[PATCH] qla trivial iomem annotation
[linux-2.6] / fs / udf / balloc.c
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *      Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * CONTACTS
8  *      E-mail regarding any portion of the Linux UDF file system should be
9  *      directed to the development team mailing list (run by majordomo):
10  *              linux_udf@hpesjro.fc.hp.com
11  *
12  * COPYRIGHT
13  *      This file is distributed under the terms of the GNU General Public
14  *      License (GPL). Copies of the GPL can be obtained from:
15  *              ftp://prep.ai.mit.edu/pub/gnu/GPL
16  *      Each contributing author retains all rights to their own work.
17  *
18  *  (C) 1999-2001 Ben Fennema
19  *  (C) 1999 Stelias Computing Inc
20  *
21  * HISTORY
22  *
23  *  02/24/99 blf  Created.
24  *
25  */
26
27 #include "udfdecl.h"
28
29 #include <linux/quotaops.h>
30 #include <linux/buffer_head.h>
31 #include <linux/bitops.h>
32
33 #include "udf_i.h"
34 #include "udf_sb.h"
35
36 #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr)
37 #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr)
38 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
39 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
40 #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset)
41
42 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
43 #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y)
44 #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y))
45 #define uintBPL_t uint(BITS_PER_LONG)
46 #define uint(x) xuint(x)
47 #define xuint(x) __le ## x
48
49 extern inline int find_next_one_bit (void * addr, int size, int offset)
50 {
51         uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
52         int result = offset & ~(BITS_PER_LONG-1);
53         unsigned long tmp;
54
55         if (offset >= size)
56                 return size;
57         size -= result;
58         offset &= (BITS_PER_LONG-1);
59         if (offset)
60         {
61                 tmp = leBPL_to_cpup(p++);
62                 tmp &= ~0UL << offset;
63                 if (size < BITS_PER_LONG)
64                         goto found_first;
65                 if (tmp)
66                         goto found_middle;
67                 size -= BITS_PER_LONG;
68                 result += BITS_PER_LONG;
69         }
70         while (size & ~(BITS_PER_LONG-1))
71         {
72                 if ((tmp = leBPL_to_cpup(p++)))
73                         goto found_middle;
74                 result += BITS_PER_LONG;
75                 size -= BITS_PER_LONG;
76         }
77         if (!size)
78                 return result;
79         tmp = leBPL_to_cpup(p);
80 found_first:
81         tmp &= ~0UL >> (BITS_PER_LONG-size);
82 found_middle:
83         return result + ffz(~tmp);
84 }
85
86 #define find_first_one_bit(addr, size)\
87         find_next_one_bit((addr), (size), 0)
88
89 static int read_block_bitmap(struct super_block * sb,
90         struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr)
91 {
92         struct buffer_head *bh = NULL;
93         int retval = 0;
94         kernel_lb_addr loc;
95
96         loc.logicalBlockNum = bitmap->s_extPosition;
97         loc.partitionReferenceNum = UDF_SB_PARTITION(sb);
98
99         bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
100         if (!bh)
101         {
102                 retval = -EIO;
103         }
104         bitmap->s_block_bitmap[bitmap_nr] = bh;
105         return retval;
106 }
107
108 static int __load_block_bitmap(struct super_block * sb,
109         struct udf_bitmap *bitmap, unsigned int block_group)
110 {
111         int retval = 0;
112         int nr_groups = bitmap->s_nr_groups;
113
114         if (block_group >= nr_groups)
115         {
116                 udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups);
117         }
118
119         if (bitmap->s_block_bitmap[block_group])
120                 return block_group;
121         else
122         {
123                 retval = read_block_bitmap(sb, bitmap, block_group, block_group);
124                 if (retval < 0)
125                         return retval;
126                 return block_group;
127         }
128 }
129
130 static inline int load_block_bitmap(struct super_block * sb,
131         struct udf_bitmap *bitmap, unsigned int block_group)
132 {
133         int slot;
134
135         slot = __load_block_bitmap(sb, bitmap, block_group);
136
137         if (slot < 0)
138                 return slot;
139
140         if (!bitmap->s_block_bitmap[slot])
141                 return -EIO;
142
143         return slot;
144 }
145
146 static void udf_bitmap_free_blocks(struct super_block * sb,
147         struct inode * inode,
148         struct udf_bitmap *bitmap,
149         kernel_lb_addr bloc, uint32_t offset, uint32_t count)
150 {
151         struct udf_sb_info *sbi = UDF_SB(sb);
152         struct buffer_head * bh = NULL;
153         unsigned long block;
154         unsigned long block_group;
155         unsigned long bit;
156         unsigned long i;
157         int bitmap_nr;
158         unsigned long overflow;
159
160         down(&sbi->s_alloc_sem);
161         if (bloc.logicalBlockNum < 0 ||
162                 (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
163         {
164                 udf_debug("%d < %d || %d + %d > %d\n",
165                         bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
166                         UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
167                 goto error_return;
168         }
169
170         block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3);
171
172 do_more:
173         overflow = 0;
174         block_group = block >> (sb->s_blocksize_bits + 3);
175         bit = block % (sb->s_blocksize << 3);
176
177         /*
178          * Check to see if we are freeing blocks across a group boundary.
179          */
180         if (bit + count > (sb->s_blocksize << 3))
181         {
182                 overflow = bit + count - (sb->s_blocksize << 3);
183                 count -= overflow;
184         }
185         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
186         if (bitmap_nr < 0)
187                 goto error_return;
188
189         bh = bitmap->s_block_bitmap[bitmap_nr];
190         for (i=0; i < count; i++)
191         {
192                 if (udf_set_bit(bit + i, bh->b_data))
193                 {
194                         udf_debug("bit %ld already set\n", bit + i);
195                         udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]);
196                 }
197                 else
198                 {
199                         if (inode)
200                                 DQUOT_FREE_BLOCK(inode, 1);
201                         if (UDF_SB_LVIDBH(sb))
202                         {
203                                 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
204                                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1);
205                         }
206                 }
207         }
208         mark_buffer_dirty(bh);
209         if (overflow)
210         {
211                 block += count;
212                 count = overflow;
213                 goto do_more;
214         }
215 error_return:
216         sb->s_dirt = 1;
217         if (UDF_SB_LVIDBH(sb))
218                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
219         up(&sbi->s_alloc_sem);
220         return;
221 }
222
223 static int udf_bitmap_prealloc_blocks(struct super_block * sb,
224         struct inode * inode,
225         struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block,
226         uint32_t block_count)
227 {
228         struct udf_sb_info *sbi = UDF_SB(sb);
229         int alloc_count = 0;
230         int bit, block, block_group, group_start;
231         int nr_groups, bitmap_nr;
232         struct buffer_head *bh;
233
234         down(&sbi->s_alloc_sem);
235         if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
236                 goto out;
237
238         if (first_block + block_count > UDF_SB_PARTLEN(sb, partition))
239                 block_count = UDF_SB_PARTLEN(sb, partition) - first_block;
240
241 repeat:
242         nr_groups = (UDF_SB_PARTLEN(sb, partition) +
243                 (sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8);
244         block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
245         block_group = block >> (sb->s_blocksize_bits + 3);
246         group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
247
248         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
249         if (bitmap_nr < 0)
250                 goto out;
251         bh = bitmap->s_block_bitmap[bitmap_nr];
252
253         bit = block % (sb->s_blocksize << 3);
254
255         while (bit < (sb->s_blocksize << 3) && block_count > 0)
256         {
257                 if (!udf_test_bit(bit, bh->b_data))
258                         goto out;
259                 else if (DQUOT_PREALLOC_BLOCK(inode, 1))
260                         goto out;
261                 else if (!udf_clear_bit(bit, bh->b_data))
262                 {
263                         udf_debug("bit already cleared for block %d\n", bit);
264                         DQUOT_FREE_BLOCK(inode, 1);
265                         goto out;
266                 }
267                 block_count --;
268                 alloc_count ++;
269                 bit ++;
270                 block ++;
271         }
272         mark_buffer_dirty(bh);
273         if (block_count > 0)
274                 goto repeat;
275 out:
276         if (UDF_SB_LVIDBH(sb))
277         {
278                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
279                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
280                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
281         }
282         sb->s_dirt = 1;
283         up(&sbi->s_alloc_sem);
284         return alloc_count;
285 }
286
287 static int udf_bitmap_new_block(struct super_block * sb,
288         struct inode * inode,
289         struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err)
290 {
291         struct udf_sb_info *sbi = UDF_SB(sb);
292         int newbit, bit=0, block, block_group, group_start;
293         int end_goal, nr_groups, bitmap_nr, i;
294         struct buffer_head *bh = NULL;
295         char *ptr;
296         int newblock = 0;
297
298         *err = -ENOSPC;
299         down(&sbi->s_alloc_sem);
300
301 repeat:
302         if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
303                 goal = 0;
304
305         nr_groups = bitmap->s_nr_groups;
306         block = goal + (sizeof(struct spaceBitmapDesc) << 3);
307         block_group = block >> (sb->s_blocksize_bits + 3);
308         group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
309
310         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
311         if (bitmap_nr < 0)
312                 goto error_return;
313         bh = bitmap->s_block_bitmap[bitmap_nr];
314         ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
315
316         if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
317         {
318                 bit = block % (sb->s_blocksize << 3);
319
320                 if (udf_test_bit(bit, bh->b_data))
321                 {
322                         goto got_block;
323                 }
324                 end_goal = (bit + 63) & ~63;
325                 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
326                 if (bit < end_goal)
327                         goto got_block;
328                 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3));
329                 newbit = (ptr - ((char *)bh->b_data)) << 3;
330                 if (newbit < sb->s_blocksize << 3)
331                 {
332                         bit = newbit;
333                         goto search_back;
334                 }
335                 newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit);
336                 if (newbit < sb->s_blocksize << 3)
337                 {
338                         bit = newbit;
339                         goto got_block;
340                 }
341         }
342
343         for (i=0; i<(nr_groups*2); i++)
344         {
345                 block_group ++;
346                 if (block_group >= nr_groups)
347                         block_group = 0;
348                 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
349
350                 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
351                 if (bitmap_nr < 0)
352                         goto error_return;
353                 bh = bitmap->s_block_bitmap[bitmap_nr];
354                 if (i < nr_groups)
355                 {
356                         ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start);
357                         if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize)
358                         {
359                                 bit = (ptr - ((char *)bh->b_data)) << 3;
360                                 break;
361                         }
362                 }
363                 else
364                 {
365                         bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3);
366                         if (bit < sb->s_blocksize << 3)
367                                 break;
368                 }
369         }
370         if (i >= (nr_groups*2))
371         {
372                 up(&sbi->s_alloc_sem);
373                 return newblock;
374         }
375         if (bit < sb->s_blocksize << 3)
376                 goto search_back;
377         else
378                 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3);
379         if (bit >= sb->s_blocksize << 3)
380         {
381                 up(&sbi->s_alloc_sem);
382                 return 0;
383         }
384
385 search_back:
386         for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--);
387
388 got_block:
389
390         /*
391          * Check quota for allocation of this block.
392          */
393         if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
394         {
395                 up(&sbi->s_alloc_sem);
396                 *err = -EDQUOT;
397                 return 0;
398         }
399
400         newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
401                 (sizeof(struct spaceBitmapDesc) << 3);
402
403         if (!udf_clear_bit(bit, bh->b_data))
404         {
405                 udf_debug("bit already cleared for block %d\n", bit);
406                 goto repeat;
407         }
408
409         mark_buffer_dirty(bh);
410
411         if (UDF_SB_LVIDBH(sb))
412         {
413                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
414                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
415                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
416         }
417         sb->s_dirt = 1;
418         up(&sbi->s_alloc_sem);
419         *err = 0;
420         return newblock;
421
422 error_return:
423         *err = -EIO;
424         up(&sbi->s_alloc_sem);
425         return 0;
426 }
427
428 static void udf_table_free_blocks(struct super_block * sb,
429         struct inode * inode,
430         struct inode * table,
431         kernel_lb_addr bloc, uint32_t offset, uint32_t count)
432 {
433         struct udf_sb_info *sbi = UDF_SB(sb);
434         uint32_t start, end;
435         uint32_t nextoffset, oextoffset, elen;
436         kernel_lb_addr nbloc, obloc, eloc;
437         struct buffer_head *obh, *nbh;
438         int8_t etype;
439         int i;
440
441         down(&sbi->s_alloc_sem);
442         if (bloc.logicalBlockNum < 0 ||
443                 (bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum))
444         {
445                 udf_debug("%d < %d || %d + %d > %d\n",
446                         bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
447                         UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum));
448                 goto error_return;
449         }
450
451         /* We do this up front - There are some error conditions that could occure,
452            but.. oh well */
453         if (inode)
454                 DQUOT_FREE_BLOCK(inode, count);
455         if (UDF_SB_LVIDBH(sb))
456         {
457                 UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] =
458                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count);
459                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
460         }
461
462         start = bloc.logicalBlockNum + offset;
463         end = bloc.logicalBlockNum + offset + count - 1;
464
465         oextoffset = nextoffset = sizeof(struct unallocSpaceEntry);
466         elen = 0;
467         obloc = nbloc = UDF_I_LOCATION(table);
468
469         obh = nbh = NULL;
470
471         while (count && (etype =
472                 udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1)
473         {
474                 if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) ==
475                         start))
476                 {
477                         if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
478                         {
479                                 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
480                                 start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
481                                 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
482                         }
483                         else
484                         {
485                                 elen = (etype << 30) |
486                                         (elen + (count << sb->s_blocksize_bits));
487                                 start += count;
488                                 count = 0;
489                         }
490                         udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
491                 }
492                 else if (eloc.logicalBlockNum == (end + 1))
493                 {
494                         if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits))
495                         {
496                                 count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
497                                 end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
498                                 eloc.logicalBlockNum -=
499                                         ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits);
500                                 elen = (etype << 30) | (0x40000000 - sb->s_blocksize);
501                         }
502                         else
503                         {
504                                 eloc.logicalBlockNum = start;
505                                 elen = (etype << 30) |
506                                         (elen + (count << sb->s_blocksize_bits));
507                                 end -= count;
508                                 count = 0;
509                         }
510                         udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1);
511                 }
512
513                 if (nbh != obh)
514                 {
515                         i = -1;
516                         obloc = nbloc;
517                         udf_release_data(obh);
518                         atomic_inc(&nbh->b_count);
519                         obh = nbh;
520                         oextoffset = 0;
521                 }
522                 else
523                         oextoffset = nextoffset;
524         }
525
526         if (count)
527         {
528                 /* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate
529                                  a new block, and since we hold the super block lock already
530                                  very bad things would happen :)
531
532                                  We copy the behavior of udf_add_aext, but instead of
533                                  trying to allocate a new block close to the existing one,
534                                  we just steal a block from the extent we are trying to add.
535
536                                  It would be nice if the blocks were close together, but it
537                                  isn't required.
538                 */
539
540                 int adsize;
541                 short_ad *sad = NULL;
542                 long_ad *lad = NULL;
543                 struct allocExtDesc *aed;
544
545                 eloc.logicalBlockNum = start;
546                 elen = EXT_RECORDED_ALLOCATED |
547                         (count << sb->s_blocksize_bits);
548
549                 if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
550                         adsize = sizeof(short_ad);
551                 else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
552                         adsize = sizeof(long_ad);
553                 else
554                 {
555                         udf_release_data(obh);
556                         udf_release_data(nbh);
557                         goto error_return;
558                 }
559
560                 if (nextoffset + (2 * adsize) > sb->s_blocksize)
561                 {
562                         char *sptr, *dptr;
563                         int loffset;
564         
565                         udf_release_data(obh);
566                         obh = nbh;
567                         obloc = nbloc;
568                         oextoffset = nextoffset;
569
570                         /* Steal a block from the extent being free'd */
571                         nbloc.logicalBlockNum = eloc.logicalBlockNum;
572                         eloc.logicalBlockNum ++;
573                         elen -= sb->s_blocksize;
574
575                         if (!(nbh = udf_tread(sb,
576                                 udf_get_lb_pblock(sb, nbloc, 0))))
577                         {
578                                 udf_release_data(obh);
579                                 goto error_return;
580                         }
581                         aed = (struct allocExtDesc *)(nbh->b_data);
582                         aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
583                         if (nextoffset + adsize > sb->s_blocksize)
584                         {
585                                 loffset = nextoffset;
586                                 aed->lengthAllocDescs = cpu_to_le32(adsize);
587                                 if (obh)
588                                         sptr = UDF_I_DATA(inode) + nextoffset -  udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize;
589                                 else
590                                         sptr = obh->b_data + nextoffset - adsize;
591                                 dptr = nbh->b_data + sizeof(struct allocExtDesc);
592                                 memcpy(dptr, sptr, adsize);
593                                 nextoffset = sizeof(struct allocExtDesc) + adsize;
594                         }
595                         else
596                         {
597                                 loffset = nextoffset + adsize;
598                                 aed->lengthAllocDescs = cpu_to_le32(0);
599                                 sptr = (obh)->b_data + nextoffset;
600                                 nextoffset = sizeof(struct allocExtDesc);
601
602                                 if (obh)
603                                 {
604                                         aed = (struct allocExtDesc *)(obh)->b_data;
605                                         aed->lengthAllocDescs =
606                                                 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
607                                 }
608                                 else
609                                 {
610                                         UDF_I_LENALLOC(table) += adsize;
611                                         mark_inode_dirty(table);
612                                 }
613                         }
614                         if (UDF_SB_UDFREV(sb) >= 0x0200)
615                                 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
616                                         nbloc.logicalBlockNum, sizeof(tag));
617                         else
618                                 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
619                                         nbloc.logicalBlockNum, sizeof(tag));
620                         switch (UDF_I_ALLOCTYPE(table))
621                         {
622                                 case ICBTAG_FLAG_AD_SHORT:
623                                 {
624                                         sad = (short_ad *)sptr;
625                                         sad->extLength = cpu_to_le32(
626                                                 EXT_NEXT_EXTENT_ALLOCDECS |
627                                                 sb->s_blocksize);
628                                         sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum);
629                                         break;
630                                 }
631                                 case ICBTAG_FLAG_AD_LONG:
632                                 {
633                                         lad = (long_ad *)sptr;
634                                         lad->extLength = cpu_to_le32(
635                                                 EXT_NEXT_EXTENT_ALLOCDECS |
636                                                 sb->s_blocksize);
637                                         lad->extLocation = cpu_to_lelb(nbloc);
638                                         break;
639                                 }
640                         }
641                         if (obh)
642                         {
643                                 udf_update_tag(obh->b_data, loffset);
644                                 mark_buffer_dirty(obh);
645                         }
646                         else
647                                 mark_inode_dirty(table);
648                 }
649
650                 if (elen) /* It's possible that stealing the block emptied the extent */
651                 {
652                         udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1);
653
654                         if (!nbh)
655                         {
656                                 UDF_I_LENALLOC(table) += adsize;
657                                 mark_inode_dirty(table);
658                         }
659                         else
660                         {
661                                 aed = (struct allocExtDesc *)nbh->b_data;
662                                 aed->lengthAllocDescs =
663                                         cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
664                                 udf_update_tag(nbh->b_data, nextoffset);
665                                 mark_buffer_dirty(nbh);
666                         }
667                 }
668         }
669
670         udf_release_data(nbh);
671         udf_release_data(obh);
672
673 error_return:
674         sb->s_dirt = 1;
675         up(&sbi->s_alloc_sem);
676         return;
677 }
678
679 static int udf_table_prealloc_blocks(struct super_block * sb,
680         struct inode * inode,
681         struct inode *table, uint16_t partition, uint32_t first_block,
682         uint32_t block_count)
683 {
684         struct udf_sb_info *sbi = UDF_SB(sb);
685         int alloc_count = 0;
686         uint32_t extoffset, elen, adsize;
687         kernel_lb_addr bloc, eloc;
688         struct buffer_head *bh;
689         int8_t etype = -1;
690
691         if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition))
692                 return 0;
693
694         if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
695                 adsize = sizeof(short_ad);
696         else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
697                 adsize = sizeof(long_ad);
698         else
699                 return 0;
700
701         down(&sbi->s_alloc_sem);
702         extoffset = sizeof(struct unallocSpaceEntry);
703         bloc = UDF_I_LOCATION(table);
704
705         bh = NULL;
706         eloc.logicalBlockNum = 0xFFFFFFFF;
707
708         while (first_block != eloc.logicalBlockNum && (etype =
709                 udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
710         {
711                 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
712                         eloc.logicalBlockNum, elen, first_block);
713                 ; /* empty loop body */
714         }
715
716         if (first_block == eloc.logicalBlockNum)
717         {
718                 extoffset -= adsize;
719
720                 alloc_count = (elen >> sb->s_blocksize_bits);
721                 if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count))
722                         alloc_count = 0;
723                 else if (alloc_count > block_count)
724                 {
725                         alloc_count = block_count;
726                         eloc.logicalBlockNum += alloc_count;
727                         elen -= (alloc_count << sb->s_blocksize_bits);
728                         udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1);
729                 }
730                 else
731                         udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh);
732         }
733         else
734                 alloc_count = 0;
735
736         udf_release_data(bh);
737
738         if (alloc_count && UDF_SB_LVIDBH(sb))
739         {
740                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
741                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count);
742                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
743                 sb->s_dirt = 1;
744         }
745         up(&sbi->s_alloc_sem);
746         return alloc_count;
747 }
748
749 static int udf_table_new_block(struct super_block * sb,
750         struct inode * inode,
751         struct inode *table, uint16_t partition, uint32_t goal, int *err)
752 {
753         struct udf_sb_info *sbi = UDF_SB(sb);
754         uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
755         uint32_t newblock = 0, adsize;
756         uint32_t extoffset, goal_extoffset, elen, goal_elen = 0;
757         kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc;
758         struct buffer_head *bh, *goal_bh;
759         int8_t etype;
760
761         *err = -ENOSPC;
762
763         if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT)
764                 adsize = sizeof(short_ad);
765         else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG)
766                 adsize = sizeof(long_ad);
767         else
768                 return newblock;
769
770         down(&sbi->s_alloc_sem);
771         if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition))
772                 goal = 0;
773
774         /* We search for the closest matching block to goal. If we find a exact hit,
775            we stop. Otherwise we keep going till we run out of extents.
776            We store the buffer_head, bloc, and extoffset of the current closest
777            match and use that when we are done.
778         */
779
780         extoffset = sizeof(struct unallocSpaceEntry);
781         bloc = UDF_I_LOCATION(table);
782
783         goal_bh = bh = NULL;
784
785         while (spread && (etype =
786                 udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1)
787         {
788                 if (goal >= eloc.logicalBlockNum)
789                 {
790                         if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits))
791                                 nspread = 0;
792                         else
793                                 nspread = goal - eloc.logicalBlockNum -
794                                         (elen >> sb->s_blocksize_bits);
795                 }
796                 else
797                         nspread = eloc.logicalBlockNum - goal;
798
799                 if (nspread < spread)
800                 {
801                         spread = nspread;
802                         if (goal_bh != bh)
803                         {
804                                 udf_release_data(goal_bh);
805                                 goal_bh = bh;
806                                 atomic_inc(&goal_bh->b_count);
807                         }
808                         goal_bloc = bloc;
809                         goal_extoffset = extoffset - adsize;
810                         goal_eloc = eloc;
811                         goal_elen = (etype << 30) | elen;
812                 }
813         }
814
815         udf_release_data(bh);
816
817         if (spread == 0xFFFFFFFF)
818         {
819                 udf_release_data(goal_bh);
820                 up(&sbi->s_alloc_sem);
821                 return 0;
822         }
823
824         /* Only allocate blocks from the beginning of the extent.
825            That way, we only delete (empty) extents, never have to insert an
826            extent because of splitting */
827         /* This works, but very poorly.... */
828
829         newblock = goal_eloc.logicalBlockNum;
830         goal_eloc.logicalBlockNum ++;
831         goal_elen -= sb->s_blocksize;
832
833         if (inode && DQUOT_ALLOC_BLOCK(inode, 1))
834         {
835                 udf_release_data(goal_bh);
836                 up(&sbi->s_alloc_sem);
837                 *err = -EDQUOT;
838                 return 0;
839         }
840
841         if (goal_elen)
842                 udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1);
843         else
844                 udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh);
845         udf_release_data(goal_bh);
846
847         if (UDF_SB_LVIDBH(sb))
848         {
849                 UDF_SB_LVID(sb)->freeSpaceTable[partition] =
850                         cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1);
851                 mark_buffer_dirty(UDF_SB_LVIDBH(sb));
852         }
853
854         sb->s_dirt = 1;
855         up(&sbi->s_alloc_sem);
856         *err = 0;
857         return newblock;
858 }
859
860 inline void udf_free_blocks(struct super_block * sb,
861         struct inode * inode,
862         kernel_lb_addr bloc, uint32_t offset, uint32_t count)
863 {
864         uint16_t partition = bloc.partitionReferenceNum;
865
866         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
867         {
868                 return udf_bitmap_free_blocks(sb, inode,
869                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
870                         bloc, offset, count);
871         }
872         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
873         {
874                 return udf_table_free_blocks(sb, inode,
875                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
876                         bloc, offset, count);
877         }
878         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
879         {
880                 return udf_bitmap_free_blocks(sb, inode,
881                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
882                         bloc, offset, count);
883         }
884         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
885         {
886                 return udf_table_free_blocks(sb, inode,
887                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
888                         bloc, offset, count);
889         }
890         else
891                 return;
892 }
893
894 inline int udf_prealloc_blocks(struct super_block * sb,
895         struct inode * inode,
896         uint16_t partition, uint32_t first_block, uint32_t block_count)
897 {
898         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
899         {
900                 return udf_bitmap_prealloc_blocks(sb, inode,
901                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
902                         partition, first_block, block_count);
903         }
904         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
905         {
906                 return udf_table_prealloc_blocks(sb, inode,
907                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
908                         partition, first_block, block_count);
909         }
910         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
911         {
912                 return udf_bitmap_prealloc_blocks(sb, inode,
913                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
914                         partition, first_block, block_count);
915         }
916         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
917         {
918                 return udf_table_prealloc_blocks(sb, inode,
919                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
920                         partition, first_block, block_count);
921         }
922         else
923                 return 0;
924 }
925
926 inline int udf_new_block(struct super_block * sb,
927         struct inode * inode,
928         uint16_t partition, uint32_t goal, int *err)
929 {
930         if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP)
931         {
932                 return udf_bitmap_new_block(sb, inode,
933                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap,
934                         partition, goal, err);
935         }
936         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE)
937         {
938                 return udf_table_new_block(sb, inode,
939                         UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table,
940                         partition, goal, err);
941         }
942         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP)
943         {
944                 return udf_bitmap_new_block(sb, inode,
945                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap,
946                         partition, goal, err);
947         }
948         else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE)
949         {
950                 return udf_table_new_block(sb, inode,
951                         UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table,
952                         partition, goal, err);
953         }
954         else
955         {
956                 *err = -EIO;
957                 return 0;
958         }
959 }