1 #include <linux/bitops.h>
2 #include <linux/slab.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/version.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 /* temporary define until extent_map moves out of btrfs */
22 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
23 unsigned long extra_flags,
24 void (*ctor)(void *, struct kmem_cache *,
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
30 static LIST_HEAD(buffers);
31 static LIST_HEAD(states);
35 static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED;
38 #define BUFFER_LRU_MAX 64
43 struct rb_node rb_node;
46 struct extent_page_data {
48 struct extent_io_tree *tree;
49 get_extent_t *get_extent;
51 /* tells writepage not to lock the state bits for this range
52 * it still does the unlocking
57 int __init extent_io_init(void)
59 extent_state_cache = btrfs_cache_create("extent_state",
60 sizeof(struct extent_state), 0,
62 if (!extent_state_cache)
65 extent_buffer_cache = btrfs_cache_create("extent_buffers",
66 sizeof(struct extent_buffer), 0,
68 if (!extent_buffer_cache)
69 goto free_state_cache;
73 kmem_cache_destroy(extent_state_cache);
77 void extent_io_exit(void)
79 struct extent_state *state;
80 struct extent_buffer *eb;
82 while (!list_empty(&states)) {
83 state = list_entry(states.next, struct extent_state, leak_list);
84 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
85 list_del(&state->leak_list);
86 kmem_cache_free(extent_state_cache, state);
90 while (!list_empty(&buffers)) {
91 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
92 printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs));
93 list_del(&eb->leak_list);
94 kmem_cache_free(extent_buffer_cache, eb);
96 if (extent_state_cache)
97 kmem_cache_destroy(extent_state_cache);
98 if (extent_buffer_cache)
99 kmem_cache_destroy(extent_buffer_cache);
102 void extent_io_tree_init(struct extent_io_tree *tree,
103 struct address_space *mapping, gfp_t mask)
105 tree->state.rb_node = NULL;
106 tree->buffer.rb_node = NULL;
108 tree->dirty_bytes = 0;
109 spin_lock_init(&tree->lock);
110 spin_lock_init(&tree->buffer_lock);
111 tree->mapping = mapping;
113 EXPORT_SYMBOL(extent_io_tree_init);
115 struct extent_state *alloc_extent_state(gfp_t mask)
117 struct extent_state *state;
122 state = kmem_cache_alloc(extent_state_cache, mask);
129 spin_lock_irqsave(&leak_lock, flags);
130 list_add(&state->leak_list, &states);
131 spin_unlock_irqrestore(&leak_lock, flags);
133 atomic_set(&state->refs, 1);
134 init_waitqueue_head(&state->wq);
137 EXPORT_SYMBOL(alloc_extent_state);
139 void free_extent_state(struct extent_state *state)
143 if (atomic_dec_and_test(&state->refs)) {
147 WARN_ON(state->tree);
149 spin_lock_irqsave(&leak_lock, flags);
150 list_del(&state->leak_list);
151 spin_unlock_irqrestore(&leak_lock, flags);
153 kmem_cache_free(extent_state_cache, state);
156 EXPORT_SYMBOL(free_extent_state);
158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
159 struct rb_node *node)
161 struct rb_node ** p = &root->rb_node;
162 struct rb_node * parent = NULL;
163 struct tree_entry *entry;
167 entry = rb_entry(parent, struct tree_entry, rb_node);
169 if (offset < entry->start)
171 else if (offset > entry->end)
177 entry = rb_entry(node, struct tree_entry, rb_node);
178 rb_link_node(node, parent, p);
179 rb_insert_color(node, root);
183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
184 struct rb_node **prev_ret,
185 struct rb_node **next_ret)
187 struct rb_root *root = &tree->state;
188 struct rb_node * n = root->rb_node;
189 struct rb_node *prev = NULL;
190 struct rb_node *orig_prev = NULL;
191 struct tree_entry *entry;
192 struct tree_entry *prev_entry = NULL;
195 entry = rb_entry(n, struct tree_entry, rb_node);
199 if (offset < entry->start)
201 else if (offset > entry->end)
210 while(prev && offset > prev_entry->end) {
211 prev = rb_next(prev);
212 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 while(prev && offset < prev_entry->start) {
221 prev = rb_prev(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
232 struct rb_node *prev = NULL;
235 ret = __etree_search(tree, offset, &prev, NULL);
242 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
243 u64 offset, struct rb_node *node)
245 struct rb_root *root = &tree->buffer;
246 struct rb_node ** p = &root->rb_node;
247 struct rb_node * parent = NULL;
248 struct extent_buffer *eb;
252 eb = rb_entry(parent, struct extent_buffer, rb_node);
254 if (offset < eb->start)
256 else if (offset > eb->start)
262 rb_link_node(node, parent, p);
263 rb_insert_color(node, root);
267 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
270 struct rb_root *root = &tree->buffer;
271 struct rb_node * n = root->rb_node;
272 struct extent_buffer *eb;
275 eb = rb_entry(n, struct extent_buffer, rb_node);
276 if (offset < eb->start)
278 else if (offset > eb->start)
287 * utility function to look for merge candidates inside a given range.
288 * Any extents with matching state are merged together into a single
289 * extent in the tree. Extents with EXTENT_IO in their state field
290 * are not merged because the end_io handlers need to be able to do
291 * operations on them without sleeping (or doing allocations/splits).
293 * This should be called with the tree lock held.
295 static int merge_state(struct extent_io_tree *tree,
296 struct extent_state *state)
298 struct extent_state *other;
299 struct rb_node *other_node;
301 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
304 other_node = rb_prev(&state->rb_node);
306 other = rb_entry(other_node, struct extent_state, rb_node);
307 if (other->end == state->start - 1 &&
308 other->state == state->state) {
309 state->start = other->start;
311 rb_erase(&other->rb_node, &tree->state);
312 free_extent_state(other);
315 other_node = rb_next(&state->rb_node);
317 other = rb_entry(other_node, struct extent_state, rb_node);
318 if (other->start == state->end + 1 &&
319 other->state == state->state) {
320 other->start = state->start;
322 rb_erase(&state->rb_node, &tree->state);
323 free_extent_state(state);
329 static void set_state_cb(struct extent_io_tree *tree,
330 struct extent_state *state,
333 if (tree->ops && tree->ops->set_bit_hook) {
334 tree->ops->set_bit_hook(tree->mapping->host, state->start,
335 state->end, state->state, bits);
339 static void clear_state_cb(struct extent_io_tree *tree,
340 struct extent_state *state,
343 if (tree->ops && tree->ops->set_bit_hook) {
344 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
345 state->end, state->state, bits);
350 * insert an extent_state struct into the tree. 'bits' are set on the
351 * struct before it is inserted.
353 * This may return -EEXIST if the extent is already there, in which case the
354 * state struct is freed.
356 * The tree lock is not taken internally. This is a utility function and
357 * probably isn't what you want to call (see set/clear_extent_bit).
359 static int insert_state(struct extent_io_tree *tree,
360 struct extent_state *state, u64 start, u64 end,
363 struct rb_node *node;
366 printk("end < start %Lu %Lu\n", end, start);
369 if (bits & EXTENT_DIRTY)
370 tree->dirty_bytes += end - start + 1;
371 set_state_cb(tree, state, bits);
372 state->state |= bits;
373 state->start = start;
375 node = tree_insert(&tree->state, end, &state->rb_node);
377 struct extent_state *found;
378 found = rb_entry(node, struct extent_state, rb_node);
379 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
380 free_extent_state(state);
384 merge_state(tree, state);
389 * split a given extent state struct in two, inserting the preallocated
390 * struct 'prealloc' as the newly created second half. 'split' indicates an
391 * offset inside 'orig' where it should be split.
394 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
395 * are two extent state structs in the tree:
396 * prealloc: [orig->start, split - 1]
397 * orig: [ split, orig->end ]
399 * The tree locks are not taken by this function. They need to be held
402 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
403 struct extent_state *prealloc, u64 split)
405 struct rb_node *node;
406 prealloc->start = orig->start;
407 prealloc->end = split - 1;
408 prealloc->state = orig->state;
411 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
413 struct extent_state *found;
414 found = rb_entry(node, struct extent_state, rb_node);
415 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
416 free_extent_state(prealloc);
419 prealloc->tree = tree;
424 * utility function to clear some bits in an extent state struct.
425 * it will optionally wake up any one waiting on this state (wake == 1), or
426 * forcibly remove the state from the tree (delete == 1).
428 * If no bits are set on the state struct after clearing things, the
429 * struct is freed and removed from the tree
431 static int clear_state_bit(struct extent_io_tree *tree,
432 struct extent_state *state, int bits, int wake,
435 int ret = state->state & bits;
437 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
438 u64 range = state->end - state->start + 1;
439 WARN_ON(range > tree->dirty_bytes);
440 tree->dirty_bytes -= range;
442 clear_state_cb(tree, state, bits);
443 state->state &= ~bits;
446 if (delete || state->state == 0) {
448 clear_state_cb(tree, state, state->state);
449 rb_erase(&state->rb_node, &tree->state);
451 free_extent_state(state);
456 merge_state(tree, state);
462 * clear some bits on a range in the tree. This may require splitting
463 * or inserting elements in the tree, so the gfp mask is used to
464 * indicate which allocations or sleeping are allowed.
466 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
467 * the given range from the tree regardless of state (ie for truncate).
469 * the range [start, end] is inclusive.
471 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
472 * bits were already set, or zero if none of the bits were already set.
474 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
475 int bits, int wake, int delete, gfp_t mask)
477 struct extent_state *state;
478 struct extent_state *prealloc = NULL;
479 struct rb_node *node;
485 if (!prealloc && (mask & __GFP_WAIT)) {
486 prealloc = alloc_extent_state(mask);
491 spin_lock_irqsave(&tree->lock, flags);
493 * this search will find the extents that end after
496 node = tree_search(tree, start);
499 state = rb_entry(node, struct extent_state, rb_node);
500 if (state->start > end)
502 WARN_ON(state->end < start);
505 * | ---- desired range ---- |
507 * | ------------- state -------------- |
509 * We need to split the extent we found, and may flip
510 * bits on second half.
512 * If the extent we found extends past our range, we
513 * just split and search again. It'll get split again
514 * the next time though.
516 * If the extent we found is inside our range, we clear
517 * the desired bit on it.
520 if (state->start < start) {
522 prealloc = alloc_extent_state(GFP_ATOMIC);
523 err = split_state(tree, state, prealloc, start);
524 BUG_ON(err == -EEXIST);
528 if (state->end <= end) {
529 start = state->end + 1;
530 set |= clear_state_bit(tree, state, bits,
533 start = state->start;
538 * | ---- desired range ---- |
540 * We need to split the extent, and clear the bit
543 if (state->start <= end && state->end > end) {
545 prealloc = alloc_extent_state(GFP_ATOMIC);
546 err = split_state(tree, state, prealloc, end + 1);
547 BUG_ON(err == -EEXIST);
551 set |= clear_state_bit(tree, prealloc, bits,
557 start = state->end + 1;
558 set |= clear_state_bit(tree, state, bits, wake, delete);
562 spin_unlock_irqrestore(&tree->lock, flags);
564 free_extent_state(prealloc);
571 spin_unlock_irqrestore(&tree->lock, flags);
572 if (mask & __GFP_WAIT)
576 EXPORT_SYMBOL(clear_extent_bit);
578 static int wait_on_state(struct extent_io_tree *tree,
579 struct extent_state *state)
582 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
583 spin_unlock_irq(&tree->lock);
585 spin_lock_irq(&tree->lock);
586 finish_wait(&state->wq, &wait);
591 * waits for one or more bits to clear on a range in the state tree.
592 * The range [start, end] is inclusive.
593 * The tree lock is taken by this function
595 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
597 struct extent_state *state;
598 struct rb_node *node;
600 spin_lock_irq(&tree->lock);
604 * this search will find all the extents that end after
607 node = tree_search(tree, start);
611 state = rb_entry(node, struct extent_state, rb_node);
613 if (state->start > end)
616 if (state->state & bits) {
617 start = state->start;
618 atomic_inc(&state->refs);
619 wait_on_state(tree, state);
620 free_extent_state(state);
623 start = state->end + 1;
628 if (need_resched()) {
629 spin_unlock_irq(&tree->lock);
631 spin_lock_irq(&tree->lock);
635 spin_unlock_irq(&tree->lock);
638 EXPORT_SYMBOL(wait_extent_bit);
640 static void set_state_bits(struct extent_io_tree *tree,
641 struct extent_state *state,
644 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
645 u64 range = state->end - state->start + 1;
646 tree->dirty_bytes += range;
648 set_state_cb(tree, state, bits);
649 state->state |= bits;
653 * set some bits on a range in the tree. This may require allocations
654 * or sleeping, so the gfp mask is used to indicate what is allowed.
656 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
657 * range already has the desired bits set. The start of the existing
658 * range is returned in failed_start in this case.
660 * [start, end] is inclusive
661 * This takes the tree lock.
663 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
664 int exclusive, u64 *failed_start, gfp_t mask)
666 struct extent_state *state;
667 struct extent_state *prealloc = NULL;
668 struct rb_node *node;
675 if (!prealloc && (mask & __GFP_WAIT)) {
676 prealloc = alloc_extent_state(mask);
681 spin_lock_irqsave(&tree->lock, flags);
683 * this search will find all the extents that end after
686 node = tree_search(tree, start);
688 err = insert_state(tree, prealloc, start, end, bits);
690 BUG_ON(err == -EEXIST);
694 state = rb_entry(node, struct extent_state, rb_node);
695 last_start = state->start;
696 last_end = state->end;
699 * | ---- desired range ---- |
702 * Just lock what we found and keep going
704 if (state->start == start && state->end <= end) {
705 set = state->state & bits;
706 if (set && exclusive) {
707 *failed_start = state->start;
711 set_state_bits(tree, state, bits);
712 start = state->end + 1;
713 merge_state(tree, state);
718 * | ---- desired range ---- |
721 * | ------------- state -------------- |
723 * We need to split the extent we found, and may flip bits on
726 * If the extent we found extends past our
727 * range, we just split and search again. It'll get split
728 * again the next time though.
730 * If the extent we found is inside our range, we set the
733 if (state->start < start) {
734 set = state->state & bits;
735 if (exclusive && set) {
736 *failed_start = start;
740 err = split_state(tree, state, prealloc, start);
741 BUG_ON(err == -EEXIST);
745 if (state->end <= end) {
746 set_state_bits(tree, state, bits);
747 start = state->end + 1;
748 merge_state(tree, state);
750 start = state->start;
755 * | ---- desired range ---- |
756 * | state | or | state |
758 * There's a hole, we need to insert something in it and
759 * ignore the extent we found.
761 if (state->start > start) {
763 if (end < last_start)
766 this_end = last_start -1;
767 err = insert_state(tree, prealloc, start, this_end,
770 BUG_ON(err == -EEXIST);
773 start = this_end + 1;
777 * | ---- desired range ---- |
779 * We need to split the extent, and set the bit
782 if (state->start <= end && state->end > end) {
783 set = state->state & bits;
784 if (exclusive && set) {
785 *failed_start = start;
789 err = split_state(tree, state, prealloc, end + 1);
790 BUG_ON(err == -EEXIST);
792 set_state_bits(tree, prealloc, bits);
793 merge_state(tree, prealloc);
801 spin_unlock_irqrestore(&tree->lock, flags);
803 free_extent_state(prealloc);
810 spin_unlock_irqrestore(&tree->lock, flags);
811 if (mask & __GFP_WAIT)
815 EXPORT_SYMBOL(set_extent_bit);
817 /* wrappers around set/clear extent bit */
818 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
821 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
824 EXPORT_SYMBOL(set_extent_dirty);
826 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
829 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
831 EXPORT_SYMBOL(set_extent_ordered);
833 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
834 int bits, gfp_t mask)
836 return set_extent_bit(tree, start, end, bits, 0, NULL,
839 EXPORT_SYMBOL(set_extent_bits);
841 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
842 int bits, gfp_t mask)
844 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
846 EXPORT_SYMBOL(clear_extent_bits);
848 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
851 return set_extent_bit(tree, start, end,
852 EXTENT_DELALLOC | EXTENT_DIRTY,
855 EXPORT_SYMBOL(set_extent_delalloc);
857 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
860 return clear_extent_bit(tree, start, end,
861 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
863 EXPORT_SYMBOL(clear_extent_dirty);
865 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
868 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
870 EXPORT_SYMBOL(clear_extent_ordered);
872 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
875 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
878 EXPORT_SYMBOL(set_extent_new);
880 int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
883 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
885 EXPORT_SYMBOL(clear_extent_new);
887 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
890 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
893 EXPORT_SYMBOL(set_extent_uptodate);
895 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
898 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
900 EXPORT_SYMBOL(clear_extent_uptodate);
902 int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
905 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
908 EXPORT_SYMBOL(set_extent_writeback);
910 int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
913 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
915 EXPORT_SYMBOL(clear_extent_writeback);
917 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
919 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
921 EXPORT_SYMBOL(wait_on_extent_writeback);
924 * either insert or lock state struct between start and end use mask to tell
925 * us if waiting is desired.
927 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
932 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
933 &failed_start, mask);
934 if (err == -EEXIST && (mask & __GFP_WAIT)) {
935 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
936 start = failed_start;
940 WARN_ON(start > end);
944 EXPORT_SYMBOL(lock_extent);
946 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
952 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
953 &failed_start, mask);
954 if (err == -EEXIST) {
955 if (failed_start > start)
956 clear_extent_bit(tree, start, failed_start - 1,
957 EXTENT_LOCKED, 1, 0, mask);
962 EXPORT_SYMBOL(try_lock_extent);
964 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
967 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
969 EXPORT_SYMBOL(unlock_extent);
972 * helper function to set pages and extents in the tree dirty
974 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
976 unsigned long index = start >> PAGE_CACHE_SHIFT;
977 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
980 while (index <= end_index) {
981 page = find_get_page(tree->mapping, index);
983 __set_page_dirty_nobuffers(page);
984 page_cache_release(page);
987 set_extent_dirty(tree, start, end, GFP_NOFS);
990 EXPORT_SYMBOL(set_range_dirty);
993 * helper function to set both pages and extents in the tree writeback
995 int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
997 unsigned long index = start >> PAGE_CACHE_SHIFT;
998 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1001 while (index <= end_index) {
1002 page = find_get_page(tree->mapping, index);
1004 set_page_writeback(page);
1005 page_cache_release(page);
1008 set_extent_writeback(tree, start, end, GFP_NOFS);
1011 EXPORT_SYMBOL(set_range_writeback);
1014 * find the first offset in the io tree with 'bits' set. zero is
1015 * returned if we find something, and *start_ret and *end_ret are
1016 * set to reflect the state struct that was found.
1018 * If nothing was found, 1 is returned, < 0 on error
1020 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1021 u64 *start_ret, u64 *end_ret, int bits)
1023 struct rb_node *node;
1024 struct extent_state *state;
1027 spin_lock_irq(&tree->lock);
1029 * this search will find all the extents that end after
1032 node = tree_search(tree, start);
1038 state = rb_entry(node, struct extent_state, rb_node);
1039 if (state->end >= start && (state->state & bits)) {
1040 *start_ret = state->start;
1041 *end_ret = state->end;
1045 node = rb_next(node);
1050 spin_unlock_irq(&tree->lock);
1053 EXPORT_SYMBOL(find_first_extent_bit);
1055 /* find the first state struct with 'bits' set after 'start', and
1056 * return it. tree->lock must be held. NULL will returned if
1057 * nothing was found after 'start'
1059 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1060 u64 start, int bits)
1062 struct rb_node *node;
1063 struct extent_state *state;
1066 * this search will find all the extents that end after
1069 node = tree_search(tree, start);
1075 state = rb_entry(node, struct extent_state, rb_node);
1076 if (state->end >= start && (state->state & bits)) {
1079 node = rb_next(node);
1086 EXPORT_SYMBOL(find_first_extent_bit_state);
1089 * find a contiguous range of bytes in the file marked as delalloc, not
1090 * more than 'max_bytes'. start and end are used to return the range,
1092 * 1 is returned if we find something, 0 if nothing was in the tree
1094 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1095 u64 *start, u64 *end, u64 max_bytes)
1097 struct rb_node *node;
1098 struct extent_state *state;
1099 u64 cur_start = *start;
1101 u64 total_bytes = 0;
1103 spin_lock_irq(&tree->lock);
1106 * this search will find all the extents that end after
1109 node = tree_search(tree, cur_start);
1117 state = rb_entry(node, struct extent_state, rb_node);
1118 if (found && (state->start != cur_start ||
1119 (state->state & EXTENT_BOUNDARY))) {
1122 if (!(state->state & EXTENT_DELALLOC)) {
1128 *start = state->start;
1131 cur_start = state->end + 1;
1132 node = rb_next(node);
1135 total_bytes += state->end - state->start + 1;
1136 if (total_bytes >= max_bytes)
1140 spin_unlock_irq(&tree->lock);
1144 static noinline int __unlock_for_delalloc(struct inode *inode,
1145 struct page *locked_page,
1149 struct page *pages[16];
1150 unsigned long index = start >> PAGE_CACHE_SHIFT;
1151 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1152 unsigned long nr_pages = end_index - index + 1;
1155 if (index == locked_page->index && end_index == index)
1158 while(nr_pages > 0) {
1159 ret = find_get_pages_contig(inode->i_mapping, index,
1160 min(nr_pages, ARRAY_SIZE(pages)), pages);
1161 for (i = 0; i < ret; i++) {
1162 if (pages[i] != locked_page)
1163 unlock_page(pages[i]);
1164 page_cache_release(pages[i]);
1173 static noinline int lock_delalloc_pages(struct inode *inode,
1174 struct page *locked_page,
1178 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1179 unsigned long start_index = index;
1180 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1181 unsigned long pages_locked = 0;
1182 struct page *pages[16];
1183 unsigned long nrpages;
1187 /* the caller is responsible for locking the start index */
1188 if (index == locked_page->index && index == end_index)
1191 /* skip the page at the start index */
1192 nrpages = end_index - index + 1;
1193 while(nrpages > 0) {
1194 ret = find_get_pages_contig(inode->i_mapping, index,
1195 min(nrpages, ARRAY_SIZE(pages)), pages);
1200 /* now we have an array of pages, lock them all */
1201 for (i = 0; i < ret; i++) {
1203 * the caller is taking responsibility for
1206 if (pages[i] != locked_page) {
1207 lock_page(pages[i]);
1208 if (pages[i]->mapping != inode->i_mapping) {
1210 unlock_page(pages[i]);
1211 page_cache_release(pages[i]);
1215 page_cache_release(pages[i]);
1224 if (ret && pages_locked) {
1225 __unlock_for_delalloc(inode, locked_page,
1227 ((u64)(start_index + pages_locked - 1)) <<
1234 * find a contiguous range of bytes in the file marked as delalloc, not
1235 * more than 'max_bytes'. start and end are used to return the range,
1237 * 1 is returned if we find something, 0 if nothing was in the tree
1239 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1240 struct extent_io_tree *tree,
1241 struct page *locked_page,
1242 u64 *start, u64 *end,
1252 /* step one, find a bunch of delalloc bytes starting at start */
1253 delalloc_start = *start;
1255 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1257 if (!found || delalloc_end <= *start) {
1258 *start = delalloc_start;
1259 *end = delalloc_end;
1264 * start comes from the offset of locked_page. We have to lock
1265 * pages in order, so we can't process delalloc bytes before
1268 if (delalloc_start < *start) {
1269 delalloc_start = *start;
1273 * make sure to limit the number of pages we try to lock down
1276 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) {
1277 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1279 /* step two, lock all the pages after the page that has start */
1280 ret = lock_delalloc_pages(inode, locked_page,
1281 delalloc_start, delalloc_end);
1282 if (ret == -EAGAIN) {
1283 /* some of the pages are gone, lets avoid looping by
1284 * shortening the size of the delalloc range we're searching
1287 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1288 max_bytes = PAGE_CACHE_SIZE - offset;
1298 /* step three, lock the state bits for the whole range */
1299 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1301 /* then test to make sure it is all still delalloc */
1302 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1303 EXTENT_DELALLOC, 1);
1305 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1306 __unlock_for_delalloc(inode, locked_page,
1307 delalloc_start, delalloc_end);
1311 *start = delalloc_start;
1312 *end = delalloc_end;
1317 int extent_clear_unlock_delalloc(struct inode *inode,
1318 struct extent_io_tree *tree,
1319 u64 start, u64 end, struct page *locked_page,
1322 int clear_delalloc, int clear_dirty,
1327 struct page *pages[16];
1328 unsigned long index = start >> PAGE_CACHE_SHIFT;
1329 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1330 unsigned long nr_pages = end_index - index + 1;
1335 clear_bits |= EXTENT_LOCKED;
1337 clear_bits |= EXTENT_DIRTY;
1340 clear_bits |= EXTENT_DELALLOC;
1342 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1343 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1346 while(nr_pages > 0) {
1347 ret = find_get_pages_contig(inode->i_mapping, index,
1348 min(nr_pages, ARRAY_SIZE(pages)), pages);
1349 for (i = 0; i < ret; i++) {
1350 if (pages[i] == locked_page) {
1351 page_cache_release(pages[i]);
1355 clear_page_dirty_for_io(pages[i]);
1357 set_page_writeback(pages[i]);
1359 end_page_writeback(pages[i]);
1361 unlock_page(pages[i]);
1362 page_cache_release(pages[i]);
1370 EXPORT_SYMBOL(extent_clear_unlock_delalloc);
1373 * count the number of bytes in the tree that have a given bit(s)
1374 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1375 * cached. The total number found is returned.
1377 u64 count_range_bits(struct extent_io_tree *tree,
1378 u64 *start, u64 search_end, u64 max_bytes,
1381 struct rb_node *node;
1382 struct extent_state *state;
1383 u64 cur_start = *start;
1384 u64 total_bytes = 0;
1387 if (search_end <= cur_start) {
1388 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1393 spin_lock_irq(&tree->lock);
1394 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1395 total_bytes = tree->dirty_bytes;
1399 * this search will find all the extents that end after
1402 node = tree_search(tree, cur_start);
1408 state = rb_entry(node, struct extent_state, rb_node);
1409 if (state->start > search_end)
1411 if (state->end >= cur_start && (state->state & bits)) {
1412 total_bytes += min(search_end, state->end) + 1 -
1413 max(cur_start, state->start);
1414 if (total_bytes >= max_bytes)
1417 *start = state->start;
1421 node = rb_next(node);
1426 spin_unlock_irq(&tree->lock);
1430 * helper function to lock both pages and extents in the tree.
1431 * pages must be locked first.
1433 int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1435 unsigned long index = start >> PAGE_CACHE_SHIFT;
1436 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1440 while (index <= end_index) {
1441 page = grab_cache_page(tree->mapping, index);
1447 err = PTR_ERR(page);
1452 lock_extent(tree, start, end, GFP_NOFS);
1457 * we failed above in getting the page at 'index', so we undo here
1458 * up to but not including the page at 'index'
1461 index = start >> PAGE_CACHE_SHIFT;
1462 while (index < end_index) {
1463 page = find_get_page(tree->mapping, index);
1465 page_cache_release(page);
1470 EXPORT_SYMBOL(lock_range);
1473 * helper function to unlock both pages and extents in the tree.
1475 int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1477 unsigned long index = start >> PAGE_CACHE_SHIFT;
1478 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1481 while (index <= end_index) {
1482 page = find_get_page(tree->mapping, index);
1484 page_cache_release(page);
1487 unlock_extent(tree, start, end, GFP_NOFS);
1490 EXPORT_SYMBOL(unlock_range);
1493 * set the private field for a given byte offset in the tree. If there isn't
1494 * an extent_state there already, this does nothing.
1496 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1498 struct rb_node *node;
1499 struct extent_state *state;
1502 spin_lock_irq(&tree->lock);
1504 * this search will find all the extents that end after
1507 node = tree_search(tree, start);
1512 state = rb_entry(node, struct extent_state, rb_node);
1513 if (state->start != start) {
1517 state->private = private;
1519 spin_unlock_irq(&tree->lock);
1523 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1525 struct rb_node *node;
1526 struct extent_state *state;
1529 spin_lock_irq(&tree->lock);
1531 * this search will find all the extents that end after
1534 node = tree_search(tree, start);
1539 state = rb_entry(node, struct extent_state, rb_node);
1540 if (state->start != start) {
1544 *private = state->private;
1546 spin_unlock_irq(&tree->lock);
1551 * searches a range in the state tree for a given mask.
1552 * If 'filled' == 1, this returns 1 only if every extent in the tree
1553 * has the bits set. Otherwise, 1 is returned if any bit in the
1554 * range is found set.
1556 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1557 int bits, int filled)
1559 struct extent_state *state = NULL;
1560 struct rb_node *node;
1562 unsigned long flags;
1564 spin_lock_irqsave(&tree->lock, flags);
1565 node = tree_search(tree, start);
1566 while (node && start <= end) {
1567 state = rb_entry(node, struct extent_state, rb_node);
1569 if (filled && state->start > start) {
1574 if (state->start > end)
1577 if (state->state & bits) {
1581 } else if (filled) {
1585 start = state->end + 1;
1588 node = rb_next(node);
1595 spin_unlock_irqrestore(&tree->lock, flags);
1598 EXPORT_SYMBOL(test_range_bit);
1601 * helper function to set a given page up to date if all the
1602 * extents in the tree for that page are up to date
1604 static int check_page_uptodate(struct extent_io_tree *tree,
1607 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1608 u64 end = start + PAGE_CACHE_SIZE - 1;
1609 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1610 SetPageUptodate(page);
1615 * helper function to unlock a page if all the extents in the tree
1616 * for that page are unlocked
1618 static int check_page_locked(struct extent_io_tree *tree,
1621 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1622 u64 end = start + PAGE_CACHE_SIZE - 1;
1623 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1629 * helper function to end page writeback if all the extents
1630 * in the tree for that page are done with writeback
1632 static int check_page_writeback(struct extent_io_tree *tree,
1635 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1636 u64 end = start + PAGE_CACHE_SIZE - 1;
1637 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1638 end_page_writeback(page);
1642 /* lots and lots of room for performance fixes in the end_bio funcs */
1645 * after a writepage IO is done, we need to:
1646 * clear the uptodate bits on error
1647 * clear the writeback bits in the extent tree for this IO
1648 * end_page_writeback if the page has no more pending IO
1650 * Scheduling is not allowed, so the extent state tree is expected
1651 * to have one and only one object corresponding to this IO.
1653 static void end_bio_extent_writepage(struct bio *bio, int err)
1655 int uptodate = err == 0;
1656 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1657 struct extent_io_tree *tree;
1664 struct page *page = bvec->bv_page;
1665 tree = &BTRFS_I(page->mapping->host)->io_tree;
1667 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1669 end = start + bvec->bv_len - 1;
1671 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1676 if (--bvec >= bio->bi_io_vec)
1677 prefetchw(&bvec->bv_page->flags);
1678 if (tree->ops && tree->ops->writepage_end_io_hook) {
1679 ret = tree->ops->writepage_end_io_hook(page, start,
1680 end, NULL, uptodate);
1685 if (!uptodate && tree->ops &&
1686 tree->ops->writepage_io_failed_hook) {
1687 ret = tree->ops->writepage_io_failed_hook(bio, page,
1690 uptodate = (err == 0);
1696 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1697 ClearPageUptodate(page);
1701 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1704 end_page_writeback(page);
1706 check_page_writeback(tree, page);
1707 } while (bvec >= bio->bi_io_vec);
1713 * after a readpage IO is done, we need to:
1714 * clear the uptodate bits on error
1715 * set the uptodate bits if things worked
1716 * set the page up to date if all extents in the tree are uptodate
1717 * clear the lock bit in the extent tree
1718 * unlock the page if there are no other extents locked for it
1720 * Scheduling is not allowed, so the extent state tree is expected
1721 * to have one and only one object corresponding to this IO.
1723 static void end_bio_extent_readpage(struct bio *bio, int err)
1725 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1726 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1727 struct extent_io_tree *tree;
1734 struct page *page = bvec->bv_page;
1735 tree = &BTRFS_I(page->mapping->host)->io_tree;
1737 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1739 end = start + bvec->bv_len - 1;
1741 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1746 if (--bvec >= bio->bi_io_vec)
1747 prefetchw(&bvec->bv_page->flags);
1749 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1750 ret = tree->ops->readpage_end_io_hook(page, start, end,
1755 if (!uptodate && tree->ops &&
1756 tree->ops->readpage_io_failed_hook) {
1757 ret = tree->ops->readpage_io_failed_hook(bio, page,
1761 test_bit(BIO_UPTODATE, &bio->bi_flags);
1767 set_extent_uptodate(tree, start, end,
1770 unlock_extent(tree, start, end, GFP_ATOMIC);
1774 SetPageUptodate(page);
1776 ClearPageUptodate(page);
1782 check_page_uptodate(tree, page);
1784 ClearPageUptodate(page);
1787 check_page_locked(tree, page);
1789 } while (bvec >= bio->bi_io_vec);
1795 * IO done from prepare_write is pretty simple, we just unlock
1796 * the structs in the extent tree when done, and set the uptodate bits
1799 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1801 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1802 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1803 struct extent_io_tree *tree;
1808 struct page *page = bvec->bv_page;
1809 tree = &BTRFS_I(page->mapping->host)->io_tree;
1811 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1813 end = start + bvec->bv_len - 1;
1815 if (--bvec >= bio->bi_io_vec)
1816 prefetchw(&bvec->bv_page->flags);
1819 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1821 ClearPageUptodate(page);
1825 unlock_extent(tree, start, end, GFP_ATOMIC);
1827 } while (bvec >= bio->bi_io_vec);
1833 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1838 bio = bio_alloc(gfp_flags, nr_vecs);
1840 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1841 while (!bio && (nr_vecs /= 2))
1842 bio = bio_alloc(gfp_flags, nr_vecs);
1847 bio->bi_bdev = bdev;
1848 bio->bi_sector = first_sector;
1853 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1854 unsigned long bio_flags)
1857 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1858 struct page *page = bvec->bv_page;
1859 struct extent_io_tree *tree = bio->bi_private;
1863 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1864 end = start + bvec->bv_len - 1;
1866 bio->bi_private = NULL;
1870 if (tree->ops && tree->ops->submit_bio_hook)
1871 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1872 mirror_num, bio_flags);
1874 submit_bio(rw, bio);
1875 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1881 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1882 struct page *page, sector_t sector,
1883 size_t size, unsigned long offset,
1884 struct block_device *bdev,
1885 struct bio **bio_ret,
1886 unsigned long max_pages,
1887 bio_end_io_t end_io_func,
1889 unsigned long prev_bio_flags,
1890 unsigned long bio_flags)
1896 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1897 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1898 size_t page_size = min(size, PAGE_CACHE_SIZE);
1900 if (bio_ret && *bio_ret) {
1903 contig = bio->bi_sector == sector;
1905 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1908 if (prev_bio_flags != bio_flags || !contig ||
1909 (tree->ops && tree->ops->merge_bio_hook &&
1910 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1912 bio_add_page(bio, page, page_size, offset) < page_size) {
1913 ret = submit_one_bio(rw, bio, mirror_num,
1920 if (this_compressed)
1923 nr = bio_get_nr_vecs(bdev);
1925 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1927 printk("failed to allocate bio nr %d\n", nr);
1930 bio_add_page(bio, page, page_size, offset);
1931 bio->bi_end_io = end_io_func;
1932 bio->bi_private = tree;
1937 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1943 void set_page_extent_mapped(struct page *page)
1945 if (!PagePrivate(page)) {
1946 SetPagePrivate(page);
1947 page_cache_get(page);
1948 set_page_private(page, EXTENT_PAGE_PRIVATE);
1951 EXPORT_SYMBOL(set_page_extent_mapped);
1953 void set_page_extent_head(struct page *page, unsigned long len)
1955 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1959 * basic readpage implementation. Locked extent state structs are inserted
1960 * into the tree that are removed when the IO is done (by the end_io
1963 static int __extent_read_full_page(struct extent_io_tree *tree,
1965 get_extent_t *get_extent,
1966 struct bio **bio, int mirror_num,
1967 unsigned long *bio_flags)
1969 struct inode *inode = page->mapping->host;
1970 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1971 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1975 u64 last_byte = i_size_read(inode);
1979 struct extent_map *em;
1980 struct block_device *bdev;
1983 size_t page_offset = 0;
1985 size_t disk_io_size;
1986 size_t blocksize = inode->i_sb->s_blocksize;
1987 unsigned long this_bio_flag = 0;
1989 set_page_extent_mapped(page);
1992 lock_extent(tree, start, end, GFP_NOFS);
1994 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1996 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1999 iosize = PAGE_CACHE_SIZE - zero_offset;
2000 userpage = kmap_atomic(page, KM_USER0);
2001 memset(userpage + zero_offset, 0, iosize);
2002 flush_dcache_page(page);
2003 kunmap_atomic(userpage, KM_USER0);
2006 while (cur <= end) {
2007 if (cur >= last_byte) {
2009 iosize = PAGE_CACHE_SIZE - page_offset;
2010 userpage = kmap_atomic(page, KM_USER0);
2011 memset(userpage + page_offset, 0, iosize);
2012 flush_dcache_page(page);
2013 kunmap_atomic(userpage, KM_USER0);
2014 set_extent_uptodate(tree, cur, cur + iosize - 1,
2016 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2019 em = get_extent(inode, page, page_offset, cur,
2021 if (IS_ERR(em) || !em) {
2023 unlock_extent(tree, cur, end, GFP_NOFS);
2026 extent_offset = cur - em->start;
2027 if (extent_map_end(em) <= cur) {
2028 printk("bad mapping em [%Lu %Lu] cur %Lu\n", em->start, extent_map_end(em), cur);
2030 BUG_ON(extent_map_end(em) <= cur);
2032 printk("2bad mapping end %Lu cur %Lu\n", end, cur);
2036 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2037 this_bio_flag = EXTENT_BIO_COMPRESSED;
2039 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2040 cur_end = min(extent_map_end(em) - 1, end);
2041 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2042 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2043 disk_io_size = em->block_len;
2044 sector = em->block_start >> 9;
2046 sector = (em->block_start + extent_offset) >> 9;
2047 disk_io_size = iosize;
2050 block_start = em->block_start;
2051 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2052 block_start = EXTENT_MAP_HOLE;
2053 free_extent_map(em);
2056 /* we've found a hole, just zero and go on */
2057 if (block_start == EXTENT_MAP_HOLE) {
2059 userpage = kmap_atomic(page, KM_USER0);
2060 memset(userpage + page_offset, 0, iosize);
2061 flush_dcache_page(page);
2062 kunmap_atomic(userpage, KM_USER0);
2064 set_extent_uptodate(tree, cur, cur + iosize - 1,
2066 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2068 page_offset += iosize;
2071 /* the get_extent function already copied into the page */
2072 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
2073 check_page_uptodate(tree, page);
2074 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2076 page_offset += iosize;
2079 /* we have an inline extent but it didn't get marked up
2080 * to date. Error out
2082 if (block_start == EXTENT_MAP_INLINE) {
2084 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2086 page_offset += iosize;
2091 if (tree->ops && tree->ops->readpage_io_hook) {
2092 ret = tree->ops->readpage_io_hook(page, cur,
2096 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2098 ret = submit_extent_page(READ, tree, page,
2099 sector, disk_io_size, page_offset,
2101 end_bio_extent_readpage, mirror_num,
2105 *bio_flags = this_bio_flag;
2110 page_offset += iosize;
2113 if (!PageError(page))
2114 SetPageUptodate(page);
2120 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2121 get_extent_t *get_extent)
2123 struct bio *bio = NULL;
2124 unsigned long bio_flags = 0;
2127 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2130 submit_one_bio(READ, bio, 0, bio_flags);
2133 EXPORT_SYMBOL(extent_read_full_page);
2136 * the writepage semantics are similar to regular writepage. extent
2137 * records are inserted to lock ranges in the tree, and as dirty areas
2138 * are found, they are marked writeback. Then the lock bits are removed
2139 * and the end_io handler clears the writeback ranges
2141 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2144 struct inode *inode = page->mapping->host;
2145 struct extent_page_data *epd = data;
2146 struct extent_io_tree *tree = epd->tree;
2147 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2149 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2153 u64 last_byte = i_size_read(inode);
2158 struct extent_map *em;
2159 struct block_device *bdev;
2162 size_t pg_offset = 0;
2164 loff_t i_size = i_size_read(inode);
2165 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2170 unsigned long nr_written = 0;
2172 WARN_ON(!PageLocked(page));
2173 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2174 if (page->index > end_index ||
2175 (page->index == end_index && !pg_offset)) {
2176 if (epd->extent_locked) {
2177 if (tree->ops && tree->ops->writepage_end_io_hook)
2178 tree->ops->writepage_end_io_hook(page, start,
2185 if (page->index == end_index) {
2188 userpage = kmap_atomic(page, KM_USER0);
2189 memset(userpage + pg_offset, 0,
2190 PAGE_CACHE_SIZE - pg_offset);
2191 kunmap_atomic(userpage, KM_USER0);
2192 flush_dcache_page(page);
2196 set_page_extent_mapped(page);
2198 delalloc_start = start;
2201 if (!epd->extent_locked) {
2202 while(delalloc_end < page_end) {
2203 nr_delalloc = find_lock_delalloc_range(inode, tree,
2208 if (nr_delalloc == 0) {
2209 delalloc_start = delalloc_end + 1;
2212 tree->ops->fill_delalloc(inode, page, delalloc_start,
2213 delalloc_end, &page_started,
2215 delalloc_start = delalloc_end + 1;
2218 /* did the fill delalloc function already unlock and start
2223 goto update_nr_written;
2226 lock_extent(tree, start, page_end, GFP_NOFS);
2228 unlock_start = start;
2230 if (tree->ops && tree->ops->writepage_start_hook) {
2231 ret = tree->ops->writepage_start_hook(page, start,
2233 if (ret == -EAGAIN) {
2234 unlock_extent(tree, start, page_end, GFP_NOFS);
2235 redirty_page_for_writepage(wbc, page);
2238 goto update_nr_written;
2245 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
2246 printk("found delalloc bits after lock_extent\n");
2249 if (last_byte <= start) {
2250 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2251 unlock_extent(tree, start, page_end, GFP_NOFS);
2252 if (tree->ops && tree->ops->writepage_end_io_hook)
2253 tree->ops->writepage_end_io_hook(page, start,
2255 unlock_start = page_end + 1;
2259 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2260 blocksize = inode->i_sb->s_blocksize;
2262 while (cur <= end) {
2263 if (cur >= last_byte) {
2264 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2265 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2266 if (tree->ops && tree->ops->writepage_end_io_hook)
2267 tree->ops->writepage_end_io_hook(page, cur,
2269 unlock_start = page_end + 1;
2272 em = epd->get_extent(inode, page, pg_offset, cur,
2274 if (IS_ERR(em) || !em) {
2279 extent_offset = cur - em->start;
2280 BUG_ON(extent_map_end(em) <= cur);
2282 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2283 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2284 sector = (em->block_start + extent_offset) >> 9;
2286 block_start = em->block_start;
2287 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2288 free_extent_map(em);
2292 * compressed and inline extents are written through other
2295 if (compressed || block_start == EXTENT_MAP_HOLE ||
2296 block_start == EXTENT_MAP_INLINE) {
2297 clear_extent_dirty(tree, cur,
2298 cur + iosize - 1, GFP_NOFS);
2300 unlock_extent(tree, unlock_start, cur + iosize -1,
2304 * end_io notification does not happen here for
2305 * compressed extents
2307 if (!compressed && tree->ops &&
2308 tree->ops->writepage_end_io_hook)
2309 tree->ops->writepage_end_io_hook(page, cur,
2312 else if (compressed) {
2313 /* we don't want to end_page_writeback on
2314 * a compressed extent. this happens
2321 pg_offset += iosize;
2325 /* leave this out until we have a page_mkwrite call */
2326 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2329 pg_offset += iosize;
2333 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2334 if (tree->ops && tree->ops->writepage_io_hook) {
2335 ret = tree->ops->writepage_io_hook(page, cur,
2343 unsigned long max_nr = end_index + 1;
2345 set_range_writeback(tree, cur, cur + iosize - 1);
2346 if (!PageWriteback(page)) {
2347 printk("warning page %lu not writeback, "
2348 "cur %llu end %llu\n", page->index,
2349 (unsigned long long)cur,
2350 (unsigned long long)end);
2353 ret = submit_extent_page(WRITE, tree, page, sector,
2354 iosize, pg_offset, bdev,
2356 end_bio_extent_writepage,
2362 pg_offset += iosize;
2367 /* make sure the mapping tag for page dirty gets cleared */
2368 set_page_writeback(page);
2369 end_page_writeback(page);
2371 if (unlock_start <= page_end)
2372 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2376 wbc->nr_to_write -= nr_written;
2377 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2378 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2379 page->mapping->writeback_index = page->index + nr_written;
2384 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2385 * @mapping: address space structure to write
2386 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2387 * @writepage: function called for each page
2388 * @data: data passed to writepage function
2390 * If a page is already under I/O, write_cache_pages() skips it, even
2391 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2392 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2393 * and msync() need to guarantee that all the data which was dirty at the time
2394 * the call was made get new I/O started against them. If wbc->sync_mode is
2395 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2396 * existing IO to complete.
2398 int extent_write_cache_pages(struct extent_io_tree *tree,
2399 struct address_space *mapping,
2400 struct writeback_control *wbc,
2401 writepage_t writepage, void *data)
2403 struct backing_dev_info *bdi = mapping->backing_dev_info;
2406 struct pagevec pvec;
2409 pgoff_t end; /* Inclusive */
2411 int range_whole = 0;
2413 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2414 wbc->encountered_congestion = 1;
2418 pagevec_init(&pvec, 0);
2419 if (wbc->range_cyclic) {
2420 index = mapping->writeback_index; /* Start from prev offset */
2423 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2424 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2425 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2430 while (!done && (index <= end) &&
2431 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2432 PAGECACHE_TAG_DIRTY,
2433 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2437 for (i = 0; i < nr_pages; i++) {
2438 struct page *page = pvec.pages[i];
2441 * At this point we hold neither mapping->tree_lock nor
2442 * lock on the page itself: the page may be truncated or
2443 * invalidated (changing page->mapping to NULL), or even
2444 * swizzled back from swapper_space to tmpfs file
2447 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2448 tree->ops->write_cache_pages_lock_hook(page);
2452 if (unlikely(page->mapping != mapping)) {
2457 if (!wbc->range_cyclic && page->index > end) {
2463 if (wbc->sync_mode != WB_SYNC_NONE)
2464 wait_on_page_writeback(page);
2466 if (PageWriteback(page) ||
2467 !clear_page_dirty_for_io(page)) {
2472 ret = (*writepage)(page, wbc, data);
2474 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2478 if (ret || wbc->nr_to_write <= 0)
2480 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2481 wbc->encountered_congestion = 1;
2485 pagevec_release(&pvec);
2488 if (!scanned && !done) {
2490 * We hit the last page and there is more work to be done: wrap
2491 * back to the start of the file
2497 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2498 mapping->writeback_index = index;
2499 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2502 if (wbc->range_cont)
2503 wbc->range_start = index << PAGE_CACHE_SHIFT;
2506 EXPORT_SYMBOL(extent_write_cache_pages);
2508 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2509 get_extent_t *get_extent,
2510 struct writeback_control *wbc)
2513 struct address_space *mapping = page->mapping;
2514 struct extent_page_data epd = {
2517 .get_extent = get_extent,
2520 struct writeback_control wbc_writepages = {
2522 .sync_mode = WB_SYNC_NONE,
2523 .older_than_this = NULL,
2525 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2526 .range_end = (loff_t)-1,
2530 ret = __extent_writepage(page, wbc, &epd);
2532 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2533 __extent_writepage, &epd);
2535 submit_one_bio(WRITE, epd.bio, 0, 0);
2539 EXPORT_SYMBOL(extent_write_full_page);
2541 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2542 u64 start, u64 end, get_extent_t *get_extent,
2546 struct address_space *mapping = inode->i_mapping;
2548 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2551 struct extent_page_data epd = {
2554 .get_extent = get_extent,
2557 struct writeback_control wbc_writepages = {
2558 .bdi = inode->i_mapping->backing_dev_info,
2560 .older_than_this = NULL,
2561 .nr_to_write = nr_pages * 2,
2562 .range_start = start,
2563 .range_end = end + 1,
2566 while(start <= end) {
2567 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2568 if (clear_page_dirty_for_io(page))
2569 ret = __extent_writepage(page, &wbc_writepages, &epd);
2571 if (tree->ops && tree->ops->writepage_end_io_hook)
2572 tree->ops->writepage_end_io_hook(page, start,
2573 start + PAGE_CACHE_SIZE - 1,
2577 page_cache_release(page);
2578 start += PAGE_CACHE_SIZE;
2582 submit_one_bio(WRITE, epd.bio, 0, 0);
2585 EXPORT_SYMBOL(extent_write_locked_range);
2588 int extent_writepages(struct extent_io_tree *tree,
2589 struct address_space *mapping,
2590 get_extent_t *get_extent,
2591 struct writeback_control *wbc)
2594 struct extent_page_data epd = {
2597 .get_extent = get_extent,
2601 ret = extent_write_cache_pages(tree, mapping, wbc,
2602 __extent_writepage, &epd);
2604 submit_one_bio(WRITE, epd.bio, 0, 0);
2608 EXPORT_SYMBOL(extent_writepages);
2610 int extent_readpages(struct extent_io_tree *tree,
2611 struct address_space *mapping,
2612 struct list_head *pages, unsigned nr_pages,
2613 get_extent_t get_extent)
2615 struct bio *bio = NULL;
2617 struct pagevec pvec;
2618 unsigned long bio_flags = 0;
2620 pagevec_init(&pvec, 0);
2621 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2622 struct page *page = list_entry(pages->prev, struct page, lru);
2624 prefetchw(&page->flags);
2625 list_del(&page->lru);
2627 * what we want to do here is call add_to_page_cache_lru,
2628 * but that isn't exported, so we reproduce it here
2630 if (!add_to_page_cache(page, mapping,
2631 page->index, GFP_KERNEL)) {
2633 /* open coding of lru_cache_add, also not exported */
2634 page_cache_get(page);
2635 if (!pagevec_add(&pvec, page))
2636 __pagevec_lru_add(&pvec);
2637 __extent_read_full_page(tree, page, get_extent,
2638 &bio, 0, &bio_flags);
2640 page_cache_release(page);
2642 if (pagevec_count(&pvec))
2643 __pagevec_lru_add(&pvec);
2644 BUG_ON(!list_empty(pages));
2646 submit_one_bio(READ, bio, 0, bio_flags);
2649 EXPORT_SYMBOL(extent_readpages);
2652 * basic invalidatepage code, this waits on any locked or writeback
2653 * ranges corresponding to the page, and then deletes any extent state
2654 * records from the tree
2656 int extent_invalidatepage(struct extent_io_tree *tree,
2657 struct page *page, unsigned long offset)
2659 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2660 u64 end = start + PAGE_CACHE_SIZE - 1;
2661 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2663 start += (offset + blocksize -1) & ~(blocksize - 1);
2667 lock_extent(tree, start, end, GFP_NOFS);
2668 wait_on_extent_writeback(tree, start, end);
2669 clear_extent_bit(tree, start, end,
2670 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2674 EXPORT_SYMBOL(extent_invalidatepage);
2677 * simple commit_write call, set_range_dirty is used to mark both
2678 * the pages and the extent records as dirty
2680 int extent_commit_write(struct extent_io_tree *tree,
2681 struct inode *inode, struct page *page,
2682 unsigned from, unsigned to)
2684 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2686 set_page_extent_mapped(page);
2687 set_page_dirty(page);
2689 if (pos > inode->i_size) {
2690 i_size_write(inode, pos);
2691 mark_inode_dirty(inode);
2695 EXPORT_SYMBOL(extent_commit_write);
2697 int extent_prepare_write(struct extent_io_tree *tree,
2698 struct inode *inode, struct page *page,
2699 unsigned from, unsigned to, get_extent_t *get_extent)
2701 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2702 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2704 u64 orig_block_start;
2707 struct extent_map *em;
2708 unsigned blocksize = 1 << inode->i_blkbits;
2709 size_t page_offset = 0;
2710 size_t block_off_start;
2711 size_t block_off_end;
2717 set_page_extent_mapped(page);
2719 block_start = (page_start + from) & ~((u64)blocksize - 1);
2720 block_end = (page_start + to - 1) | (blocksize - 1);
2721 orig_block_start = block_start;
2723 lock_extent(tree, page_start, page_end, GFP_NOFS);
2724 while(block_start <= block_end) {
2725 em = get_extent(inode, page, page_offset, block_start,
2726 block_end - block_start + 1, 1);
2727 if (IS_ERR(em) || !em) {
2730 cur_end = min(block_end, extent_map_end(em) - 1);
2731 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2732 block_off_end = block_off_start + blocksize;
2733 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2735 if (!PageUptodate(page) && isnew &&
2736 (block_off_end > to || block_off_start < from)) {
2739 kaddr = kmap_atomic(page, KM_USER0);
2740 if (block_off_end > to)
2741 memset(kaddr + to, 0, block_off_end - to);
2742 if (block_off_start < from)
2743 memset(kaddr + block_off_start, 0,
2744 from - block_off_start);
2745 flush_dcache_page(page);
2746 kunmap_atomic(kaddr, KM_USER0);
2748 if ((em->block_start != EXTENT_MAP_HOLE &&
2749 em->block_start != EXTENT_MAP_INLINE) &&
2750 !isnew && !PageUptodate(page) &&
2751 (block_off_end > to || block_off_start < from) &&
2752 !test_range_bit(tree, block_start, cur_end,
2753 EXTENT_UPTODATE, 1)) {
2755 u64 extent_offset = block_start - em->start;
2757 sector = (em->block_start + extent_offset) >> 9;
2758 iosize = (cur_end - block_start + blocksize) &
2759 ~((u64)blocksize - 1);
2761 * we've already got the extent locked, but we
2762 * need to split the state such that our end_bio
2763 * handler can clear the lock.
2765 set_extent_bit(tree, block_start,
2766 block_start + iosize - 1,
2767 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2768 ret = submit_extent_page(READ, tree, page,
2769 sector, iosize, page_offset, em->bdev,
2771 end_bio_extent_preparewrite, 0,
2774 block_start = block_start + iosize;
2776 set_extent_uptodate(tree, block_start, cur_end,
2778 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2779 block_start = cur_end + 1;
2781 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2782 free_extent_map(em);
2785 wait_extent_bit(tree, orig_block_start,
2786 block_end, EXTENT_LOCKED);
2788 check_page_uptodate(tree, page);
2790 /* FIXME, zero out newly allocated blocks on error */
2793 EXPORT_SYMBOL(extent_prepare_write);
2796 * a helper for releasepage, this tests for areas of the page that
2797 * are locked or under IO and drops the related state bits if it is safe
2800 int try_release_extent_state(struct extent_map_tree *map,
2801 struct extent_io_tree *tree, struct page *page,
2804 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2805 u64 end = start + PAGE_CACHE_SIZE - 1;
2808 if (test_range_bit(tree, start, end,
2809 EXTENT_IOBITS | EXTENT_ORDERED, 0))
2812 if ((mask & GFP_NOFS) == GFP_NOFS)
2814 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2819 EXPORT_SYMBOL(try_release_extent_state);
2822 * a helper for releasepage. As long as there are no locked extents
2823 * in the range corresponding to the page, both state records and extent
2824 * map records are removed
2826 int try_release_extent_mapping(struct extent_map_tree *map,
2827 struct extent_io_tree *tree, struct page *page,
2830 struct extent_map *em;
2831 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2832 u64 end = start + PAGE_CACHE_SIZE - 1;
2834 if ((mask & __GFP_WAIT) &&
2835 page->mapping->host->i_size > 16 * 1024 * 1024) {
2837 while (start <= end) {
2838 len = end - start + 1;
2839 spin_lock(&map->lock);
2840 em = lookup_extent_mapping(map, start, len);
2841 if (!em || IS_ERR(em)) {
2842 spin_unlock(&map->lock);
2845 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2846 em->start != start) {
2847 spin_unlock(&map->lock);
2848 free_extent_map(em);
2851 if (!test_range_bit(tree, em->start,
2852 extent_map_end(em) - 1,
2853 EXTENT_LOCKED | EXTENT_WRITEBACK |
2856 remove_extent_mapping(map, em);
2857 /* once for the rb tree */
2858 free_extent_map(em);
2860 start = extent_map_end(em);
2861 spin_unlock(&map->lock);
2864 free_extent_map(em);
2867 return try_release_extent_state(map, tree, page, mask);
2869 EXPORT_SYMBOL(try_release_extent_mapping);
2871 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2872 get_extent_t *get_extent)
2874 struct inode *inode = mapping->host;
2875 u64 start = iblock << inode->i_blkbits;
2876 sector_t sector = 0;
2877 size_t blksize = (1 << inode->i_blkbits);
2878 struct extent_map *em;
2880 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2882 em = get_extent(inode, NULL, 0, start, blksize, 0);
2883 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2885 if (!em || IS_ERR(em))
2888 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2891 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2893 free_extent_map(em);
2897 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2901 struct address_space *mapping;
2904 return eb->first_page;
2905 i += eb->start >> PAGE_CACHE_SHIFT;
2906 mapping = eb->first_page->mapping;
2911 * extent_buffer_page is only called after pinning the page
2912 * by increasing the reference count. So we know the page must
2913 * be in the radix tree.
2916 p = radix_tree_lookup(&mapping->page_tree, i);
2922 static inline unsigned long num_extent_pages(u64 start, u64 len)
2924 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2925 (start >> PAGE_CACHE_SHIFT);
2928 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2933 struct extent_buffer *eb = NULL;
2935 unsigned long flags;
2938 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2941 mutex_init(&eb->mutex);
2943 spin_lock_irqsave(&leak_lock, flags);
2944 list_add(&eb->leak_list, &buffers);
2945 spin_unlock_irqrestore(&leak_lock, flags);
2947 atomic_set(&eb->refs, 1);
2952 static void __free_extent_buffer(struct extent_buffer *eb)
2955 unsigned long flags;
2956 spin_lock_irqsave(&leak_lock, flags);
2957 list_del(&eb->leak_list);
2958 spin_unlock_irqrestore(&leak_lock, flags);
2960 kmem_cache_free(extent_buffer_cache, eb);
2963 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2964 u64 start, unsigned long len,
2968 unsigned long num_pages = num_extent_pages(start, len);
2970 unsigned long index = start >> PAGE_CACHE_SHIFT;
2971 struct extent_buffer *eb;
2972 struct extent_buffer *exists = NULL;
2974 struct address_space *mapping = tree->mapping;
2977 spin_lock(&tree->buffer_lock);
2978 eb = buffer_search(tree, start);
2980 atomic_inc(&eb->refs);
2981 spin_unlock(&tree->buffer_lock);
2982 mark_page_accessed(eb->first_page);
2985 spin_unlock(&tree->buffer_lock);
2987 eb = __alloc_extent_buffer(tree, start, len, mask);
2992 eb->first_page = page0;
2995 page_cache_get(page0);
2996 mark_page_accessed(page0);
2997 set_page_extent_mapped(page0);
2998 set_page_extent_head(page0, len);
2999 uptodate = PageUptodate(page0);
3003 for (; i < num_pages; i++, index++) {
3004 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3009 set_page_extent_mapped(p);
3010 mark_page_accessed(p);
3013 set_page_extent_head(p, len);
3015 set_page_private(p, EXTENT_PAGE_PRIVATE);
3017 if (!PageUptodate(p))
3022 eb->flags |= EXTENT_UPTODATE;
3023 eb->flags |= EXTENT_BUFFER_FILLED;
3025 spin_lock(&tree->buffer_lock);
3026 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3028 /* add one reference for the caller */
3029 atomic_inc(&exists->refs);
3030 spin_unlock(&tree->buffer_lock);
3033 spin_unlock(&tree->buffer_lock);
3035 /* add one reference for the tree */
3036 atomic_inc(&eb->refs);
3040 if (!atomic_dec_and_test(&eb->refs))
3042 for (index = 1; index < i; index++)
3043 page_cache_release(extent_buffer_page(eb, index));
3044 page_cache_release(extent_buffer_page(eb, 0));
3045 __free_extent_buffer(eb);
3048 EXPORT_SYMBOL(alloc_extent_buffer);
3050 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3051 u64 start, unsigned long len,
3054 struct extent_buffer *eb;
3056 spin_lock(&tree->buffer_lock);
3057 eb = buffer_search(tree, start);
3059 atomic_inc(&eb->refs);
3060 spin_unlock(&tree->buffer_lock);
3063 mark_page_accessed(eb->first_page);
3067 EXPORT_SYMBOL(find_extent_buffer);
3069 void free_extent_buffer(struct extent_buffer *eb)
3074 if (!atomic_dec_and_test(&eb->refs))
3079 EXPORT_SYMBOL(free_extent_buffer);
3081 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3082 struct extent_buffer *eb)
3086 unsigned long num_pages;
3089 u64 start = eb->start;
3090 u64 end = start + eb->len - 1;
3092 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
3093 num_pages = num_extent_pages(eb->start, eb->len);
3095 for (i = 0; i < num_pages; i++) {
3096 page = extent_buffer_page(eb, i);
3099 set_page_extent_head(page, eb->len);
3101 set_page_private(page, EXTENT_PAGE_PRIVATE);
3104 * if we're on the last page or the first page and the
3105 * block isn't aligned on a page boundary, do extra checks
3106 * to make sure we don't clean page that is partially dirty
3108 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3109 ((i == num_pages - 1) &&
3110 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3111 start = (u64)page->index << PAGE_CACHE_SHIFT;
3112 end = start + PAGE_CACHE_SIZE - 1;
3113 if (test_range_bit(tree, start, end,
3119 clear_page_dirty_for_io(page);
3120 spin_lock_irq(&page->mapping->tree_lock);
3121 if (!PageDirty(page)) {
3122 radix_tree_tag_clear(&page->mapping->page_tree,
3124 PAGECACHE_TAG_DIRTY);
3126 spin_unlock_irq(&page->mapping->tree_lock);
3131 EXPORT_SYMBOL(clear_extent_buffer_dirty);
3133 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3134 struct extent_buffer *eb)
3136 return wait_on_extent_writeback(tree, eb->start,
3137 eb->start + eb->len - 1);
3139 EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
3141 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3142 struct extent_buffer *eb)
3145 unsigned long num_pages;
3147 num_pages = num_extent_pages(eb->start, eb->len);
3148 for (i = 0; i < num_pages; i++) {
3149 struct page *page = extent_buffer_page(eb, i);
3150 /* writepage may need to do something special for the
3151 * first page, we have to make sure page->private is
3152 * properly set. releasepage may drop page->private
3153 * on us if the page isn't already dirty.
3157 set_page_extent_head(page, eb->len);
3158 } else if (PagePrivate(page) &&
3159 page->private != EXTENT_PAGE_PRIVATE) {
3160 set_page_extent_mapped(page);
3162 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3163 set_extent_dirty(tree, page_offset(page),
3164 page_offset(page) + PAGE_CACHE_SIZE -1,
3170 EXPORT_SYMBOL(set_extent_buffer_dirty);
3172 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3173 struct extent_buffer *eb)
3177 unsigned long num_pages;
3179 num_pages = num_extent_pages(eb->start, eb->len);
3180 eb->flags &= ~EXTENT_UPTODATE;
3182 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3184 for (i = 0; i < num_pages; i++) {
3185 page = extent_buffer_page(eb, i);
3187 ClearPageUptodate(page);
3192 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3193 struct extent_buffer *eb)
3197 unsigned long num_pages;
3199 num_pages = num_extent_pages(eb->start, eb->len);
3201 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3203 for (i = 0; i < num_pages; i++) {
3204 page = extent_buffer_page(eb, i);
3205 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3206 ((i == num_pages - 1) &&
3207 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3208 check_page_uptodate(tree, page);
3211 SetPageUptodate(page);
3215 EXPORT_SYMBOL(set_extent_buffer_uptodate);
3217 int extent_range_uptodate(struct extent_io_tree *tree,
3222 int pg_uptodate = 1;
3224 unsigned long index;
3226 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3229 while(start <= end) {
3230 index = start >> PAGE_CACHE_SHIFT;
3231 page = find_get_page(tree->mapping, index);
3232 uptodate = PageUptodate(page);
3233 page_cache_release(page);
3238 start += PAGE_CACHE_SIZE;
3243 int extent_buffer_uptodate(struct extent_io_tree *tree,
3244 struct extent_buffer *eb)
3247 unsigned long num_pages;
3250 int pg_uptodate = 1;
3252 if (eb->flags & EXTENT_UPTODATE)
3255 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3256 EXTENT_UPTODATE, 1);
3260 num_pages = num_extent_pages(eb->start, eb->len);
3261 for (i = 0; i < num_pages; i++) {
3262 page = extent_buffer_page(eb, i);
3263 if (!PageUptodate(page)) {
3270 EXPORT_SYMBOL(extent_buffer_uptodate);
3272 int read_extent_buffer_pages(struct extent_io_tree *tree,
3273 struct extent_buffer *eb,
3274 u64 start, int wait,
3275 get_extent_t *get_extent, int mirror_num)
3278 unsigned long start_i;
3282 int locked_pages = 0;
3283 int all_uptodate = 1;
3284 int inc_all_pages = 0;
3285 unsigned long num_pages;
3286 struct bio *bio = NULL;
3287 unsigned long bio_flags = 0;
3289 if (eb->flags & EXTENT_UPTODATE)
3292 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3293 EXTENT_UPTODATE, 1)) {
3298 WARN_ON(start < eb->start);
3299 start_i = (start >> PAGE_CACHE_SHIFT) -
3300 (eb->start >> PAGE_CACHE_SHIFT);
3305 num_pages = num_extent_pages(eb->start, eb->len);
3306 for (i = start_i; i < num_pages; i++) {
3307 page = extent_buffer_page(eb, i);
3309 if (!trylock_page(page))
3315 if (!PageUptodate(page)) {
3321 eb->flags |= EXTENT_UPTODATE;
3323 printk("all up to date but ret is %d\n", ret);
3328 for (i = start_i; i < num_pages; i++) {
3329 page = extent_buffer_page(eb, i);
3331 page_cache_get(page);
3332 if (!PageUptodate(page)) {
3335 ClearPageError(page);
3336 err = __extent_read_full_page(tree, page,
3338 mirror_num, &bio_flags);
3341 printk("err %d from __extent_read_full_page\n", ret);
3349 submit_one_bio(READ, bio, mirror_num, bio_flags);
3353 printk("ret %d wait %d returning\n", ret, wait);
3356 for (i = start_i; i < num_pages; i++) {
3357 page = extent_buffer_page(eb, i);
3358 wait_on_page_locked(page);
3359 if (!PageUptodate(page)) {
3360 printk("page not uptodate after wait_on_page_locked\n");
3365 eb->flags |= EXTENT_UPTODATE;
3370 while(locked_pages > 0) {
3371 page = extent_buffer_page(eb, i);
3378 EXPORT_SYMBOL(read_extent_buffer_pages);
3380 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3381 unsigned long start,
3388 char *dst = (char *)dstv;
3389 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3390 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3392 WARN_ON(start > eb->len);
3393 WARN_ON(start + len > eb->start + eb->len);
3395 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3398 page = extent_buffer_page(eb, i);
3400 cur = min(len, (PAGE_CACHE_SIZE - offset));
3401 kaddr = kmap_atomic(page, KM_USER1);
3402 memcpy(dst, kaddr + offset, cur);
3403 kunmap_atomic(kaddr, KM_USER1);
3411 EXPORT_SYMBOL(read_extent_buffer);
3413 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3414 unsigned long min_len, char **token, char **map,
3415 unsigned long *map_start,
3416 unsigned long *map_len, int km)
3418 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3421 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3422 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3423 unsigned long end_i = (start_offset + start + min_len - 1) >>
3430 offset = start_offset;
3434 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3436 if (start + min_len > eb->len) {
3437 printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3441 p = extent_buffer_page(eb, i);
3442 kaddr = kmap_atomic(p, km);
3444 *map = kaddr + offset;
3445 *map_len = PAGE_CACHE_SIZE - offset;
3448 EXPORT_SYMBOL(map_private_extent_buffer);
3450 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3451 unsigned long min_len,
3452 char **token, char **map,
3453 unsigned long *map_start,
3454 unsigned long *map_len, int km)
3458 if (eb->map_token) {
3459 unmap_extent_buffer(eb, eb->map_token, km);
3460 eb->map_token = NULL;
3463 err = map_private_extent_buffer(eb, start, min_len, token, map,
3464 map_start, map_len, km);
3466 eb->map_token = *token;
3468 eb->map_start = *map_start;
3469 eb->map_len = *map_len;
3473 EXPORT_SYMBOL(map_extent_buffer);
3475 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3477 kunmap_atomic(token, km);
3479 EXPORT_SYMBOL(unmap_extent_buffer);
3481 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3482 unsigned long start,
3489 char *ptr = (char *)ptrv;
3490 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3491 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3494 WARN_ON(start > eb->len);
3495 WARN_ON(start + len > eb->start + eb->len);
3497 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3500 page = extent_buffer_page(eb, i);
3502 cur = min(len, (PAGE_CACHE_SIZE - offset));
3504 kaddr = kmap_atomic(page, KM_USER0);
3505 ret = memcmp(ptr, kaddr + offset, cur);
3506 kunmap_atomic(kaddr, KM_USER0);
3517 EXPORT_SYMBOL(memcmp_extent_buffer);
3519 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3520 unsigned long start, unsigned long len)
3526 char *src = (char *)srcv;
3527 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3528 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3530 WARN_ON(start > eb->len);
3531 WARN_ON(start + len > eb->start + eb->len);
3533 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3536 page = extent_buffer_page(eb, i);
3537 WARN_ON(!PageUptodate(page));
3539 cur = min(len, PAGE_CACHE_SIZE - offset);
3540 kaddr = kmap_atomic(page, KM_USER1);
3541 memcpy(kaddr + offset, src, cur);
3542 kunmap_atomic(kaddr, KM_USER1);
3550 EXPORT_SYMBOL(write_extent_buffer);
3552 void memset_extent_buffer(struct extent_buffer *eb, char c,
3553 unsigned long start, unsigned long len)
3559 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3560 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3562 WARN_ON(start > eb->len);
3563 WARN_ON(start + len > eb->start + eb->len);
3565 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3568 page = extent_buffer_page(eb, i);
3569 WARN_ON(!PageUptodate(page));
3571 cur = min(len, PAGE_CACHE_SIZE - offset);
3572 kaddr = kmap_atomic(page, KM_USER0);
3573 memset(kaddr + offset, c, cur);
3574 kunmap_atomic(kaddr, KM_USER0);
3581 EXPORT_SYMBOL(memset_extent_buffer);
3583 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3584 unsigned long dst_offset, unsigned long src_offset,
3587 u64 dst_len = dst->len;
3592 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3593 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3595 WARN_ON(src->len != dst_len);
3597 offset = (start_offset + dst_offset) &
3598 ((unsigned long)PAGE_CACHE_SIZE - 1);
3601 page = extent_buffer_page(dst, i);
3602 WARN_ON(!PageUptodate(page));
3604 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3606 kaddr = kmap_atomic(page, KM_USER0);
3607 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3608 kunmap_atomic(kaddr, KM_USER0);
3616 EXPORT_SYMBOL(copy_extent_buffer);
3618 static void move_pages(struct page *dst_page, struct page *src_page,
3619 unsigned long dst_off, unsigned long src_off,
3622 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3623 if (dst_page == src_page) {
3624 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3626 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3627 char *p = dst_kaddr + dst_off + len;
3628 char *s = src_kaddr + src_off + len;
3633 kunmap_atomic(src_kaddr, KM_USER1);
3635 kunmap_atomic(dst_kaddr, KM_USER0);
3638 static void copy_pages(struct page *dst_page, struct page *src_page,
3639 unsigned long dst_off, unsigned long src_off,
3642 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3645 if (dst_page != src_page)
3646 src_kaddr = kmap_atomic(src_page, KM_USER1);
3648 src_kaddr = dst_kaddr;
3650 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3651 kunmap_atomic(dst_kaddr, KM_USER0);
3652 if (dst_page != src_page)
3653 kunmap_atomic(src_kaddr, KM_USER1);
3656 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3657 unsigned long src_offset, unsigned long len)
3660 size_t dst_off_in_page;
3661 size_t src_off_in_page;
3662 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3663 unsigned long dst_i;
3664 unsigned long src_i;
3666 if (src_offset + len > dst->len) {
3667 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3668 src_offset, len, dst->len);
3671 if (dst_offset + len > dst->len) {
3672 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3673 dst_offset, len, dst->len);
3678 dst_off_in_page = (start_offset + dst_offset) &
3679 ((unsigned long)PAGE_CACHE_SIZE - 1);
3680 src_off_in_page = (start_offset + src_offset) &
3681 ((unsigned long)PAGE_CACHE_SIZE - 1);
3683 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3684 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3686 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3688 cur = min_t(unsigned long, cur,
3689 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3691 copy_pages(extent_buffer_page(dst, dst_i),
3692 extent_buffer_page(dst, src_i),
3693 dst_off_in_page, src_off_in_page, cur);
3700 EXPORT_SYMBOL(memcpy_extent_buffer);
3702 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3703 unsigned long src_offset, unsigned long len)
3706 size_t dst_off_in_page;
3707 size_t src_off_in_page;
3708 unsigned long dst_end = dst_offset + len - 1;
3709 unsigned long src_end = src_offset + len - 1;
3710 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3711 unsigned long dst_i;
3712 unsigned long src_i;
3714 if (src_offset + len > dst->len) {
3715 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3716 src_offset, len, dst->len);
3719 if (dst_offset + len > dst->len) {
3720 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3721 dst_offset, len, dst->len);
3724 if (dst_offset < src_offset) {
3725 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3729 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3730 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3732 dst_off_in_page = (start_offset + dst_end) &
3733 ((unsigned long)PAGE_CACHE_SIZE - 1);
3734 src_off_in_page = (start_offset + src_end) &
3735 ((unsigned long)PAGE_CACHE_SIZE - 1);
3737 cur = min_t(unsigned long, len, src_off_in_page + 1);
3738 cur = min(cur, dst_off_in_page + 1);
3739 move_pages(extent_buffer_page(dst, dst_i),
3740 extent_buffer_page(dst, src_i),
3741 dst_off_in_page - cur + 1,
3742 src_off_in_page - cur + 1, cur);
3749 EXPORT_SYMBOL(memmove_extent_buffer);
3751 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3753 u64 start = page_offset(page);
3754 struct extent_buffer *eb;
3757 unsigned long num_pages;
3759 spin_lock(&tree->buffer_lock);
3760 eb = buffer_search(tree, start);
3764 if (atomic_read(&eb->refs) > 1) {
3768 /* at this point we can safely release the extent buffer */
3769 num_pages = num_extent_pages(eb->start, eb->len);
3770 for (i = 0; i < num_pages; i++)
3771 page_cache_release(extent_buffer_page(eb, i));
3772 rb_erase(&eb->rb_node, &tree->buffer);
3773 __free_extent_buffer(eb);
3775 spin_unlock(&tree->buffer_lock);
3778 EXPORT_SYMBOL(try_release_extent_buffer);