Merge branch 'upstream-net26' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[linux-2.6] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
53 {
54         u32 reg;
55         unsigned int i;
56
57         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58                 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59                 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60                         break;
61                 udelay(REGISTER_BUSY_DELAY);
62         }
63
64         return reg;
65 }
66
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                                 const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         /*
73          * Wait until the BBP becomes ready.
74          */
75         reg = rt2500pci_bbp_check(rt2x00dev);
76         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77                 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78                 return;
79         }
80
81         /*
82          * Write the data into the BBP.
83          */
84         reg = 0;
85         rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91 }
92
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94                                const unsigned int word, u8 *value)
95 {
96         u32 reg;
97
98         /*
99          * Wait until the BBP becomes ready.
100          */
101         reg = rt2500pci_bbp_check(rt2x00dev);
102         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104                 return;
105         }
106
107         /*
108          * Write the request into the BBP.
109          */
110         reg = 0;
111         rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112         rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113         rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115         rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117         /*
118          * Wait until the BBP becomes ready.
119          */
120         reg = rt2500pci_bbp_check(rt2x00dev);
121         if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122                 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123                 *value = 0xff;
124                 return;
125         }
126
127         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128 }
129
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131                                const unsigned int word, const u32 value)
132 {
133         u32 reg;
134         unsigned int i;
135
136         if (!word)
137                 return;
138
139         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140                 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141                 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142                         goto rf_write;
143                 udelay(REGISTER_BUSY_DELAY);
144         }
145
146         ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147         return;
148
149 rf_write:
150         reg = 0;
151         rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152         rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153         rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154         rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156         rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157         rt2x00_rf_write(rt2x00dev, word, value);
158 }
159
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161 {
162         struct rt2x00_dev *rt2x00dev = eeprom->data;
163         u32 reg;
164
165         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169         eeprom->reg_data_clock =
170             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171         eeprom->reg_chip_select =
172             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173 }
174
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg = 0;
179
180         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183                            !!eeprom->reg_data_clock);
184         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185                            !!eeprom->reg_chip_select);
186
187         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188 }
189
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194                                const unsigned int word, u32 *data)
195 {
196         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197 }
198
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200                                 const unsigned int word, u32 data)
201 {
202         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203 }
204
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2500pci_read_csr,
209                 .write          = rt2500pci_write_csr,
210                 .word_size      = sizeof(u32),
211                 .word_count     = CSR_REG_SIZE / sizeof(u32),
212         },
213         .eeprom = {
214                 .read           = rt2x00_eeprom_read,
215                 .write          = rt2x00_eeprom_write,
216                 .word_size      = sizeof(u16),
217                 .word_count     = EEPROM_SIZE / sizeof(u16),
218         },
219         .bbp    = {
220                 .read           = rt2500pci_bbp_read,
221                 .write          = rt2500pci_bbp_write,
222                 .word_size      = sizeof(u8),
223                 .word_count     = BBP_SIZE / sizeof(u8),
224         },
225         .rf     = {
226                 .read           = rt2x00_rf_read,
227                 .write          = rt2500pci_rf_write,
228                 .word_size      = sizeof(u32),
229                 .word_count     = RF_SIZE / sizeof(u32),
230         },
231 };
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236 {
237         u32 reg;
238
239         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241 }
242 #else
243 #define rt2500pci_rfkill_poll   NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
245
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_led_brightness(struct led_classdev *led_cdev,
248                                      enum led_brightness brightness)
249 {
250         struct rt2x00_led *led =
251             container_of(led_cdev, struct rt2x00_led, led_dev);
252         unsigned int enabled = brightness != LED_OFF;
253         unsigned int activity =
254             led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
255         u32 reg;
256
257         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
258
259         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
261                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled && activity);
262         }
263
264         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
265 }
266 #else
267 #define rt2500pci_led_brightness        NULL
268 #endif /* CONFIG_RT2500PCI_LEDS */
269
270 /*
271  * Configuration handlers.
272  */
273 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
274                                   struct rt2x00_intf *intf,
275                                   struct rt2x00intf_conf *conf,
276                                   const unsigned int flags)
277 {
278         struct data_queue *queue =
279             rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
280         unsigned int bcn_preload;
281         u32 reg;
282
283         if (flags & CONFIG_UPDATE_TYPE) {
284                 /*
285                  * Enable beacon config
286                  */
287                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
288                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
289                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
290                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
291                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
292
293                 /*
294                  * Enable synchronisation.
295                  */
296                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
297                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
298                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
299                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
300                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
301         }
302
303         if (flags & CONFIG_UPDATE_MAC)
304                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
305                                               conf->mac, sizeof(conf->mac));
306
307         if (flags & CONFIG_UPDATE_BSSID)
308                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
309                                               conf->bssid, sizeof(conf->bssid));
310 }
311
312 static int rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
313                                 struct rt2x00lib_erp *erp)
314 {
315         int preamble_mask;
316         u32 reg;
317
318         /*
319          * When short preamble is enabled, we should set bit 0x08
320          */
321         preamble_mask = erp->short_preamble << 3;
322
323         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
324         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
325                            erp->ack_timeout);
326         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
327                            erp->ack_consume_time);
328         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
329
330         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
331         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
332         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
333         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
334         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
335
336         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
337         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
338         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
339         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
340         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
341
342         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
343         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
344         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
345         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
346         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
347
348         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
349         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
350         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
351         rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
352         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
353
354         return 0;
355 }
356
357 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
358                                      const int basic_rate_mask)
359 {
360         rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
361 }
362
363 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
364                                      struct rf_channel *rf, const int txpower)
365 {
366         u8 r70;
367
368         /*
369          * Set TXpower.
370          */
371         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
372
373         /*
374          * Switch on tuning bits.
375          * For RT2523 devices we do not need to update the R1 register.
376          */
377         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
378                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
379         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
380
381         /*
382          * For RT2525 we should first set the channel to half band higher.
383          */
384         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
385                 static const u32 vals[] = {
386                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
387                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
388                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
389                         0x00080d2e, 0x00080d3a
390                 };
391
392                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
393                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
394                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
395                 if (rf->rf4)
396                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
397         }
398
399         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
400         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
401         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
402         if (rf->rf4)
403                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
404
405         /*
406          * Channel 14 requires the Japan filter bit to be set.
407          */
408         r70 = 0x46;
409         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
410         rt2500pci_bbp_write(rt2x00dev, 70, r70);
411
412         msleep(1);
413
414         /*
415          * Switch off tuning bits.
416          * For RT2523 devices we do not need to update the R1 register.
417          */
418         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
419                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
420                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
421         }
422
423         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
424         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
425
426         /*
427          * Clear false CRC during channel switch.
428          */
429         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
430 }
431
432 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
433                                      const int txpower)
434 {
435         u32 rf3;
436
437         rt2x00_rf_read(rt2x00dev, 3, &rf3);
438         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
439         rt2500pci_rf_write(rt2x00dev, 3, rf3);
440 }
441
442 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
443                                      struct antenna_setup *ant)
444 {
445         u32 reg;
446         u8 r14;
447         u8 r2;
448
449         /*
450          * We should never come here because rt2x00lib is supposed
451          * to catch this and send us the correct antenna explicitely.
452          */
453         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
454                ant->tx == ANTENNA_SW_DIVERSITY);
455
456         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
457         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
458         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
459
460         /*
461          * Configure the TX antenna.
462          */
463         switch (ant->tx) {
464         case ANTENNA_A:
465                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
466                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
467                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
468                 break;
469         case ANTENNA_B:
470         default:
471                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
472                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
473                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
474                 break;
475         }
476
477         /*
478          * Configure the RX antenna.
479          */
480         switch (ant->rx) {
481         case ANTENNA_A:
482                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
483                 break;
484         case ANTENNA_B:
485         default:
486                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
487                 break;
488         }
489
490         /*
491          * RT2525E and RT5222 need to flip TX I/Q
492          */
493         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
494             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
495                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
496                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
497                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
498
499                 /*
500                  * RT2525E does not need RX I/Q Flip.
501                  */
502                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
503                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
504         } else {
505                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
506                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
507         }
508
509         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
510         rt2500pci_bbp_write(rt2x00dev, 14, r14);
511         rt2500pci_bbp_write(rt2x00dev, 2, r2);
512 }
513
514 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
515                                       struct rt2x00lib_conf *libconf)
516 {
517         u32 reg;
518
519         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
520         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
521         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
522
523         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
524         rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
525         rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
526         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
527
528         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
529         rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
530         rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
531         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
532
533         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
534         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
535         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
536         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
537
538         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
539         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
540                            libconf->conf->beacon_int * 16);
541         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
542                            libconf->conf->beacon_int * 16);
543         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
544 }
545
546 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
547                              struct rt2x00lib_conf *libconf,
548                              const unsigned int flags)
549 {
550         if (flags & CONFIG_UPDATE_PHYMODE)
551                 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
552         if (flags & CONFIG_UPDATE_CHANNEL)
553                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
554                                          libconf->conf->power_level);
555         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
556                 rt2500pci_config_txpower(rt2x00dev,
557                                          libconf->conf->power_level);
558         if (flags & CONFIG_UPDATE_ANTENNA)
559                 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
560         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
561                 rt2500pci_config_duration(rt2x00dev, libconf);
562 }
563
564 /*
565  * Link tuning
566  */
567 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
568                                  struct link_qual *qual)
569 {
570         u32 reg;
571
572         /*
573          * Update FCS error count from register.
574          */
575         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
576         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
577
578         /*
579          * Update False CCA count from register.
580          */
581         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
582         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
583 }
584
585 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
586 {
587         rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
588         rt2x00dev->link.vgc_level = 0x48;
589 }
590
591 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
592 {
593         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
594         u8 r17;
595
596         /*
597          * To prevent collisions with MAC ASIC on chipsets
598          * up to version C the link tuning should halt after 20
599          * seconds while being associated.
600          */
601         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
602             rt2x00dev->intf_associated &&
603             rt2x00dev->link.count > 20)
604                 return;
605
606         rt2500pci_bbp_read(rt2x00dev, 17, &r17);
607
608         /*
609          * Chipset versions C and lower should directly continue
610          * to the dynamic CCA tuning. Chipset version D and higher
611          * should go straight to dynamic CCA tuning when they
612          * are not associated.
613          */
614         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
615             !rt2x00dev->intf_associated)
616                 goto dynamic_cca_tune;
617
618         /*
619          * A too low RSSI will cause too much false CCA which will
620          * then corrupt the R17 tuning. To remidy this the tuning should
621          * be stopped (While making sure the R17 value will not exceed limits)
622          */
623         if (rssi < -80 && rt2x00dev->link.count > 20) {
624                 if (r17 >= 0x41) {
625                         r17 = rt2x00dev->link.vgc_level;
626                         rt2500pci_bbp_write(rt2x00dev, 17, r17);
627                 }
628                 return;
629         }
630
631         /*
632          * Special big-R17 for short distance
633          */
634         if (rssi >= -58) {
635                 if (r17 != 0x50)
636                         rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
637                 return;
638         }
639
640         /*
641          * Special mid-R17 for middle distance
642          */
643         if (rssi >= -74) {
644                 if (r17 != 0x41)
645                         rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
646                 return;
647         }
648
649         /*
650          * Leave short or middle distance condition, restore r17
651          * to the dynamic tuning range.
652          */
653         if (r17 >= 0x41) {
654                 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
655                 return;
656         }
657
658 dynamic_cca_tune:
659
660         /*
661          * R17 is inside the dynamic tuning range,
662          * start tuning the link based on the false cca counter.
663          */
664         if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
665                 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
666                 rt2x00dev->link.vgc_level = r17;
667         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
668                 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
669                 rt2x00dev->link.vgc_level = r17;
670         }
671 }
672
673 /*
674  * Initialization functions.
675  */
676 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
677                                    struct queue_entry *entry)
678 {
679         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
680         u32 word;
681
682         rt2x00_desc_read(priv_rx->desc, 1, &word);
683         rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
684         rt2x00_desc_write(priv_rx->desc, 1, word);
685
686         rt2x00_desc_read(priv_rx->desc, 0, &word);
687         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
688         rt2x00_desc_write(priv_rx->desc, 0, word);
689 }
690
691 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
692                                    struct queue_entry *entry)
693 {
694         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
695         u32 word;
696
697         rt2x00_desc_read(priv_tx->desc, 1, &word);
698         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
699         rt2x00_desc_write(priv_tx->desc, 1, word);
700
701         rt2x00_desc_read(priv_tx->desc, 0, &word);
702         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
703         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
704         rt2x00_desc_write(priv_tx->desc, 0, word);
705 }
706
707 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
708 {
709         struct queue_entry_priv_pci_rx *priv_rx;
710         struct queue_entry_priv_pci_tx *priv_tx;
711         u32 reg;
712
713         /*
714          * Initialize registers.
715          */
716         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
717         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
718         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
719         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
720         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
721         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
722
723         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
724         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
725         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
726                            priv_tx->desc_dma);
727         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
728
729         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
730         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
731         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
732                            priv_tx->desc_dma);
733         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
734
735         priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
736         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
737         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
738                            priv_tx->desc_dma);
739         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
740
741         priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
742         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
743         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
744                            priv_tx->desc_dma);
745         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
746
747         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
748         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
749         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
750         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
751
752         priv_rx = rt2x00dev->rx->entries[0].priv_data;
753         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
754         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
755         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
756
757         return 0;
758 }
759
760 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
761 {
762         u32 reg;
763
764         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
765         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
766         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
767         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
768
769         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
770         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
771         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
772         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
773         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
774
775         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
776         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
777                            rt2x00dev->rx->data_size / 128);
778         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
779
780         /*
781          * Always use CWmin and CWmax set in descriptor.
782          */
783         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
784         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
785         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
786
787         rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
788         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
789         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
790         rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
791
792         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
793
794         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
795         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
796         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
797         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
798         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
799         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
800         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
801         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
802         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
803         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
804
805         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
806         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
807         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
808         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
809         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
810         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
811
812         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
813         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
814         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
815         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
816         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
817         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
818
819         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
820         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
821         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
822         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
823         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
824         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
825
826         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
827         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
828         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
829         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
830         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
831         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
832         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
833         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
834         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
835         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
836
837         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
838         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
839         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
840         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
841         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
842         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
843         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
844         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
845         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
846
847         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
848
849         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
850         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
851
852         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
853                 return -EBUSY;
854
855         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
856         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
857
858         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
859         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
860         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
861
862         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
863         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
864         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
865         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
866         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
867         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
868         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
869         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
870
871         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
872
873         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
874
875         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
876         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
877         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
878         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
879         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
880
881         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
882         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
883         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
884         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
885
886         /*
887          * We must clear the FCS and FIFO error count.
888          * These registers are cleared on read,
889          * so we may pass a useless variable to store the value.
890          */
891         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
892         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
893
894         return 0;
895 }
896
897 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
898 {
899         unsigned int i;
900         u16 eeprom;
901         u8 reg_id;
902         u8 value;
903
904         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
905                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
906                 if ((value != 0xff) && (value != 0x00))
907                         goto continue_csr_init;
908                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
909                 udelay(REGISTER_BUSY_DELAY);
910         }
911
912         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
913         return -EACCES;
914
915 continue_csr_init:
916         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
917         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
918         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
919         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
920         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
921         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
922         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
923         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
924         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
925         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
926         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
927         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
928         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
929         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
930         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
931         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
932         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
933         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
934         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
935         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
936         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
937         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
938         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
939         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
940         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
941         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
942         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
943         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
944         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
945         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
946
947         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
948                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
949
950                 if (eeprom != 0xffff && eeprom != 0x0000) {
951                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
952                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
953                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
954                 }
955         }
956
957         return 0;
958 }
959
960 /*
961  * Device state switch handlers.
962  */
963 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
964                                 enum dev_state state)
965 {
966         u32 reg;
967
968         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
969         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
970                            state == STATE_RADIO_RX_OFF);
971         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
972 }
973
974 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
975                                  enum dev_state state)
976 {
977         int mask = (state == STATE_RADIO_IRQ_OFF);
978         u32 reg;
979
980         /*
981          * When interrupts are being enabled, the interrupt registers
982          * should clear the register to assure a clean state.
983          */
984         if (state == STATE_RADIO_IRQ_ON) {
985                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
986                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
987         }
988
989         /*
990          * Only toggle the interrupts bits we are going to use.
991          * Non-checked interrupt bits are disabled by default.
992          */
993         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
994         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
995         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
996         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
997         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
998         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
999         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1000 }
1001
1002 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1003 {
1004         /*
1005          * Initialize all registers.
1006          */
1007         if (rt2500pci_init_queues(rt2x00dev) ||
1008             rt2500pci_init_registers(rt2x00dev) ||
1009             rt2500pci_init_bbp(rt2x00dev)) {
1010                 ERROR(rt2x00dev, "Register initialization failed.\n");
1011                 return -EIO;
1012         }
1013
1014         /*
1015          * Enable interrupts.
1016          */
1017         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1018
1019         return 0;
1020 }
1021
1022 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1023 {
1024         u32 reg;
1025
1026         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1027
1028         /*
1029          * Disable synchronisation.
1030          */
1031         rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1032
1033         /*
1034          * Cancel RX and TX.
1035          */
1036         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1037         rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1038         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1039
1040         /*
1041          * Disable interrupts.
1042          */
1043         rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1044 }
1045
1046 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1047                                enum dev_state state)
1048 {
1049         u32 reg;
1050         unsigned int i;
1051         char put_to_sleep;
1052         char bbp_state;
1053         char rf_state;
1054
1055         put_to_sleep = (state != STATE_AWAKE);
1056
1057         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1058         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1059         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1060         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1061         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1062         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1063
1064         /*
1065          * Device is not guaranteed to be in the requested state yet.
1066          * We must wait until the register indicates that the
1067          * device has entered the correct state.
1068          */
1069         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1070                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1071                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1072                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1073                 if (bbp_state == state && rf_state == state)
1074                         return 0;
1075                 msleep(10);
1076         }
1077
1078         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1079                "current device state: bbp %d and rf %d.\n",
1080                state, bbp_state, rf_state);
1081
1082         return -EBUSY;
1083 }
1084
1085 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1086                                       enum dev_state state)
1087 {
1088         int retval = 0;
1089
1090         switch (state) {
1091         case STATE_RADIO_ON:
1092                 retval = rt2500pci_enable_radio(rt2x00dev);
1093                 break;
1094         case STATE_RADIO_OFF:
1095                 rt2500pci_disable_radio(rt2x00dev);
1096                 break;
1097         case STATE_RADIO_RX_ON:
1098         case STATE_RADIO_RX_ON_LINK:
1099                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1100                 break;
1101         case STATE_RADIO_RX_OFF:
1102         case STATE_RADIO_RX_OFF_LINK:
1103                 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1104                 break;
1105         case STATE_DEEP_SLEEP:
1106         case STATE_SLEEP:
1107         case STATE_STANDBY:
1108         case STATE_AWAKE:
1109                 retval = rt2500pci_set_state(rt2x00dev, state);
1110                 break;
1111         default:
1112                 retval = -ENOTSUPP;
1113                 break;
1114         }
1115
1116         return retval;
1117 }
1118
1119 /*
1120  * TX descriptor initialization
1121  */
1122 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1123                                     struct sk_buff *skb,
1124                                     struct txentry_desc *txdesc,
1125                                     struct ieee80211_tx_control *control)
1126 {
1127         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1128         __le32 *txd = skbdesc->desc;
1129         u32 word;
1130
1131         /*
1132          * Start writing the descriptor words.
1133          */
1134         rt2x00_desc_read(txd, 2, &word);
1135         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1136         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1137         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1138         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1139         rt2x00_desc_write(txd, 2, word);
1140
1141         rt2x00_desc_read(txd, 3, &word);
1142         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1143         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1144         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1145         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1146         rt2x00_desc_write(txd, 3, word);
1147
1148         rt2x00_desc_read(txd, 10, &word);
1149         rt2x00_set_field32(&word, TXD_W10_RTS,
1150                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1151         rt2x00_desc_write(txd, 10, word);
1152
1153         rt2x00_desc_read(txd, 0, &word);
1154         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1155         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1156         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1157                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1158         rt2x00_set_field32(&word, TXD_W0_ACK,
1159                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1160         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1161                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1162         rt2x00_set_field32(&word, TXD_W0_OFDM,
1163                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1164         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1165         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1166         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1167                            !!(control->flags &
1168                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1169         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1170         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1171         rt2x00_desc_write(txd, 0, word);
1172 }
1173
1174 /*
1175  * TX data initialization
1176  */
1177 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1178                                     const unsigned int queue)
1179 {
1180         u32 reg;
1181
1182         if (queue == RT2X00_BCN_QUEUE_BEACON) {
1183                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1184                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1185                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1186                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1187                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1188                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1189                 }
1190                 return;
1191         }
1192
1193         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1194         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1195                            (queue == IEEE80211_TX_QUEUE_DATA0));
1196         rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1197                            (queue == IEEE80211_TX_QUEUE_DATA1));
1198         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
1199                            (queue == RT2X00_BCN_QUEUE_ATIM));
1200         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1201 }
1202
1203 /*
1204  * RX control handlers
1205  */
1206 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1207                                   struct rxdone_entry_desc *rxdesc)
1208 {
1209         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1210         u32 word0;
1211         u32 word2;
1212
1213         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1214         rt2x00_desc_read(priv_rx->desc, 2, &word2);
1215
1216         rxdesc->flags = 0;
1217         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1218                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1219         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1220                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1221
1222         /*
1223          * Obtain the status about this packet.
1224          * When frame was received with an OFDM bitrate,
1225          * the signal is the PLCP value. If it was received with
1226          * a CCK bitrate the signal is the rate in 100kbit/s.
1227          */
1228         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1229         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1230         rxdesc->signal_plcp = rxdesc->ofdm;
1231         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1232             entry->queue->rt2x00dev->rssi_offset;
1233         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1234         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1235 }
1236
1237 /*
1238  * Interrupt functions.
1239  */
1240 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1241                              const enum ieee80211_tx_queue queue_idx)
1242 {
1243         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1244         struct queue_entry_priv_pci_tx *priv_tx;
1245         struct queue_entry *entry;
1246         struct txdone_entry_desc txdesc;
1247         u32 word;
1248
1249         while (!rt2x00queue_empty(queue)) {
1250                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1251                 priv_tx = entry->priv_data;
1252                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1253
1254                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1255                     !rt2x00_get_field32(word, TXD_W0_VALID))
1256                         break;
1257
1258                 /*
1259                  * Obtain the status about this packet.
1260                  */
1261                 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1262                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1263
1264                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1265         }
1266 }
1267
1268 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1269 {
1270         struct rt2x00_dev *rt2x00dev = dev_instance;
1271         u32 reg;
1272
1273         /*
1274          * Get the interrupt sources & saved to local variable.
1275          * Write register value back to clear pending interrupts.
1276          */
1277         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1278         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1279
1280         if (!reg)
1281                 return IRQ_NONE;
1282
1283         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1284                 return IRQ_HANDLED;
1285
1286         /*
1287          * Handle interrupts, walk through all bits
1288          * and run the tasks, the bits are checked in order of
1289          * priority.
1290          */
1291
1292         /*
1293          * 1 - Beacon timer expired interrupt.
1294          */
1295         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1296                 rt2x00lib_beacondone(rt2x00dev);
1297
1298         /*
1299          * 2 - Rx ring done interrupt.
1300          */
1301         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1302                 rt2x00pci_rxdone(rt2x00dev);
1303
1304         /*
1305          * 3 - Atim ring transmit done interrupt.
1306          */
1307         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1308                 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1309
1310         /*
1311          * 4 - Priority ring transmit done interrupt.
1312          */
1313         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1314                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1315
1316         /*
1317          * 5 - Tx ring transmit done interrupt.
1318          */
1319         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1320                 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1321
1322         return IRQ_HANDLED;
1323 }
1324
1325 /*
1326  * Device probe functions.
1327  */
1328 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1329 {
1330         struct eeprom_93cx6 eeprom;
1331         u32 reg;
1332         u16 word;
1333         u8 *mac;
1334
1335         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1336
1337         eeprom.data = rt2x00dev;
1338         eeprom.register_read = rt2500pci_eepromregister_read;
1339         eeprom.register_write = rt2500pci_eepromregister_write;
1340         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1341             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1342         eeprom.reg_data_in = 0;
1343         eeprom.reg_data_out = 0;
1344         eeprom.reg_data_clock = 0;
1345         eeprom.reg_chip_select = 0;
1346
1347         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1348                                EEPROM_SIZE / sizeof(u16));
1349
1350         /*
1351          * Start validation of the data that has been read.
1352          */
1353         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1354         if (!is_valid_ether_addr(mac)) {
1355                 DECLARE_MAC_BUF(macbuf);
1356
1357                 random_ether_addr(mac);
1358                 EEPROM(rt2x00dev, "MAC: %s\n",
1359                        print_mac(macbuf, mac));
1360         }
1361
1362         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1363         if (word == 0xffff) {
1364                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1365                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1366                                    ANTENNA_SW_DIVERSITY);
1367                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1368                                    ANTENNA_SW_DIVERSITY);
1369                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1370                                    LED_MODE_DEFAULT);
1371                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1372                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1373                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1374                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1375                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1376         }
1377
1378         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1379         if (word == 0xffff) {
1380                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1381                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1382                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1383                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1384                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1385         }
1386
1387         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1388         if (word == 0xffff) {
1389                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1390                                    DEFAULT_RSSI_OFFSET);
1391                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1392                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1399 {
1400         u32 reg;
1401         u16 value;
1402         u16 eeprom;
1403
1404         /*
1405          * Read EEPROM word for configuration.
1406          */
1407         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1408
1409         /*
1410          * Identify RF chipset.
1411          */
1412         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1413         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1414         rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1415
1416         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1417             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1418             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1419             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1420             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1421             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1422                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1423                 return -ENODEV;
1424         }
1425
1426         /*
1427          * Identify default antenna configuration.
1428          */
1429         rt2x00dev->default_ant.tx =
1430             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1431         rt2x00dev->default_ant.rx =
1432             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1433
1434         /*
1435          * Store led mode, for correct led behaviour.
1436          */
1437 #ifdef CONFIG_RT2500PCI_LEDS
1438         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1439
1440         switch (value) {
1441         case LED_MODE_ASUS:
1442         case LED_MODE_ALPHA:
1443         case LED_MODE_DEFAULT:
1444                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1445                 break;
1446         case LED_MODE_TXRX_ACTIVITY:
1447                 rt2x00dev->led_flags =
1448                     LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1449                 break;
1450         case LED_MODE_SIGNAL_STRENGTH:
1451                 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1452                 break;
1453         }
1454 #endif /* CONFIG_RT2500PCI_LEDS */
1455
1456         /*
1457          * Detect if this device has an hardware controlled radio.
1458          */
1459 #ifdef CONFIG_RT2500PCI_RFKILL
1460         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1461                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1462 #endif /* CONFIG_RT2500PCI_RFKILL */
1463
1464         /*
1465          * Check if the BBP tuning should be enabled.
1466          */
1467         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1468
1469         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1470                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1471
1472         /*
1473          * Read the RSSI <-> dBm offset information.
1474          */
1475         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1476         rt2x00dev->rssi_offset =
1477             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1478
1479         return 0;
1480 }
1481
1482 /*
1483  * RF value list for RF2522
1484  * Supports: 2.4 GHz
1485  */
1486 static const struct rf_channel rf_vals_bg_2522[] = {
1487         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1488         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1489         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1490         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1491         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1492         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1493         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1494         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1495         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1496         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1497         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1498         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1499         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1500         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1501 };
1502
1503 /*
1504  * RF value list for RF2523
1505  * Supports: 2.4 GHz
1506  */
1507 static const struct rf_channel rf_vals_bg_2523[] = {
1508         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1509         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1510         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1511         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1512         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1513         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1514         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1515         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1516         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1517         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1518         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1519         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1520         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1521         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1522 };
1523
1524 /*
1525  * RF value list for RF2524
1526  * Supports: 2.4 GHz
1527  */
1528 static const struct rf_channel rf_vals_bg_2524[] = {
1529         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1530         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1531         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1532         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1533         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1534         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1535         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1536         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1537         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1538         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1539         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1540         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1541         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1542         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1543 };
1544
1545 /*
1546  * RF value list for RF2525
1547  * Supports: 2.4 GHz
1548  */
1549 static const struct rf_channel rf_vals_bg_2525[] = {
1550         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1551         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1552         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1553         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1554         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1555         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1556         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1557         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1558         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1559         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1560         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1561         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1562         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1563         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1564 };
1565
1566 /*
1567  * RF value list for RF2525e
1568  * Supports: 2.4 GHz
1569  */
1570 static const struct rf_channel rf_vals_bg_2525e[] = {
1571         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1572         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1573         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1574         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1575         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1576         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1577         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1578         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1579         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1580         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1581         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1582         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1583         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1584         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1585 };
1586
1587 /*
1588  * RF value list for RF5222
1589  * Supports: 2.4 GHz & 5.2 GHz
1590  */
1591 static const struct rf_channel rf_vals_5222[] = {
1592         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1593         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1594         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1595         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1596         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1597         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1598         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1599         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1600         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1601         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1602         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1603         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1604         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1605         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1606
1607         /* 802.11 UNI / HyperLan 2 */
1608         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1609         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1610         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1611         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1612         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1613         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1614         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1615         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1616
1617         /* 802.11 HyperLan 2 */
1618         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1619         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1620         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1621         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1622         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1623         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1624         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1625         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1626         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1627         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1628
1629         /* 802.11 UNII */
1630         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1631         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1632         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1633         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1634         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1635 };
1636
1637 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1638 {
1639         struct hw_mode_spec *spec = &rt2x00dev->spec;
1640         u8 *txpower;
1641         unsigned int i;
1642
1643         /*
1644          * Initialize all hw fields.
1645          */
1646         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1647         rt2x00dev->hw->extra_tx_headroom = 0;
1648         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1649         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1650         rt2x00dev->hw->queues = 2;
1651
1652         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1653         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1654                                 rt2x00_eeprom_addr(rt2x00dev,
1655                                                    EEPROM_MAC_ADDR_0));
1656
1657         /*
1658          * Convert tx_power array in eeprom.
1659          */
1660         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1661         for (i = 0; i < 14; i++)
1662                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1663
1664         /*
1665          * Initialize hw_mode information.
1666          */
1667         spec->supported_bands = SUPPORT_BAND_2GHZ;
1668         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1669         spec->tx_power_a = NULL;
1670         spec->tx_power_bg = txpower;
1671         spec->tx_power_default = DEFAULT_TXPOWER;
1672
1673         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1674                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1675                 spec->channels = rf_vals_bg_2522;
1676         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1677                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1678                 spec->channels = rf_vals_bg_2523;
1679         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1680                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1681                 spec->channels = rf_vals_bg_2524;
1682         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1683                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1684                 spec->channels = rf_vals_bg_2525;
1685         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1686                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1687                 spec->channels = rf_vals_bg_2525e;
1688         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1689                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1690                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1691                 spec->channels = rf_vals_5222;
1692         }
1693 }
1694
1695 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1696 {
1697         int retval;
1698
1699         /*
1700          * Allocate eeprom data.
1701          */
1702         retval = rt2500pci_validate_eeprom(rt2x00dev);
1703         if (retval)
1704                 return retval;
1705
1706         retval = rt2500pci_init_eeprom(rt2x00dev);
1707         if (retval)
1708                 return retval;
1709
1710         /*
1711          * Initialize hw specifications.
1712          */
1713         rt2500pci_probe_hw_mode(rt2x00dev);
1714
1715         /*
1716          * This device requires the atim queue
1717          */
1718         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1719
1720         /*
1721          * Set the rssi offset.
1722          */
1723         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1724
1725         return 0;
1726 }
1727
1728 /*
1729  * IEEE80211 stack callback functions.
1730  */
1731 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1732                                        unsigned int changed_flags,
1733                                        unsigned int *total_flags,
1734                                        int mc_count,
1735                                        struct dev_addr_list *mc_list)
1736 {
1737         struct rt2x00_dev *rt2x00dev = hw->priv;
1738         u32 reg;
1739
1740         /*
1741          * Mask off any flags we are going to ignore from
1742          * the total_flags field.
1743          */
1744         *total_flags &=
1745             FIF_ALLMULTI |
1746             FIF_FCSFAIL |
1747             FIF_PLCPFAIL |
1748             FIF_CONTROL |
1749             FIF_OTHER_BSS |
1750             FIF_PROMISC_IN_BSS;
1751
1752         /*
1753          * Apply some rules to the filters:
1754          * - Some filters imply different filters to be set.
1755          * - Some things we can't filter out at all.
1756          */
1757         if (mc_count)
1758                 *total_flags |= FIF_ALLMULTI;
1759         if (*total_flags & FIF_OTHER_BSS ||
1760             *total_flags & FIF_PROMISC_IN_BSS)
1761                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1762
1763         /*
1764          * Check if there is any work left for us.
1765          */
1766         if (rt2x00dev->packet_filter == *total_flags)
1767                 return;
1768         rt2x00dev->packet_filter = *total_flags;
1769
1770         /*
1771          * Start configuration steps.
1772          * Note that the version error will always be dropped
1773          * and broadcast frames will always be accepted since
1774          * there is no filter for it at this time.
1775          */
1776         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1777         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1778                            !(*total_flags & FIF_FCSFAIL));
1779         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1780                            !(*total_flags & FIF_PLCPFAIL));
1781         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1782                            !(*total_flags & FIF_CONTROL));
1783         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1784                            !(*total_flags & FIF_PROMISC_IN_BSS));
1785         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1786                            !(*total_flags & FIF_PROMISC_IN_BSS));
1787         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1788         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1789                            !(*total_flags & FIF_ALLMULTI));
1790         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1791         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1792 }
1793
1794 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1795                                      u32 short_retry, u32 long_retry)
1796 {
1797         struct rt2x00_dev *rt2x00dev = hw->priv;
1798         u32 reg;
1799
1800         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1801         rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1802         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1803         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1804
1805         return 0;
1806 }
1807
1808 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1809 {
1810         struct rt2x00_dev *rt2x00dev = hw->priv;
1811         u64 tsf;
1812         u32 reg;
1813
1814         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1815         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1816         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1817         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1818
1819         return tsf;
1820 }
1821
1822 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1823                                    struct ieee80211_tx_control *control)
1824 {
1825         struct rt2x00_dev *rt2x00dev = hw->priv;
1826         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1827         struct queue_entry_priv_pci_tx *priv_tx;
1828         struct skb_frame_desc *skbdesc;
1829         u32 reg;
1830
1831         if (unlikely(!intf->beacon))
1832                 return -ENOBUFS;
1833
1834         priv_tx = intf->beacon->priv_data;
1835
1836         /*
1837          * Fill in skb descriptor
1838          */
1839         skbdesc = get_skb_frame_desc(skb);
1840         memset(skbdesc, 0, sizeof(*skbdesc));
1841         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1842         skbdesc->data = skb->data;
1843         skbdesc->data_len = skb->len;
1844         skbdesc->desc = priv_tx->desc;
1845         skbdesc->desc_len = intf->beacon->queue->desc_size;
1846         skbdesc->entry = intf->beacon;
1847
1848         /*
1849          * Disable beaconing while we are reloading the beacon data,
1850          * otherwise we might be sending out invalid data.
1851          */
1852         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1853         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1854         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1855         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1856         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1857
1858         /*
1859          * mac80211 doesn't provide the control->queue variable
1860          * for beacons. Set our own queue identification so
1861          * it can be used during descriptor initialization.
1862          */
1863         control->queue = RT2X00_BCN_QUEUE_BEACON;
1864         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1865
1866         /*
1867          * Enable beacon generation.
1868          * Write entire beacon with descriptor to register,
1869          * and kick the beacon generator.
1870          */
1871         memcpy(priv_tx->data, skb->data, skb->len);
1872         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1873
1874         return 0;
1875 }
1876
1877 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1878 {
1879         struct rt2x00_dev *rt2x00dev = hw->priv;
1880         u32 reg;
1881
1882         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1883         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1884 }
1885
1886 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1887         .tx                     = rt2x00mac_tx,
1888         .start                  = rt2x00mac_start,
1889         .stop                   = rt2x00mac_stop,
1890         .add_interface          = rt2x00mac_add_interface,
1891         .remove_interface       = rt2x00mac_remove_interface,
1892         .config                 = rt2x00mac_config,
1893         .config_interface       = rt2x00mac_config_interface,
1894         .configure_filter       = rt2500pci_configure_filter,
1895         .get_stats              = rt2x00mac_get_stats,
1896         .set_retry_limit        = rt2500pci_set_retry_limit,
1897         .bss_info_changed       = rt2x00mac_bss_info_changed,
1898         .conf_tx                = rt2x00mac_conf_tx,
1899         .get_tx_stats           = rt2x00mac_get_tx_stats,
1900         .get_tsf                = rt2500pci_get_tsf,
1901         .beacon_update          = rt2500pci_beacon_update,
1902         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1903 };
1904
1905 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1906         .irq_handler            = rt2500pci_interrupt,
1907         .probe_hw               = rt2500pci_probe_hw,
1908         .initialize             = rt2x00pci_initialize,
1909         .uninitialize           = rt2x00pci_uninitialize,
1910         .init_rxentry           = rt2500pci_init_rxentry,
1911         .init_txentry           = rt2500pci_init_txentry,
1912         .set_device_state       = rt2500pci_set_device_state,
1913         .rfkill_poll            = rt2500pci_rfkill_poll,
1914         .link_stats             = rt2500pci_link_stats,
1915         .reset_tuner            = rt2500pci_reset_tuner,
1916         .link_tuner             = rt2500pci_link_tuner,
1917         .led_brightness         = rt2500pci_led_brightness,
1918         .write_tx_desc          = rt2500pci_write_tx_desc,
1919         .write_tx_data          = rt2x00pci_write_tx_data,
1920         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1921         .fill_rxdone            = rt2500pci_fill_rxdone,
1922         .config_intf            = rt2500pci_config_intf,
1923         .config_erp             = rt2500pci_config_erp,
1924         .config                 = rt2500pci_config,
1925 };
1926
1927 static const struct data_queue_desc rt2500pci_queue_rx = {
1928         .entry_num              = RX_ENTRIES,
1929         .data_size              = DATA_FRAME_SIZE,
1930         .desc_size              = RXD_DESC_SIZE,
1931         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
1932 };
1933
1934 static const struct data_queue_desc rt2500pci_queue_tx = {
1935         .entry_num              = TX_ENTRIES,
1936         .data_size              = DATA_FRAME_SIZE,
1937         .desc_size              = TXD_DESC_SIZE,
1938         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1939 };
1940
1941 static const struct data_queue_desc rt2500pci_queue_bcn = {
1942         .entry_num              = BEACON_ENTRIES,
1943         .data_size              = MGMT_FRAME_SIZE,
1944         .desc_size              = TXD_DESC_SIZE,
1945         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1946 };
1947
1948 static const struct data_queue_desc rt2500pci_queue_atim = {
1949         .entry_num              = ATIM_ENTRIES,
1950         .data_size              = DATA_FRAME_SIZE,
1951         .desc_size              = TXD_DESC_SIZE,
1952         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
1953 };
1954
1955 static const struct rt2x00_ops rt2500pci_ops = {
1956         .name           = KBUILD_MODNAME,
1957         .max_sta_intf   = 1,
1958         .max_ap_intf    = 1,
1959         .eeprom_size    = EEPROM_SIZE,
1960         .rf_size        = RF_SIZE,
1961         .rx             = &rt2500pci_queue_rx,
1962         .tx             = &rt2500pci_queue_tx,
1963         .bcn            = &rt2500pci_queue_bcn,
1964         .atim           = &rt2500pci_queue_atim,
1965         .lib            = &rt2500pci_rt2x00_ops,
1966         .hw             = &rt2500pci_mac80211_ops,
1967 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1968         .debugfs        = &rt2500pci_rt2x00debug,
1969 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1970 };
1971
1972 /*
1973  * RT2500pci module information.
1974  */
1975 static struct pci_device_id rt2500pci_device_table[] = {
1976         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1977         { 0, }
1978 };
1979
1980 MODULE_AUTHOR(DRV_PROJECT);
1981 MODULE_VERSION(DRV_VERSION);
1982 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1983 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1984 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1985 MODULE_LICENSE("GPL");
1986
1987 static struct pci_driver rt2500pci_driver = {
1988         .name           = KBUILD_MODNAME,
1989         .id_table       = rt2500pci_device_table,
1990         .probe          = rt2x00pci_probe,
1991         .remove         = __devexit_p(rt2x00pci_remove),
1992         .suspend        = rt2x00pci_suspend,
1993         .resume         = rt2x00pci_resume,
1994 };
1995
1996 static int __init rt2500pci_init(void)
1997 {
1998         return pci_register_driver(&rt2500pci_driver);
1999 }
2000
2001 static void __exit rt2500pci_exit(void)
2002 {
2003         pci_unregister_driver(&rt2500pci_driver);
2004 }
2005
2006 module_init(rt2500pci_init);
2007 module_exit(rt2500pci_exit);