2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 struct pipe_buf_operations *ops;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
57 struct page *page = buf->page;
58 struct address_space *mapping = page_mapping(page);
62 WARN_ON(!PageUptodate(page));
65 * At least for ext2 with nobh option, we need to wait on writeback
66 * completing on this page, since we'll remove it from the pagecache.
67 * Otherwise truncate wont wait on the page, allowing the disk
68 * blocks to be reused by someone else before we actually wrote our
69 * data to them. fs corruption ensues.
71 wait_on_page_writeback(page);
73 if (PagePrivate(page))
74 try_to_release_page(page, mapping_gfp_mask(mapping));
76 if (!remove_mapping(mapping, page)) {
81 buf->flags |= PIPE_BUF_FLAG_LRU;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
93 struct pipe_buffer *buf)
95 struct page *page = buf->page;
98 if (!PageUptodate(page)) {
102 * Page got truncated/unhashed. This will cause a 0-byte
103 * splice, if this is the first page.
105 if (!page->mapping) {
111 * Uh oh, read-error from disk.
113 if (!PageUptodate(page)) {
119 * Page is ok afterall, we are done.
130 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 .map = generic_pipe_buf_map,
133 .unmap = generic_pipe_buf_unmap,
134 .pin = page_cache_pipe_buf_pin,
135 .release = page_cache_pipe_buf_release,
136 .steal = page_cache_pipe_buf_steal,
137 .get = generic_pipe_buf_get,
140 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
141 struct pipe_buffer *buf)
143 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
146 buf->flags |= PIPE_BUF_FLAG_LRU;
147 return generic_pipe_buf_steal(pipe, buf);
150 static struct pipe_buf_operations user_page_pipe_buf_ops = {
152 .map = generic_pipe_buf_map,
153 .unmap = generic_pipe_buf_unmap,
154 .pin = generic_pipe_buf_pin,
155 .release = page_cache_pipe_buf_release,
156 .steal = user_page_pipe_buf_steal,
157 .get = generic_pipe_buf_get,
161 * Pipe output worker. This sets up our pipe format with the page cache
162 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
164 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
165 struct splice_pipe_desc *spd)
167 int ret, do_wakeup, page_nr;
174 mutex_lock(&pipe->inode->i_mutex);
177 if (!pipe->readers) {
178 send_sig(SIGPIPE, current, 0);
184 if (pipe->nrbufs < PIPE_BUFFERS) {
185 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
186 struct pipe_buffer *buf = pipe->bufs + newbuf;
188 buf->page = spd->pages[page_nr];
189 buf->offset = spd->partial[page_nr].offset;
190 buf->len = spd->partial[page_nr].len;
192 if (spd->flags & SPLICE_F_GIFT)
193 buf->flags |= PIPE_BUF_FLAG_GIFT;
202 if (!--spd->nr_pages)
204 if (pipe->nrbufs < PIPE_BUFFERS)
210 if (spd->flags & SPLICE_F_NONBLOCK) {
216 if (signal_pending(current)) {
224 if (waitqueue_active(&pipe->wait))
225 wake_up_interruptible_sync(&pipe->wait);
226 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
230 pipe->waiting_writers++;
232 pipe->waiting_writers--;
236 mutex_unlock(&pipe->inode->i_mutex);
240 if (waitqueue_active(&pipe->wait))
241 wake_up_interruptible(&pipe->wait);
242 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
245 while (page_nr < spd->nr_pages)
246 page_cache_release(spd->pages[page_nr++]);
252 __generic_file_splice_read(struct file *in, loff_t *ppos,
253 struct pipe_inode_info *pipe, size_t len,
256 struct address_space *mapping = in->f_mapping;
257 unsigned int loff, nr_pages;
258 struct page *pages[PIPE_BUFFERS];
259 struct partial_page partial[PIPE_BUFFERS];
261 pgoff_t index, end_index;
265 struct splice_pipe_desc spd = {
269 .ops = &page_cache_pipe_buf_ops,
272 index = *ppos >> PAGE_CACHE_SHIFT;
273 loff = *ppos & ~PAGE_CACHE_MASK;
274 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
276 if (nr_pages > PIPE_BUFFERS)
277 nr_pages = PIPE_BUFFERS;
280 * Initiate read-ahead on this page range. however, don't call into
281 * read-ahead if this is a non-zero offset (we are likely doing small
282 * chunk splice and the page is already there) for a single page.
284 if (!loff || nr_pages > 1)
285 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
288 * Now fill in the holes:
294 * Lookup the (hopefully) full range of pages we need.
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
299 * If find_get_pages_contig() returned fewer pages than we needed,
302 index += spd.nr_pages;
303 while (spd.nr_pages < nr_pages) {
305 * Page could be there, find_get_pages_contig() breaks on
308 page = find_get_page(mapping, index);
311 * Make sure the read-ahead engine is notified
312 * about this failure.
314 handle_ra_miss(mapping, &in->f_ra, index);
317 * page didn't exist, allocate one.
319 page = page_cache_alloc_cold(mapping);
323 error = add_to_page_cache_lru(page, mapping, index,
324 mapping_gfp_mask(mapping));
325 if (unlikely(error)) {
326 page_cache_release(page);
330 * add_to_page_cache() locks the page, unlock it
331 * to avoid convoluting the logic below even more.
336 pages[spd.nr_pages++] = page;
341 * Now loop over the map and see if we need to start IO on any
342 * pages, fill in the partial map, etc.
344 index = *ppos >> PAGE_CACHE_SHIFT;
345 nr_pages = spd.nr_pages;
347 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
348 unsigned int this_len;
354 * this_len is the max we'll use from this page
356 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
357 page = pages[page_nr];
360 * If the page isn't uptodate, we may need to start io on it
362 if (!PageUptodate(page)) {
364 * If in nonblock mode then dont block on waiting
365 * for an in-flight io page
367 if (flags & SPLICE_F_NONBLOCK)
373 * page was truncated, stop here. if this isn't the
374 * first page, we'll just complete what we already
377 if (!page->mapping) {
382 * page was already under io and is now done, great
384 if (PageUptodate(page)) {
390 * need to read in the page
392 error = mapping->a_ops->readpage(in, page);
393 if (unlikely(error)) {
395 * We really should re-lookup the page here,
396 * but it complicates things a lot. Instead
397 * lets just do what we already stored, and
398 * we'll get it the next time we are called.
400 if (error == AOP_TRUNCATED_PAGE)
407 * i_size must be checked after ->readpage().
409 isize = i_size_read(mapping->host);
410 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
411 if (unlikely(!isize || index > end_index))
415 * if this is the last page, see if we need to shrink
416 * the length and stop
418 if (end_index == index) {
419 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
420 if (total_len + loff > isize)
423 * force quit after adding this page
426 this_len = min(this_len, loff);
431 partial[page_nr].offset = loff;
432 partial[page_nr].len = this_len;
434 total_len += this_len;
441 * Release any pages at the end, if we quit early. 'i' is how far
442 * we got, 'nr_pages' is how many pages are in the map.
444 while (page_nr < nr_pages)
445 page_cache_release(pages[page_nr++]);
448 return splice_to_pipe(pipe, &spd);
454 * generic_file_splice_read - splice data from file to a pipe
455 * @in: file to splice from
456 * @pipe: pipe to splice to
457 * @len: number of bytes to splice
458 * @flags: splice modifier flags
460 * Will read pages from given file and fill them into a pipe.
462 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
463 struct pipe_inode_info *pipe, size_t len,
473 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
480 if (flags & SPLICE_F_NONBLOCK) {
497 EXPORT_SYMBOL(generic_file_splice_read);
500 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
501 * using sendpage(). Return the number of bytes sent.
503 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
504 struct pipe_buffer *buf, struct splice_desc *sd)
506 struct file *file = sd->file;
507 loff_t pos = sd->pos;
510 ret = buf->ops->pin(pipe, buf);
512 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
514 ret = file->f_op->sendpage(file, buf->page, buf->offset,
515 sd->len, &pos, more);
522 * This is a little more tricky than the file -> pipe splicing. There are
523 * basically three cases:
525 * - Destination page already exists in the address space and there
526 * are users of it. For that case we have no other option that
527 * copying the data. Tough luck.
528 * - Destination page already exists in the address space, but there
529 * are no users of it. Make sure it's uptodate, then drop it. Fall
530 * through to last case.
531 * - Destination page does not exist, we can add the pipe page to
532 * the page cache and avoid the copy.
534 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
535 * sd->flags), we attempt to migrate pages from the pipe to the output
536 * file address space page cache. This is possible if no one else has
537 * the pipe page referenced outside of the pipe and page cache. If
538 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
539 * a new page in the output file page cache and fill/dirty that.
541 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
542 struct splice_desc *sd)
544 struct file *file = sd->file;
545 struct address_space *mapping = file->f_mapping;
546 gfp_t gfp_mask = mapping_gfp_mask(mapping);
547 unsigned int offset, this_len;
553 * make sure the data in this buffer is uptodate
555 ret = buf->ops->pin(pipe, buf);
559 index = sd->pos >> PAGE_CACHE_SHIFT;
560 offset = sd->pos & ~PAGE_CACHE_MASK;
563 if (this_len + offset > PAGE_CACHE_SIZE)
564 this_len = PAGE_CACHE_SIZE - offset;
567 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
570 if ((sd->flags & SPLICE_F_MOVE) && this_len == PAGE_CACHE_SIZE) {
572 * If steal succeeds, buf->page is now pruned from the
573 * pagecache and we can reuse it. The page will also be
574 * locked on successful return.
576 if (buf->ops->steal(pipe, buf))
580 if (add_to_page_cache(page, mapping, index, gfp_mask)) {
585 page_cache_get(page);
587 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
591 page = find_lock_page(mapping, index);
594 page = page_cache_alloc_cold(mapping);
599 * This will also lock the page
601 ret = add_to_page_cache_lru(page, mapping, index,
608 * We get here with the page locked. If the page is also
609 * uptodate, we don't need to do more. If it isn't, we
610 * may need to bring it in if we are not going to overwrite
613 if (!PageUptodate(page)) {
614 if (this_len < PAGE_CACHE_SIZE) {
615 ret = mapping->a_ops->readpage(file, page);
621 if (!PageUptodate(page)) {
623 * Page got invalidated, repeat.
625 if (!page->mapping) {
627 page_cache_release(page);
634 SetPageUptodate(page);
638 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
640 loff_t isize = i_size_read(mapping->host);
642 if (ret != AOP_TRUNCATED_PAGE)
644 page_cache_release(page);
645 if (ret == AOP_TRUNCATED_PAGE)
649 * prepare_write() may have instantiated a few blocks
650 * outside i_size. Trim these off again.
652 if (sd->pos + this_len > isize)
653 vmtruncate(mapping->host, isize);
658 if (buf->page != page) {
660 * Careful, ->map() uses KM_USER0!
662 char *src = buf->ops->map(pipe, buf, 1);
663 char *dst = kmap_atomic(page, KM_USER1);
665 memcpy(dst + offset, src + buf->offset, this_len);
666 flush_dcache_page(page);
667 kunmap_atomic(dst, KM_USER1);
668 buf->ops->unmap(pipe, buf, src);
671 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
674 * Return the number of bytes written and mark page as
675 * accessed, we are now done!
678 mark_page_accessed(page);
679 balance_dirty_pages_ratelimited(mapping);
680 } else if (ret == AOP_TRUNCATED_PAGE) {
681 page_cache_release(page);
685 page_cache_release(page);
692 * Pipe input worker. Most of this logic works like a regular pipe, the
693 * key here is the 'actor' worker passed in that actually moves the data
694 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
696 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
697 loff_t *ppos, size_t len, unsigned int flags,
700 int ret, do_wakeup, err;
701 struct splice_desc sd;
712 mutex_lock(&pipe->inode->i_mutex);
716 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
717 struct pipe_buf_operations *ops = buf->ops;
720 if (sd.len > sd.total_len)
721 sd.len = sd.total_len;
723 err = actor(pipe, buf, &sd);
725 if (!ret && err != -ENODATA)
743 ops->release(pipe, buf);
744 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
758 if (!pipe->waiting_writers) {
763 if (flags & SPLICE_F_NONBLOCK) {
769 if (signal_pending(current)) {
777 if (waitqueue_active(&pipe->wait))
778 wake_up_interruptible_sync(&pipe->wait);
779 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
787 mutex_unlock(&pipe->inode->i_mutex);
791 if (waitqueue_active(&pipe->wait))
792 wake_up_interruptible(&pipe->wait);
793 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
800 * generic_file_splice_write - splice data from a pipe to a file
802 * @out: file to write to
803 * @len: number of bytes to splice
804 * @flags: splice modifier flags
806 * Will either move or copy pages (determined by @flags options) from
807 * the given pipe inode to the given file.
811 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
812 loff_t *ppos, size_t len, unsigned int flags)
814 struct address_space *mapping = out->f_mapping;
817 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
819 struct inode *inode = mapping->host;
824 * If file or inode is SYNC and we actually wrote some data,
827 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
830 mutex_lock(&inode->i_mutex);
831 err = generic_osync_inode(inode, mapping,
832 OSYNC_METADATA|OSYNC_DATA);
833 mutex_unlock(&inode->i_mutex);
843 EXPORT_SYMBOL(generic_file_splice_write);
846 * generic_splice_sendpage - splice data from a pipe to a socket
848 * @out: socket to write to
849 * @len: number of bytes to splice
850 * @flags: splice modifier flags
852 * Will send @len bytes from the pipe to a network socket. No data copying
856 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
857 loff_t *ppos, size_t len, unsigned int flags)
859 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
862 EXPORT_SYMBOL(generic_splice_sendpage);
865 * Attempt to initiate a splice from pipe to file.
867 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
868 loff_t *ppos, size_t len, unsigned int flags)
872 if (unlikely(!out->f_op || !out->f_op->splice_write))
875 if (unlikely(!(out->f_mode & FMODE_WRITE)))
878 ret = rw_verify_area(WRITE, out, ppos, len);
879 if (unlikely(ret < 0))
882 return out->f_op->splice_write(pipe, out, ppos, len, flags);
886 * Attempt to initiate a splice from a file to a pipe.
888 static long do_splice_to(struct file *in, loff_t *ppos,
889 struct pipe_inode_info *pipe, size_t len,
895 if (unlikely(!in->f_op || !in->f_op->splice_read))
898 if (unlikely(!(in->f_mode & FMODE_READ)))
901 ret = rw_verify_area(READ, in, ppos, len);
902 if (unlikely(ret < 0))
905 isize = i_size_read(in->f_mapping->host);
906 if (unlikely(*ppos >= isize))
909 left = isize - *ppos;
910 if (unlikely(left < len))
913 return in->f_op->splice_read(in, ppos, pipe, len, flags);
916 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
917 size_t len, unsigned int flags)
919 struct pipe_inode_info *pipe;
926 * We require the input being a regular file, as we don't want to
927 * randomly drop data for eg socket -> socket splicing. Use the
928 * piped splicing for that!
930 i_mode = in->f_dentry->d_inode->i_mode;
931 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
935 * neither in nor out is a pipe, setup an internal pipe attached to
936 * 'out' and transfer the wanted data from 'in' to 'out' through that
938 pipe = current->splice_pipe;
939 if (unlikely(!pipe)) {
940 pipe = alloc_pipe_info(NULL);
945 * We don't have an immediate reader, but we'll read the stuff
946 * out of the pipe right after the splice_to_pipe(). So set
947 * PIPE_READERS appropriately.
951 current->splice_pipe = pipe;
962 size_t read_len, max_read_len;
965 * Do at most PIPE_BUFFERS pages worth of transfer:
967 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
969 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
970 if (unlikely(ret < 0))
976 * NOTE: nonblocking mode only applies to the input. We
977 * must not do the output in nonblocking mode as then we
978 * could get stuck data in the internal pipe:
980 ret = do_splice_from(pipe, out, &out_off, read_len,
981 flags & ~SPLICE_F_NONBLOCK);
982 if (unlikely(ret < 0))
989 * In nonblocking mode, if we got back a short read then
990 * that was due to either an IO error or due to the
991 * pagecache entry not being there. In the IO error case
992 * the _next_ splice attempt will produce a clean IO error
993 * return value (not a short read), so in both cases it's
994 * correct to break out of the loop here:
996 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1000 pipe->nrbufs = pipe->curbuf = 0;
1006 * If we did an incomplete transfer we must release
1007 * the pipe buffers in question:
1009 for (i = 0; i < PIPE_BUFFERS; i++) {
1010 struct pipe_buffer *buf = pipe->bufs + i;
1013 buf->ops->release(pipe, buf);
1017 pipe->nrbufs = pipe->curbuf = 0;
1020 * If we transferred some data, return the number of bytes:
1028 EXPORT_SYMBOL(do_splice_direct);
1031 * Determine where to splice to/from.
1033 static long do_splice(struct file *in, loff_t __user *off_in,
1034 struct file *out, loff_t __user *off_out,
1035 size_t len, unsigned int flags)
1037 struct pipe_inode_info *pipe;
1038 loff_t offset, *off;
1041 pipe = in->f_dentry->d_inode->i_pipe;
1046 if (out->f_op->llseek == no_llseek)
1048 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1054 ret = do_splice_from(pipe, out, off, len, flags);
1056 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1062 pipe = out->f_dentry->d_inode->i_pipe;
1067 if (in->f_op->llseek == no_llseek)
1069 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1075 ret = do_splice_to(in, off, pipe, len, flags);
1077 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1087 * Map an iov into an array of pages and offset/length tupples. With the
1088 * partial_page structure, we can map several non-contiguous ranges into
1089 * our ones pages[] map instead of splitting that operation into pieces.
1090 * Could easily be exported as a generic helper for other users, in which
1091 * case one would probably want to add a 'max_nr_pages' parameter as well.
1093 static int get_iovec_page_array(const struct iovec __user *iov,
1094 unsigned int nr_vecs, struct page **pages,
1095 struct partial_page *partial, int aligned)
1097 int buffers = 0, error = 0;
1100 * It's ok to take the mmap_sem for reading, even
1101 * across a "get_user()".
1103 down_read(¤t->mm->mmap_sem);
1106 unsigned long off, npages;
1112 * Get user address base and length for this iovec.
1114 error = get_user(base, &iov->iov_base);
1115 if (unlikely(error))
1117 error = get_user(len, &iov->iov_len);
1118 if (unlikely(error))
1122 * Sanity check this iovec. 0 read succeeds.
1127 if (unlikely(!base))
1131 * Get this base offset and number of pages, then map
1132 * in the user pages.
1134 off = (unsigned long) base & ~PAGE_MASK;
1137 * If asked for alignment, the offset must be zero and the
1138 * length a multiple of the PAGE_SIZE.
1141 if (aligned && (off || len & ~PAGE_MASK))
1144 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1145 if (npages > PIPE_BUFFERS - buffers)
1146 npages = PIPE_BUFFERS - buffers;
1148 error = get_user_pages(current, current->mm,
1149 (unsigned long) base, npages, 0, 0,
1150 &pages[buffers], NULL);
1152 if (unlikely(error <= 0))
1156 * Fill this contiguous range into the partial page map.
1158 for (i = 0; i < error; i++) {
1159 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1161 partial[buffers].offset = off;
1162 partial[buffers].len = plen;
1170 * We didn't complete this iov, stop here since it probably
1171 * means we have to move some of this into a pipe to
1172 * be able to continue.
1178 * Don't continue if we mapped fewer pages than we asked for,
1179 * or if we mapped the max number of pages that we have
1182 if (error < npages || buffers == PIPE_BUFFERS)
1189 up_read(¤t->mm->mmap_sem);
1198 * vmsplice splices a user address range into a pipe. It can be thought of
1199 * as splice-from-memory, where the regular splice is splice-from-file (or
1200 * to file). In both cases the output is a pipe, naturally.
1202 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1203 * not the other way around. Splicing from user memory is a simple operation
1204 * that can be supported without any funky alignment restrictions or nasty
1205 * vm tricks. We simply map in the user memory and fill them into a pipe.
1206 * The reverse isn't quite as easy, though. There are two possible solutions
1209 * - memcpy() the data internally, at which point we might as well just
1210 * do a regular read() on the buffer anyway.
1211 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1212 * has restriction limitations on both ends of the pipe).
1214 * Alas, it isn't here.
1217 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1218 unsigned long nr_segs, unsigned int flags)
1220 struct pipe_inode_info *pipe = file->f_dentry->d_inode->i_pipe;
1221 struct page *pages[PIPE_BUFFERS];
1222 struct partial_page partial[PIPE_BUFFERS];
1223 struct splice_pipe_desc spd = {
1227 .ops = &user_page_pipe_buf_ops,
1230 if (unlikely(!pipe))
1232 if (unlikely(nr_segs > UIO_MAXIOV))
1234 else if (unlikely(!nr_segs))
1237 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1238 flags & SPLICE_F_GIFT);
1239 if (spd.nr_pages <= 0)
1240 return spd.nr_pages;
1242 return splice_to_pipe(pipe, &spd);
1245 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1246 unsigned long nr_segs, unsigned int flags)
1253 file = fget_light(fd, &fput);
1255 if (file->f_mode & FMODE_WRITE)
1256 error = do_vmsplice(file, iov, nr_segs, flags);
1258 fput_light(file, fput);
1264 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1265 int fd_out, loff_t __user *off_out,
1266 size_t len, unsigned int flags)
1269 struct file *in, *out;
1270 int fput_in, fput_out;
1276 in = fget_light(fd_in, &fput_in);
1278 if (in->f_mode & FMODE_READ) {
1279 out = fget_light(fd_out, &fput_out);
1281 if (out->f_mode & FMODE_WRITE)
1282 error = do_splice(in, off_in,
1285 fput_light(out, fput_out);
1289 fput_light(in, fput_in);
1296 * Link contents of ipipe to opipe.
1298 static int link_pipe(struct pipe_inode_info *ipipe,
1299 struct pipe_inode_info *opipe,
1300 size_t len, unsigned int flags)
1302 struct pipe_buffer *ibuf, *obuf;
1303 int ret, do_wakeup, i, ipipe_first;
1305 ret = do_wakeup = ipipe_first = 0;
1308 * Potential ABBA deadlock, work around it by ordering lock
1309 * grabbing by inode address. Otherwise two different processes
1310 * could deadlock (one doing tee from A -> B, the other from B -> A).
1312 if (ipipe->inode < opipe->inode) {
1314 mutex_lock(&ipipe->inode->i_mutex);
1315 mutex_lock(&opipe->inode->i_mutex);
1317 mutex_lock(&opipe->inode->i_mutex);
1318 mutex_lock(&ipipe->inode->i_mutex);
1322 if (!opipe->readers) {
1323 send_sig(SIGPIPE, current, 0);
1328 if (ipipe->nrbufs - i) {
1329 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1332 * If we have room, fill this buffer
1334 if (opipe->nrbufs < PIPE_BUFFERS) {
1335 int nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1338 * Get a reference to this pipe buffer,
1339 * so we can copy the contents over.
1341 ibuf->ops->get(ipipe, ibuf);
1343 obuf = opipe->bufs + nbuf;
1347 * Don't inherit the gift flag, we need to
1348 * prevent multiple steals of this page.
1350 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1352 if (obuf->len > len)
1362 if (opipe->nrbufs < PIPE_BUFFERS)
1367 * We have input available, but no output room.
1368 * If we already copied data, return that. If we
1369 * need to drop the opipe lock, it must be ordered
1370 * last to avoid deadlocks.
1372 if ((flags & SPLICE_F_NONBLOCK) || !ipipe_first) {
1377 if (signal_pending(current)) {
1384 if (waitqueue_active(&opipe->wait))
1385 wake_up_interruptible(&opipe->wait);
1386 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1390 opipe->waiting_writers++;
1392 opipe->waiting_writers--;
1397 * No input buffers, do the usual checks for available
1398 * writers and blocking and wait if necessary
1400 if (!ipipe->writers)
1402 if (!ipipe->waiting_writers) {
1407 * pipe_wait() drops the ipipe mutex. To avoid deadlocks
1408 * with another process, we can only safely do that if
1409 * the ipipe lock is ordered last.
1411 if ((flags & SPLICE_F_NONBLOCK) || ipipe_first) {
1416 if (signal_pending(current)) {
1422 if (waitqueue_active(&ipipe->wait))
1423 wake_up_interruptible_sync(&ipipe->wait);
1424 kill_fasync(&ipipe->fasync_writers, SIGIO, POLL_OUT);
1429 mutex_unlock(&ipipe->inode->i_mutex);
1430 mutex_unlock(&opipe->inode->i_mutex);
1434 if (waitqueue_active(&opipe->wait))
1435 wake_up_interruptible(&opipe->wait);
1436 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1443 * This is a tee(1) implementation that works on pipes. It doesn't copy
1444 * any data, it simply references the 'in' pages on the 'out' pipe.
1445 * The 'flags' used are the SPLICE_F_* variants, currently the only
1446 * applicable one is SPLICE_F_NONBLOCK.
1448 static long do_tee(struct file *in, struct file *out, size_t len,
1451 struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe;
1452 struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe;
1455 * Link ipipe to the two output pipes, consuming as we go along.
1458 return link_pipe(ipipe, opipe, len, flags);
1463 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1472 in = fget_light(fdin, &fput_in);
1474 if (in->f_mode & FMODE_READ) {
1476 struct file *out = fget_light(fdout, &fput_out);
1479 if (out->f_mode & FMODE_WRITE)
1480 error = do_tee(in, out, len, flags);
1481 fput_light(out, fput_out);
1484 fput_light(in, fput_in);