1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
15 See the file COPYING in this distribution for more information.
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
30 #define DRV_NAME "de2104x"
31 #define DRV_VERSION "0.7"
32 #define DRV_RELDATE "Mar 17, 2004"
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <linux/compiler.h>
43 #include <linux/rtnetlink.h>
44 #include <linux/crc32.h>
48 #include <asm/uaccess.h>
49 #include <asm/unaligned.h>
51 /* These identify the driver base version and may not be removed. */
52 static char version[] =
53 KERN_INFO DRV_NAME " PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
55 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
56 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_VERSION);
60 static int debug = -1;
61 module_param (debug, int, 0);
62 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
66 || defined(CONFIG_SPARC) || defined(__ia64__) \
67 || defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
70 static int rx_copybreak = 100;
72 module_param (rx_copybreak, int, 0);
73 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
75 #define PFX DRV_NAME ": "
77 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
85 /* Descriptor skip length in 32 bit longwords. */
86 #ifndef CONFIG_DE2104X_DSL
89 #define DSL CONFIG_DE2104X_DSL
92 #define DE_RX_RING_SIZE 64
93 #define DE_TX_RING_SIZE 64
94 #define DE_RING_BYTES \
95 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
96 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
97 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
98 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
99 #define TX_BUFFS_AVAIL(CP) \
100 (((CP)->tx_tail <= (CP)->tx_head) ? \
101 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
102 (CP)->tx_tail - (CP)->tx_head - 1)
104 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
107 #define DE_SETUP_SKB ((struct sk_buff *) 1)
108 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
109 #define DE_SETUP_FRAME_WORDS 96
110 #define DE_EEPROM_WORDS 256
111 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
112 #define DE_MAX_MEDIA 5
114 #define DE_MEDIA_TP_AUTO 0
115 #define DE_MEDIA_BNC 1
116 #define DE_MEDIA_AUI 2
117 #define DE_MEDIA_TP 3
118 #define DE_MEDIA_TP_FD 4
119 #define DE_MEDIA_INVALID DE_MAX_MEDIA
120 #define DE_MEDIA_FIRST 0
121 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
122 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
124 #define DE_TIMER_LINK (60 * HZ)
125 #define DE_TIMER_NO_LINK (5 * HZ)
127 #define DE_NUM_REGS 16
128 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
129 #define DE_REGS_VER 1
131 /* Time in jiffies before concluding the transmitter is hung. */
132 #define TX_TIMEOUT (6*HZ)
134 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
135 to support a pre-NWay full-duplex signaling mechanism using short frames.
136 No one knows what it should be, but if left at its default value some
137 10base2(!) packets trigger a full-duplex-request interrupt. */
138 #define FULL_DUPLEX_MAGIC 0x6969
161 CacheAlign16 = 0x00008000,
162 BurstLen4 = 0x00000400,
163 DescSkipLen = (DSL << 2),
166 NormalTxPoll = (1 << 0),
167 NormalRxPoll = (1 << 0),
169 /* Tx/Rx descriptor status bits */
172 RxErrLong = (1 << 7),
174 RxErrFIFO = (1 << 0),
175 RxErrRunt = (1 << 11),
176 RxErrFrame = (1 << 14),
178 FirstFrag = (1 << 29),
179 LastFrag = (1 << 30),
181 TxFIFOUnder = (1 << 1),
182 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
185 TxJabber = (1 << 14),
186 SetupFrame = (1 << 27),
197 TxState = (1 << 22) | (1 << 21) | (1 << 20),
198 RxState = (1 << 19) | (1 << 18) | (1 << 17),
199 LinkFail = (1 << 12),
201 RxStopped = (1 << 8),
202 TxStopped = (1 << 1),
205 TxEnable = (1 << 13),
207 RxTx = TxEnable | RxEnable,
208 FullDuplex = (1 << 9),
209 AcceptAllMulticast = (1 << 7),
210 AcceptAllPhys = (1 << 6),
212 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
213 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
216 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
217 EE_CS = 0x01, /* EEPROM chip select. */
218 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
221 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
222 EE_ENB = (0x4800 | EE_CS),
224 /* The EEPROM commands include the alway-set leading bit. */
228 RxMissedOver = (1 << 16),
229 RxMissedMask = 0xffff,
231 /* SROM-related bits */
233 MediaBlockMask = 0x3f,
234 MediaCustomCSRs = (1 << 6),
237 PM_Sleep = (1 << 31),
238 PM_Snooze = (1 << 30),
239 PM_Mask = PM_Sleep | PM_Snooze,
242 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
243 NWayRestart = (1 << 12),
244 NonselPortActive = (1 << 9),
245 LinkFailStatus = (1 << 2),
246 NetCxnErr = (1 << 1),
249 static const u32 de_intr_mask =
250 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
251 LinkPass | LinkFail | PciErr;
254 * Set the programmable burst length to 4 longwords for all:
255 * DMA errors result without these values. Cache align 16 long.
257 static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen;
259 struct de_srom_media_block {
264 } __attribute__((packed));
266 struct de_srom_info_leaf {
270 } __attribute__((packed));
283 u16 type; /* DE_MEDIA_xxx */
300 struct net_device *dev;
303 struct de_desc *rx_ring;
304 struct de_desc *tx_ring;
305 struct ring_info tx_skb[DE_TX_RING_SIZE];
306 struct ring_info rx_skb[DE_RX_RING_SIZE];
312 struct net_device_stats net_stats;
314 struct pci_dev *pdev;
316 u16 setup_frame[DE_SETUP_FRAME_WORDS];
321 struct media_info media[DE_MAX_MEDIA];
322 struct timer_list media_timer;
326 unsigned de21040 : 1;
327 unsigned media_lock : 1;
331 static void de_set_rx_mode (struct net_device *dev);
332 static void de_tx (struct de_private *de);
333 static void de_clean_rings (struct de_private *de);
334 static void de_media_interrupt (struct de_private *de, u32 status);
335 static void de21040_media_timer (unsigned long data);
336 static void de21041_media_timer (unsigned long data);
337 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
340 static struct pci_device_id de_pci_tbl[] = {
341 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
342 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
343 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
344 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
347 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
349 static const char * const media_name[DE_MAX_MEDIA] = {
357 /* 21040 transceiver register settings:
358 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
359 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
360 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
361 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
363 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
364 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
365 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, };
366 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
369 #define dr32(reg) readl(de->regs + (reg))
370 #define dw32(reg,val) writel((val), de->regs + (reg))
373 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
376 if (netif_msg_rx_err (de))
378 "%s: rx err, slot %d status 0x%x len %d\n",
379 de->dev->name, rx_tail, status, len);
381 if ((status & 0x38000300) != 0x0300) {
382 /* Ingore earlier buffers. */
383 if ((status & 0xffff) != 0x7fff) {
384 if (netif_msg_rx_err(de))
385 printk(KERN_WARNING "%s: Oversized Ethernet frame "
386 "spanned multiple buffers, status %8.8x!\n",
387 de->dev->name, status);
388 de->net_stats.rx_length_errors++;
390 } else if (status & RxError) {
391 /* There was a fatal error. */
392 de->net_stats.rx_errors++; /* end of a packet.*/
393 if (status & 0x0890) de->net_stats.rx_length_errors++;
394 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
395 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
399 static void de_rx (struct de_private *de)
401 unsigned rx_tail = de->rx_tail;
402 unsigned rx_work = DE_RX_RING_SIZE;
409 struct sk_buff *skb, *copy_skb;
410 unsigned copying_skb, buflen;
412 skb = de->rx_skb[rx_tail].skb;
415 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
416 if (status & DescOwn)
419 len = ((status >> 16) & 0x7ff) - 4;
420 mapping = de->rx_skb[rx_tail].mapping;
422 if (unlikely(drop)) {
423 de->net_stats.rx_dropped++;
427 if (unlikely((status & 0x38008300) != 0x0300)) {
428 de_rx_err_acct(de, rx_tail, status, len);
432 copying_skb = (len <= rx_copybreak);
434 if (unlikely(netif_msg_rx_status(de)))
435 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n",
436 de->dev->name, rx_tail, status, len,
439 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
440 copy_skb = dev_alloc_skb (buflen);
441 if (unlikely(!copy_skb)) {
442 de->net_stats.rx_dropped++;
449 pci_unmap_single(de->pdev, mapping,
450 buflen, PCI_DMA_FROMDEVICE);
454 de->rx_skb[rx_tail].mapping =
455 pci_map_single(de->pdev, copy_skb->data,
456 buflen, PCI_DMA_FROMDEVICE);
457 de->rx_skb[rx_tail].skb = copy_skb;
459 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
460 skb_reserve(copy_skb, RX_OFFSET);
461 skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
463 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
465 /* We'll reuse the original ring buffer. */
469 skb->protocol = eth_type_trans (skb, de->dev);
471 de->net_stats.rx_packets++;
472 de->net_stats.rx_bytes += skb->len;
474 if (rc == NET_RX_DROP)
478 if (rx_tail == (DE_RX_RING_SIZE - 1))
479 de->rx_ring[rx_tail].opts2 =
480 cpu_to_le32(RingEnd | de->rx_buf_sz);
482 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
483 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
485 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
486 rx_tail = NEXT_RX(rx_tail);
490 printk(KERN_WARNING "%s: rx work limit reached\n", de->dev->name);
492 de->rx_tail = rx_tail;
495 static irqreturn_t de_interrupt (int irq, void *dev_instance)
497 struct net_device *dev = dev_instance;
498 struct de_private *de = netdev_priv(dev);
501 status = dr32(MacStatus);
502 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
505 if (netif_msg_intr(de))
506 printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n",
507 dev->name, status, dr32(MacMode), de->rx_tail, de->tx_head, de->tx_tail);
509 dw32(MacStatus, status);
511 if (status & (RxIntr | RxEmpty)) {
513 if (status & RxEmpty)
514 dw32(RxPoll, NormalRxPoll);
517 spin_lock(&de->lock);
519 if (status & (TxIntr | TxEmpty))
522 if (status & (LinkPass | LinkFail))
523 de_media_interrupt(de, status);
525 spin_unlock(&de->lock);
527 if (status & PciErr) {
530 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
531 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
532 printk(KERN_ERR "%s: PCI bus error, status=%08x, PCI status=%04x\n",
533 dev->name, status, pci_status);
539 static void de_tx (struct de_private *de)
541 unsigned tx_head = de->tx_head;
542 unsigned tx_tail = de->tx_tail;
544 while (tx_tail != tx_head) {
549 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
550 if (status & DescOwn)
553 skb = de->tx_skb[tx_tail].skb;
555 if (unlikely(skb == DE_DUMMY_SKB))
558 if (unlikely(skb == DE_SETUP_SKB)) {
559 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
560 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
564 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
565 skb->len, PCI_DMA_TODEVICE);
567 if (status & LastFrag) {
568 if (status & TxError) {
569 if (netif_msg_tx_err(de))
570 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
571 de->dev->name, status);
572 de->net_stats.tx_errors++;
574 de->net_stats.tx_window_errors++;
575 if (status & TxMaxCol)
576 de->net_stats.tx_aborted_errors++;
577 if (status & TxLinkFail)
578 de->net_stats.tx_carrier_errors++;
579 if (status & TxFIFOUnder)
580 de->net_stats.tx_fifo_errors++;
582 de->net_stats.tx_packets++;
583 de->net_stats.tx_bytes += skb->len;
584 if (netif_msg_tx_done(de))
585 printk(KERN_DEBUG "%s: tx done, slot %d\n", de->dev->name, tx_tail);
587 dev_kfree_skb_irq(skb);
591 de->tx_skb[tx_tail].skb = NULL;
593 tx_tail = NEXT_TX(tx_tail);
596 de->tx_tail = tx_tail;
598 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
599 netif_wake_queue(de->dev);
602 static int de_start_xmit (struct sk_buff *skb, struct net_device *dev)
604 struct de_private *de = netdev_priv(dev);
605 unsigned int entry, tx_free;
606 u32 mapping, len, flags = FirstFrag | LastFrag;
609 spin_lock_irq(&de->lock);
611 tx_free = TX_BUFFS_AVAIL(de);
613 netif_stop_queue(dev);
614 spin_unlock_irq(&de->lock);
615 return NETDEV_TX_BUSY;
621 txd = &de->tx_ring[entry];
624 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
625 if (entry == (DE_TX_RING_SIZE - 1))
627 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
630 txd->opts2 = cpu_to_le32(flags);
631 txd->addr1 = cpu_to_le32(mapping);
633 de->tx_skb[entry].skb = skb;
634 de->tx_skb[entry].mapping = mapping;
637 txd->opts1 = cpu_to_le32(DescOwn);
640 de->tx_head = NEXT_TX(entry);
641 if (netif_msg_tx_queued(de))
642 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
643 dev->name, entry, skb->len);
646 netif_stop_queue(dev);
648 spin_unlock_irq(&de->lock);
650 /* Trigger an immediate transmit demand. */
651 dw32(TxPoll, NormalTxPoll);
652 dev->trans_start = jiffies;
657 /* Set or clear the multicast filter for this adaptor.
658 Note that we only use exclusion around actually queueing the
659 new frame, not around filling de->setup_frame. This is non-deterministic
660 when re-entered but still correct. */
663 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
665 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
667 struct de_private *de = netdev_priv(dev);
669 struct dev_mc_list *mclist;
673 memset(hash_table, 0, sizeof(hash_table));
674 set_bit_le(255, hash_table); /* Broadcast entry */
675 /* This should work on big-endian machines as well. */
676 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
677 i++, mclist = mclist->next) {
678 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
680 set_bit_le(index, hash_table);
682 for (i = 0; i < 32; i++) {
683 *setup_frm++ = hash_table[i];
684 *setup_frm++ = hash_table[i];
686 setup_frm = &de->setup_frame[13*6];
689 /* Fill the final entry with our physical address. */
690 eaddrs = (u16 *)dev->dev_addr;
691 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
692 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
693 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
696 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
698 struct de_private *de = netdev_priv(dev);
699 struct dev_mc_list *mclist;
703 /* We have <= 14 addresses so we can use the wonderful
704 16 address perfect filtering of the Tulip. */
705 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
706 i++, mclist = mclist->next) {
707 eaddrs = (u16 *)mclist->dmi_addr;
708 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
709 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
710 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
712 /* Fill the unused entries with the broadcast address. */
713 memset(setup_frm, 0xff, (15-i)*12);
714 setup_frm = &de->setup_frame[15*6];
716 /* Fill the final entry with our physical address. */
717 eaddrs = (u16 *)dev->dev_addr;
718 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
719 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
720 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
724 static void __de_set_rx_mode (struct net_device *dev)
726 struct de_private *de = netdev_priv(dev);
731 struct de_desc *dummy_txd = NULL;
733 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
735 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
736 macmode |= AcceptAllMulticast | AcceptAllPhys;
740 if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
741 /* Too many to filter well -- accept all multicasts. */
742 macmode |= AcceptAllMulticast;
746 /* Note that only the low-address shortword of setup_frame is valid!
747 The values are doubled for big-endian architectures. */
748 if (dev->mc_count > 14) /* Must use a multicast hash table. */
749 build_setup_frame_hash (de->setup_frame, dev);
751 build_setup_frame_perfect (de->setup_frame, dev);
754 * Now add this frame to the Tx list.
759 /* Avoid a chip errata by prefixing a dummy entry. */
761 de->tx_skb[entry].skb = DE_DUMMY_SKB;
763 dummy_txd = &de->tx_ring[entry];
764 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
765 cpu_to_le32(RingEnd) : 0;
766 dummy_txd->addr1 = 0;
768 /* Must set DescOwned later to avoid race with chip */
770 entry = NEXT_TX(entry);
773 de->tx_skb[entry].skb = DE_SETUP_SKB;
774 de->tx_skb[entry].mapping = mapping =
775 pci_map_single (de->pdev, de->setup_frame,
776 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
778 /* Put the setup frame on the Tx list. */
779 txd = &de->tx_ring[entry];
780 if (entry == (DE_TX_RING_SIZE - 1))
781 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
783 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
784 txd->addr1 = cpu_to_le32(mapping);
787 txd->opts1 = cpu_to_le32(DescOwn);
791 dummy_txd->opts1 = cpu_to_le32(DescOwn);
795 de->tx_head = NEXT_TX(entry);
797 if (TX_BUFFS_AVAIL(de) == 0)
798 netif_stop_queue(dev);
800 /* Trigger an immediate transmit demand. */
801 dw32(TxPoll, NormalTxPoll);
804 if (macmode != dr32(MacMode))
805 dw32(MacMode, macmode);
808 static void de_set_rx_mode (struct net_device *dev)
811 struct de_private *de = netdev_priv(dev);
813 spin_lock_irqsave (&de->lock, flags);
814 __de_set_rx_mode(dev);
815 spin_unlock_irqrestore (&de->lock, flags);
818 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
820 if (unlikely(rx_missed & RxMissedOver))
821 de->net_stats.rx_missed_errors += RxMissedMask;
823 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
826 static void __de_get_stats(struct de_private *de)
828 u32 tmp = dr32(RxMissed); /* self-clearing */
830 de_rx_missed(de, tmp);
833 static struct net_device_stats *de_get_stats(struct net_device *dev)
835 struct de_private *de = netdev_priv(dev);
837 /* The chip only need report frame silently dropped. */
838 spin_lock_irq(&de->lock);
839 if (netif_running(dev) && netif_device_present(dev))
841 spin_unlock_irq(&de->lock);
843 return &de->net_stats;
846 static inline int de_is_running (struct de_private *de)
848 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
851 static void de_stop_rxtx (struct de_private *de)
854 unsigned int i = 1300/100;
856 macmode = dr32(MacMode);
857 if (macmode & RxTx) {
858 dw32(MacMode, macmode & ~RxTx);
862 /* wait until in-flight frame completes.
863 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin)
864 * Typically expect this loop to end in < 50 us on 100BT.
867 if (!de_is_running(de))
872 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name);
875 static inline void de_start_rxtx (struct de_private *de)
879 macmode = dr32(MacMode);
880 if ((macmode & RxTx) != RxTx) {
881 dw32(MacMode, macmode | RxTx);
886 static void de_stop_hw (struct de_private *de)
894 dw32(MacStatus, dr32(MacStatus));
899 de->tx_head = de->tx_tail = 0;
902 static void de_link_up(struct de_private *de)
904 if (!netif_carrier_ok(de->dev)) {
905 netif_carrier_on(de->dev);
906 if (netif_msg_link(de))
907 printk(KERN_INFO "%s: link up, media %s\n",
908 de->dev->name, media_name[de->media_type]);
912 static void de_link_down(struct de_private *de)
914 if (netif_carrier_ok(de->dev)) {
915 netif_carrier_off(de->dev);
916 if (netif_msg_link(de))
917 printk(KERN_INFO "%s: link down\n", de->dev->name);
921 static void de_set_media (struct de_private *de)
923 unsigned media = de->media_type;
924 u32 macmode = dr32(MacMode);
926 if (de_is_running(de))
927 printk(KERN_WARNING "%s: chip is running while changing media!\n", de->dev->name);
930 dw32(CSR11, FULL_DUPLEX_MAGIC);
931 dw32(CSR13, 0); /* Reset phy */
932 dw32(CSR14, de->media[media].csr14);
933 dw32(CSR15, de->media[media].csr15);
934 dw32(CSR13, de->media[media].csr13);
936 /* must delay 10ms before writing to other registers,
941 if (media == DE_MEDIA_TP_FD)
942 macmode |= FullDuplex;
944 macmode &= ~FullDuplex;
946 if (netif_msg_link(de)) {
949 "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n"
950 "%s: set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
951 de->dev->name, media_name[media],
952 de->dev->name, dr32(MacMode), dr32(SIAStatus),
953 dr32(CSR13), dr32(CSR14), dr32(CSR15),
954 de->dev->name, macmode, de->media[media].csr13,
955 de->media[media].csr14, de->media[media].csr15);
957 if (macmode != dr32(MacMode))
958 dw32(MacMode, macmode);
961 static void de_next_media (struct de_private *de, u32 *media,
962 unsigned int n_media)
966 for (i = 0; i < n_media; i++) {
967 if (de_ok_to_advertise(de, media[i])) {
968 de->media_type = media[i];
974 static void de21040_media_timer (unsigned long data)
976 struct de_private *de = (struct de_private *) data;
977 struct net_device *dev = de->dev;
978 u32 status = dr32(SIAStatus);
979 unsigned int carrier;
982 carrier = (status & NetCxnErr) ? 0 : 1;
985 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
988 de->media_timer.expires = jiffies + DE_TIMER_LINK;
989 add_timer(&de->media_timer);
990 if (!netif_carrier_ok(dev))
993 if (netif_msg_timer(de))
994 printk(KERN_INFO "%s: %s link ok, status %x\n",
995 dev->name, media_name[de->media_type],
1005 if (de->media_type == DE_MEDIA_AUI) {
1006 u32 next_state = DE_MEDIA_TP;
1007 de_next_media(de, &next_state, 1);
1009 u32 next_state = DE_MEDIA_AUI;
1010 de_next_media(de, &next_state, 1);
1013 spin_lock_irqsave(&de->lock, flags);
1015 spin_unlock_irqrestore(&de->lock, flags);
1020 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1021 add_timer(&de->media_timer);
1023 if (netif_msg_timer(de))
1024 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1025 dev->name, media_name[de->media_type], status);
1028 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1030 switch (new_media) {
1031 case DE_MEDIA_TP_AUTO:
1032 if (!(de->media_advertise & ADVERTISED_Autoneg))
1034 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1038 if (!(de->media_advertise & ADVERTISED_BNC))
1042 if (!(de->media_advertise & ADVERTISED_AUI))
1046 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1049 case DE_MEDIA_TP_FD:
1050 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1058 static void de21041_media_timer (unsigned long data)
1060 struct de_private *de = (struct de_private *) data;
1061 struct net_device *dev = de->dev;
1062 u32 status = dr32(SIAStatus);
1063 unsigned int carrier;
1064 unsigned long flags;
1066 carrier = (status & NetCxnErr) ? 0 : 1;
1069 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1070 de->media_type == DE_MEDIA_TP ||
1071 de->media_type == DE_MEDIA_TP_FD) &&
1072 (status & LinkFailStatus))
1075 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1076 add_timer(&de->media_timer);
1077 if (!netif_carrier_ok(dev))
1080 if (netif_msg_timer(de))
1081 printk(KERN_INFO "%s: %s link ok, mode %x status %x\n",
1082 dev->name, media_name[de->media_type],
1083 dr32(MacMode), status);
1089 /* if media type locked, don't switch media */
1093 /* if activity detected, use that as hint for new media type */
1094 if (status & NonselPortActive) {
1095 unsigned int have_media = 1;
1097 /* if AUI/BNC selected, then activity is on TP port */
1098 if (de->media_type == DE_MEDIA_AUI ||
1099 de->media_type == DE_MEDIA_BNC) {
1100 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1101 de->media_type = DE_MEDIA_TP_AUTO;
1106 /* TP selected. If there is only TP and BNC, then it's BNC */
1107 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1108 de_ok_to_advertise(de, DE_MEDIA_BNC))
1109 de->media_type = DE_MEDIA_BNC;
1111 /* TP selected. If there is only TP and AUI, then it's AUI */
1112 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1113 de_ok_to_advertise(de, DE_MEDIA_AUI))
1114 de->media_type = DE_MEDIA_AUI;
1116 /* otherwise, ignore the hint */
1125 * Absent or ambiguous activity hint, move to next advertised
1126 * media state. If de->media_type is left unchanged, this
1127 * simply resets the PHY and reloads the current media settings.
1129 if (de->media_type == DE_MEDIA_AUI) {
1130 u32 next_states[] = { DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1131 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1132 } else if (de->media_type == DE_MEDIA_BNC) {
1133 u32 next_states[] = { DE_MEDIA_TP_AUTO, DE_MEDIA_AUI };
1134 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1136 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1137 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1141 spin_lock_irqsave(&de->lock, flags);
1143 spin_unlock_irqrestore(&de->lock, flags);
1148 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1149 add_timer(&de->media_timer);
1151 if (netif_msg_timer(de))
1152 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1153 dev->name, media_name[de->media_type], status);
1156 static void de_media_interrupt (struct de_private *de, u32 status)
1158 if (status & LinkPass) {
1160 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1164 BUG_ON(!(status & LinkFail));
1166 if (netif_carrier_ok(de->dev)) {
1168 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1172 static int de_reset_mac (struct de_private *de)
1177 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1181 if (dr32(BusMode) == 0xffffffff)
1184 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1185 dw32 (BusMode, CmdReset);
1188 dw32 (BusMode, de_bus_mode);
1191 for (tmp = 0; tmp < 5; tmp++) {
1198 status = dr32(MacStatus);
1199 if (status & (RxState | TxState))
1201 if (status == 0xffffffff)
1206 static void de_adapter_wake (struct de_private *de)
1213 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1214 if (pmctl & PM_Mask) {
1216 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1218 /* de4x5.c delays, so we do too */
1223 static void de_adapter_sleep (struct de_private *de)
1230 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1232 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1235 static int de_init_hw (struct de_private *de)
1237 struct net_device *dev = de->dev;
1241 de_adapter_wake(de);
1243 macmode = dr32(MacMode) & ~MacModeClear;
1245 rc = de_reset_mac(de);
1249 de_set_media(de); /* reset phy */
1251 dw32(RxRingAddr, de->ring_dma);
1252 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1254 dw32(MacMode, RxTx | macmode);
1256 dr32(RxMissed); /* self-clearing */
1258 dw32(IntrMask, de_intr_mask);
1260 de_set_rx_mode(dev);
1265 static int de_refill_rx (struct de_private *de)
1269 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1270 struct sk_buff *skb;
1272 skb = dev_alloc_skb(de->rx_buf_sz);
1278 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1279 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1280 de->rx_skb[i].skb = skb;
1282 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1283 if (i == (DE_RX_RING_SIZE - 1))
1284 de->rx_ring[i].opts2 =
1285 cpu_to_le32(RingEnd | de->rx_buf_sz);
1287 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1288 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1289 de->rx_ring[i].addr2 = 0;
1299 static int de_init_rings (struct de_private *de)
1301 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1302 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1305 de->tx_head = de->tx_tail = 0;
1307 return de_refill_rx (de);
1310 static int de_alloc_rings (struct de_private *de)
1312 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1315 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1316 return de_init_rings(de);
1319 static void de_clean_rings (struct de_private *de)
1323 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1324 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1326 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1327 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1330 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1331 if (de->rx_skb[i].skb) {
1332 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1333 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1334 dev_kfree_skb(de->rx_skb[i].skb);
1338 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1339 struct sk_buff *skb = de->tx_skb[i].skb;
1340 if ((skb) && (skb != DE_DUMMY_SKB)) {
1341 if (skb != DE_SETUP_SKB) {
1342 de->net_stats.tx_dropped++;
1343 pci_unmap_single(de->pdev,
1344 de->tx_skb[i].mapping,
1345 skb->len, PCI_DMA_TODEVICE);
1348 pci_unmap_single(de->pdev,
1349 de->tx_skb[i].mapping,
1350 sizeof(de->setup_frame),
1356 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1357 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1360 static void de_free_rings (struct de_private *de)
1363 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1368 static int de_open (struct net_device *dev)
1370 struct de_private *de = netdev_priv(dev);
1373 if (netif_msg_ifup(de))
1374 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1376 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1378 rc = de_alloc_rings(de);
1380 printk(KERN_ERR "%s: ring allocation failure, err=%d\n",
1387 rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1389 printk(KERN_ERR "%s: IRQ %d request failure, err=%d\n",
1390 dev->name, dev->irq, rc);
1394 rc = de_init_hw(de);
1396 printk(KERN_ERR "%s: h/w init failure, err=%d\n",
1398 goto err_out_free_irq;
1401 netif_start_queue(dev);
1402 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1407 free_irq(dev->irq, dev);
1413 static int de_close (struct net_device *dev)
1415 struct de_private *de = netdev_priv(dev);
1416 unsigned long flags;
1418 if (netif_msg_ifdown(de))
1419 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1421 del_timer_sync(&de->media_timer);
1423 spin_lock_irqsave(&de->lock, flags);
1425 netif_stop_queue(dev);
1426 netif_carrier_off(dev);
1427 spin_unlock_irqrestore(&de->lock, flags);
1429 free_irq(dev->irq, dev);
1432 de_adapter_sleep(de);
1436 static void de_tx_timeout (struct net_device *dev)
1438 struct de_private *de = netdev_priv(dev);
1440 printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1441 dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1442 de->rx_tail, de->tx_head, de->tx_tail);
1444 del_timer_sync(&de->media_timer);
1446 disable_irq(dev->irq);
1447 spin_lock_irq(&de->lock);
1450 netif_stop_queue(dev);
1451 netif_carrier_off(dev);
1453 spin_unlock_irq(&de->lock);
1454 enable_irq(dev->irq);
1456 /* Update the error counts. */
1459 synchronize_irq(dev->irq);
1466 netif_wake_queue(dev);
1469 static void __de_get_regs(struct de_private *de, u8 *buf)
1472 u32 *rbuf = (u32 *)buf;
1475 for (i = 0; i < DE_NUM_REGS; i++)
1476 rbuf[i] = dr32(i * 8);
1478 /* handle self-clearing RxMissed counter, CSR8 */
1479 de_rx_missed(de, rbuf[8]);
1482 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1484 ecmd->supported = de->media_supported;
1485 ecmd->transceiver = XCVR_INTERNAL;
1486 ecmd->phy_address = 0;
1487 ecmd->advertising = de->media_advertise;
1489 switch (de->media_type) {
1491 ecmd->port = PORT_AUI;
1495 ecmd->port = PORT_BNC;
1499 ecmd->port = PORT_TP;
1500 ecmd->speed = SPEED_10;
1504 if (dr32(MacMode) & FullDuplex)
1505 ecmd->duplex = DUPLEX_FULL;
1507 ecmd->duplex = DUPLEX_HALF;
1510 ecmd->autoneg = AUTONEG_DISABLE;
1512 ecmd->autoneg = AUTONEG_ENABLE;
1514 /* ignore maxtxpkt, maxrxpkt for now */
1519 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1522 unsigned int media_lock;
1524 if (ecmd->speed != SPEED_10 && ecmd->speed != 5 && ecmd->speed != 2)
1526 if (de->de21040 && ecmd->speed == 2)
1528 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1530 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1532 if (de->de21040 && ecmd->port == PORT_BNC)
1534 if (ecmd->transceiver != XCVR_INTERNAL)
1536 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1538 if (ecmd->advertising & ~de->media_supported)
1540 if (ecmd->autoneg == AUTONEG_ENABLE &&
1541 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1544 switch (ecmd->port) {
1546 new_media = DE_MEDIA_AUI;
1547 if (!(ecmd->advertising & ADVERTISED_AUI))
1551 new_media = DE_MEDIA_BNC;
1552 if (!(ecmd->advertising & ADVERTISED_BNC))
1556 if (ecmd->autoneg == AUTONEG_ENABLE)
1557 new_media = DE_MEDIA_TP_AUTO;
1558 else if (ecmd->duplex == DUPLEX_FULL)
1559 new_media = DE_MEDIA_TP_FD;
1561 new_media = DE_MEDIA_TP;
1562 if (!(ecmd->advertising & ADVERTISED_TP))
1564 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1569 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1571 if ((new_media == de->media_type) &&
1572 (media_lock == de->media_lock) &&
1573 (ecmd->advertising == de->media_advertise))
1574 return 0; /* nothing to change */
1579 de->media_type = new_media;
1580 de->media_lock = media_lock;
1581 de->media_advertise = ecmd->advertising;
1587 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1589 struct de_private *de = netdev_priv(dev);
1591 strcpy (info->driver, DRV_NAME);
1592 strcpy (info->version, DRV_VERSION);
1593 strcpy (info->bus_info, pci_name(de->pdev));
1594 info->eedump_len = DE_EEPROM_SIZE;
1597 static int de_get_regs_len(struct net_device *dev)
1599 return DE_REGS_SIZE;
1602 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1604 struct de_private *de = netdev_priv(dev);
1607 spin_lock_irq(&de->lock);
1608 rc = __de_get_settings(de, ecmd);
1609 spin_unlock_irq(&de->lock);
1614 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1616 struct de_private *de = netdev_priv(dev);
1619 spin_lock_irq(&de->lock);
1620 rc = __de_set_settings(de, ecmd);
1621 spin_unlock_irq(&de->lock);
1626 static u32 de_get_msglevel(struct net_device *dev)
1628 struct de_private *de = netdev_priv(dev);
1630 return de->msg_enable;
1633 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1635 struct de_private *de = netdev_priv(dev);
1637 de->msg_enable = msglvl;
1640 static int de_get_eeprom(struct net_device *dev,
1641 struct ethtool_eeprom *eeprom, u8 *data)
1643 struct de_private *de = netdev_priv(dev);
1647 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1648 (eeprom->len != DE_EEPROM_SIZE))
1650 memcpy(data, de->ee_data, eeprom->len);
1655 static int de_nway_reset(struct net_device *dev)
1657 struct de_private *de = netdev_priv(dev);
1660 if (de->media_type != DE_MEDIA_TP_AUTO)
1662 if (netif_carrier_ok(de->dev))
1665 status = dr32(SIAStatus);
1666 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1667 if (netif_msg_link(de))
1668 printk(KERN_INFO "%s: link nway restart, status %x,%x\n",
1669 de->dev->name, status, dr32(SIAStatus));
1673 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1676 struct de_private *de = netdev_priv(dev);
1678 regs->version = (DE_REGS_VER << 2) | de->de21040;
1680 spin_lock_irq(&de->lock);
1681 __de_get_regs(de, data);
1682 spin_unlock_irq(&de->lock);
1685 static const struct ethtool_ops de_ethtool_ops = {
1686 .get_link = ethtool_op_get_link,
1687 .get_drvinfo = de_get_drvinfo,
1688 .get_regs_len = de_get_regs_len,
1689 .get_settings = de_get_settings,
1690 .set_settings = de_set_settings,
1691 .get_msglevel = de_get_msglevel,
1692 .set_msglevel = de_set_msglevel,
1693 .get_eeprom = de_get_eeprom,
1694 .nway_reset = de_nway_reset,
1695 .get_regs = de_get_regs,
1698 static void __devinit de21040_get_mac_address (struct de_private *de)
1702 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1705 for (i = 0; i < 6; i++) {
1706 int value, boguscnt = 100000;
1708 value = dr32(ROMCmd);
1709 } while (value < 0 && --boguscnt > 0);
1710 de->dev->dev_addr[i] = value;
1713 printk(KERN_WARNING PFX "timeout reading 21040 MAC address byte %u\n", i);
1717 static void __devinit de21040_get_media_info(struct de_private *de)
1721 de->media_type = DE_MEDIA_TP;
1722 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1723 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1724 de->media_advertise = de->media_supported;
1726 for (i = 0; i < DE_MAX_MEDIA; i++) {
1730 case DE_MEDIA_TP_FD:
1731 de->media[i].type = i;
1732 de->media[i].csr13 = t21040_csr13[i];
1733 de->media[i].csr14 = t21040_csr14[i];
1734 de->media[i].csr15 = t21040_csr15[i];
1737 de->media[i].type = DE_MEDIA_INVALID;
1743 /* Note: this routine returns extra data bits for size detection. */
1744 static unsigned __devinit tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1747 unsigned retval = 0;
1748 void __iomem *ee_addr = regs + ROMCmd;
1749 int read_cmd = location | (EE_READ_CMD << addr_len);
1751 writel(EE_ENB & ~EE_CS, ee_addr);
1752 writel(EE_ENB, ee_addr);
1754 /* Shift the read command bits out. */
1755 for (i = 4 + addr_len; i >= 0; i--) {
1756 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1757 writel(EE_ENB | dataval, ee_addr);
1759 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1761 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1763 writel(EE_ENB, ee_addr);
1766 for (i = 16; i > 0; i--) {
1767 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1769 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1770 writel(EE_ENB, ee_addr);
1774 /* Terminate the EEPROM access. */
1775 writel(EE_ENB & ~EE_CS, ee_addr);
1779 static void __devinit de21041_get_srom_info (struct de_private *de)
1781 unsigned i, sa_offset = 0, ofs;
1782 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1783 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1784 struct de_srom_info_leaf *il;
1787 /* download entire eeprom */
1788 for (i = 0; i < DE_EEPROM_WORDS; i++)
1789 ((__le16 *)ee_data)[i] =
1790 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size));
1792 /* DEC now has a specification but early board makers
1793 just put the address in the first EEPROM locations. */
1794 /* This does memcmp(eedata, eedata+16, 8) */
1796 #ifndef CONFIG_MIPS_COBALT
1798 for (i = 0; i < 8; i ++)
1799 if (ee_data[i] != ee_data[16+i])
1804 /* store MAC address */
1805 for (i = 0; i < 6; i ++)
1806 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1808 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1809 ofs = ee_data[SROMC0InfoLeaf];
1810 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1813 /* get pointer to info leaf */
1814 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1816 /* paranoia checks */
1817 if (il->n_blocks == 0)
1819 if ((sizeof(ee_data) - ofs) <
1820 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1823 /* get default media type */
1824 switch (get_unaligned(&il->default_media)) {
1825 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1826 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1827 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1828 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1831 if (netif_msg_probe(de))
1832 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n",
1834 media_name[de->media_type]);
1836 /* init SIA register values to defaults */
1837 for (i = 0; i < DE_MAX_MEDIA; i++) {
1838 de->media[i].type = DE_MEDIA_INVALID;
1839 de->media[i].csr13 = 0xffff;
1840 de->media[i].csr14 = 0xffff;
1841 de->media[i].csr15 = 0xffff;
1844 /* parse media blocks to see what medias are supported,
1845 * and if any custom CSR values are provided
1847 bufp = ((void *)il) + sizeof(*il);
1848 for (i = 0; i < il->n_blocks; i++) {
1849 struct de_srom_media_block *ib = bufp;
1852 /* index based on media type in media block */
1853 switch(ib->opts & MediaBlockMask) {
1854 case 0: /* 10baseT */
1855 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1856 | SUPPORTED_Autoneg;
1858 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1861 de->media_supported |= SUPPORTED_BNC;
1865 de->media_supported |= SUPPORTED_AUI;
1868 case 4: /* 10baseT-FD */
1869 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1870 | SUPPORTED_Autoneg;
1871 idx = DE_MEDIA_TP_FD;
1872 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1878 de->media[idx].type = idx;
1880 if (netif_msg_probe(de))
1881 printk(KERN_INFO "de%d: media block #%u: %s",
1883 media_name[de->media[idx].type]);
1885 bufp += sizeof (ib->opts);
1887 if (ib->opts & MediaCustomCSRs) {
1888 de->media[idx].csr13 = get_unaligned(&ib->csr13);
1889 de->media[idx].csr14 = get_unaligned(&ib->csr14);
1890 de->media[idx].csr15 = get_unaligned(&ib->csr15);
1891 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1894 if (netif_msg_probe(de))
1895 printk(" (%x,%x,%x)\n",
1896 de->media[idx].csr13,
1897 de->media[idx].csr14,
1898 de->media[idx].csr15);
1900 } else if (netif_msg_probe(de))
1903 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1907 de->media_advertise = de->media_supported;
1910 /* fill in defaults, for cases where custom CSRs not used */
1911 for (i = 0; i < DE_MAX_MEDIA; i++) {
1912 if (de->media[i].csr13 == 0xffff)
1913 de->media[i].csr13 = t21041_csr13[i];
1914 if (de->media[i].csr14 == 0xffff)
1915 de->media[i].csr14 = t21041_csr14[i];
1916 if (de->media[i].csr15 == 0xffff)
1917 de->media[i].csr15 = t21041_csr15[i];
1920 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);
1925 /* for error cases, it's ok to assume we support all these */
1926 for (i = 0; i < DE_MAX_MEDIA; i++)
1927 de->media[i].type = i;
1928 de->media_supported =
1929 SUPPORTED_10baseT_Half |
1930 SUPPORTED_10baseT_Full |
1938 static const struct net_device_ops de_netdev_ops = {
1939 .ndo_open = de_open,
1940 .ndo_stop = de_close,
1941 .ndo_set_multicast_list = de_set_rx_mode,
1942 .ndo_start_xmit = de_start_xmit,
1943 .ndo_get_stats = de_get_stats,
1944 .ndo_tx_timeout = de_tx_timeout,
1945 .ndo_change_mtu = eth_change_mtu,
1946 .ndo_set_mac_address = eth_mac_addr,
1947 .ndo_validate_addr = eth_validate_addr,
1950 static int __devinit de_init_one (struct pci_dev *pdev,
1951 const struct pci_device_id *ent)
1953 struct net_device *dev;
1954 struct de_private *de;
1957 unsigned long pciaddr;
1958 static int board_idx = -1;
1964 printk("%s", version);
1967 /* allocate a new ethernet device structure, and fill in defaults */
1968 dev = alloc_etherdev(sizeof(struct de_private));
1972 dev->netdev_ops = &de_netdev_ops;
1973 SET_NETDEV_DEV(dev, &pdev->dev);
1974 dev->ethtool_ops = &de_ethtool_ops;
1975 dev->watchdog_timeo = TX_TIMEOUT;
1977 de = netdev_priv(dev);
1978 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1981 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1982 de->board_idx = board_idx;
1983 spin_lock_init (&de->lock);
1984 init_timer(&de->media_timer);
1986 de->media_timer.function = de21040_media_timer;
1988 de->media_timer.function = de21041_media_timer;
1989 de->media_timer.data = (unsigned long) de;
1991 netif_carrier_off(dev);
1992 netif_stop_queue(dev);
1994 /* wake up device, assign resources */
1995 rc = pci_enable_device(pdev);
1999 /* reserve PCI resources to ensure driver atomicity */
2000 rc = pci_request_regions(pdev, DRV_NAME);
2002 goto err_out_disable;
2004 /* check for invalid IRQ value */
2005 if (pdev->irq < 2) {
2007 printk(KERN_ERR PFX "invalid irq (%d) for pci dev %s\n",
2008 pdev->irq, pci_name(pdev));
2012 dev->irq = pdev->irq;
2014 /* obtain and check validity of PCI I/O address */
2015 pciaddr = pci_resource_start(pdev, 1);
2018 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
2022 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2024 printk(KERN_ERR PFX "MMIO resource (%llx) too small on pci dev %s\n",
2025 (unsigned long long)pci_resource_len(pdev, 1), pci_name(pdev));
2029 /* remap CSR registers */
2030 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2033 printk(KERN_ERR PFX "Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2034 (unsigned long long)pci_resource_len(pdev, 1),
2035 pciaddr, pci_name(pdev));
2038 dev->base_addr = (unsigned long) regs;
2041 de_adapter_wake(de);
2043 /* make sure hardware is not running */
2044 rc = de_reset_mac(de);
2046 printk(KERN_ERR PFX "Cannot reset MAC, pci dev %s\n",
2051 /* get MAC address, initialize default media type and
2052 * get list of supported media
2055 de21040_get_mac_address(de);
2056 de21040_get_media_info(de);
2058 de21041_get_srom_info(de);
2061 /* register new network interface with kernel */
2062 rc = register_netdev(dev);
2066 /* print info about board and interface just registered */
2067 printk (KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
2069 de->de21040 ? "21040" : "21041",
2074 pci_set_drvdata(pdev, dev);
2076 /* enable busmastering */
2077 pci_set_master(pdev);
2079 /* put adapter to sleep */
2080 de_adapter_sleep(de);
2088 pci_release_regions(pdev);
2090 pci_disable_device(pdev);
2096 static void __devexit de_remove_one (struct pci_dev *pdev)
2098 struct net_device *dev = pci_get_drvdata(pdev);
2099 struct de_private *de = netdev_priv(dev);
2102 unregister_netdev(dev);
2105 pci_release_regions(pdev);
2106 pci_disable_device(pdev);
2107 pci_set_drvdata(pdev, NULL);
2113 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2115 struct net_device *dev = pci_get_drvdata (pdev);
2116 struct de_private *de = netdev_priv(dev);
2119 if (netif_running (dev)) {
2120 del_timer_sync(&de->media_timer);
2122 disable_irq(dev->irq);
2123 spin_lock_irq(&de->lock);
2126 netif_stop_queue(dev);
2127 netif_device_detach(dev);
2128 netif_carrier_off(dev);
2130 spin_unlock_irq(&de->lock);
2131 enable_irq(dev->irq);
2133 /* Update the error counts. */
2136 synchronize_irq(dev->irq);
2139 de_adapter_sleep(de);
2140 pci_disable_device(pdev);
2142 netif_device_detach(dev);
2148 static int de_resume (struct pci_dev *pdev)
2150 struct net_device *dev = pci_get_drvdata (pdev);
2151 struct de_private *de = netdev_priv(dev);
2155 if (netif_device_present(dev))
2157 if (!netif_running(dev))
2159 if ((retval = pci_enable_device(pdev))) {
2160 printk (KERN_ERR "%s: pci_enable_device failed in resume\n",
2166 netif_device_attach(dev);
2172 #endif /* CONFIG_PM */
2174 static struct pci_driver de_driver = {
2176 .id_table = de_pci_tbl,
2177 .probe = de_init_one,
2178 .remove = __devexit_p(de_remove_one),
2180 .suspend = de_suspend,
2181 .resume = de_resume,
2185 static int __init de_init (void)
2188 printk("%s", version);
2190 return pci_register_driver(&de_driver);
2193 static void __exit de_exit (void)
2195 pci_unregister_driver (&de_driver);
2198 module_init(de_init);
2199 module_exit(de_exit);