2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, ®);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
61 udelay(REGISTER_BUSY_DELAY);
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
73 * Wait until the BBP becomes ready.
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
82 * Write the data into the BBP.
85 rt2x00_set_field32(®, BBPCSR_VALUE, value);
86 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
99 * Wait until the BBP becomes ready.
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
108 * Write the request into the BBP.
111 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
118 * Wait until the BBP becomes ready.
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, ®);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
143 udelay(REGISTER_BUSY_DELAY);
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
151 rt2x00_set_field32(®, RFCSR_VALUE, value);
152 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(®, RFCSR_BUSY, 1);
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
165 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
180 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_led_brightness(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 unsigned int activity =
254 led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
257 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®);
259 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260 rt2x00_set_field32(®, LEDCSR_LINK, enabled);
261 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled && activity);
264 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
267 #define rt2500pci_led_brightness NULL
268 #endif /* CONFIG_RT2500PCI_LEDS */
271 * Configuration handlers.
273 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
274 struct rt2x00_intf *intf,
275 struct rt2x00intf_conf *conf,
276 const unsigned int flags)
278 struct data_queue *queue =
279 rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
280 unsigned int bcn_preload;
283 if (flags & CONFIG_UPDATE_TYPE) {
285 * Enable beacon config
287 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
288 rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®);
289 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload);
290 rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min);
291 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
294 * Enable synchronisation.
296 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
297 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
298 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync);
299 rt2x00_set_field32(®, CSR14_TBCN, 1);
300 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
303 if (flags & CONFIG_UPDATE_MAC)
304 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
305 conf->mac, sizeof(conf->mac));
307 if (flags & CONFIG_UPDATE_BSSID)
308 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
309 conf->bssid, sizeof(conf->bssid));
312 static int rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
313 struct rt2x00lib_erp *erp)
319 * When short preamble is enabled, we should set bit 0x08
321 preamble_mask = erp->short_preamble << 3;
323 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
324 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT,
326 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME,
327 erp->ack_consume_time);
328 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
330 rt2x00pci_register_read(rt2x00dev, ARCSR2, ®);
331 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00 | preamble_mask);
332 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
333 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
334 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
336 rt2x00pci_register_read(rt2x00dev, ARCSR3, ®);
337 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
338 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
339 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
340 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
342 rt2x00pci_register_read(rt2x00dev, ARCSR4, ®);
343 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
344 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
345 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
346 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
348 rt2x00pci_register_read(rt2x00dev, ARCSR5, ®);
349 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
350 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
351 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
352 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
357 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
358 const int basic_rate_mask)
360 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
363 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
364 struct rf_channel *rf, const int txpower)
371 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
374 * Switch on tuning bits.
375 * For RT2523 devices we do not need to update the R1 register.
377 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
378 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
379 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
382 * For RT2525 we should first set the channel to half band higher.
384 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
385 static const u32 vals[] = {
386 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
387 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
388 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
389 0x00080d2e, 0x00080d3a
392 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
393 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
394 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
396 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
399 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
400 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
401 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
403 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
406 * Channel 14 requires the Japan filter bit to be set.
409 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
410 rt2500pci_bbp_write(rt2x00dev, 70, r70);
415 * Switch off tuning bits.
416 * For RT2523 devices we do not need to update the R1 register.
418 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
419 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
420 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
423 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
424 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
427 * Clear false CRC during channel switch.
429 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
432 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
437 rt2x00_rf_read(rt2x00dev, 3, &rf3);
438 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
439 rt2500pci_rf_write(rt2x00dev, 3, rf3);
442 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
443 struct antenna_setup *ant)
450 * We should never come here because rt2x00lib is supposed
451 * to catch this and send us the correct antenna explicitely.
453 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
454 ant->tx == ANTENNA_SW_DIVERSITY);
456 rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®);
457 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
458 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
461 * Configure the TX antenna.
465 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
466 rt2x00_set_field32(®, BBPCSR1_CCK, 0);
467 rt2x00_set_field32(®, BBPCSR1_OFDM, 0);
471 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
472 rt2x00_set_field32(®, BBPCSR1_CCK, 2);
473 rt2x00_set_field32(®, BBPCSR1_OFDM, 2);
478 * Configure the RX antenna.
482 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
486 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
491 * RT2525E and RT5222 need to flip TX I/Q
493 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
494 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
495 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
496 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1);
497 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1);
500 * RT2525E does not need RX I/Q Flip.
502 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
503 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
505 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0);
506 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0);
509 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
510 rt2500pci_bbp_write(rt2x00dev, 14, r14);
511 rt2500pci_bbp_write(rt2x00dev, 2, r2);
514 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
515 struct rt2x00lib_conf *libconf)
519 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
520 rt2x00_set_field32(®, CSR11_SLOT_TIME, libconf->slot_time);
521 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
523 rt2x00pci_register_read(rt2x00dev, CSR18, ®);
524 rt2x00_set_field32(®, CSR18_SIFS, libconf->sifs);
525 rt2x00_set_field32(®, CSR18_PIFS, libconf->pifs);
526 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
528 rt2x00pci_register_read(rt2x00dev, CSR19, ®);
529 rt2x00_set_field32(®, CSR19_DIFS, libconf->difs);
530 rt2x00_set_field32(®, CSR19_EIFS, libconf->eifs);
531 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
533 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
534 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
535 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
536 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
538 rt2x00pci_register_read(rt2x00dev, CSR12, ®);
539 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
540 libconf->conf->beacon_int * 16);
541 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
542 libconf->conf->beacon_int * 16);
543 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
546 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
547 struct rt2x00lib_conf *libconf,
548 const unsigned int flags)
550 if (flags & CONFIG_UPDATE_PHYMODE)
551 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
552 if (flags & CONFIG_UPDATE_CHANNEL)
553 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
554 libconf->conf->power_level);
555 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
556 rt2500pci_config_txpower(rt2x00dev,
557 libconf->conf->power_level);
558 if (flags & CONFIG_UPDATE_ANTENNA)
559 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
560 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
561 rt2500pci_config_duration(rt2x00dev, libconf);
567 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
568 struct link_qual *qual)
573 * Update FCS error count from register.
575 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
576 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
579 * Update False CCA count from register.
581 rt2x00pci_register_read(rt2x00dev, CNT3, ®);
582 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
585 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
587 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
588 rt2x00dev->link.vgc_level = 0x48;
591 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
593 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
597 * To prevent collisions with MAC ASIC on chipsets
598 * up to version C the link tuning should halt after 20
599 * seconds while being associated.
601 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
602 rt2x00dev->intf_associated &&
603 rt2x00dev->link.count > 20)
606 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
609 * Chipset versions C and lower should directly continue
610 * to the dynamic CCA tuning. Chipset version D and higher
611 * should go straight to dynamic CCA tuning when they
612 * are not associated.
614 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
615 !rt2x00dev->intf_associated)
616 goto dynamic_cca_tune;
619 * A too low RSSI will cause too much false CCA which will
620 * then corrupt the R17 tuning. To remidy this the tuning should
621 * be stopped (While making sure the R17 value will not exceed limits)
623 if (rssi < -80 && rt2x00dev->link.count > 20) {
625 r17 = rt2x00dev->link.vgc_level;
626 rt2500pci_bbp_write(rt2x00dev, 17, r17);
632 * Special big-R17 for short distance
636 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
641 * Special mid-R17 for middle distance
645 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
650 * Leave short or middle distance condition, restore r17
651 * to the dynamic tuning range.
654 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
661 * R17 is inside the dynamic tuning range,
662 * start tuning the link based on the false cca counter.
664 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
665 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
666 rt2x00dev->link.vgc_level = r17;
667 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
668 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
669 rt2x00dev->link.vgc_level = r17;
674 * Initialization functions.
676 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
677 struct queue_entry *entry)
679 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
682 rt2x00_desc_read(priv_rx->desc, 1, &word);
683 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
684 rt2x00_desc_write(priv_rx->desc, 1, word);
686 rt2x00_desc_read(priv_rx->desc, 0, &word);
687 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
688 rt2x00_desc_write(priv_rx->desc, 0, word);
691 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
692 struct queue_entry *entry)
694 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
697 rt2x00_desc_read(priv_tx->desc, 1, &word);
698 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
699 rt2x00_desc_write(priv_tx->desc, 1, word);
701 rt2x00_desc_read(priv_tx->desc, 0, &word);
702 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
703 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
704 rt2x00_desc_write(priv_tx->desc, 0, word);
707 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
709 struct queue_entry_priv_pci_rx *priv_rx;
710 struct queue_entry_priv_pci_tx *priv_tx;
714 * Initialize registers.
716 rt2x00pci_register_read(rt2x00dev, TXCSR2, ®);
717 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
718 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
719 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
720 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
721 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
723 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
724 rt2x00pci_register_read(rt2x00dev, TXCSR3, ®);
725 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER,
727 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
729 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
730 rt2x00pci_register_read(rt2x00dev, TXCSR5, ®);
731 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER,
733 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
735 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
736 rt2x00pci_register_read(rt2x00dev, TXCSR4, ®);
737 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER,
739 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
741 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
742 rt2x00pci_register_read(rt2x00dev, TXCSR6, ®);
743 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER,
745 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
747 rt2x00pci_register_read(rt2x00dev, RXCSR1, ®);
748 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
749 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
750 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
752 priv_rx = rt2x00dev->rx->entries[0].priv_data;
753 rt2x00pci_register_read(rt2x00dev, RXCSR2, ®);
754 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, priv_rx->desc_dma);
755 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
760 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
764 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
765 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
766 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
767 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
769 rt2x00pci_register_read(rt2x00dev, TIMECSR, ®);
770 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
771 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
772 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
773 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
775 rt2x00pci_register_read(rt2x00dev, CSR9, ®);
776 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
777 rt2x00dev->rx->data_size / 128);
778 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
781 * Always use CWmin and CWmax set in descriptor.
783 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
784 rt2x00_set_field32(®, CSR11_CW_SELECT, 0);
785 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
787 rt2x00pci_register_read(rt2x00dev, LEDCSR, ®);
788 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, 70);
789 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, 30);
790 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
792 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
794 rt2x00pci_register_read(rt2x00dev, TXCSR8, ®);
795 rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10);
796 rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1);
797 rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11);
798 rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1);
799 rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13);
800 rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1);
801 rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12);
802 rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1);
803 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
805 rt2x00pci_register_read(rt2x00dev, ARTCSR0, ®);
806 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112);
807 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56);
808 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20);
809 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10);
810 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
812 rt2x00pci_register_read(rt2x00dev, ARTCSR1, ®);
813 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45);
814 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37);
815 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33);
816 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29);
817 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
819 rt2x00pci_register_read(rt2x00dev, ARTCSR2, ®);
820 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29);
821 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25);
822 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25);
823 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25);
824 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
826 rt2x00pci_register_read(rt2x00dev, RXCSR3, ®);
827 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */
828 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
829 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */
830 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
831 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
832 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
833 rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */
834 rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1);
835 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
837 rt2x00pci_register_read(rt2x00dev, PCICSR, ®);
838 rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0);
839 rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0);
840 rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3);
841 rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1);
842 rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1);
843 rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1);
844 rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1);
845 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
847 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
849 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
850 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
852 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
855 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
856 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
858 rt2x00pci_register_read(rt2x00dev, MACCSR2, ®);
859 rt2x00_set_field32(®, MACCSR2_DELAY, 64);
860 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
862 rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®);
863 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
864 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26);
865 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1);
866 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
867 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26);
868 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1);
869 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
871 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
873 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
875 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
876 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
877 rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
878 rt2x00_set_field32(®, CSR1_HOST_READY, 0);
879 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
881 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
882 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
883 rt2x00_set_field32(®, CSR1_HOST_READY, 1);
884 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
887 * We must clear the FCS and FIFO error count.
888 * These registers are cleared on read,
889 * so we may pass a useless variable to store the value.
891 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
892 rt2x00pci_register_read(rt2x00dev, CNT4, ®);
897 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
904 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
905 rt2500pci_bbp_read(rt2x00dev, 0, &value);
906 if ((value != 0xff) && (value != 0x00))
907 goto continue_csr_init;
908 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
909 udelay(REGISTER_BUSY_DELAY);
912 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
916 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
917 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
918 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
919 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
920 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
921 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
922 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
923 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
924 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
925 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
926 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
927 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
928 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
929 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
930 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
931 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
932 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
933 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
934 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
935 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
936 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
937 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
938 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
939 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
940 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
941 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
942 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
943 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
944 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
945 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
947 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
948 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
950 if (eeprom != 0xffff && eeprom != 0x0000) {
951 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
952 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
953 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
961 * Device state switch handlers.
963 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
964 enum dev_state state)
968 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
969 rt2x00_set_field32(®, RXCSR0_DISABLE_RX,
970 state == STATE_RADIO_RX_OFF);
971 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
974 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
975 enum dev_state state)
977 int mask = (state == STATE_RADIO_IRQ_OFF);
981 * When interrupts are being enabled, the interrupt registers
982 * should clear the register to assure a clean state.
984 if (state == STATE_RADIO_IRQ_ON) {
985 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
986 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
990 * Only toggle the interrupts bits we are going to use.
991 * Non-checked interrupt bits are disabled by default.
993 rt2x00pci_register_read(rt2x00dev, CSR8, ®);
994 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
995 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
996 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
997 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
998 rt2x00_set_field32(®, CSR8_RXDONE, mask);
999 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1002 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1005 * Initialize all registers.
1007 if (rt2500pci_init_queues(rt2x00dev) ||
1008 rt2500pci_init_registers(rt2x00dev) ||
1009 rt2500pci_init_bbp(rt2x00dev)) {
1010 ERROR(rt2x00dev, "Register initialization failed.\n");
1015 * Enable interrupts.
1017 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1022 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1026 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1029 * Disable synchronisation.
1031 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1036 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1037 rt2x00_set_field32(®, TXCSR0_ABORT, 1);
1038 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1041 * Disable interrupts.
1043 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1046 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1047 enum dev_state state)
1055 put_to_sleep = (state != STATE_AWAKE);
1057 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1058 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
1059 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
1060 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
1061 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1062 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1065 * Device is not guaranteed to be in the requested state yet.
1066 * We must wait until the register indicates that the
1067 * device has entered the correct state.
1069 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1070 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1071 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1072 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1073 if (bbp_state == state && rf_state == state)
1078 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1079 "current device state: bbp %d and rf %d.\n",
1080 state, bbp_state, rf_state);
1085 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1086 enum dev_state state)
1091 case STATE_RADIO_ON:
1092 retval = rt2500pci_enable_radio(rt2x00dev);
1094 case STATE_RADIO_OFF:
1095 rt2500pci_disable_radio(rt2x00dev);
1097 case STATE_RADIO_RX_ON:
1098 case STATE_RADIO_RX_ON_LINK:
1099 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1101 case STATE_RADIO_RX_OFF:
1102 case STATE_RADIO_RX_OFF_LINK:
1103 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1105 case STATE_DEEP_SLEEP:
1109 retval = rt2500pci_set_state(rt2x00dev, state);
1120 * TX descriptor initialization
1122 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1123 struct sk_buff *skb,
1124 struct txentry_desc *txdesc,
1125 struct ieee80211_tx_control *control)
1127 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1128 __le32 *txd = skbdesc->desc;
1132 * Start writing the descriptor words.
1134 rt2x00_desc_read(txd, 2, &word);
1135 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1136 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1137 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1138 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1139 rt2x00_desc_write(txd, 2, word);
1141 rt2x00_desc_read(txd, 3, &word);
1142 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1143 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1144 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1145 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1146 rt2x00_desc_write(txd, 3, word);
1148 rt2x00_desc_read(txd, 10, &word);
1149 rt2x00_set_field32(&word, TXD_W10_RTS,
1150 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1151 rt2x00_desc_write(txd, 10, word);
1153 rt2x00_desc_read(txd, 0, &word);
1154 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1155 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1156 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1157 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1158 rt2x00_set_field32(&word, TXD_W0_ACK,
1159 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1160 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1161 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1162 rt2x00_set_field32(&word, TXD_W0_OFDM,
1163 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1164 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1165 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1166 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1168 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1169 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1170 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1171 rt2x00_desc_write(txd, 0, word);
1175 * TX data initialization
1177 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1178 const unsigned int queue)
1182 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1183 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1184 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1185 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
1186 rt2x00_set_field32(®, CSR14_TBCN, 1);
1187 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
1188 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1193 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1194 rt2x00_set_field32(®, TXCSR0_KICK_PRIO,
1195 (queue == IEEE80211_TX_QUEUE_DATA0));
1196 rt2x00_set_field32(®, TXCSR0_KICK_TX,
1197 (queue == IEEE80211_TX_QUEUE_DATA1));
1198 rt2x00_set_field32(®, TXCSR0_KICK_ATIM,
1199 (queue == RT2X00_BCN_QUEUE_ATIM));
1200 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1204 * RX control handlers
1206 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1207 struct rxdone_entry_desc *rxdesc)
1209 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1213 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1214 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1217 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1218 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1219 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1220 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1223 * Obtain the status about this packet.
1224 * When frame was received with an OFDM bitrate,
1225 * the signal is the PLCP value. If it was received with
1226 * a CCK bitrate the signal is the rate in 100kbit/s.
1228 rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1229 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1230 rxdesc->signal_plcp = rxdesc->ofdm;
1231 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1232 entry->queue->rt2x00dev->rssi_offset;
1233 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1234 rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1238 * Interrupt functions.
1240 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1241 const enum ieee80211_tx_queue queue_idx)
1243 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1244 struct queue_entry_priv_pci_tx *priv_tx;
1245 struct queue_entry *entry;
1246 struct txdone_entry_desc txdesc;
1249 while (!rt2x00queue_empty(queue)) {
1250 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1251 priv_tx = entry->priv_data;
1252 rt2x00_desc_read(priv_tx->desc, 0, &word);
1254 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1255 !rt2x00_get_field32(word, TXD_W0_VALID))
1259 * Obtain the status about this packet.
1261 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1262 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1264 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1268 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1270 struct rt2x00_dev *rt2x00dev = dev_instance;
1274 * Get the interrupt sources & saved to local variable.
1275 * Write register value back to clear pending interrupts.
1277 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
1278 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1283 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1287 * Handle interrupts, walk through all bits
1288 * and run the tasks, the bits are checked in order of
1293 * 1 - Beacon timer expired interrupt.
1295 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1296 rt2x00lib_beacondone(rt2x00dev);
1299 * 2 - Rx ring done interrupt.
1301 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1302 rt2x00pci_rxdone(rt2x00dev);
1305 * 3 - Atim ring transmit done interrupt.
1307 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1308 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1311 * 4 - Priority ring transmit done interrupt.
1313 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1314 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1317 * 5 - Tx ring transmit done interrupt.
1319 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1320 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1326 * Device probe functions.
1328 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1330 struct eeprom_93cx6 eeprom;
1335 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
1337 eeprom.data = rt2x00dev;
1338 eeprom.register_read = rt2500pci_eepromregister_read;
1339 eeprom.register_write = rt2500pci_eepromregister_write;
1340 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1341 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1342 eeprom.reg_data_in = 0;
1343 eeprom.reg_data_out = 0;
1344 eeprom.reg_data_clock = 0;
1345 eeprom.reg_chip_select = 0;
1347 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1348 EEPROM_SIZE / sizeof(u16));
1351 * Start validation of the data that has been read.
1353 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1354 if (!is_valid_ether_addr(mac)) {
1355 DECLARE_MAC_BUF(macbuf);
1357 random_ether_addr(mac);
1358 EEPROM(rt2x00dev, "MAC: %s\n",
1359 print_mac(macbuf, mac));
1362 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1363 if (word == 0xffff) {
1364 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1365 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1366 ANTENNA_SW_DIVERSITY);
1367 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1368 ANTENNA_SW_DIVERSITY);
1369 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1371 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1372 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1373 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1374 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1375 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1378 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1379 if (word == 0xffff) {
1380 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1381 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1382 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1383 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1384 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1387 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1388 if (word == 0xffff) {
1389 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1390 DEFAULT_RSSI_OFFSET);
1391 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1392 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1398 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1405 * Read EEPROM word for configuration.
1407 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1410 * Identify RF chipset.
1412 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1413 rt2x00pci_register_read(rt2x00dev, CSR0, ®);
1414 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1416 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1417 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1418 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1419 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1420 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1421 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1422 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1427 * Identify default antenna configuration.
1429 rt2x00dev->default_ant.tx =
1430 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1431 rt2x00dev->default_ant.rx =
1432 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1435 * Store led mode, for correct led behaviour.
1437 #ifdef CONFIG_RT2500PCI_LEDS
1438 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1442 case LED_MODE_ALPHA:
1443 case LED_MODE_DEFAULT:
1444 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1446 case LED_MODE_TXRX_ACTIVITY:
1447 rt2x00dev->led_flags =
1448 LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1450 case LED_MODE_SIGNAL_STRENGTH:
1451 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1454 #endif /* CONFIG_RT2500PCI_LEDS */
1457 * Detect if this device has an hardware controlled radio.
1459 #ifdef CONFIG_RT2500PCI_RFKILL
1460 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1461 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1462 #endif /* CONFIG_RT2500PCI_RFKILL */
1465 * Check if the BBP tuning should be enabled.
1467 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1469 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1470 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1473 * Read the RSSI <-> dBm offset information.
1475 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1476 rt2x00dev->rssi_offset =
1477 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1483 * RF value list for RF2522
1486 static const struct rf_channel rf_vals_bg_2522[] = {
1487 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1488 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1489 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1490 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1491 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1492 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1493 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1494 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1495 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1496 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1497 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1498 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1499 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1500 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1504 * RF value list for RF2523
1507 static const struct rf_channel rf_vals_bg_2523[] = {
1508 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1509 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1510 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1511 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1512 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1513 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1514 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1515 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1516 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1517 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1518 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1519 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1520 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1521 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1525 * RF value list for RF2524
1528 static const struct rf_channel rf_vals_bg_2524[] = {
1529 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1530 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1531 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1532 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1533 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1534 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1535 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1536 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1537 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1538 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1539 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1540 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1541 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1542 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1546 * RF value list for RF2525
1549 static const struct rf_channel rf_vals_bg_2525[] = {
1550 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1551 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1552 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1553 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1554 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1555 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1556 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1557 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1558 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1559 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1560 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1561 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1562 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1563 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1567 * RF value list for RF2525e
1570 static const struct rf_channel rf_vals_bg_2525e[] = {
1571 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1572 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1573 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1574 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1575 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1576 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1577 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1578 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1579 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1580 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1581 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1582 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1583 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1584 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1588 * RF value list for RF5222
1589 * Supports: 2.4 GHz & 5.2 GHz
1591 static const struct rf_channel rf_vals_5222[] = {
1592 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1593 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1594 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1595 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1596 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1597 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1598 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1599 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1600 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1601 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1602 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1603 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1604 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1605 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1607 /* 802.11 UNI / HyperLan 2 */
1608 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1609 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1610 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1611 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1612 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1613 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1614 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1615 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1617 /* 802.11 HyperLan 2 */
1618 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1619 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1620 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1621 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1622 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1623 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1624 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1625 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1626 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1627 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1630 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1631 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1632 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1633 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1634 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1637 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1639 struct hw_mode_spec *spec = &rt2x00dev->spec;
1644 * Initialize all hw fields.
1646 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1647 rt2x00dev->hw->extra_tx_headroom = 0;
1648 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1649 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1650 rt2x00dev->hw->queues = 2;
1652 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1653 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1654 rt2x00_eeprom_addr(rt2x00dev,
1655 EEPROM_MAC_ADDR_0));
1658 * Convert tx_power array in eeprom.
1660 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1661 for (i = 0; i < 14; i++)
1662 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1665 * Initialize hw_mode information.
1667 spec->supported_bands = SUPPORT_BAND_2GHZ;
1668 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1669 spec->tx_power_a = NULL;
1670 spec->tx_power_bg = txpower;
1671 spec->tx_power_default = DEFAULT_TXPOWER;
1673 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1674 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1675 spec->channels = rf_vals_bg_2522;
1676 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1677 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1678 spec->channels = rf_vals_bg_2523;
1679 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1680 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1681 spec->channels = rf_vals_bg_2524;
1682 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1683 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1684 spec->channels = rf_vals_bg_2525;
1685 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1686 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1687 spec->channels = rf_vals_bg_2525e;
1688 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1689 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1690 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1691 spec->channels = rf_vals_5222;
1695 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1700 * Allocate eeprom data.
1702 retval = rt2500pci_validate_eeprom(rt2x00dev);
1706 retval = rt2500pci_init_eeprom(rt2x00dev);
1711 * Initialize hw specifications.
1713 rt2500pci_probe_hw_mode(rt2x00dev);
1716 * This device requires the atim queue
1718 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1721 * Set the rssi offset.
1723 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1729 * IEEE80211 stack callback functions.
1731 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1732 unsigned int changed_flags,
1733 unsigned int *total_flags,
1735 struct dev_addr_list *mc_list)
1737 struct rt2x00_dev *rt2x00dev = hw->priv;
1741 * Mask off any flags we are going to ignore from
1742 * the total_flags field.
1753 * Apply some rules to the filters:
1754 * - Some filters imply different filters to be set.
1755 * - Some things we can't filter out at all.
1758 *total_flags |= FIF_ALLMULTI;
1759 if (*total_flags & FIF_OTHER_BSS ||
1760 *total_flags & FIF_PROMISC_IN_BSS)
1761 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1764 * Check if there is any work left for us.
1766 if (rt2x00dev->packet_filter == *total_flags)
1768 rt2x00dev->packet_filter = *total_flags;
1771 * Start configuration steps.
1772 * Note that the version error will always be dropped
1773 * and broadcast frames will always be accepted since
1774 * there is no filter for it at this time.
1776 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
1777 rt2x00_set_field32(®, RXCSR0_DROP_CRC,
1778 !(*total_flags & FIF_FCSFAIL));
1779 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
1780 !(*total_flags & FIF_PLCPFAIL));
1781 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
1782 !(*total_flags & FIF_CONTROL));
1783 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
1784 !(*total_flags & FIF_PROMISC_IN_BSS));
1785 rt2x00_set_field32(®, RXCSR0_DROP_TODS,
1786 !(*total_flags & FIF_PROMISC_IN_BSS));
1787 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
1788 rt2x00_set_field32(®, RXCSR0_DROP_MCAST,
1789 !(*total_flags & FIF_ALLMULTI));
1790 rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0);
1791 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1794 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1795 u32 short_retry, u32 long_retry)
1797 struct rt2x00_dev *rt2x00dev = hw->priv;
1800 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
1801 rt2x00_set_field32(®, CSR11_LONG_RETRY, long_retry);
1802 rt2x00_set_field32(®, CSR11_SHORT_RETRY, short_retry);
1803 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1808 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1810 struct rt2x00_dev *rt2x00dev = hw->priv;
1814 rt2x00pci_register_read(rt2x00dev, CSR17, ®);
1815 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1816 rt2x00pci_register_read(rt2x00dev, CSR16, ®);
1817 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1822 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1823 struct ieee80211_tx_control *control)
1825 struct rt2x00_dev *rt2x00dev = hw->priv;
1826 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1827 struct queue_entry_priv_pci_tx *priv_tx;
1828 struct skb_frame_desc *skbdesc;
1831 if (unlikely(!intf->beacon))
1834 priv_tx = intf->beacon->priv_data;
1837 * Fill in skb descriptor
1839 skbdesc = get_skb_frame_desc(skb);
1840 memset(skbdesc, 0, sizeof(*skbdesc));
1841 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1842 skbdesc->data = skb->data;
1843 skbdesc->data_len = skb->len;
1844 skbdesc->desc = priv_tx->desc;
1845 skbdesc->desc_len = intf->beacon->queue->desc_size;
1846 skbdesc->entry = intf->beacon;
1849 * Disable beaconing while we are reloading the beacon data,
1850 * otherwise we might be sending out invalid data.
1852 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1853 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
1854 rt2x00_set_field32(®, CSR14_TBCN, 0);
1855 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
1856 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1859 * mac80211 doesn't provide the control->queue variable
1860 * for beacons. Set our own queue identification so
1861 * it can be used during descriptor initialization.
1863 control->queue = RT2X00_BCN_QUEUE_BEACON;
1864 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1867 * Enable beacon generation.
1868 * Write entire beacon with descriptor to register,
1869 * and kick the beacon generator.
1871 memcpy(priv_tx->data, skb->data, skb->len);
1872 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1877 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1879 struct rt2x00_dev *rt2x00dev = hw->priv;
1882 rt2x00pci_register_read(rt2x00dev, CSR15, ®);
1883 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1886 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1888 .start = rt2x00mac_start,
1889 .stop = rt2x00mac_stop,
1890 .add_interface = rt2x00mac_add_interface,
1891 .remove_interface = rt2x00mac_remove_interface,
1892 .config = rt2x00mac_config,
1893 .config_interface = rt2x00mac_config_interface,
1894 .configure_filter = rt2500pci_configure_filter,
1895 .get_stats = rt2x00mac_get_stats,
1896 .set_retry_limit = rt2500pci_set_retry_limit,
1897 .bss_info_changed = rt2x00mac_bss_info_changed,
1898 .conf_tx = rt2x00mac_conf_tx,
1899 .get_tx_stats = rt2x00mac_get_tx_stats,
1900 .get_tsf = rt2500pci_get_tsf,
1901 .beacon_update = rt2500pci_beacon_update,
1902 .tx_last_beacon = rt2500pci_tx_last_beacon,
1905 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1906 .irq_handler = rt2500pci_interrupt,
1907 .probe_hw = rt2500pci_probe_hw,
1908 .initialize = rt2x00pci_initialize,
1909 .uninitialize = rt2x00pci_uninitialize,
1910 .init_rxentry = rt2500pci_init_rxentry,
1911 .init_txentry = rt2500pci_init_txentry,
1912 .set_device_state = rt2500pci_set_device_state,
1913 .rfkill_poll = rt2500pci_rfkill_poll,
1914 .link_stats = rt2500pci_link_stats,
1915 .reset_tuner = rt2500pci_reset_tuner,
1916 .link_tuner = rt2500pci_link_tuner,
1917 .led_brightness = rt2500pci_led_brightness,
1918 .write_tx_desc = rt2500pci_write_tx_desc,
1919 .write_tx_data = rt2x00pci_write_tx_data,
1920 .kick_tx_queue = rt2500pci_kick_tx_queue,
1921 .fill_rxdone = rt2500pci_fill_rxdone,
1922 .config_intf = rt2500pci_config_intf,
1923 .config_erp = rt2500pci_config_erp,
1924 .config = rt2500pci_config,
1927 static const struct data_queue_desc rt2500pci_queue_rx = {
1928 .entry_num = RX_ENTRIES,
1929 .data_size = DATA_FRAME_SIZE,
1930 .desc_size = RXD_DESC_SIZE,
1931 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1934 static const struct data_queue_desc rt2500pci_queue_tx = {
1935 .entry_num = TX_ENTRIES,
1936 .data_size = DATA_FRAME_SIZE,
1937 .desc_size = TXD_DESC_SIZE,
1938 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1941 static const struct data_queue_desc rt2500pci_queue_bcn = {
1942 .entry_num = BEACON_ENTRIES,
1943 .data_size = MGMT_FRAME_SIZE,
1944 .desc_size = TXD_DESC_SIZE,
1945 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1948 static const struct data_queue_desc rt2500pci_queue_atim = {
1949 .entry_num = ATIM_ENTRIES,
1950 .data_size = DATA_FRAME_SIZE,
1951 .desc_size = TXD_DESC_SIZE,
1952 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1955 static const struct rt2x00_ops rt2500pci_ops = {
1956 .name = KBUILD_MODNAME,
1959 .eeprom_size = EEPROM_SIZE,
1961 .rx = &rt2500pci_queue_rx,
1962 .tx = &rt2500pci_queue_tx,
1963 .bcn = &rt2500pci_queue_bcn,
1964 .atim = &rt2500pci_queue_atim,
1965 .lib = &rt2500pci_rt2x00_ops,
1966 .hw = &rt2500pci_mac80211_ops,
1967 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1968 .debugfs = &rt2500pci_rt2x00debug,
1969 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1973 * RT2500pci module information.
1975 static struct pci_device_id rt2500pci_device_table[] = {
1976 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1980 MODULE_AUTHOR(DRV_PROJECT);
1981 MODULE_VERSION(DRV_VERSION);
1982 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1983 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1984 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1985 MODULE_LICENSE("GPL");
1987 static struct pci_driver rt2500pci_driver = {
1988 .name = KBUILD_MODNAME,
1989 .id_table = rt2500pci_device_table,
1990 .probe = rt2x00pci_probe,
1991 .remove = __devexit_p(rt2x00pci_remove),
1992 .suspend = rt2x00pci_suspend,
1993 .resume = rt2x00pci_resume,
1996 static int __init rt2500pci_init(void)
1998 return pci_register_driver(&rt2500pci_driver);
2001 static void __exit rt2500pci_exit(void)
2003 pci_unregister_driver(&rt2500pci_driver);
2006 module_init(rt2500pci_init);
2007 module_exit(rt2500pci_exit);