2  *      Adaptec AAC series RAID controller driver
 
   3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
 
   5  * based on the old aacraid driver that is..
 
   6  * Adaptec aacraid device driver for Linux.
 
   8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
 
  10  * This program is free software; you can redistribute it and/or modify
 
  11  * it under the terms of the GNU General Public License as published by
 
  12  * the Free Software Foundation; either version 2, or (at your option)
 
  15  * This program is distributed in the hope that it will be useful,
 
  16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 
  17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
  18  * GNU General Public License for more details.
 
  20  * You should have received a copy of the GNU General Public License
 
  21  * along with this program; see the file COPYING.  If not, write to
 
  22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 
  27  * Abstract: Contain all routines that are required for FSA host/adapter
 
  32 #include <linux/kernel.h>
 
  33 #include <linux/init.h>
 
  34 #include <linux/types.h>
 
  35 #include <linux/sched.h>
 
  36 #include <linux/pci.h>
 
  37 #include <linux/spinlock.h>
 
  38 #include <linux/slab.h>
 
  39 #include <linux/completion.h>
 
  40 #include <linux/blkdev.h>
 
  41 #include <linux/delay.h>
 
  42 #include <linux/kthread.h>
 
  43 #include <linux/interrupt.h>
 
  44 #include <scsi/scsi.h>
 
  45 #include <scsi/scsi_host.h>
 
  46 #include <scsi/scsi_device.h>
 
  47 #include <scsi/scsi_cmnd.h>
 
  48 #include <asm/semaphore.h>
 
  53  *      fib_map_alloc           -       allocate the fib objects
 
  54  *      @dev: Adapter to allocate for
 
  56  *      Allocate and map the shared PCI space for the FIB blocks used to
 
  57  *      talk to the Adaptec firmware.
 
  60 static int fib_map_alloc(struct aac_dev *dev)
 
  63           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
 
  64           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
 
  65           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
 
  66         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
 
  67           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
 
  68           &dev->hw_fib_pa))==NULL)
 
  74  *      aac_fib_map_free                -       free the fib objects
 
  75  *      @dev: Adapter to free
 
  77  *      Free the PCI mappings and the memory allocated for FIB blocks
 
  81 void aac_fib_map_free(struct aac_dev *dev)
 
  83         pci_free_consistent(dev->pdev,
 
  84           dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
 
  85           dev->hw_fib_va, dev->hw_fib_pa);
 
  86         dev->hw_fib_va = NULL;
 
  91  *      aac_fib_setup   -       setup the fibs
 
  92  *      @dev: Adapter to set up
 
  94  *      Allocate the PCI space for the fibs, map it and then intialise the
 
  95  *      fib area, the unmapped fib data and also the free list
 
  98 int aac_fib_setup(struct aac_dev * dev)
 
 101         struct hw_fib *hw_fib;
 
 102         dma_addr_t hw_fib_pa;
 
 105         while (((i = fib_map_alloc(dev)) == -ENOMEM)
 
 106          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
 
 107                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
 
 108                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
 
 113         hw_fib = dev->hw_fib_va;
 
 114         hw_fib_pa = dev->hw_fib_pa;
 
 115         memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
 
 117          *      Initialise the fibs
 
 119         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
 
 122                 fibptr->hw_fib_va = hw_fib;
 
 123                 fibptr->data = (void *) fibptr->hw_fib_va->data;
 
 124                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
 
 125                 init_MUTEX_LOCKED(&fibptr->event_wait);
 
 126                 spin_lock_init(&fibptr->event_lock);
 
 127                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
 
 128                 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
 
 129                 fibptr->hw_fib_pa = hw_fib_pa;
 
 130                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
 
 131                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
 
 134          *      Add the fib chain to the free list
 
 136         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
 
 138          *      Enable this to debug out of queue space
 
 140         dev->free_fib = &dev->fibs[0];
 
 145  *      aac_fib_alloc   -       allocate a fib
 
 146  *      @dev: Adapter to allocate the fib for
 
 148  *      Allocate a fib from the adapter fib pool. If the pool is empty we
 
 152 struct fib *aac_fib_alloc(struct aac_dev *dev)
 
 156         spin_lock_irqsave(&dev->fib_lock, flags);
 
 157         fibptr = dev->free_fib; 
 
 159                 spin_unlock_irqrestore(&dev->fib_lock, flags);
 
 162         dev->free_fib = fibptr->next;
 
 163         spin_unlock_irqrestore(&dev->fib_lock, flags);
 
 165          *      Set the proper node type code and node byte size
 
 167         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 
 168         fibptr->size = sizeof(struct fib);
 
 170          *      Null out fields that depend on being zero at the start of
 
 173         fibptr->hw_fib_va->header.XferState = 0;
 
 174         fibptr->callback = NULL;
 
 175         fibptr->callback_data = NULL;
 
 181  *      aac_fib_free    -       free a fib
 
 182  *      @fibptr: fib to free up
 
 184  *      Frees up a fib and places it on the appropriate queue
 
 187 void aac_fib_free(struct fib *fibptr)
 
 191         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
 
 192         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 
 193                 aac_config.fib_timeouts++;
 
 194         if (fibptr->hw_fib_va->header.XferState != 0) {
 
 195                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
 
 197                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
 
 199         fibptr->next = fibptr->dev->free_fib;
 
 200         fibptr->dev->free_fib = fibptr;
 
 201         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
 
 205  *      aac_fib_init    -       initialise a fib
 
 206  *      @fibptr: The fib to initialize
 
 208  *      Set up the generic fib fields ready for use
 
 211 void aac_fib_init(struct fib *fibptr)
 
 213         struct hw_fib *hw_fib = fibptr->hw_fib_va;
 
 215         hw_fib->header.StructType = FIB_MAGIC;
 
 216         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
 
 217         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
 
 218         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
 
 219         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
 
 220         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
 
 224  *      fib_deallocate          -       deallocate a fib
 
 225  *      @fibptr: fib to deallocate
 
 227  *      Will deallocate and return to the free pool the FIB pointed to by the
 
 231 static void fib_dealloc(struct fib * fibptr)
 
 233         struct hw_fib *hw_fib = fibptr->hw_fib_va;
 
 234         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
 
 235         hw_fib->header.XferState = 0;        
 
 239  *      Commuication primitives define and support the queuing method we use to
 
 240  *      support host to adapter commuication. All queue accesses happen through
 
 241  *      these routines and are the only routines which have a knowledge of the
 
 242  *       how these queues are implemented.
 
 246  *      aac_get_entry           -       get a queue entry
 
 249  *      @entry: Entry return
 
 250  *      @index: Index return
 
 251  *      @nonotify: notification control
 
 253  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
 
 254  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
 
 258 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
 
 260         struct aac_queue * q;
 
 264          *      All of the queues wrap when they reach the end, so we check
 
 265          *      to see if they have reached the end and if they have we just
 
 266          *      set the index back to zero. This is a wrap. You could or off
 
 267          *      the high bits in all updates but this is a bit faster I think.
 
 270         q = &dev->queues->queue[qid];
 
 272         idx = *index = le32_to_cpu(*(q->headers.producer));
 
 273         /* Interrupt Moderation, only interrupt for first two entries */
 
 274         if (idx != le32_to_cpu(*(q->headers.consumer))) {
 
 276                         if (qid == AdapNormCmdQueue)
 
 277                                 idx = ADAP_NORM_CMD_ENTRIES;
 
 279                                 idx = ADAP_NORM_RESP_ENTRIES;
 
 281                 if (idx != le32_to_cpu(*(q->headers.consumer)))
 
 285         if (qid == AdapNormCmdQueue) {
 
 286                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
 
 287                         *index = 0; /* Wrap to front of the Producer Queue. */
 
 289                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
 
 290                         *index = 0; /* Wrap to front of the Producer Queue. */
 
 293         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
 
 294                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
 
 298                 *entry = q->base + *index;
 
 304  *      aac_queue_get           -       get the next free QE
 
 306  *      @index: Returned index
 
 307  *      @priority: Priority of fib
 
 308  *      @fib: Fib to associate with the queue entry
 
 309  *      @wait: Wait if queue full
 
 310  *      @fibptr: Driver fib object to go with fib
 
 311  *      @nonotify: Don't notify the adapter
 
 313  *      Gets the next free QE off the requested priorty adapter command
 
 314  *      queue and associates the Fib with the QE. The QE represented by
 
 315  *      index is ready to insert on the queue when this routine returns
 
 319 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
 
 321         struct aac_entry * entry = NULL;
 
 324         if (qid == AdapNormCmdQueue) {
 
 325                 /*  if no entries wait for some if caller wants to */
 
 326                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
 
 328                         printk(KERN_ERR "GetEntries failed\n");
 
 331                  *      Setup queue entry with a command, status and fib mapped
 
 333                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 
 336                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
 
 338                         /* if no entries wait for some if caller wants to */
 
 341                  *      Setup queue entry with command, status and fib mapped
 
 343                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 
 344                 entry->addr = hw_fib->header.SenderFibAddress;
 
 345                         /* Restore adapters pointer to the FIB */
 
 346                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
 
 350          *      If MapFib is true than we need to map the Fib and put pointers
 
 351          *      in the queue entry.
 
 354                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
 
 359  *      Define the highest level of host to adapter communication routines. 
 
 360  *      These routines will support host to adapter FS commuication. These 
 
 361  *      routines have no knowledge of the commuication method used. This level
 
 362  *      sends and receives FIBs. This level has no knowledge of how these FIBs
 
 363  *      get passed back and forth.
 
 367  *      aac_fib_send    -       send a fib to the adapter
 
 368  *      @command: Command to send
 
 370  *      @size: Size of fib data area
 
 371  *      @priority: Priority of Fib
 
 372  *      @wait: Async/sync select
 
 373  *      @reply: True if a reply is wanted
 
 374  *      @callback: Called with reply
 
 375  *      @callback_data: Passed to callback
 
 377  *      Sends the requested FIB to the adapter and optionally will wait for a
 
 378  *      response FIB. If the caller does not wish to wait for a response than
 
 379  *      an event to wait on must be supplied. This event will be set when a
 
 380  *      response FIB is received from the adapter.
 
 383 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
 
 384                 int priority, int wait, int reply, fib_callback callback,
 
 387         struct aac_dev * dev = fibptr->dev;
 
 388         struct hw_fib * hw_fib = fibptr->hw_fib_va;
 
 389         unsigned long flags = 0;
 
 390         unsigned long qflags;
 
 392         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
 
 395          *      There are 5 cases with the wait and reponse requested flags. 
 
 396          *      The only invalid cases are if the caller requests to wait and
 
 397          *      does not request a response and if the caller does not want a
 
 398          *      response and the Fib is not allocated from pool. If a response
 
 399          *      is not requesed the Fib will just be deallocaed by the DPC
 
 400          *      routine when the response comes back from the adapter. No
 
 401          *      further processing will be done besides deleting the Fib. We 
 
 402          *      will have a debug mode where the adapter can notify the host
 
 403          *      it had a problem and the host can log that fact.
 
 405         if (wait && !reply) {
 
 407         } else if (!wait && reply) {
 
 408                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
 
 409                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
 
 410         } else if (!wait && !reply) {
 
 411                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
 
 412                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
 
 413         } else if (wait && reply) {
 
 414                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
 
 415                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
 
 418          *      Map the fib into 32bits by using the fib number
 
 421         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
 
 422         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
 
 424          *      Set FIB state to indicate where it came from and if we want a
 
 425          *      response from the adapter. Also load the command from the
 
 428          *      Map the hw fib pointer as a 32bit value
 
 430         hw_fib->header.Command = cpu_to_le16(command);
 
 431         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
 
 432         fibptr->hw_fib_va->header.Flags = 0;    /* 0 the flags field - internal only*/
 
 434          *      Set the size of the Fib we want to send to the adapter
 
 436         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
 
 437         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
 
 441          *      Get a queue entry connect the FIB to it and send an notify
 
 442          *      the adapter a command is ready.
 
 444         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
 
 447          *      Fill in the Callback and CallbackContext if we are not
 
 451                 fibptr->callback = callback;
 
 452                 fibptr->callback_data = callback_data;
 
 458         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
 
 460         dprintk((KERN_DEBUG "Fib contents:.\n"));
 
 461         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
 
 462         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
 
 463         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
 
 464         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
 
 465         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
 
 466         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
 
 472                 spin_lock_irqsave(&fibptr->event_lock, flags);
 
 473         aac_adapter_deliver(fibptr);
 
 476          *      If the caller wanted us to wait for response wait now. 
 
 480                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
 
 481                 /* Only set for first known interruptable command */
 
 484                          * *VERY* Dangerous to time out a command, the
 
 485                          * assumption is made that we have no hope of
 
 486                          * functioning because an interrupt routing or other
 
 487                          * hardware failure has occurred.
 
 489                         unsigned long count = 36000000L; /* 3 minutes */
 
 490                         while (down_trylock(&fibptr->event_wait)) {
 
 493                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
 
 494                                         spin_lock_irqsave(q->lock, qflags);
 
 496                                         spin_unlock_irqrestore(q->lock, qflags);
 
 498                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
 
 499                                                   "Usually a result of a PCI interrupt routing problem;\n"
 
 500                                                   "update mother board BIOS or consider utilizing one of\n"
 
 501                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
 
 505                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
 
 507                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
 
 508                                                   "Usually a result of a serious unrecoverable hardware problem\n",
 
 516                         (void)down_interruptible(&fibptr->event_wait);
 
 517                 spin_lock_irqsave(&fibptr->event_lock, flags);
 
 518                 if (fibptr->done == 0) {
 
 519                         fibptr->done = 2; /* Tell interrupt we aborted */
 
 520                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
 
 523                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
 
 524                 BUG_ON(fibptr->done == 0);
 
 526                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 
 531          *      If the user does not want a response than return success otherwise
 
 541  *      aac_consumer_get        -       get the top of the queue
 
 544  *      @entry: Return entry
 
 546  *      Will return a pointer to the entry on the top of the queue requested that
 
 547  *      we are a consumer of, and return the address of the queue entry. It does
 
 548  *      not change the state of the queue. 
 
 551 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
 
 555         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
 
 559                  *      The consumer index must be wrapped if we have reached
 
 560                  *      the end of the queue, else we just use the entry
 
 561                  *      pointed to by the header index
 
 563                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
 
 566                         index = le32_to_cpu(*q->headers.consumer);
 
 567                 *entry = q->base + index;
 
 574  *      aac_consumer_free       -       free consumer entry
 
 579  *      Frees up the current top of the queue we are a consumer of. If the
 
 580  *      queue was full notify the producer that the queue is no longer full.
 
 583 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
 
 588         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
 
 591         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 
 592                 *q->headers.consumer = cpu_to_le32(1);
 
 594                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
 
 599                 case HostNormCmdQueue:
 
 600                         notify = HostNormCmdNotFull;
 
 602                 case HostNormRespQueue:
 
 603                         notify = HostNormRespNotFull;
 
 609                 aac_adapter_notify(dev, notify);
 
 614  *      aac_fib_adapter_complete        -       complete adapter issued fib
 
 615  *      @fibptr: fib to complete
 
 618  *      Will do all necessary work to complete a FIB that was sent from
 
 622 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
 
 624         struct hw_fib * hw_fib = fibptr->hw_fib_va;
 
 625         struct aac_dev * dev = fibptr->dev;
 
 626         struct aac_queue * q;
 
 627         unsigned long nointr = 0;
 
 628         unsigned long qflags;
 
 630         if (hw_fib->header.XferState == 0) {
 
 631                 if (dev->comm_interface == AAC_COMM_MESSAGE)
 
 636          *      If we plan to do anything check the structure type first.
 
 638         if ( hw_fib->header.StructType != FIB_MAGIC ) {
 
 639                 if (dev->comm_interface == AAC_COMM_MESSAGE)
 
 644          *      This block handles the case where the adapter had sent us a
 
 645          *      command and we have finished processing the command. We
 
 646          *      call completeFib when we are done processing the command 
 
 647          *      and want to send a response back to the adapter. This will 
 
 648          *      send the completed cdb to the adapter.
 
 650         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
 
 651                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
 
 655                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
 
 657                                 size += sizeof(struct aac_fibhdr);
 
 658                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
 
 660                                 hw_fib->header.Size = cpu_to_le16(size);
 
 662                         q = &dev->queues->queue[AdapNormRespQueue];
 
 663                         spin_lock_irqsave(q->lock, qflags);
 
 664                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
 
 665                         *(q->headers.producer) = cpu_to_le32(index + 1);
 
 666                         spin_unlock_irqrestore(q->lock, qflags);
 
 667                         if (!(nointr & (int)aac_config.irq_mod))
 
 668                                 aac_adapter_notify(dev, AdapNormRespQueue);
 
 673                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
 
 680  *      aac_fib_complete        -       fib completion handler
 
 681  *      @fib: FIB to complete
 
 683  *      Will do all necessary work to complete a FIB.
 
 686 int aac_fib_complete(struct fib *fibptr)
 
 688         struct hw_fib * hw_fib = fibptr->hw_fib_va;
 
 691          *      Check for a fib which has already been completed
 
 694         if (hw_fib->header.XferState == 0)
 
 697          *      If we plan to do anything check the structure type first.
 
 700         if (hw_fib->header.StructType != FIB_MAGIC)
 
 703          *      This block completes a cdb which orginated on the host and we 
 
 704          *      just need to deallocate the cdb or reinit it. At this point the
 
 705          *      command is complete that we had sent to the adapter and this
 
 706          *      cdb could be reused.
 
 708         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
 
 709                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
 
 713         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
 
 716                  *      This handles the case when the host has aborted the I/O
 
 717                  *      to the adapter because the adapter is not responding
 
 720         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
 
 729  *      aac_printf      -       handle printf from firmware
 
 733  *      Print a message passed to us by the controller firmware on the
 
 737 void aac_printf(struct aac_dev *dev, u32 val)
 
 739         char *cp = dev->printfbuf;
 
 740         if (dev->printf_enabled)
 
 742                 int length = val & 0xffff;
 
 743                 int level = (val >> 16) & 0xffff;
 
 746                  *      The size of the printfbuf is set in port.c
 
 747                  *      There is no variable or define for it
 
 753                 if (level == LOG_AAC_HIGH_ERROR)
 
 754                         printk(KERN_WARNING "%s:%s", dev->name, cp);
 
 756                         printk(KERN_INFO "%s:%s", dev->name, cp);
 
 763  *      aac_handle_aif          -       Handle a message from the firmware
 
 764  *      @dev: Which adapter this fib is from
 
 765  *      @fibptr: Pointer to fibptr from adapter
 
 767  *      This routine handles a driver notify fib from the adapter and
 
 768  *      dispatches it to the appropriate routine for handling.
 
 771 #define AIF_SNIFF_TIMEOUT       (30*HZ)
 
 772 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
 
 774         struct hw_fib * hw_fib = fibptr->hw_fib_va;
 
 775         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
 
 777         struct scsi_device *device;
 
 783         } device_config_needed;
 
 785         /* Sniff for container changes */
 
 787         if (!dev || !dev->fsa_dev)
 
 792          *      We have set this up to try and minimize the number of
 
 793          * re-configures that take place. As a result of this when
 
 794          * certain AIF's come in we will set a flag waiting for another
 
 795          * type of AIF before setting the re-config flag.
 
 797         switch (le32_to_cpu(aifcmd->command)) {
 
 798         case AifCmdDriverNotify:
 
 799                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
 
 801                  *      Morph or Expand complete
 
 803                 case AifDenMorphComplete:
 
 804                 case AifDenVolumeExtendComplete:
 
 805                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
 
 806                         if (container >= dev->maximum_num_containers)
 
 810                          *      Find the scsi_device associated with the SCSI
 
 811                          * address. Make sure we have the right array, and if
 
 812                          * so set the flag to initiate a new re-config once we
 
 813                          * see an AifEnConfigChange AIF come through.
 
 816                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
 
 817                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
 
 818                                         CONTAINER_TO_CHANNEL(container), 
 
 819                                         CONTAINER_TO_ID(container), 
 
 820                                         CONTAINER_TO_LUN(container));
 
 822                                         dev->fsa_dev[container].config_needed = CHANGE;
 
 823                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
 
 824                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
 
 825                                         scsi_device_put(device);
 
 831                  *      If we are waiting on something and this happens to be
 
 832                  * that thing then set the re-configure flag.
 
 834                 if (container != (u32)-1) {
 
 835                         if (container >= dev->maximum_num_containers)
 
 837                         if ((dev->fsa_dev[container].config_waiting_on ==
 
 838                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
 
 839                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 840                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 841                 } else for (container = 0;
 
 842                     container < dev->maximum_num_containers; ++container) {
 
 843                         if ((dev->fsa_dev[container].config_waiting_on ==
 
 844                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
 
 845                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 846                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 850         case AifCmdEventNotify:
 
 851                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
 
 855                 case AifEnAddContainer:
 
 856                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
 
 857                         if (container >= dev->maximum_num_containers)
 
 859                         dev->fsa_dev[container].config_needed = ADD;
 
 860                         dev->fsa_dev[container].config_waiting_on =
 
 862                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
 
 868                 case AifEnDeleteContainer:
 
 869                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
 
 870                         if (container >= dev->maximum_num_containers)
 
 872                         dev->fsa_dev[container].config_needed = DELETE;
 
 873                         dev->fsa_dev[container].config_waiting_on =
 
 875                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
 
 879                  *      Container change detected. If we currently are not
 
 880                  * waiting on something else, setup to wait on a Config Change.
 
 882                 case AifEnContainerChange:
 
 883                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
 
 884                         if (container >= dev->maximum_num_containers)
 
 886                         if (dev->fsa_dev[container].config_waiting_on &&
 
 887                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 889                         dev->fsa_dev[container].config_needed = CHANGE;
 
 890                         dev->fsa_dev[container].config_waiting_on =
 
 892                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
 
 895                 case AifEnConfigChange:
 
 901                  *      If we are waiting on something and this happens to be
 
 902                  * that thing then set the re-configure flag.
 
 904                 if (container != (u32)-1) {
 
 905                         if (container >= dev->maximum_num_containers)
 
 907                         if ((dev->fsa_dev[container].config_waiting_on ==
 
 908                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
 
 909                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 910                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 911                 } else for (container = 0;
 
 912                     container < dev->maximum_num_containers; ++container) {
 
 913                         if ((dev->fsa_dev[container].config_waiting_on ==
 
 914                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
 
 915                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
 
 916                                 dev->fsa_dev[container].config_waiting_on = 0;
 
 920         case AifCmdJobProgress:
 
 922                  *      These are job progress AIF's. When a Clear is being
 
 923                  * done on a container it is initially created then hidden from
 
 924                  * the OS. When the clear completes we don't get a config
 
 925                  * change so we monitor the job status complete on a clear then
 
 926                  * wait for a container change.
 
 929                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
 
 930                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
 
 931                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
 
 933                             container < dev->maximum_num_containers;
 
 936                                  * Stomp on all config sequencing for all
 
 939                                 dev->fsa_dev[container].config_waiting_on =
 
 940                                         AifEnContainerChange;
 
 941                                 dev->fsa_dev[container].config_needed = ADD;
 
 942                                 dev->fsa_dev[container].config_waiting_stamp =
 
 946                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
 
 947                  && (((u32 *)aifcmd->data)[6] == 0)
 
 948                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
 
 950                             container < dev->maximum_num_containers;
 
 953                                  * Stomp on all config sequencing for all
 
 956                                 dev->fsa_dev[container].config_waiting_on =
 
 957                                         AifEnContainerChange;
 
 958                                 dev->fsa_dev[container].config_needed = DELETE;
 
 959                                 dev->fsa_dev[container].config_waiting_stamp =
 
 966         device_config_needed = NOTHING;
 
 967         for (container = 0; container < dev->maximum_num_containers;
 
 969                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
 
 970                         (dev->fsa_dev[container].config_needed != NOTHING) &&
 
 971                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
 
 972                         device_config_needed =
 
 973                                 dev->fsa_dev[container].config_needed;
 
 974                         dev->fsa_dev[container].config_needed = NOTHING;
 
 978         if (device_config_needed == NOTHING)
 
 982          *      If we decided that a re-configuration needs to be done,
 
 983          * schedule it here on the way out the door, please close the door
 
 988          *      Find the scsi_device associated with the SCSI address,
 
 989          * and mark it as changed, invalidating the cache. This deals
 
 990          * with changes to existing device IDs.
 
 993         if (!dev || !dev->scsi_host_ptr)
 
 996          * force reload of disk info via aac_probe_container
 
 998         if ((device_config_needed == CHANGE)
 
 999          && (dev->fsa_dev[container].valid == 1))
 
1000                 dev->fsa_dev[container].valid = 2;
 
1001         if ((device_config_needed == CHANGE) ||
 
1002                         (device_config_needed == ADD))
 
1003                 aac_probe_container(dev, container);
 
1004         device = scsi_device_lookup(dev->scsi_host_ptr, 
 
1005                 CONTAINER_TO_CHANNEL(container), 
 
1006                 CONTAINER_TO_ID(container), 
 
1007                 CONTAINER_TO_LUN(container));
 
1009                 switch (device_config_needed) {
 
1012                         scsi_rescan_device(&device->sdev_gendev);
 
1017                 scsi_device_put(device);
 
1019         if (device_config_needed == ADD) {
 
1020                 scsi_add_device(dev->scsi_host_ptr,
 
1021                   CONTAINER_TO_CHANNEL(container),
 
1022                   CONTAINER_TO_ID(container),
 
1023                   CONTAINER_TO_LUN(container));
 
1028 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
 
1032         struct Scsi_Host *host;
 
1033         struct scsi_device *dev;
 
1034         struct scsi_cmnd *command;
 
1035         struct scsi_cmnd *command_list;
 
1040          *      - host is locked, unless called by the aacraid thread.
 
1041          *        (a matter of convenience, due to legacy issues surrounding
 
1042          *        eh_host_adapter_reset).
 
1043          *      - in_reset is asserted, so no new i/o is getting to the
 
1045          *      - The card is dead, or will be very shortly ;-/ so no new
 
1046          *        commands are completing in the interrupt service.
 
1048         host = aac->scsi_host_ptr;
 
1049         scsi_block_requests(host);
 
1050         aac_adapter_disable_int(aac);
 
1051         if (aac->thread->pid != current->pid) {
 
1052                 spin_unlock_irq(host->host_lock);
 
1053                 kthread_stop(aac->thread);
 
1058          *      If a positive health, means in a known DEAD PANIC
 
1059          * state and the adapter could be reset to `try again'.
 
1061         retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
 
1067          *      Loop through the fibs, close the synchronous FIBS
 
1069         for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
 
1070                 struct fib *fib = &aac->fibs[index];
 
1071                 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
 
1072                   (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
 
1073                         unsigned long flagv;
 
1074                         spin_lock_irqsave(&fib->event_lock, flagv);
 
1075                         up(&fib->event_wait);
 
1076                         spin_unlock_irqrestore(&fib->event_lock, flagv);
 
1081         /* Give some extra time for ioctls to complete. */
 
1084         index = aac->cardtype;
 
1087          * Re-initialize the adapter, first free resources, then carefully
 
1088          * apply the initialization sequence to come back again. Only risk
 
1089          * is a change in Firmware dropping cache, it is assumed the caller
 
1090          * will ensure that i/o is queisced and the card is flushed in that
 
1093         aac_fib_map_free(aac);
 
1094         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
 
1095         aac->comm_addr = NULL;
 
1099         free_irq(aac->pdev->irq, aac);
 
1100         kfree(aac->fsa_dev);
 
1101         aac->fsa_dev = NULL;
 
1102         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
 
1103                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) ||
 
1104                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK))))
 
1107                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
 
1108                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
 
1111         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
 
1113         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
 
1114                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
 
1117                 aac->thread = kthread_run(aac_command_thread, aac, aac->name);
 
1118                 if (IS_ERR(aac->thread)) {
 
1119                         retval = PTR_ERR(aac->thread);
 
1123         (void)aac_get_adapter_info(aac);
 
1124         quirks = aac_get_driver_ident(index)->quirks;
 
1125         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
 
1126                 host->sg_tablesize = 34;
 
1127                 host->max_sectors = (host->sg_tablesize * 8) + 112;
 
1129         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
 
1130                 host->sg_tablesize = 17;
 
1131                 host->max_sectors = (host->sg_tablesize * 8) + 112;
 
1133         aac_get_config_status(aac, 1);
 
1134         aac_get_containers(aac);
 
1136          * This is where the assumption that the Adapter is quiesced
 
1139         command_list = NULL;
 
1140         __shost_for_each_device(dev, host) {
 
1141                 unsigned long flags;
 
1142                 spin_lock_irqsave(&dev->list_lock, flags);
 
1143                 list_for_each_entry(command, &dev->cmd_list, list)
 
1144                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
 
1145                                 command->SCp.buffer = (struct scatterlist *)command_list;
 
1146                                 command_list = command;
 
1148                 spin_unlock_irqrestore(&dev->list_lock, flags);
 
1150         while ((command = command_list)) {
 
1151                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
 
1152                 command->SCp.buffer = NULL;
 
1153                 command->result = DID_OK << 16
 
1154                   | COMMAND_COMPLETE << 8
 
1155                   | SAM_STAT_TASK_SET_FULL;
 
1156                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
 
1157                 command->scsi_done(command);
 
1163         scsi_unblock_requests(host);
 
1165                 spin_lock_irq(host->host_lock);
 
1170 int aac_reset_adapter(struct aac_dev * aac, int forced)
 
1172         unsigned long flagv = 0;
 
1174         struct Scsi_Host * host;
 
1176         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
 
1179         if (aac->in_reset) {
 
1180                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
 
1184         spin_unlock_irqrestore(&aac->fib_lock, flagv);
 
1187          * Wait for all commands to complete to this specific
 
1188          * target (block maximum 60 seconds). Although not necessary,
 
1189          * it does make us a good storage citizen.
 
1191         host = aac->scsi_host_ptr;
 
1192         scsi_block_requests(host);
 
1193         if (forced < 2) for (retval = 60; retval; --retval) {
 
1194                 struct scsi_device * dev;
 
1195                 struct scsi_cmnd * command;
 
1198                 __shost_for_each_device(dev, host) {
 
1199                         spin_lock_irqsave(&dev->list_lock, flagv);
 
1200                         list_for_each_entry(command, &dev->cmd_list, list) {
 
1201                                 if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
 
1206                         spin_unlock_irqrestore(&dev->list_lock, flagv);
 
1212                  * We can exit If all the commands are complete
 
1219         /* Quiesce build, flush cache, write through mode */
 
1220         aac_send_shutdown(aac);
 
1221         spin_lock_irqsave(host->host_lock, flagv);
 
1222         retval = _aac_reset_adapter(aac, forced);
 
1223         spin_unlock_irqrestore(host->host_lock, flagv);
 
1225         if (retval == -ENODEV) {
 
1226                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
 
1227                 struct fib * fibctx = aac_fib_alloc(aac);
 
1229                         struct aac_pause *cmd;
 
1232                         aac_fib_init(fibctx);
 
1234                         cmd = (struct aac_pause *) fib_data(fibctx);
 
1236                         cmd->command = cpu_to_le32(VM_ContainerConfig);
 
1237                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
 
1238                         cmd->timeout = cpu_to_le32(1);
 
1239                         cmd->min = cpu_to_le32(1);
 
1240                         cmd->noRescan = cpu_to_le32(1);
 
1241                         cmd->count = cpu_to_le32(0);
 
1243                         status = aac_fib_send(ContainerCommand,
 
1245                           sizeof(struct aac_pause),
 
1247                           -2 /* Timeout silently */, 1,
 
1251                                 aac_fib_complete(fibctx);
 
1252                         aac_fib_free(fibctx);
 
1259 int aac_check_health(struct aac_dev * aac)
 
1262         unsigned long time_now, flagv = 0;
 
1263         struct list_head * entry;
 
1264         struct Scsi_Host * host;
 
1266         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
 
1267         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
 
1270         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
 
1271                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
 
1278          *      aac_aifcmd.command = AifCmdEventNotify = 1
 
1279          *      aac_aifcmd.seqnum = 0xFFFFFFFF
 
1280          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
 
1281          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
 
1282          *      aac.aifcmd.data[2] = AifHighPriority = 3
 
1283          *      aac.aifcmd.data[3] = BlinkLED
 
1286         time_now = jiffies/HZ;
 
1287         entry = aac->fib_list.next;
 
1290          * For each Context that is on the
 
1291          * fibctxList, make a copy of the
 
1292          * fib, and then set the event to wake up the
 
1293          * thread that is waiting for it.
 
1295         while (entry != &aac->fib_list) {
 
1297                  * Extract the fibctx
 
1299                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
 
1300                 struct hw_fib * hw_fib;
 
1303                  * Check if the queue is getting
 
1306                 if (fibctx->count > 20) {
 
1308                          * It's *not* jiffies folks,
 
1309                          * but jiffies / HZ, so do not
 
1312                         u32 time_last = fibctx->jiffies;
 
1314                          * Has it been > 2 minutes
 
1315                          * since the last read off
 
1318                         if ((time_now - time_last) > aif_timeout) {
 
1319                                 entry = entry->next;
 
1320                                 aac_close_fib_context(aac, fibctx);
 
1325                  * Warning: no sleep allowed while
 
1328                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
 
1329                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
 
1330                 if (fib && hw_fib) {
 
1331                         struct aac_aifcmd * aif;
 
1333                         fib->hw_fib_va = hw_fib;
 
1336                         fib->type = FSAFS_NTC_FIB_CONTEXT;
 
1337                         fib->size = sizeof (struct fib);
 
1338                         fib->data = hw_fib->data;
 
1339                         aif = (struct aac_aifcmd *)hw_fib->data;
 
1340                         aif->command = cpu_to_le32(AifCmdEventNotify);
 
1341                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
 
1342                         aif->data[0] = cpu_to_le32(AifEnExpEvent);
 
1343                         aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
 
1344                         aif->data[2] = cpu_to_le32(AifHighPriority);
 
1345                         aif->data[3] = cpu_to_le32(BlinkLED);
 
1348                          * Put the FIB onto the
 
1351                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
 
1354                          * Set the event to wake up the
 
1355                          * thread that will waiting.
 
1357                         up(&fibctx->wait_sem);
 
1359                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
 
1363                 entry = entry->next;
 
1366         spin_unlock_irqrestore(&aac->fib_lock, flagv);
 
1369                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
 
1373         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
 
1375         if (!check_reset || (aac->supplement_adapter_info.SupportedOptions2 &
 
1376           le32_to_cpu(AAC_OPTION_IGNORE_RESET)))
 
1378         host = aac->scsi_host_ptr;
 
1379         if (aac->thread->pid != current->pid)
 
1380                 spin_lock_irqsave(host->host_lock, flagv);
 
1381         BlinkLED = _aac_reset_adapter(aac, 0);
 
1382         if (aac->thread->pid != current->pid)
 
1383                 spin_unlock_irqrestore(host->host_lock, flagv);
 
1393  *      aac_command_thread      -       command processing thread
 
1394  *      @dev: Adapter to monitor
 
1396  *      Waits on the commandready event in it's queue. When the event gets set
 
1397  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
 
1398  *      until the queue is empty. When the queue is empty it will wait for
 
1402 int aac_command_thread(void *data)
 
1404         struct aac_dev *dev = data;
 
1405         struct hw_fib *hw_fib, *hw_newfib;
 
1406         struct fib *fib, *newfib;
 
1407         struct aac_fib_context *fibctx;
 
1408         unsigned long flags;
 
1409         DECLARE_WAITQUEUE(wait, current);
 
1410         unsigned long next_jiffies = jiffies + HZ;
 
1411         unsigned long next_check_jiffies = next_jiffies;
 
1412         long difference = HZ;
 
1415          *      We can only have one thread per adapter for AIF's.
 
1417         if (dev->aif_thread)
 
1421          *      Let the DPC know it has a place to send the AIF's to.
 
1423         dev->aif_thread = 1;
 
1424         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
 
1425         set_current_state(TASK_INTERRUPTIBLE);
 
1426         dprintk ((KERN_INFO "aac_command_thread start\n"));
 
1429                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1430                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
 
1431                         struct list_head *entry;
 
1432                         struct aac_aifcmd * aifcmd;
 
1434                         set_current_state(TASK_RUNNING);
 
1436                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
 
1439                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1440                         fib = list_entry(entry, struct fib, fiblink);
 
1442                          *      We will process the FIB here or pass it to a 
 
1443                          *      worker thread that is TBD. We Really can't 
 
1444                          *      do anything at this point since we don't have
 
1445                          *      anything defined for this thread to do.
 
1447                         hw_fib = fib->hw_fib_va;
 
1448                         memset(fib, 0, sizeof(struct fib));
 
1449                         fib->type = FSAFS_NTC_FIB_CONTEXT;
 
1450                         fib->size = sizeof( struct fib );
 
1451                         fib->hw_fib_va = hw_fib;
 
1452                         fib->data = hw_fib->data;
 
1455                          *      We only handle AifRequest fibs from the adapter.
 
1457                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
 
1458                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
 
1459                                 /* Handle Driver Notify Events */
 
1460                                 aac_handle_aif(dev, fib);
 
1461                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
 
1462                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
 
1464                                 struct list_head *entry;
 
1465                                 /* The u32 here is important and intended. We are using
 
1466                                    32bit wrapping time to fit the adapter field */
 
1468                                 u32 time_now, time_last;
 
1469                                 unsigned long flagv;
 
1471                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
 
1472                                 struct fib ** fib_pool, ** fib_p;
 
1475                                 if ((aifcmd->command == 
 
1476                                      cpu_to_le32(AifCmdEventNotify)) ||
 
1478                                      cpu_to_le32(AifCmdJobProgress))) {
 
1479                                         aac_handle_aif(dev, fib);
 
1482                                 time_now = jiffies/HZ;
 
1485                                  * Warning: no sleep allowed while
 
1486                                  * holding spinlock. We take the estimate
 
1487                                  * and pre-allocate a set of fibs outside the
 
1490                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
 
1491                                     / sizeof(struct hw_fib); /* some extra */
 
1492                                 spin_lock_irqsave(&dev->fib_lock, flagv);
 
1493                                 entry = dev->fib_list.next;
 
1494                                 while (entry != &dev->fib_list) {
 
1495                                         entry = entry->next;
 
1498                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
 
1502                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
 
1503                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
 
1504                                         hw_fib_p = hw_fib_pool;
 
1506                                         while (hw_fib_p < &hw_fib_pool[num]) {
 
1507                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
 
1511                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
 
1512                                                         kfree(*(--hw_fib_p));
 
1516                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
 
1526                                 spin_lock_irqsave(&dev->fib_lock, flagv);
 
1527                                 entry = dev->fib_list.next;
 
1529                                  * For each Context that is on the 
 
1530                                  * fibctxList, make a copy of the
 
1531                                  * fib, and then set the event to wake up the
 
1532                                  * thread that is waiting for it.
 
1534                                 hw_fib_p = hw_fib_pool;
 
1536                                 while (entry != &dev->fib_list) {
 
1538                                          * Extract the fibctx
 
1540                                         fibctx = list_entry(entry, struct aac_fib_context, next);
 
1542                                          * Check if the queue is getting
 
1545                                         if (fibctx->count > 20)
 
1548                                                  * It's *not* jiffies folks,
 
1549                                                  * but jiffies / HZ so do not
 
1552                                                 time_last = fibctx->jiffies;
 
1554                                                  * Has it been > 2 minutes 
 
1555                                                  * since the last read off
 
1558                                                 if ((time_now - time_last) > aif_timeout) {
 
1559                                                         entry = entry->next;
 
1560                                                         aac_close_fib_context(dev, fibctx);
 
1565                                          * Warning: no sleep allowed while
 
1568                                         if (hw_fib_p < &hw_fib_pool[num]) {
 
1569                                                 hw_newfib = *hw_fib_p;
 
1570                                                 *(hw_fib_p++) = NULL;
 
1574                                                  * Make the copy of the FIB
 
1576                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
 
1577                                                 memcpy(newfib, fib, sizeof(struct fib));
 
1578                                                 newfib->hw_fib_va = hw_newfib;
 
1580                                                  * Put the FIB onto the
 
1583                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
 
1586                                                  * Set the event to wake up the
 
1587                                                  * thread that is waiting.
 
1589                                                 up(&fibctx->wait_sem);
 
1591                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
 
1593                                         entry = entry->next;
 
1596                                  *      Set the status of this FIB
 
1598                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
 
1599                                 aac_fib_adapter_complete(fib, sizeof(u32));
 
1600                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
 
1601                                 /* Free up the remaining resources */
 
1602                                 hw_fib_p = hw_fib_pool;
 
1604                                 while (hw_fib_p < &hw_fib_pool[num]) {
 
1614                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1617                  *      There are no more AIF's
 
1619                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
 
1622                  *      Background activity
 
1624                 if ((time_before(next_check_jiffies,next_jiffies))
 
1625                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
 
1626                         next_check_jiffies = next_jiffies;
 
1627                         if (aac_check_health(dev) == 0) {
 
1628                                 difference = ((long)(unsigned)check_interval)
 
1630                                 next_check_jiffies = jiffies + difference;
 
1631                         } else if (!dev->queues)
 
1634                 if (!time_before(next_check_jiffies,next_jiffies)
 
1635                  && ((difference = next_jiffies - jiffies) <= 0)) {
 
1639                         /* Don't even try to talk to adapter if its sick */
 
1640                         ret = aac_check_health(dev);
 
1641                         if (!ret && !dev->queues)
 
1643                         next_check_jiffies = jiffies
 
1644                                            + ((long)(unsigned)check_interval)
 
1646                         do_gettimeofday(&now);
 
1648                         /* Synchronize our watches */
 
1649                         if (((1000000 - (1000000 / HZ)) > now.tv_usec)
 
1650                          && (now.tv_usec > (1000000 / HZ)))
 
1651                                 difference = (((1000000 - now.tv_usec) * HZ)
 
1652                                   + 500000) / 1000000;
 
1653                         else if (ret == 0) {
 
1656                                 if ((fibptr = aac_fib_alloc(dev))) {
 
1659                                         aac_fib_init(fibptr);
 
1661                                         info = (u32 *) fib_data(fibptr);
 
1662                                         if (now.tv_usec > 500000)
 
1665                                         *info = cpu_to_le32(now.tv_sec);
 
1667                                         (void)aac_fib_send(SendHostTime,
 
1674                                         aac_fib_complete(fibptr);
 
1675                                         aac_fib_free(fibptr);
 
1677                                 difference = (long)(unsigned)update_interval*HZ;
 
1680                                 difference = 10 * HZ;
 
1682                         next_jiffies = jiffies + difference;
 
1683                         if (time_before(next_check_jiffies,next_jiffies))
 
1684                                 difference = next_check_jiffies - jiffies;
 
1686                 if (difference <= 0)
 
1688                 set_current_state(TASK_INTERRUPTIBLE);
 
1689                 schedule_timeout(difference);
 
1691                 if (kthread_should_stop())
 
1695                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
 
1696         dev->aif_thread = 0;