2 * arch/v850/kernel/setup.c -- Arch-dependent initialization functions
4 * Copyright (C) 2001,02,03,05,06 NEC Electronics Corporation
5 * Copyright (C) 2001,02,03,05,06 Miles Bader <miles@gnu.org>
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License. See the file COPYING in the main directory of this
9 * archive for more details.
11 * Written by Miles Bader <miles@gnu.org>
15 #include <linux/bootmem.h>
16 #include <linux/swap.h> /* we don't have swap, but for nr_free_pages */
17 #include <linux/irq.h>
18 #include <linux/reboot.h>
19 #include <linux/personality.h>
20 #include <linux/major.h>
21 #include <linux/root_dev.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/init.h>
26 #include <asm/setup.h>
30 /* These symbols are all defined in the linker map to delineate various
31 statically allocated regions of memory. */
33 extern char _intv_start, _intv_end;
34 /* `kram' is only used if the kernel uses part of normal user RAM. */
35 extern char _kram_start __attribute__ ((__weak__));
36 extern char _kram_end __attribute__ ((__weak__));
37 extern char _init_start, _init_end;
39 extern char _stext, _etext, _sdata, _edata, _sbss, _ebss;
40 /* Many platforms use an embedded root image. */
41 extern char _root_fs_image_start __attribute__ ((__weak__));
42 extern char _root_fs_image_end __attribute__ ((__weak__));
45 char __initdata command_line[COMMAND_LINE_SIZE];
47 /* Memory not used by the kernel. */
48 static unsigned long total_ram_pages;
51 static unsigned long ram_start = 0, ram_len = 0;
54 #define ADDR_TO_PAGE_UP(x) ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT)
55 #define ADDR_TO_PAGE(x) (((unsigned long)x) >> PAGE_SHIFT)
56 #define PAGE_TO_ADDR(x) (((unsigned long)x) << PAGE_SHIFT)
58 static void init_mem_alloc (unsigned long ram_start, unsigned long ram_len);
60 void set_mem_root (void *addr, size_t len, char *cmd_line);
63 void __init setup_arch (char **cmdline)
65 /* Keep a copy of command line */
66 *cmdline = command_line;
67 memcpy (boot_command_line, command_line, COMMAND_LINE_SIZE);
68 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
72 init_mm.start_code = (unsigned long) &_stext;
73 init_mm.end_code = (unsigned long) &_etext;
74 init_mm.end_data = (unsigned long) &_edata;
75 init_mm.brk = (unsigned long) &_kram_end;
77 /* Find out what mem this machine has. */
78 mach_get_physical_ram (&ram_start, &ram_len);
79 /* ... and tell the kernel about it. */
80 init_mem_alloc (ram_start, ram_len);
82 printk (KERN_INFO "CPU: %s\nPlatform: %s\n",
83 CPU_MODEL_LONG, PLATFORM_LONG);
85 /* do machine-specific setups. */
89 if (!ROOT_DEV && &_root_fs_image_end > &_root_fs_image_start)
90 set_mem_root (&_root_fs_image_start,
91 &_root_fs_image_end - &_root_fs_image_start,
96 void __init trap_init (void)
102 /* From drivers/mtd/devices/slram.c */
103 #define SLRAM_BLK_SZ 0x4000
105 /* Set the root filesystem to be the given memory region.
106 Some parameter may be appended to CMD_LINE. */
107 void set_mem_root (void *addr, size_t len, char *cmd_line)
109 /* Some sort of idiocy in MTD means we must supply a length that's
110 a multiple of SLRAM_BLK_SZ. We just round up the real length,
111 as the file system shouldn't attempt to access anything beyond
112 the end of the image anyway. */
113 len = (((len - 1) + SLRAM_BLK_SZ) / SLRAM_BLK_SZ) * SLRAM_BLK_SZ;
115 /* The only way to pass info to the MTD slram driver is via
118 cmd_line += strlen (cmd_line);
121 sprintf (cmd_line, "slram=root,0x%x,+0x%x", (u32)addr, (u32)len);
123 ROOT_DEV = MKDEV (MTD_BLOCK_MAJOR, 0);
128 static void irq_nop (unsigned irq) { }
129 static unsigned irq_zero (unsigned irq) { return 0; }
131 static void nmi_end (unsigned irq)
133 if (irq != IRQ_NMI (0)) {
134 printk (KERN_CRIT "NMI %d is unrecoverable; restarting...",
140 static struct hw_interrupt_type nmi_irq_type = {
142 .startup = irq_zero, /* startup */
143 .shutdown = irq_nop, /* shutdown */
144 .enable = irq_nop, /* enable */
145 .disable = irq_nop, /* disable */
146 .ack = irq_nop, /* ack */
147 .end = nmi_end, /* end */
150 void __init init_IRQ (void)
152 init_irq_handlers (0, NUM_MACH_IRQS, 1, 0);
153 init_irq_handlers (IRQ_NMI (0), NUM_NMIS, 1, &nmi_irq_type);
158 void __init mem_init (void)
160 max_mapnr = MAP_NR (ram_start + ram_len);
162 num_physpages = ADDR_TO_PAGE (ram_len);
164 total_ram_pages = free_all_bootmem ();
167 "Memory: %luK/%luK available"
168 " (%luK kernel code, %luK data)\n",
169 PAGE_TO_ADDR (nr_free_pages()) / 1024,
171 ((unsigned long)&_etext - (unsigned long)&_stext) / 1024,
172 ((unsigned long)&_ebss - (unsigned long)&_sdata) / 1024);
175 void free_initmem (void)
177 unsigned long ram_end = ram_start + ram_len;
178 unsigned long start = PAGE_ALIGN ((unsigned long)(&_init_start));
180 if (start >= ram_start && start < ram_end) {
182 unsigned long end = PAGE_ALIGN ((unsigned long)(&_init_end));
187 printk("Freeing unused kernel memory: %ldK freed\n",
188 (end - start) / 1024);
190 for (addr = start; addr < end; addr += PAGE_SIZE) {
191 struct page *page = virt_to_page (addr);
192 ClearPageReserved (page);
193 init_page_count (page);
201 /* Initialize the `bootmem allocator'. RAM_START and RAM_LEN identify
202 what RAM may be used. */
204 init_bootmem_alloc (unsigned long ram_start, unsigned long ram_len)
206 /* The part of the kernel that's in the same managed RAM space
207 used for general allocation. */
208 unsigned long kram_start = (unsigned long)&_kram_start;
209 unsigned long kram_end = (unsigned long)&_kram_end;
210 /* End of the managed RAM space. */
211 unsigned long ram_end = ram_start + ram_len;
212 /* Address range of the interrupt vector table. */
213 unsigned long intv_start = (unsigned long)&_intv_start;
214 unsigned long intv_end = (unsigned long)&_intv_end;
215 /* True if the interrupt vectors are in the managed RAM area. */
216 int intv_in_ram = (intv_end > ram_start && intv_start < ram_end);
217 /* True if the interrupt vectors are inside the kernel's RAM. */
218 int intv_in_kram = (intv_end > kram_start && intv_start < kram_end);
219 /* A pointer to an optional function that reserves platform-specific
220 memory regions. We declare the pointer `volatile' to avoid gcc
221 turning the call into a static call (the problem is that since
222 it's a weak symbol, a static call may end up trying to reference
223 the location 0x0, which is not always reachable). */
224 void (*volatile mrb) (void) = mach_reserve_bootmem;
225 /* The bootmem allocator's allocation bitmap. */
226 unsigned long bootmap = (unsigned long)&_bootmap;
227 unsigned long bootmap_len;
229 /* Round bootmap location up to next page. */
230 bootmap = PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap));
232 /* Initialize bootmem allocator. */
233 bootmap_len = init_bootmem_node (NODE_DATA (0),
234 ADDR_TO_PAGE (bootmap),
235 ADDR_TO_PAGE (PAGE_OFFSET),
236 ADDR_TO_PAGE (ram_end));
238 /* Now make the RAM actually allocatable (it starts out `reserved'). */
239 free_bootmem (ram_start, ram_len);
241 if (kram_end > kram_start)
242 /* Reserve the RAM part of the kernel's address space, so it
243 doesn't get allocated. */
244 reserve_bootmem(kram_start, kram_end - kram_start,
247 if (intv_in_ram && !intv_in_kram)
248 /* Reserve the interrupt vector space. */
249 reserve_bootmem(intv_start, intv_end - intv_start,
252 if (bootmap >= ram_start && bootmap < ram_end)
253 /* Reserve the bootmap space. */
254 reserve_bootmem(bootmap, bootmap_len,
257 /* Reserve the memory used by the root filesystem image if it's
259 if (&_root_fs_image_end > &_root_fs_image_start
260 && (unsigned long)&_root_fs_image_start >= ram_start
261 && (unsigned long)&_root_fs_image_start < ram_end)
262 reserve_bootmem ((unsigned long)&_root_fs_image_start,
263 &_root_fs_image_end - &_root_fs_image_start,
266 /* Let the platform-dependent code reserve some too. */
271 /* Tell the kernel about what RAM it may use for memory allocation. */
273 init_mem_alloc (unsigned long ram_start, unsigned long ram_len)
276 unsigned long zones_size[MAX_NR_ZONES];
278 init_bootmem_alloc (ram_start, ram_len);
280 for (i = 0; i < MAX_NR_ZONES; i++)
283 /* We stuff all the memory into one area, which includes the
284 initial gap from PAGE_OFFSET to ram_start. */
286 = ADDR_TO_PAGE (ram_len + (ram_start - PAGE_OFFSET));
288 /* The allocator is very picky about the address of the first
289 allocatable page -- it must be at least as aligned as the
290 maximum allocation -- so try to detect cases where it will get
291 confused and signal them at compile time (this is a common
292 problem when porting to a new platform with ). There is a
293 similar runtime check in free_area_init_core. */
294 #if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1))
295 #error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it)
297 NODE_DATA(0)->node_mem_map = NULL;
298 free_area_init_node (0, NODE_DATA(0), zones_size,
299 ADDR_TO_PAGE (PAGE_OFFSET), 0);
304 /* Taken from m68knommu */
308 int free = 0, total = 0, reserved = 0, shared = 0;
311 printk(KERN_INFO "\nMem-info:\n");
316 if (PageReserved(mem_map+i))
318 else if (PageSwapCache(mem_map+i))
320 else if (!page_count(mem_map+i))
323 shared += page_count(mem_map+i) - 1;
325 printk(KERN_INFO "%d pages of RAM\n",total);
326 printk(KERN_INFO "%d free pages\n",free);
327 printk(KERN_INFO "%d reserved pages\n",reserved);
328 printk(KERN_INFO "%d pages shared\n",shared);
329 printk(KERN_INFO "%d pages swap cached\n",cached);