",
264                evt & OHCI1394_RSPkt             ? " AR_resp"            : "",
265                evt & OHCI1394_reqTxComplete     ? " AT_req"             : "",
266                evt & OHCI1394_respTxComplete    ? " AT_resp"            : "",
267                evt & OHCI1394_isochRx           ? " IR"                 : "",
268                evt & OHCI1394_isochTx           ? " IT"                 : "",
269                evt & OHCI1394_postedWriteErr    ? " postedWriteErr"     : "",
270                evt & OHCI1394_cycleTooLong      ? " cycleTooLong"       : "",
271                evt & OHCI1394_cycle64Seconds    ? " cycle64Seconds"     : "",
272                evt & OHCI1394_regAccessFail     ? " regAccessFail"      : "",
273                evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
274                        OHCI1394_RSPkt | OHCI1394_reqTxComplete |
275                        OHCI1394_respTxComplete | OHCI1394_isochRx |
276                        OHCI1394_isochTx | OHCI1394_postedWriteErr |
277                        OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
278                        OHCI1394_regAccessFail)
279                                                 ? " ?"                  : "");
280 }
281
282 static const char *speed[] = {
283         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
284 };
285 static const char *power[] = {
286         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
287         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
288 };
289 static const char port[] = { '.', '-', 'p', 'c', };
290
291 static char _p(u32 *s, int shift)
292 {
293         return port[*s >> shift & 3];
294 }
295
296 static void log_selfids(int generation, int self_id_count, u32 *s)
297 {
298         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
299                 return;
300
301         printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d\n",
302                self_id_count, generation);
303
304         for (; self_id_count--; ++s)
305                 if ((*s & 1 << 23) == 0)
306                         printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
307                                "%s gc=%d %s %s%s%s\n",
308                                *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
309                                speed[*s >> 14 & 3], *s >> 16 & 63,
310                                power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
311                                *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
312                 else
313                         printk(KERN_DEBUG "selfID n: %08x, phy %d "
314                                "[%c%c%c%c%c%c%c%c]\n",
315                                *s, *s >> 24 & 63,
316                                _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
317                                _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
318 }
319
320 static const char *evts[] = {
321         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
322         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
323         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
324         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
325         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
326         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
327         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
328         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
329         [0x10] = "-reserved-",          [0x11] = "ack_complete",
330         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
331         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
332         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
333         [0x18] = "-reserved-",          [0x19] = "-reserved-",
334         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
335         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
336         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
337         [0x20] = "pending/cancelled",
338 };
339 static const char *tcodes[] = {
340         [0x0] = "QW req",               [0x1] = "BW req",
341         [0x2] = "W resp",               [0x3] = "-reserved-",
342         [0x4] = "QR req",               [0x5] = "BR req",
343         [0x6] = "QR resp",              [0x7] = "BR resp",
344         [0x8] = "cycle start",          [0x9] = "Lk req",
345         [0xa] = "async stream packet",  [0xb] = "Lk resp",
346         [0xc] = "-reserved-",           [0xd] = "-reserved-",
347         [0xe] = "link internal",        [0xf] = "-reserved-",
348 };
349 static const char *phys[] = {
350         [0x0] = "phy config packet",    [0x1] = "link-on packet",
351         [0x2] = "self-id packet",       [0x3] = "-reserved-",
352 };
353
354 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
355 {
356         int tcode = header[0] >> 4 & 0xf;
357         char specific[12];
358
359         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
360                 return;
361
362         if (unlikely(evt >= ARRAY_SIZE(evts)))
363                         evt = 0x1f;
364
365         if (header[0] == ~header[1]) {
366                 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
367                        dir, evts[evt], phys[header[0] >> 30 & 0x3],
368                        header[0]);
369                 return;
370         }
371
372         switch (tcode) {
373         case 0x0: case 0x6: case 0x8:
374                 snprintf(specific, sizeof(specific), " = %08x",
375                          be32_to_cpu((__force __be32)header[3]));
376                 break;
377         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
378                 snprintf(specific, sizeof(specific), " %x,%x",
379                          header[3] >> 16, header[3] & 0xffff);
380                 break;
381         default:
382                 specific[0] = '\0';
383         }
384
385         switch (tcode) {
386         case 0xe: case 0xa:
387                 printk(KERN_DEBUG "A%c %s, %s\n",
388                        dir, evts[evt], tcodes[tcode]);
389                 break;
390         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
391                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
392                        "%04x -> %04x, %s, "
393                        "%s, %04x%08x%s\n",
394                        dir, speed, header[0] >> 10 & 0x3f,
395                        header[1] >> 16, header[0] >> 16, evts[evt],
396                        tcodes[tcode], header[1] & 0xffff, header[2], specific);
397                 break;
398         default:
399                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
400                        "%04x -> %04x, %s, "
401                        "%s%s\n",
402                        dir, speed, header[0] >> 10 & 0x3f,
403                        header[1] >> 16, header[0] >> 16, evts[evt],
404                        tcodes[tcode], specific);
405         }
406 }
407
408 #else
409
410 #define log_irqs(evt)
411 #define log_selfids(generation, self_id_count, sid)
412 #define log_ar_at_event(dir, speed, header, evt)
413
414 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
415
416 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
417 {
418         writel(data, ohci->registers + offset);
419 }
420
421 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
422 {
423         return readl(ohci->registers + offset);
424 }
425
426 static inline void flush_writes(const struct fw_ohci *ohci)
427 {
428         /* Do a dummy read to flush writes. */
429         reg_read(ohci, OHCI1394_Version);
430 }
431
432 static int
433 ohci_update_phy_reg(struct fw_card *card, int addr,
434                     int clear_bits, int set_bits)
435 {
436         struct fw_ohci *ohci = fw_ohci(card);
437         u32 val, old;
438
439         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
440         flush_writes(ohci);
441         msleep(2);
442         val = reg_read(ohci, OHCI1394_PhyControl);
443         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
444                 fw_error("failed to set phy reg bits.\n");
445                 return -EBUSY;
446         }
447
448         old = OHCI1394_PhyControl_ReadData(val);
449         old = (old & ~clear_bits) | set_bits;
450         reg_write(ohci, OHCI1394_PhyControl,
451                   OHCI1394_PhyControl_Write(addr, old));
452
453         return 0;
454 }
455
456 static int ar_context_add_page(struct ar_context *ctx)
457 {
458         struct device *dev = ctx->ohci->card.device;
459         struct ar_buffer *ab;
460         dma_addr_t uninitialized_var(ab_bus);
461         size_t offset;
462
463         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
464         if (ab == NULL)
465                 return -ENOMEM;
466
467         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
468         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
469                                                     DESCRIPTOR_STATUS |
470                                                     DESCRIPTOR_BRANCH_ALWAYS);
471         offset = offsetof(struct ar_buffer, data);
472         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
473         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
474         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
475         ab->descriptor.branch_address = 0;
476
477         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
478         ctx->last_buffer->next = ab;
479         ctx->last_buffer = ab;
480
481         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
482         flush_writes(ctx->ohci);
483
484         return 0;
485 }
486
487 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
488 #define cond_le32_to_cpu(v) \
489         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
490 #else
491 #define cond_le32_to_cpu(v) le32_to_cpu(v)
492 #endif
493
494 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
495 {
496         struct fw_ohci *ohci = ctx->ohci;
497         struct fw_packet p;
498         u32 status, length, tcode;
499         int evt;
500
501         p.header[0] = cond_le32_to_cpu(buffer[0]);
502         p.header[1] = cond_le32_to_cpu(buffer[1]);
503         p.header[2] = cond_le32_to_cpu(buffer[2]);
504
505         tcode = (p.header[0] >> 4) & 0x0f;
506         switch (tcode) {
507         case TCODE_WRITE_QUADLET_REQUEST:
508         case TCODE_READ_QUADLET_RESPONSE:
509                 p.header[3] = (__force __u32) buffer[3];
510                 p.header_length = 16;
511                 p.payload_length = 0;
512                 break;
513
514         case TCODE_READ_BLOCK_REQUEST :
515                 p.header[3] = cond_le32_to_cpu(buffer[3]);
516                 p.header_length = 16;
517                 p.payload_length = 0;
518                 break;
519
520         case TCODE_WRITE_BLOCK_REQUEST:
521         case TCODE_READ_BLOCK_RESPONSE:
522         case TCODE_LOCK_REQUEST:
523         case TCODE_LOCK_RESPONSE:
524                 p.header[3] = cond_le32_to_cpu(buffer[3]);
525                 p.header_length = 16;
526                 p.payload_length = p.header[3] >> 16;
527                 break;
528
529         case TCODE_WRITE_RESPONSE:
530         case TCODE_READ_QUADLET_REQUEST:
531         case OHCI_TCODE_PHY_PACKET:
532                 p.header_length = 12;
533                 p.payload_length = 0;
534                 break;
535         }
536
537         p.payload = (void *) buffer + p.header_length;
538
539         /* FIXME: What to do about evt_* errors? */
540         length = (p.header_length + p.payload_length + 3) / 4;
541         status = cond_le32_to_cpu(buffer[length]);
542         evt    = (status >> 16) & 0x1f;
543
544         p.ack        = evt - 16;
545         p.speed      = (status >> 21) & 0x7;
546         p.timestamp  = status & 0xffff;
547         p.generation = ohci->request_generation;
548
549         log_ar_at_event('R', p.speed, p.header, evt);
550
551         /*
552          * The OHCI bus reset handler synthesizes a phy packet with
553          * the new generation number when a bus reset happens (see
554          * section 8.4.2.3).  This helps us determine when a request
555          * was received and make sure we send the response in the same
556          * generation.  We only need this for requests; for responses
557          * we use the unique tlabel for finding the matching
558          * request.
559          */
560
561         if (evt == OHCI1394_evt_bus_reset)
562                 ohci->request_generation = (p.header[2] >> 16) & 0xff;
563         else if (ctx == &ohci->ar_request_ctx)
564                 fw_core_handle_request(&ohci->card, &p);
565         else
566                 fw_core_handle_response(&ohci->card, &p);
567
568         return buffer + length + 1;
569 }
570
571 static void ar_context_tasklet(unsigned long data)
572 {
573         struct ar_context *ctx = (struct ar_context *)data;
574         struct fw_ohci *ohci = ctx->ohci;
575         struct ar_buffer *ab;
576         struct descriptor *d;
577         void *buffer, *end;
578
579         ab = ctx->current_buffer;
580         d = &ab->descriptor;
581
582         if (d->res_count == 0) {
583                 size_t size, rest, offset;
584                 dma_addr_t start_bus;
585                 void *start;
586
587                 /*
588                  * This descriptor is finished and we may have a
589                  * packet split across this and the next buffer. We
590                  * reuse the page for reassembling the split packet.
591                  */
592
593                 offset = offsetof(struct ar_buffer, data);
594                 start = buffer = ab;
595                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
596
597                 ab = ab->next;
598                 d = &ab->descriptor;
599                 size = buffer + PAGE_SIZE - ctx->pointer;
600                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
601                 memmove(buffer, ctx->pointer, size);
602                 memcpy(buffer + size, ab->data, rest);
603                 ctx->current_buffer = ab;
604                 ctx->pointer = (void *) ab->data + rest;
605                 end = buffer + size + rest;
606
607                 while (buffer < end)
608                         buffer = handle_ar_packet(ctx, buffer);
609
610                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
611                                   start, start_bus);
612                 ar_context_add_page(ctx);
613         } else {
614                 buffer = ctx->pointer;
615                 ctx->pointer = end =
616                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
617
618                 while (buffer < end)
619                         buffer = handle_ar_packet(ctx, buffer);
620         }
621 }
622
623 static int
624 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
625 {
626         struct ar_buffer ab;
627
628         ctx->regs        = regs;
629         ctx->ohci        = ohci;
630         ctx->last_buffer = &ab;
631         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
632
633         ar_context_add_page(ctx);
634         ar_context_add_page(ctx);
635         ctx->current_buffer = ab.next;
636         ctx->pointer = ctx->current_buffer->data;
637
638         return 0;
639 }
640
641 static void ar_context_run(struct ar_context *ctx)
642 {
643         struct ar_buffer *ab = ctx->current_buffer;
644         dma_addr_t ab_bus;
645         size_t offset;
646
647         offset = offsetof(struct ar_buffer, data);
648         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
649
650         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
651         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
652         flush_writes(ctx->ohci);
653 }
654
655 static struct descriptor *
656 find_branch_descriptor(struct descriptor *d, int z)
657 {
658         int b, key;
659
660         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
661         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
662
663         /* figure out which descriptor the branch address goes in */
664         if (z == 2 && (b == 3 || key == 2))
665                 return d;
666         else
667                 return d + z - 1;
668 }
669
670 static void context_tasklet(unsigned long data)
671 {
672         struct context *ctx = (struct context *) data;
673         struct descriptor *d, *last;
674         u32 address;
675         int z;
676         struct descriptor_buffer *desc;
677
678         desc = list_entry(ctx->buffer_list.next,
679                         struct descriptor_buffer, list);
680         last = ctx->last;
681         while (last->branch_address != 0) {
682                 struct descriptor_buffer *old_desc = desc;
683                 address = le32_to_cpu(last->branch_address);
684                 z = address & 0xf;
685                 address &= ~0xf;
686
687                 /* If the branch address points to a buffer outside of the
688                  * current buffer, advance to the next buffer. */
689                 if (address < desc->buffer_bus ||
690                                 address >= desc->buffer_bus + desc->used)
691                         desc = list_entry(desc->list.next,
692                                         struct descriptor_buffer, list);
693                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
694                 last = find_branch_descriptor(d, z);
695
696                 if (!ctx->callback(ctx, d, last))
697                         break;
698
699                 if (old_desc != desc) {
700                         /* If we've advanced to the next buffer, move the
701                          * previous buffer to the free list. */
702                         unsigned long flags;
703                         old_desc->used = 0;
704                         spin_lock_irqsave(&ctx->ohci->lock, flags);
705                         list_move_tail(&old_desc->list, &ctx->buffer_list);
706                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
707                 }
708                 ctx->last = last;
709         }
710 }
711
712 /*
713  * Allocate a new buffer and add it to the list of free buffers for this
714  * context.  Must be called with ohci->lock held.
715  */
716 static int
717 context_add_buffer(struct context *ctx)
718 {
719         struct descriptor_buffer *desc;
720         dma_addr_t uninitialized_var(bus_addr);
721         int offset;
722
723         /*
724          * 16MB of descriptors should be far more than enough for any DMA
725          * program.  This will catch run-away userspace or DoS attacks.
726          */
727         if (ctx->total_allocation >= 16*1024*1024)
728                 return -ENOMEM;
729
730         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
731                         &bus_addr, GFP_ATOMIC);
732         if (!desc)
733                 return -ENOMEM;
734
735         offset = (void *)&desc->buffer - (void *)desc;
736         desc->buffer_size = PAGE_SIZE - offset;
737         desc->buffer_bus = bus_addr + offset;
738         desc->used = 0;
739
740         list_add_tail(&desc->list, &ctx->buffer_list);
741         ctx->total_allocation += PAGE_SIZE;
742
743         return 0;
744 }
745
746 static int
747 context_init(struct context *ctx, struct fw_ohci *ohci,
748              u32 regs, descriptor_callback_t callback)
749 {
750         ctx->ohci = ohci;
751         ctx->regs = regs;
752         ctx->total_allocation = 0;
753
754         INIT_LIST_HEAD(&ctx->buffer_list);
755         if (context_add_buffer(ctx) < 0)
756                 return -ENOMEM;
757
758         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
759                         struct descriptor_buffer, list);
760
761         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
762         ctx->callback = callback;
763
764         /*
765          * We put a dummy descriptor in the buffer that has a NULL
766          * branch address and looks like it's been sent.  That way we
767          * have a descriptor to append DMA programs to.
768          */
769         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
770         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
771         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
772         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
773         ctx->last = ctx->buffer_tail->buffer;
774         ctx->prev = ctx->buffer_tail->buffer;
775
776         return 0;
777 }
778
779 static void
780 context_release(struct context *ctx)
781 {
782         struct fw_card *card = &ctx->ohci->card;
783         struct descriptor_buffer *desc, *tmp;
784
785         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
786                 dma_free_coherent(card->device, PAGE_SIZE, desc,
787                         desc->buffer_bus -
788                         ((void *)&desc->buffer - (void *)desc));
789 }
790
791 /* Must be called with ohci->lock held */
792 static struct descriptor *
793 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
794 {
795         struct descriptor *d = NULL;
796         struct descriptor_buffer *desc = ctx->buffer_tail;
797
798         if (z * sizeof(*d) > desc->buffer_size)
799                 return NULL;
800
801         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
802                 /* No room for the descriptor in this buffer, so advance to the
803                  * next one. */
804
805                 if (desc->list.next == &ctx->buffer_list) {
806                         /* If there is no free buffer next in the list,
807                          * allocate one. */
808                         if (context_add_buffer(ctx) < 0)
809                                 return NULL;
810                 }
811                 desc = list_entry(desc->list.next,
812                                 struct descriptor_buffer, list);
813                 ctx->buffer_tail = desc;
814         }
815
816         d = desc->buffer + desc->used / sizeof(*d);
817         memset(d, 0, z * sizeof(*d));
818         *d_bus = desc->buffer_bus + desc->used;
819
820         return d;
821 }
822
823 static void context_run(struct context *ctx, u32 extra)
824 {
825         struct fw_ohci *ohci = ctx->ohci;
826
827         reg_write(ohci, COMMAND_PTR(ctx->regs),
828                   le32_to_cpu(ctx->last->branch_address));
829         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
830         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
831         flush_writes(ohci);
832 }
833
834 static void context_append(struct context *ctx,
835                            struct descriptor *d, int z, int extra)
836 {
837         dma_addr_t d_bus;
838         struct descriptor_buffer *desc = ctx->buffer_tail;
839
840         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
841
842         desc->used += (z + extra) * sizeof(*d);
843         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
844         ctx->prev = find_branch_descriptor(d, z);
845
846         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
847         flush_writes(ctx->ohci);
848 }
849
850 static void context_stop(struct context *ctx)
851 {
852         u32 reg;
853         int i;
854
855         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
856         flush_writes(ctx->ohci);
857
858         for (i = 0; i < 10; i++) {
859                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
860                 if ((reg & CONTEXT_ACTIVE) == 0)
861                         break;
862
863                 fw_notify("context_stop: still active (0x%08x)\n", reg);
864                 mdelay(1);
865         }
866 }
867
868 struct driver_data {
869         struct fw_packet *packet;
870 };
871
872 /*
873  * This function apppends a packet to the DMA queue for transmission.
874  * Must always be called with the ochi->lock held to ensure proper
875  * generation handling and locking around packet queue manipulation.
876  */
877 static int
878 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
879 {
880         struct fw_ohci *ohci = ctx->ohci;
881         dma_addr_t d_bus, uninitialized_var(payload_bus);
882         struct driver_data *driver_data;
883         struct descriptor *d, *last;
884         __le32 *header;
885         int z, tcode;
886         u32 reg;
887
888         d = context_get_descriptors(ctx, 4, &d_bus);
889         if (d == NULL) {
890                 packet->ack = RCODE_SEND_ERROR;
891                 return -1;
892         }
893
894         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
895         d[0].res_count = cpu_to_le16(packet->timestamp);
896
897         /*
898          * The DMA format for asyncronous link packets is different
899          * from the IEEE1394 layout, so shift the fields around
900          * accordingly.  If header_length is 8, it's a PHY packet, to
901          * which we need to prepend an extra quadlet.
902          */
903
904         header = (__le32 *) &d[1];
905         if (packet->header_length > 8) {
906                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
907                                         (packet->speed << 16));
908                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
909                                         (packet->header[0] & 0xffff0000));
910                 header[2] = cpu_to_le32(packet->header[2]);
911
912                 tcode = (packet->header[0] >> 4) & 0x0f;
913                 if (TCODE_IS_BLOCK_PACKET(tcode))
914                         header[3] = cpu_to_le32(packet->header[3]);
915                 else
916                         header[3] = (__force __le32) packet->header[3];
917
918                 d[0].req_count = cpu_to_le16(packet->header_length);
919         } else {
920                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
921                                         (packet->speed << 16));
922                 header[1] = cpu_to_le32(packet->header[0]);
923                 header[2] = cpu_to_le32(packet->header[1]);
924                 d[0].req_count = cpu_to_le16(12);
925         }
926
927         driver_data = (struct driver_data *) &d[3];
928         driver_data->packet = packet;
929         packet->driver_data = driver_data;
930
931         if (packet->payload_length > 0) {
932                 payload_bus =
933                         dma_map_single(ohci->card.device, packet->payload,
934                                        packet->payload_length, DMA_TO_DEVICE);
935                 if (dma_mapping_error(payload_bus)) {
936                         packet->ack = RCODE_SEND_ERROR;
937                         return -1;
938                 }
939
940                 d[2].req_count    = cpu_to_le16(packet->payload_length);
941                 d[2].data_address = cpu_to_le32(payload_bus);
942                 last = &d[2];
943                 z = 3;
944         } else {
945                 last = &d[0];
946                 z = 2;
947         }
948
949         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
950                                      DESCRIPTOR_IRQ_ALWAYS |
951                                      DESCRIPTOR_BRANCH_ALWAYS);
952
953         /* FIXME: Document how the locking works. */
954         if (ohci->generation != packet->generation) {
955                 if (packet->payload_length > 0)
956                         dma_unmap_single(ohci->card.device, payload_bus,
957                                          packet->payload_length, DMA_TO_DEVICE);
958                 packet->ack = RCODE_GENERATION;
959                 return -1;
960         }
961
962         context_append(ctx, d, z, 4 - z);
963
964         /* If the context isn't already running, start it up. */
965         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
966         if ((reg & CONTEXT_RUN) == 0)
967                 context_run(ctx, 0);
968
969         return 0;
970 }
971
972 static int handle_at_packet(struct context *context,
973                             struct descriptor *d,
974                             struct descriptor *last)
975 {
976         struct driver_data *driver_data;
977         struct fw_packet *packet;
978         struct fw_ohci *ohci = context->ohci;
979         dma_addr_t payload_bus;
980         int evt;
981
982         if (last->transfer_status == 0)
983                 /* This descriptor isn't done yet, stop iteration. */
984                 return 0;
985
986         driver_data = (struct driver_data *) &d[3];
987         packet = driver_data->packet;
988         if (packet == NULL)
989                 /* This packet was cancelled, just continue. */
990                 return 1;
991
992         payload_bus = le32_to_cpu(last->data_address);
993         if (payload_bus != 0)
994                 dma_unmap_single(ohci->card.device, payload_bus,
995                                  packet->payload_length, DMA_TO_DEVICE);
996
997         evt = le16_to_cpu(last->transfer_status) & 0x1f;
998         packet->timestamp = le16_to_cpu(last->res_count);
999
1000         log_ar_at_event('T', packet->speed, packet->header, evt);
1001
1002         switch (evt) {
1003         case OHCI1394_evt_timeout:
1004                 /* Async response transmit timed out. */
1005                 packet->ack = RCODE_CANCELLED;
1006                 break;
1007
1008         case OHCI1394_evt_flushed:
1009                 /*
1010                  * The packet was flushed should give same error as
1011                  * when we try to use a stale generation count.
1012                  */
1013                 packet->ack = RCODE_GENERATION;
1014                 break;
1015
1016         case OHCI1394_evt_missing_ack:
1017                 /*
1018                  * Using a valid (current) generation count, but the
1019                  * node is not on the bus or not sending acks.
1020                  */
1021                 packet->ack = RCODE_NO_ACK;
1022                 break;
1023
1024         case ACK_COMPLETE + 0x10:
1025         case ACK_PENDING + 0x10:
1026         case ACK_BUSY_X + 0x10:
1027         case ACK_BUSY_A + 0x10:
1028         case ACK_BUSY_B + 0x10:
1029         case ACK_DATA_ERROR + 0x10:
1030         case ACK_TYPE_ERROR + 0x10:
1031                 packet->ack = evt - 0x10;
1032                 break;
1033
1034         default:
1035                 packet->ack = RCODE_SEND_ERROR;
1036                 break;
1037         }
1038
1039         packet->callback(packet, &ohci->card, packet->ack);
1040
1041         return 1;
1042 }
1043
1044 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1045 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1046 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1047 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1048 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1049
1050 static void
1051 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1052 {
1053         struct fw_packet response;
1054         int tcode, length, i;
1055
1056         tcode = HEADER_GET_TCODE(packet->header[0]);
1057         if (TCODE_IS_BLOCK_PACKET(tcode))
1058                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1059         else
1060                 length = 4;
1061
1062         i = csr - CSR_CONFIG_ROM;
1063         if (i + length > CONFIG_ROM_SIZE) {
1064                 fw_fill_response(&response, packet->header,
1065                                  RCODE_ADDRESS_ERROR, NULL, 0);
1066         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1067                 fw_fill_response(&response, packet->header,
1068                                  RCODE_TYPE_ERROR, NULL, 0);
1069         } else {
1070                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1071                                  (void *) ohci->config_rom + i, length);
1072         }
1073
1074         fw_core_handle_response(&ohci->card, &response);
1075 }
1076
1077 static void
1078 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1079 {
1080         struct fw_packet response;
1081         int tcode, length, ext_tcode, sel;
1082         __be32 *payload, lock_old;
1083         u32 lock_arg, lock_data;
1084
1085         tcode = HEADER_GET_TCODE(packet->header[0]);
1086         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1087         payload = packet->payload;
1088         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1089
1090         if (tcode == TCODE_LOCK_REQUEST &&
1091             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1092                 lock_arg = be32_to_cpu(payload[0]);
1093                 lock_data = be32_to_cpu(payload[1]);
1094         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1095                 lock_arg = 0;
1096                 lock_data = 0;
1097         } else {
1098                 fw_fill_response(&response, packet->header,
1099                                  RCODE_TYPE_ERROR, NULL, 0);
1100                 goto out;
1101         }
1102
1103         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1104         reg_write(ohci, OHCI1394_CSRData, lock_data);
1105         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1106         reg_write(ohci, OHCI1394_CSRControl, sel);
1107
1108         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1109                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1110         else
1111                 fw_notify("swap not done yet\n");
1112
1113         fw_fill_response(&response, packet->header,
1114                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1115  out:
1116         fw_core_handle_response(&ohci->card, &response);
1117 }
1118
1119 static void
1120 handle_local_request(struct context *ctx, struct fw_packet *packet)
1121 {
1122         u64 offset;
1123         u32 csr;
1124
1125         if (ctx == &ctx->ohci->at_request_ctx) {
1126                 packet->ack = ACK_PENDING;
1127                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1128         }
1129
1130         offset =
1131                 ((unsigned long long)
1132                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1133                 packet->header[2];
1134         csr = offset - CSR_REGISTER_BASE;
1135
1136         /* Handle config rom reads. */
1137         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1138                 handle_local_rom(ctx->ohci, packet, csr);
1139         else switch (csr) {
1140         case CSR_BUS_MANAGER_ID:
1141         case CSR_BANDWIDTH_AVAILABLE:
1142         case CSR_CHANNELS_AVAILABLE_HI:
1143         case CSR_CHANNELS_AVAILABLE_LO:
1144                 handle_local_lock(ctx->ohci, packet, csr);
1145                 break;
1146         default:
1147                 if (ctx == &ctx->ohci->at_request_ctx)
1148                         fw_core_handle_request(&ctx->ohci->card, packet);
1149                 else
1150                         fw_core_handle_response(&ctx->ohci->card, packet);
1151                 break;
1152         }
1153
1154         if (ctx == &ctx->ohci->at_response_ctx) {
1155                 packet->ack = ACK_COMPLETE;
1156                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1157         }
1158 }
1159
1160 static void
1161 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1162 {
1163         unsigned long flags;
1164         int retval;
1165
1166         spin_lock_irqsave(&ctx->ohci->lock, flags);
1167
1168         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1169             ctx->ohci->generation == packet->generation) {
1170                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1171                 handle_local_request(ctx, packet);
1172                 return;
1173         }
1174
1175         retval = at_context_queue_packet(ctx, packet);
1176         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1177
1178         if (retval < 0)
1179                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1180
1181 }
1182
1183 static void bus_reset_tasklet(unsigned long data)
1184 {
1185         struct fw_ohci *ohci = (struct fw_ohci *)data;
1186         int self_id_count, i, j, reg;
1187         int generation, new_generation;
1188         unsigned long flags;
1189         void *free_rom = NULL;
1190         dma_addr_t free_rom_bus = 0;
1191
1192         reg = reg_read(ohci, OHCI1394_NodeID);
1193         if (!(reg & OHCI1394_NodeID_idValid)) {
1194                 fw_notify("node ID not valid, new bus reset in progress\n");
1195                 return;
1196         }
1197         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1198                 fw_notify("malconfigured bus\n");
1199                 return;
1200         }
1201         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1202                                OHCI1394_NodeID_nodeNumber);
1203
1204         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1205         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1206                 fw_notify("inconsistent self IDs\n");
1207                 return;
1208         }
1209         /*
1210          * The count in the SelfIDCount register is the number of
1211          * bytes in the self ID receive buffer.  Since we also receive
1212          * the inverted quadlets and a header quadlet, we shift one
1213          * bit extra to get the actual number of self IDs.
1214          */
1215         self_id_count = (reg >> 3) & 0x3ff;
1216         if (self_id_count == 0) {
1217                 fw_notify("inconsistent self IDs\n");
1218                 return;
1219         }
1220         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1221         rmb();
1222
1223         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1224                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1225                         fw_notify("inconsistent self IDs\n");
1226                         return;
1227                 }
1228                 ohci->self_id_buffer[j] =
1229                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1230         }
1231         rmb();
1232
1233         /*
1234          * Check the consistency of the self IDs we just read.  The
1235          * problem we face is that a new bus reset can start while we
1236          * read out the self IDs from the DMA buffer. If this happens,
1237          * the DMA buffer will be overwritten with new self IDs and we
1238          * will read out inconsistent data.  The OHCI specification
1239          * (section 11.2) recommends a technique similar to
1240          * linux/seqlock.h, where we remember the generation of the
1241          * self IDs in the buffer before reading them out and compare
1242          * it to the current generation after reading them out.  If
1243          * the two generations match we know we have a consistent set
1244          * of self IDs.
1245          */
1246
1247         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1248         if (new_generation != generation) {
1249                 fw_notify("recursive bus reset detected, "
1250                           "discarding self ids\n");
1251                 return;
1252         }
1253
1254         /* FIXME: Document how the locking works. */
1255         spin_lock_irqsave(&ohci->lock, flags);
1256
1257         ohci->generation = generation;
1258         context_stop(&ohci->at_request_ctx);
1259         context_stop(&ohci->at_response_ctx);
1260         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1261
1262         /*
1263          * This next bit is unrelated to the AT context stuff but we
1264          * have to do it under the spinlock also.  If a new config rom
1265          * was set up before this reset, the old one is now no longer
1266          * in use and we can free it. Update the config rom pointers
1267          * to point to the current config rom and clear the
1268          * next_config_rom pointer so a new udpate can take place.
1269          */
1270
1271         if (ohci->next_config_rom != NULL) {
1272                 if (ohci->next_config_rom != ohci->config_rom) {
1273                         free_rom      = ohci->config_rom;
1274                         free_rom_bus  = ohci->config_rom_bus;
1275                 }
1276                 ohci->config_rom      = ohci->next_config_rom;
1277                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1278                 ohci->next_config_rom = NULL;
1279
1280                 /*
1281                  * Restore config_rom image and manually update
1282                  * config_rom registers.  Writing the header quadlet
1283                  * will indicate that the config rom is ready, so we
1284                  * do that last.
1285                  */
1286                 reg_write(ohci, OHCI1394_BusOptions,
1287                           be32_to_cpu(ohci->config_rom[2]));
1288                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1289                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1290         }
1291
1292 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1293         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1294         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1295 #endif
1296
1297         spin_unlock_irqrestore(&ohci->lock, flags);
1298
1299         if (free_rom)
1300                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1301                                   free_rom, free_rom_bus);
1302
1303         log_selfids(generation, self_id_count, ohci->self_id_buffer);
1304
1305         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1306                                  self_id_count, ohci->self_id_buffer);
1307 }
1308
1309 static irqreturn_t irq_handler(int irq, void *data)
1310 {
1311         struct fw_ohci *ohci = data;
1312         u32 event, iso_event, cycle_time;
1313         int i;
1314
1315         event = reg_read(ohci, OHCI1394_IntEventClear);
1316
1317         if (!event || !~event)
1318                 return IRQ_NONE;
1319
1320         reg_write(ohci, OHCI1394_IntEventClear, event);
1321         log_irqs(event);
1322
1323         if (event & OHCI1394_selfIDComplete)
1324                 tasklet_schedule(&ohci->bus_reset_tasklet);
1325
1326         if (event & OHCI1394_RQPkt)
1327                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1328
1329         if (event & OHCI1394_RSPkt)
1330                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1331
1332         if (event & OHCI1394_reqTxComplete)
1333                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1334
1335         if (event & OHCI1394_respTxComplete)
1336                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1337
1338         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1339         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1340
1341         while (iso_event) {
1342                 i = ffs(iso_event) - 1;
1343                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1344                 iso_event &= ~(1 << i);
1345         }
1346
1347         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1348         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1349
1350         while (iso_event) {
1351                 i = ffs(iso_event) - 1;
1352                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1353                 iso_event &= ~(1 << i);
1354         }
1355
1356         if (unlikely(event & OHCI1394_regAccessFail))
1357                 fw_error("Register access failure - "
1358                          "please notify linux1394-devel@lists.sf.net\n");
1359
1360         if (unlikely(event & OHCI1394_postedWriteErr))
1361                 fw_error("PCI posted write error\n");
1362
1363         if (unlikely(event & OHCI1394_cycleTooLong)) {
1364                 if (printk_ratelimit())
1365                         fw_notify("isochronous cycle too long\n");
1366                 reg_write(ohci, OHCI1394_LinkControlSet,
1367                           OHCI1394_LinkControl_cycleMaster);
1368         }
1369
1370         if (event & OHCI1394_cycle64Seconds) {
1371                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1372                 if ((cycle_time & 0x80000000) == 0)
1373                         ohci->bus_seconds++;
1374         }
1375
1376         return IRQ_HANDLED;
1377 }
1378
1379 static int software_reset(struct fw_ohci *ohci)
1380 {
1381         int i;
1382
1383         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1384
1385         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1386                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1387                      OHCI1394_HCControl_softReset) == 0)
1388                         return 0;
1389                 msleep(1);
1390         }
1391
1392         return -EBUSY;
1393 }
1394
1395 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1396 {
1397         struct fw_ohci *ohci = fw_ohci(card);
1398         struct pci_dev *dev = to_pci_dev(card->device);
1399         u32 lps;
1400         int i;
1401
1402         if (software_reset(ohci)) {
1403                 fw_error("Failed to reset ohci card.\n");
1404                 return -EBUSY;
1405         }
1406
1407         /*
1408          * Now enable LPS, which we need in order to start accessing
1409          * most of the registers.  In fact, on some cards (ALI M5251),
1410          * accessing registers in the SClk domain without LPS enabled
1411          * will lock up the machine.  Wait 50msec to make sure we have
1412          * full link enabled.  However, with some cards (well, at least
1413          * a JMicron PCIe card), we have to try again sometimes.
1414          */
1415         reg_write(ohci, OHCI1394_HCControlSet,
1416                   OHCI1394_HCControl_LPS |
1417                   OHCI1394_HCControl_postedWriteEnable);
1418         flush_writes(ohci);
1419
1420         for (lps = 0, i = 0; !lps && i < 3; i++) {
1421                 msleep(50);
1422                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1423                       OHCI1394_HCControl_LPS;
1424         }
1425
1426         if (!lps) {
1427                 fw_error("Failed to set Link Power Status\n");
1428                 return -EIO;
1429         }
1430
1431         reg_write(ohci, OHCI1394_HCControlClear,
1432                   OHCI1394_HCControl_noByteSwapData);
1433
1434         reg_write(ohci, OHCI1394_LinkControlSet,
1435                   OHCI1394_LinkControl_rcvSelfID |
1436                   OHCI1394_LinkControl_cycleTimerEnable |
1437                   OHCI1394_LinkControl_cycleMaster);
1438
1439         reg_write(ohci, OHCI1394_ATRetries,
1440                   OHCI1394_MAX_AT_REQ_RETRIES |
1441                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1442                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1443
1444         ar_context_run(&ohci->ar_request_ctx);
1445         ar_context_run(&ohci->ar_response_ctx);
1446
1447         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1448         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1449         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1450         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1451         reg_write(ohci, OHCI1394_IntMaskSet,
1452                   OHCI1394_selfIDComplete |
1453                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1454                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1455                   OHCI1394_isochRx | OHCI1394_isochTx |
1456                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1457                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1458                   OHCI1394_masterIntEnable);
1459
1460         /* Activate link_on bit and contender bit in our self ID packets.*/
1461         if (ohci_update_phy_reg(card, 4, 0,
1462                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1463                 return -EIO;
1464
1465         /*
1466          * When the link is not yet enabled, the atomic config rom
1467          * update mechanism described below in ohci_set_config_rom()
1468          * is not active.  We have to update ConfigRomHeader and
1469          * BusOptions manually, and the write to ConfigROMmap takes
1470          * effect immediately.  We tie this to the enabling of the
1471          * link, so we have a valid config rom before enabling - the
1472          * OHCI requires that ConfigROMhdr and BusOptions have valid
1473          * values before enabling.
1474          *
1475          * However, when the ConfigROMmap is written, some controllers
1476          * always read back quadlets 0 and 2 from the config rom to
1477          * the ConfigRomHeader and BusOptions registers on bus reset.
1478          * They shouldn't do that in this initial case where the link
1479          * isn't enabled.  This means we have to use the same
1480          * workaround here, setting the bus header to 0 and then write
1481          * the right values in the bus reset tasklet.
1482          */
1483
1484         if (config_rom) {
1485                 ohci->next_config_rom =
1486                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1487                                            &ohci->next_config_rom_bus,
1488                                            GFP_KERNEL);
1489                 if (ohci->next_config_rom == NULL)
1490                         return -ENOMEM;
1491
1492                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1493                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1494         } else {
1495                 /*
1496                  * In the suspend case, config_rom is NULL, which
1497                  * means that we just reuse the old config rom.
1498                  */
1499                 ohci->next_config_rom = ohci->config_rom;
1500                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1501         }
1502
1503         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1504         ohci->next_config_rom[0] = 0;
1505         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1506         reg_write(ohci, OHCI1394_BusOptions,
1507                   be32_to_cpu(ohci->next_config_rom[2]));
1508         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1509
1510         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1511
1512         if (request_irq(dev->irq, irq_handler,
1513                         IRQF_SHARED, ohci_driver_name, ohci)) {
1514                 fw_error("Failed to allocate shared interrupt %d.\n",
1515                          dev->irq);
1516                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1517                                   ohci->config_rom, ohci->config_rom_bus);
1518                 return -EIO;
1519         }
1520
1521         reg_write(ohci, OHCI1394_HCControlSet,
1522                   OHCI1394_HCControl_linkEnable |
1523                   OHCI1394_HCControl_BIBimageValid);
1524         flush_writes(ohci);
1525
1526         /*
1527          * We are ready to go, initiate bus reset to finish the
1528          * initialization.
1529          */
1530
1531         fw_core_initiate_bus_reset(&ohci->card, 1);
1532
1533         return 0;
1534 }
1535
1536 static int
1537 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1538 {
1539         struct fw_ohci *ohci;
1540         unsigned long flags;
1541         int retval = -EBUSY;
1542         __be32 *next_config_rom;
1543         dma_addr_t uninitialized_var(next_config_rom_bus);
1544
1545         ohci = fw_ohci(card);
1546
1547         /*
1548          * When the OHCI controller is enabled, the config rom update
1549          * mechanism is a bit tricky, but easy enough to use.  See
1550          * section 5.5.6 in the OHCI specification.
1551          *
1552          * The OHCI controller caches the new config rom address in a
1553          * shadow register (ConfigROMmapNext) and needs a bus reset
1554          * for the changes to take place.  When the bus reset is
1555          * detected, the controller loads the new values for the
1556          * ConfigRomHeader and BusOptions registers from the specified
1557          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1558          * shadow register. All automatically and atomically.
1559          *
1560          * Now, there's a twist to this story.  The automatic load of
1561          * ConfigRomHeader and BusOptions doesn't honor the
1562          * noByteSwapData bit, so with a be32 config rom, the
1563          * controller will load be32 values in to these registers
1564          * during the atomic update, even on litte endian
1565          * architectures.  The workaround we use is to put a 0 in the
1566          * header quadlet; 0 is endian agnostic and means that the
1567          * config rom isn't ready yet.  In the bus reset tasklet we
1568          * then set up the real values for the two registers.
1569          *
1570          * We use ohci->lock to avoid racing with the code that sets
1571          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1572          */
1573
1574         next_config_rom =
1575                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1576                                    &next_config_rom_bus, GFP_KERNEL);
1577         if (next_config_rom == NULL)
1578                 return -ENOMEM;
1579
1580         spin_lock_irqsave(&ohci->lock, flags);
1581
1582         if (ohci->next_config_rom == NULL) {
1583                 ohci->next_config_rom = next_config_rom;
1584                 ohci->next_config_rom_bus = next_config_rom_bus;
1585
1586                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1587                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1588                                   length * 4);
1589
1590                 ohci->next_header = config_rom[0];
1591                 ohci->next_config_rom[0] = 0;
1592
1593                 reg_write(ohci, OHCI1394_ConfigROMmap,
1594                           ohci->next_config_rom_bus);
1595                 retval = 0;
1596         }
1597
1598         spin_unlock_irqrestore(&ohci->lock, flags);
1599
1600         /*
1601          * Now initiate a bus reset to have the changes take
1602          * effect. We clean up the old config rom memory and DMA
1603          * mappings in the bus reset tasklet, since the OHCI
1604          * controller could need to access it before the bus reset
1605          * takes effect.
1606          */
1607         if (retval == 0)
1608                 fw_core_initiate_bus_reset(&ohci->card, 1);
1609         else
1610                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1611                                   next_config_rom, next_config_rom_bus);
1612
1613         return retval;
1614 }
1615
1616 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1617 {
1618         struct fw_ohci *ohci = fw_ohci(card);
1619
1620         at_context_transmit(&ohci->at_request_ctx, packet);
1621 }
1622
1623 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1624 {
1625         struct fw_ohci *ohci = fw_ohci(card);
1626
1627         at_context_transmit(&ohci->at_response_ctx, packet);
1628 }
1629
1630 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1631 {
1632         struct fw_ohci *ohci = fw_ohci(card);
1633         struct context *ctx = &ohci->at_request_ctx;
1634         struct driver_data *driver_data = packet->driver_data;
1635         int retval = -ENOENT;
1636
1637         tasklet_disable(&ctx->tasklet);
1638
1639         if (packet->ack != 0)
1640                 goto out;
1641
1642         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1643         driver_data->packet = NULL;
1644         packet->ack = RCODE_CANCELLED;
1645         packet->callback(packet, &ohci->card, packet->ack);
1646         retval = 0;
1647
1648  out:
1649         tasklet_enable(&ctx->tasklet);
1650
1651         return retval;
1652 }
1653
1654 static int
1655 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1656 {
1657 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1658         return 0;
1659 #else
1660         struct fw_ohci *ohci = fw_ohci(card);
1661         unsigned long flags;
1662         int n, retval = 0;
1663
1664         /*
1665          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1666          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1667          */
1668
1669         spin_lock_irqsave(&ohci->lock, flags);
1670
1671         if (ohci->generation != generation) {
1672                 retval = -ESTALE;
1673                 goto out;
1674         }
1675
1676         /*
1677          * Note, if the node ID contains a non-local bus ID, physical DMA is
1678          * enabled for _all_ nodes on remote buses.
1679          */
1680
1681         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1682         if (n < 32)
1683                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1684         else
1685                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1686
1687         flush_writes(ohci);
1688  out:
1689         spin_unlock_irqrestore(&ohci->lock, flags);
1690         return retval;
1691 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1692 }
1693
1694 static u64
1695 ohci_get_bus_time(struct fw_card *card)
1696 {
1697         struct fw_ohci *ohci = fw_ohci(card);
1698         u32 cycle_time;
1699         u64 bus_time;
1700
1701         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1702         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1703
1704         return bus_time;
1705 }
1706
1707 static int handle_ir_dualbuffer_packet(struct context *context,
1708                                        struct descriptor *d,
1709                                        struct descriptor *last)
1710 {
1711         struct iso_context *ctx =
1712                 container_of(context, struct iso_context, context);
1713         struct db_descriptor *db = (struct db_descriptor *) d;
1714         __le32 *ir_header;
1715         size_t header_length;
1716         void *p, *end;
1717         int i;
1718
1719         if (db->first_res_count != 0 && db->second_res_count != 0) {
1720                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1721                         /* This descriptor isn't done yet, stop iteration. */
1722                         return 0;
1723                 }
1724                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1725         }
1726
1727         header_length = le16_to_cpu(db->first_req_count) -
1728                 le16_to_cpu(db->first_res_count);
1729
1730         i = ctx->header_length;
1731         p = db + 1;
1732         end = p + header_length;
1733         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1734                 /*
1735                  * The iso header is byteswapped to little endian by
1736                  * the controller, but the remaining header quadlets
1737                  * are big endian.  We want to present all the headers
1738                  * as big endian, so we have to swap the first
1739                  * quadlet.
1740                  */
1741                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1742                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1743                 i += ctx->base.header_size;
1744                 ctx->excess_bytes +=
1745                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1746                 p += ctx->base.header_size + 4;
1747         }
1748         ctx->header_length = i;
1749
1750         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1751                 le16_to_cpu(db->second_res_count);
1752
1753         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1754                 ir_header = (__le32 *) (db + 1);
1755                 ctx->base.callback(&ctx->base,
1756                                    le32_to_cpu(ir_header[0]) & 0xffff,
1757                                    ctx->header_length, ctx->header,
1758                                    ctx->base.callback_data);
1759                 ctx->header_length = 0;
1760         }
1761
1762         return 1;
1763 }
1764
1765 static int handle_ir_packet_per_buffer(struct context *context,
1766                                        struct descriptor *d,
1767                                        struct descriptor *last)
1768 {
1769         struct iso_context *ctx =
1770                 container_of(context, struct iso_context, context);
1771         struct descriptor *pd;
1772         __le32 *ir_header;
1773         void *p;
1774         int i;
1775
1776         for (pd = d; pd <= last; pd++) {
1777                 if (pd->transfer_status)
1778                         break;
1779         }
1780         if (pd > last)
1781                 /* Descriptor(s) not done yet, stop iteration */
1782                 return 0;
1783
1784         i   = ctx->header_length;
1785         p   = last + 1;
1786
1787         if (ctx->base.header_size > 0 &&
1788                         i + ctx->base.header_size <= PAGE_SIZE) {
1789                 /*
1790                  * The iso header is byteswapped to little endian by
1791                  * the controller, but the remaining header quadlets
1792                  * are big endian.  We want to present all the headers
1793                  * as big endian, so we have to swap the first quadlet.
1794                  */
1795                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1796                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1797                 ctx->header_length += ctx->base.header_size;
1798         }
1799
1800         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1801                 ir_header = (__le32 *) p;
1802                 ctx->base.callback(&ctx->base,
1803                                    le32_to_cpu(ir_header[0]) & 0xffff,
1804                                    ctx->header_length, ctx->header,
1805                                    ctx->base.callback_data);
1806                 ctx->header_length = 0;
1807         }
1808
1809         return 1;
1810 }
1811
1812 static int handle_it_packet(struct context *context,
1813                             struct descriptor *d,
1814                             struct descriptor *last)
1815 {
1816         struct iso_context *ctx =
1817                 container_of(context, struct iso_context, context);
1818
1819         if (last->transfer_status == 0)
1820                 /* This descriptor isn't done yet, stop iteration. */
1821                 return 0;
1822
1823         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1824                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1825                                    0, NULL, ctx->base.callback_data);
1826
1827         return 1;
1828 }
1829
1830 static struct fw_iso_context *
1831 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1832 {
1833         struct fw_ohci *ohci = fw_ohci(card);
1834         struct iso_context *ctx, *list;
1835         descriptor_callback_t callback;
1836         u32 *mask, regs;
1837         unsigned long flags;
1838         int index, retval = -ENOMEM;
1839
1840         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1841                 mask = &ohci->it_context_mask;
1842                 list = ohci->it_context_list;
1843                 callback = handle_it_packet;
1844         } else {
1845                 mask = &ohci->ir_context_mask;
1846                 list = ohci->ir_context_list;
1847                 if (ohci->version >= OHCI_VERSION_1_1)
1848                         callback = handle_ir_dualbuffer_packet;
1849                 else
1850                         callback = handle_ir_packet_per_buffer;
1851         }
1852
1853         spin_lock_irqsave(&ohci->lock, flags);
1854         index = ffs(*mask) - 1;
1855         if (index >= 0)
1856                 *mask &= ~(1 << index);
1857         spin_unlock_irqrestore(&ohci->lock, flags);
1858
1859         if (index < 0)
1860                 return ERR_PTR(-EBUSY);
1861
1862         if (type == FW_ISO_CONTEXT_TRANSMIT)
1863                 regs = OHCI1394_IsoXmitContextBase(index);
1864         else
1865                 regs = OHCI1394_IsoRcvContextBase(index);
1866
1867         ctx = &list[index];
1868         memset(ctx, 0, sizeof(*ctx));
1869         ctx->header_length = 0;
1870         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1871         if (ctx->header == NULL)
1872                 goto out;
1873
1874         retval = context_init(&ctx->context, ohci, regs, callback);
1875         if (retval < 0)
1876                 goto out_with_header;
1877
1878         return &ctx->base;
1879
1880  out_with_header:
1881         free_page((unsigned long)ctx->header);
1882  out:
1883         spin_lock_irqsave(&ohci->lock, flags);
1884         *mask |= 1 << index;
1885         spin_unlock_irqrestore(&ohci->lock, flags);
1886
1887         return ERR_PTR(retval);
1888 }
1889
1890 static int ohci_start_iso(struct fw_iso_context *base,
1891                           s32 cycle, u32 sync, u32 tags)
1892 {
1893         struct iso_context *ctx = container_of(base, struct iso_context, base);
1894         struct fw_ohci *ohci = ctx->context.ohci;
1895         u32 control, match;
1896         int index;
1897
1898         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1899                 index = ctx - ohci->it_context_list;
1900                 match = 0;
1901                 if (cycle >= 0)
1902                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1903                                 (cycle & 0x7fff) << 16;
1904
1905                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1906                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1907                 context_run(&ctx->context, match);
1908         } else {
1909                 index = ctx - ohci->ir_context_list;
1910                 control = IR_CONTEXT_ISOCH_HEADER;
1911                 if (ohci->version >= OHCI_VERSION_1_1)
1912                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1913                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1914                 if (cycle >= 0) {
1915                         match |= (cycle & 0x07fff) << 12;
1916                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1917                 }
1918
1919                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1920                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1921                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1922                 context_run(&ctx->context, control);
1923         }
1924
1925         return 0;
1926 }
1927
1928 static int ohci_stop_iso(struct fw_iso_context *base)
1929 {
1930         struct fw_ohci *ohci = fw_ohci(base->card);
1931         struct iso_context *ctx = container_of(base, struct iso_context, base);
1932         int index;
1933
1934         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1935                 index = ctx - ohci->it_context_list;
1936                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1937         } else {
1938                 index = ctx - ohci->ir_context_list;
1939                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1940         }
1941         flush_writes(ohci);
1942         context_stop(&ctx->context);
1943
1944         return 0;
1945 }
1946
1947 static void ohci_free_iso_context(struct fw_iso_context *base)
1948 {
1949         struct fw_ohci *ohci = fw_ohci(base->card);
1950         struct iso_context *ctx = container_of(base, struct iso_context, base);
1951         unsigned long flags;
1952         int index;
1953
1954         ohci_stop_iso(base);
1955         context_release(&ctx->context);
1956         free_page((unsigned long)ctx->header);
1957
1958         spin_lock_irqsave(&ohci->lock, flags);
1959
1960         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1961                 index = ctx - ohci->it_context_list;
1962                 ohci->it_context_mask |= 1 << index;
1963         } else {
1964                 index = ctx - ohci->ir_context_list;
1965                 ohci->ir_context_mask |= 1 << index;
1966         }
1967
1968         spin_unlock_irqrestore(&ohci->lock, flags);
1969 }
1970
1971 static int
1972 ohci_queue_iso_transmit(struct fw_iso_context *base,
1973                         struct fw_iso_packet *packet,
1974                         struct fw_iso_buffer *buffer,
1975                         unsigned long payload)
1976 {
1977         struct iso_context *ctx = container_of(base, struct iso_context, base);
1978         struct descriptor *d, *last, *pd;
1979         struct fw_iso_packet *p;
1980         __le32 *header;
1981         dma_addr_t d_bus, page_bus;
1982         u32 z, header_z, payload_z, irq;
1983         u32 payload_index, payload_end_index, next_page_index;
1984         int page, end_page, i, length, offset;
1985
1986         /*
1987          * FIXME: Cycle lost behavior should be configurable: lose
1988          * packet, retransmit or terminate..
1989          */
1990
1991         p = packet;
1992         payload_index = payload;
1993
1994         if (p->skip)
1995                 z = 1;
1996         else
1997                 z = 2;
1998         if (p->header_length > 0)
1999                 z++;
2000
2001         /* Determine the first page the payload isn't contained in. */
2002         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2003         if (p->payload_length > 0)
2004                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2005         else
2006                 payload_z = 0;
2007
2008         z += payload_z;
2009
2010         /* Get header size in number of descriptors. */
2011         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2012
2013         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2014         if (d == NULL)
2015                 return -ENOMEM;
2016
2017         if (!p->skip) {
2018                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2019                 d[0].req_count = cpu_to_le16(8);
2020
2021                 header = (__le32 *) &d[1];
2022                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2023                                         IT_HEADER_TAG(p->tag) |
2024                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2025                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2026                                         IT_HEADER_SPEED(ctx->base.speed));
2027                 header[1] =
2028                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2029                                                           p->payload_length));
2030         }
2031
2032         if (p->header_length > 0) {
2033                 d[2].req_count    = cpu_to_le16(p->header_length);
2034                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2035                 memcpy(&d[z], p->header, p->header_length);
2036         }
2037
2038         pd = d + z - payload_z;
2039         payload_end_index = payload_index + p->payload_length;
2040         for (i = 0; i < payload_z; i++) {
2041                 page               = payload_index >> PAGE_SHIFT;
2042                 offset             = payload_index & ~PAGE_MASK;
2043                 next_page_index    = (page + 1) << PAGE_SHIFT;
2044                 length             =
2045                         min(next_page_index, payload_end_index) - payload_index;
2046                 pd[i].req_count    = cpu_to_le16(length);
2047
2048                 page_bus = page_private(buffer->pages[page]);
2049                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2050
2051                 payload_index += length;
2052         }
2053
2054         if (p->interrupt)
2055                 irq = DESCRIPTOR_IRQ_ALWAYS;
2056         else
2057                 irq = DESCRIPTOR_NO_IRQ;
2058
2059         last = z == 2 ? d : d + z - 1;
2060         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2061                                      DESCRIPTOR_STATUS |
2062                                      DESCRIPTOR_BRANCH_ALWAYS |
2063                                      irq);
2064
2065         context_append(&ctx->context, d, z, header_z);
2066
2067         return 0;
2068 }
2069
2070 static int
2071 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2072                                   struct fw_iso_packet *packet,
2073                                   struct fw_iso_buffer *buffer,
2074                                   unsigned long payload)
2075 {
2076         struct iso_context *ctx = container_of(base, struct iso_context, base);
2077         struct db_descriptor *db = NULL;
2078         struct descriptor *d;
2079         struct fw_iso_packet *p;
2080         dma_addr_t d_bus, page_bus;
2081         u32 z, header_z, length, rest;
2082         int page, offset, packet_count, header_size;
2083
2084         /*
2085          * FIXME: Cycle lost behavior should be configurable: lose
2086          * packet, retransmit or terminate..
2087          */
2088
2089         p = packet;
2090         z = 2;
2091
2092         /*
2093          * The OHCI controller puts the status word in the header
2094          * buffer too, so we need 4 extra bytes per packet.
2095          */
2096         packet_count = p->header_length / ctx->base.header_size;
2097         header_size = packet_count * (ctx->base.header_size + 4);
2098
2099         /* Get header size in number of descriptors. */
2100         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2101         page     = payload >> PAGE_SHIFT;
2102         offset   = payload & ~PAGE_MASK;
2103         rest     = p->payload_length;
2104
2105         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2106         while (rest > 0) {
2107                 d = context_get_descriptors(&ctx->context,
2108                                             z + header_z, &d_bus);
2109                 if (d == NULL)
2110                         return -ENOMEM;
2111
2112                 db = (struct db_descriptor *) d;
2113                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2114                                           DESCRIPTOR_BRANCH_ALWAYS);
2115                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2116                 if (p->skip && rest == p->payload_length) {
2117                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2118                         db->first_req_count = db->first_size;
2119                 } else {
2120                         db->first_req_count = cpu_to_le16(header_size);
2121                 }
2122                 db->first_res_count = db->first_req_count;
2123                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2124
2125                 if (p->skip && rest == p->payload_length)
2126                         length = 4;
2127                 else if (offset + rest < PAGE_SIZE)
2128                         length = rest;
2129                 else
2130                         length = PAGE_SIZE - offset;
2131
2132                 db->second_req_count = cpu_to_le16(length);
2133                 db->second_res_count = db->second_req_count;
2134                 page_bus = page_private(buffer->pages[page]);
2135                 db->second_buffer = cpu_to_le32(page_bus + offset);
2136
2137                 if (p->interrupt && length == rest)
2138                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2139
2140                 context_append(&ctx->context, d, z, header_z);
2141                 offset = (offset + length) & ~PAGE_MASK;
2142                 rest -= length;
2143                 if (offset == 0)
2144                         page++;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static int
2151 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2152                                          struct fw_iso_packet *packet,
2153                                          struct fw_iso_buffer *buffer,
2154                                          unsigned long payload)
2155 {
2156         struct iso_context *ctx = container_of(base, struct iso_context, base);
2157         struct descriptor *d = NULL, *pd = NULL;
2158         struct fw_iso_packet *p = packet;
2159         dma_addr_t d_bus, page_bus;
2160         u32 z, header_z, rest;
2161         int i, j, length;
2162         int page, offset, packet_count, header_size, payload_per_buffer;
2163
2164         /*
2165          * The OHCI controller puts the status word in the
2166          * buffer too, so we need 4 extra bytes per packet.
2167          */
2168         packet_count = p->header_length / ctx->base.header_size;
2169         header_size  = ctx->base.header_size + 4;
2170
2171         /* Get header size in number of descriptors. */
2172         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2173         page     = payload >> PAGE_SHIFT;
2174         offset   = payload & ~PAGE_MASK;
2175         payload_per_buffer = p->payload_length / packet_count;
2176
2177         for (i = 0; i < packet_count; i++) {
2178                 /* d points to the header descriptor */
2179                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2180                 d = context_get_descriptors(&ctx->context,
2181                                 z + header_z, &d_bus);
2182                 if (d == NULL)
2183                         return -ENOMEM;
2184
2185                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2186                                               DESCRIPTOR_INPUT_MORE);
2187                 if (p->skip && i == 0)
2188                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2189                 d->req_count    = cpu_to_le16(header_size);
2190                 d->res_count    = d->req_count;
2191                 d->transfer_status = 0;
2192                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2193
2194                 rest = payload_per_buffer;
2195                 for (j = 1; j < z; j++) {
2196                         pd = d + j;
2197                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2198                                                   DESCRIPTOR_INPUT_MORE);
2199
2200                         if (offset + rest < PAGE_SIZE)
2201                                 length = rest;
2202                         else
2203                                 length = PAGE_SIZE - offset;
2204                         pd->req_count = cpu_to_le16(length);
2205                         pd->res_count = pd->req_count;
2206                         pd->transfer_status = 0;
2207
2208                         page_bus = page_private(buffer->pages[page]);
2209                         pd->data_address = cpu_to_le32(page_bus + offset);
2210
2211                         offset = (offset + length) & ~PAGE_MASK;
2212                         rest -= length;
2213                         if (offset == 0)
2214                                 page++;
2215                 }
2216                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2217                                           DESCRIPTOR_INPUT_LAST |
2218                                           DESCRIPTOR_BRANCH_ALWAYS);
2219                 if (p->interrupt && i == packet_count - 1)
2220                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2221
2222                 context_append(&ctx->context, d, z, header_z);
2223         }
2224
2225         return 0;
2226 }
2227
2228 static int
2229 ohci_queue_iso(struct fw_iso_context *base,
2230                struct fw_iso_packet *packet,
2231                struct fw_iso_buffer *buffer,
2232                unsigned long payload)
2233 {
2234         struct iso_context *ctx = container_of(base, struct iso_context, base);
2235         unsigned long flags;
2236         int retval;
2237
2238         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2239         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2240                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2241         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2242                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2243                                                          buffer, payload);
2244         else
2245                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2246                                                                 buffer,
2247                                                                 payload);
2248         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2249
2250         return retval;
2251 }
2252
2253 static const struct fw_card_driver ohci_driver = {
2254         .name                   = ohci_driver_name,
2255         .enable                 = ohci_enable,
2256         .update_phy_reg         = ohci_update_phy_reg,
2257         .set_config_rom         = ohci_set_config_rom,
2258         .send_request           = ohci_send_request,
2259         .send_response          = ohci_send_response,
2260         .cancel_packet          = ohci_cancel_packet,
2261         .enable_phys_dma        = ohci_enable_phys_dma,
2262         .get_bus_time           = ohci_get_bus_time,
2263
2264         .allocate_iso_context   = ohci_allocate_iso_context,
2265         .free_iso_context       = ohci_free_iso_context,
2266         .queue_iso              = ohci_queue_iso,
2267         .start_iso              = ohci_start_iso,
2268         .stop_iso               = ohci_stop_iso,
2269 };
2270
2271 #ifdef CONFIG_PPC_PMAC
2272 static void ohci_pmac_on(struct pci_dev *dev)
2273 {
2274         if (machine_is(powermac)) {
2275                 struct device_node *ofn = pci_device_to_OF_node(dev);
2276
2277                 if (ofn) {
2278                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2279                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2280                 }
2281         }
2282 }
2283
2284 static void ohci_pmac_off(struct pci_dev *dev)
2285 {
2286         if (machine_is(powermac)) {
2287                 struct device_node *ofn = pci_device_to_OF_node(dev);
2288
2289                 if (ofn) {
2290                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2291                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2292                 }
2293         }
2294 }
2295 #else
2296 #define ohci_pmac_on(dev)
2297 #define ohci_pmac_off(dev)
2298 #endif /* CONFIG_PPC_PMAC */
2299
2300 static int __devinit
2301 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2302 {
2303         struct fw_ohci *ohci;
2304         u32 bus_options, max_receive, link_speed;
2305         u64 guid;
2306         int err;
2307         size_t size;
2308
2309         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2310         if (ohci == NULL) {
2311                 fw_error("Could not malloc fw_ohci data.\n");
2312                 return -ENOMEM;
2313         }
2314
2315         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2316
2317         ohci_pmac_on(dev);
2318
2319         err = pci_enable_device(dev);
2320         if (err) {
2321                 fw_error("Failed to enable OHCI hardware.\n");
2322                 goto fail_free;
2323         }
2324
2325         pci_set_master(dev);
2326         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2327         pci_set_drvdata(dev, ohci);
2328
2329 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2330         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2331                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2332 #endif
2333         spin_lock_init(&ohci->lock);
2334
2335         tasklet_init(&ohci->bus_reset_tasklet,
2336                      bus_reset_tasklet, (unsigned long)ohci);
2337
2338         err = pci_request_region(dev, 0, ohci_driver_name);
2339         if (err) {
2340                 fw_error("MMIO resource unavailable\n");
2341                 goto fail_disable;
2342         }
2343
2344         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2345         if (ohci->registers == NULL) {
2346                 fw_error("Failed to remap registers\n");
2347                 err = -ENXIO;
2348                 goto fail_iomem;
2349         }
2350
2351         ar_context_init(&ohci->ar_request_ctx, ohci,
2352                         OHCI1394_AsReqRcvContextControlSet);
2353
2354         ar_context_init(&ohci->ar_response_ctx, ohci,
2355                         OHCI1394_AsRspRcvContextControlSet);
2356
2357         context_init(&ohci->at_request_ctx, ohci,
2358                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2359
2360         context_init(&ohci->at_response_ctx, ohci,
2361                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2362
2363         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2364         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2365         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2366         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2367         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2368
2369         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2370         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2371         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2372         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2373         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2374
2375         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2376                 fw_error("Out of memory for it/ir contexts.\n");
2377                 err = -ENOMEM;
2378                 goto fail_registers;
2379         }
2380
2381         /* self-id dma buffer allocation */
2382         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2383                                                SELF_ID_BUF_SIZE,
2384                                                &ohci->self_id_bus,
2385                                                GFP_KERNEL);
2386         if (ohci->self_id_cpu == NULL) {
2387                 fw_error("Out of memory for self ID buffer.\n");
2388                 err = -ENOMEM;
2389                 goto fail_registers;
2390         }
2391
2392         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2393         max_receive = (bus_options >> 12) & 0xf;
2394         link_speed = bus_options & 0x7;
2395         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2396                 reg_read(ohci, OHCI1394_GUIDLo);
2397
2398         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2399         if (err < 0)
2400                 goto fail_self_id;
2401
2402         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2403         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2404                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2405         return 0;
2406
2407  fail_self_id:
2408         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2409                           ohci->self_id_cpu, ohci->self_id_bus);
2410  fail_registers:
2411         kfree(ohci->it_context_list);
2412         kfree(ohci->ir_context_list);
2413         pci_iounmap(dev, ohci->registers);
2414  fail_iomem:
2415         pci_release_region(dev, 0);
2416  fail_disable:
2417         pci_disable_device(dev);
2418  fail_free:
2419         kfree(&ohci->card);
2420         ohci_pmac_off(dev);
2421
2422         return err;
2423 }
2424
2425 static void pci_remove(struct pci_dev *dev)
2426 {
2427         struct fw_ohci *ohci;
2428
2429         ohci = pci_get_drvdata(dev);
2430         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2431         flush_writes(ohci);
2432         fw_core_remove_card(&ohci->card);
2433
2434         /*
2435          * FIXME: Fail all pending packets here, now that the upper
2436          * layers can't queue any more.
2437          */
2438
2439         software_reset(ohci);
2440         free_irq(dev->irq, ohci);
2441         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2442                           ohci->self_id_cpu, ohci->self_id_bus);
2443         kfree(ohci->it_context_list);
2444         kfree(ohci->ir_context_list);
2445         pci_iounmap(dev, ohci->registers);
2446         pci_release_region(dev, 0);
2447         pci_disable_device(dev);
2448         kfree(&ohci->card);
2449         ohci_pmac_off(dev);
2450
2451         fw_notify("Removed fw-ohci device.\n");
2452 }
2453
2454 #ifdef CONFIG_PM
2455 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2456 {
2457         struct fw_ohci *ohci = pci_get_drvdata(dev);
2458         int err;
2459
2460         software_reset(ohci);
2461         free_irq(dev->irq, ohci);
2462         err = pci_save_state(dev);
2463         if (err) {
2464                 fw_error("pci_save_state failed\n");
2465                 return err;
2466         }
2467         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2468         if (err)
2469                 fw_error("pci_set_power_state failed with %d\n", err);
2470         ohci_pmac_off(dev);
2471
2472         return 0;
2473 }
2474
2475 static int pci_resume(struct pci_dev *dev)
2476 {
2477         struct fw_ohci *ohci = pci_get_drvdata(dev);
2478         int err;
2479
2480         ohci_pmac_on(dev);
2481         pci_set_power_state(dev, PCI_D0);
2482         pci_restore_state(dev);
2483         err = pci_enable_device(dev);
2484         if (err) {
2485                 fw_error("pci_enable_device failed\n");
2486                 return err;
2487         }
2488
2489         return ohci_enable(&ohci->card, NULL, 0);
2490 }
2491 #endif
2492
2493 static struct pci_device_id pci_table[] = {
2494         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2495         { }
2496 };
2497
2498 MODULE_DEVICE_TABLE(pci, pci_table);
2499
2500 static struct pci_driver fw_ohci_pci_driver = {
2501         .name           = ohci_driver_name,
2502         .id_table       = pci_table,
2503         .probe          = pci_probe,
2504         .remove         = pci_remove,
2505 #ifdef CONFIG_PM
2506         .resume         = pci_resume,
2507         .suspend        = pci_suspend,
2508 #endif
2509 };
2510
2511 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2512 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2513 MODULE_LICENSE("GPL");
2514
2515 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2516 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2517 MODULE_ALIAS("ohci1394");
2518 #endif
2519
2520 static int __init fw_ohci_init(void)
2521 {
2522         return pci_register_driver(&fw_ohci_pci_driver);
2523 }
2524
2525 static void __exit fw_ohci_cleanup(void)
2526 {
2527         pci_unregister_driver(&fw_ohci_pci_driver);
2528 }
2529
2530 module_init(fw_ohci_init);
2531 module_exit(fw_ohci_cleanup);