2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62 * Test whether an inode is a fast symlink.
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 (inode->i_sb->s_blocksize >> 9) : 0;
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
81 * If the handle isn't valid we're not journaling so there's nothing to do.
83 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
84 struct buffer_head *bh, ext4_fsblk_t blocknr)
88 if (!ext4_handle_valid(handle))
93 BUFFER_TRACE(bh, "enter");
95 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
97 bh, is_metadata, inode->i_mode,
98 test_opt(inode->i_sb, DATA_FLAGS));
100 /* Never use the revoke function if we are doing full data
101 * journaling: there is no need to, and a V1 superblock won't
102 * support it. Otherwise, only skip the revoke on un-journaled
105 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
106 (!is_metadata && !ext4_should_journal_data(inode))) {
108 BUFFER_TRACE(bh, "call jbd2_journal_forget");
109 return ext4_journal_forget(handle, bh);
115 * data!=journal && (is_metadata || should_journal_data(inode))
117 BUFFER_TRACE(bh, "call ext4_journal_revoke");
118 err = ext4_journal_revoke(handle, blocknr, bh);
120 ext4_abort(inode->i_sb, __func__,
121 "error %d when attempting revoke", err);
122 BUFFER_TRACE(bh, "exit");
127 * Work out how many blocks we need to proceed with the next chunk of a
128 * truncate transaction.
130 static unsigned long blocks_for_truncate(struct inode *inode)
134 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
136 /* Give ourselves just enough room to cope with inodes in which
137 * i_blocks is corrupt: we've seen disk corruptions in the past
138 * which resulted in random data in an inode which looked enough
139 * like a regular file for ext4 to try to delete it. Things
140 * will go a bit crazy if that happens, but at least we should
141 * try not to panic the whole kernel. */
145 /* But we need to bound the transaction so we don't overflow the
147 if (needed > EXT4_MAX_TRANS_DATA)
148 needed = EXT4_MAX_TRANS_DATA;
150 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
154 * Truncate transactions can be complex and absolutely huge. So we need to
155 * be able to restart the transaction at a conventient checkpoint to make
156 * sure we don't overflow the journal.
158 * start_transaction gets us a new handle for a truncate transaction,
159 * and extend_transaction tries to extend the existing one a bit. If
160 * extend fails, we need to propagate the failure up and restart the
161 * transaction in the top-level truncate loop. --sct
163 static handle_t *start_transaction(struct inode *inode)
167 result = ext4_journal_start(inode, blocks_for_truncate(inode));
171 ext4_std_error(inode->i_sb, PTR_ERR(result));
176 * Try to extend this transaction for the purposes of truncation.
178 * Returns 0 if we managed to create more room. If we can't create more
179 * room, and the transaction must be restarted we return 1.
181 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
183 if (!ext4_handle_valid(handle))
185 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
187 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
193 * Restart the transaction associated with *handle. This does a commit,
194 * so before we call here everything must be consistently dirtied against
197 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
199 BUG_ON(EXT4_JOURNAL(inode) == NULL);
200 jbd_debug(2, "restarting handle %p\n", handle);
201 return ext4_journal_restart(handle, blocks_for_truncate(inode));
205 * Called at the last iput() if i_nlink is zero.
207 void ext4_delete_inode(struct inode *inode)
212 if (ext4_should_order_data(inode))
213 ext4_begin_ordered_truncate(inode, 0);
214 truncate_inode_pages(&inode->i_data, 0);
216 if (is_bad_inode(inode))
219 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
220 if (IS_ERR(handle)) {
221 ext4_std_error(inode->i_sb, PTR_ERR(handle));
223 * If we're going to skip the normal cleanup, we still need to
224 * make sure that the in-core orphan linked list is properly
227 ext4_orphan_del(NULL, inode);
232 ext4_handle_sync(handle);
234 err = ext4_mark_inode_dirty(handle, inode);
236 ext4_warning(inode->i_sb, __func__,
237 "couldn't mark inode dirty (err %d)", err);
241 ext4_truncate(inode);
244 * ext4_ext_truncate() doesn't reserve any slop when it
245 * restarts journal transactions; therefore there may not be
246 * enough credits left in the handle to remove the inode from
247 * the orphan list and set the dtime field.
249 if (!ext4_handle_has_enough_credits(handle, 3)) {
250 err = ext4_journal_extend(handle, 3);
252 err = ext4_journal_restart(handle, 3);
254 ext4_warning(inode->i_sb, __func__,
255 "couldn't extend journal (err %d)", err);
257 ext4_journal_stop(handle);
263 * Kill off the orphan record which ext4_truncate created.
264 * AKPM: I think this can be inside the above `if'.
265 * Note that ext4_orphan_del() has to be able to cope with the
266 * deletion of a non-existent orphan - this is because we don't
267 * know if ext4_truncate() actually created an orphan record.
268 * (Well, we could do this if we need to, but heck - it works)
270 ext4_orphan_del(handle, inode);
271 EXT4_I(inode)->i_dtime = get_seconds();
274 * One subtle ordering requirement: if anything has gone wrong
275 * (transaction abort, IO errors, whatever), then we can still
276 * do these next steps (the fs will already have been marked as
277 * having errors), but we can't free the inode if the mark_dirty
280 if (ext4_mark_inode_dirty(handle, inode))
281 /* If that failed, just do the required in-core inode clear. */
284 ext4_free_inode(handle, inode);
285 ext4_journal_stop(handle);
288 clear_inode(inode); /* We must guarantee clearing of inode... */
294 struct buffer_head *bh;
297 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
299 p->key = *(p->p = v);
304 * ext4_block_to_path - parse the block number into array of offsets
305 * @inode: inode in question (we are only interested in its superblock)
306 * @i_block: block number to be parsed
307 * @offsets: array to store the offsets in
308 * @boundary: set this non-zero if the referred-to block is likely to be
309 * followed (on disk) by an indirect block.
311 * To store the locations of file's data ext4 uses a data structure common
312 * for UNIX filesystems - tree of pointers anchored in the inode, with
313 * data blocks at leaves and indirect blocks in intermediate nodes.
314 * This function translates the block number into path in that tree -
315 * return value is the path length and @offsets[n] is the offset of
316 * pointer to (n+1)th node in the nth one. If @block is out of range
317 * (negative or too large) warning is printed and zero returned.
319 * Note: function doesn't find node addresses, so no IO is needed. All
320 * we need to know is the capacity of indirect blocks (taken from the
325 * Portability note: the last comparison (check that we fit into triple
326 * indirect block) is spelled differently, because otherwise on an
327 * architecture with 32-bit longs and 8Kb pages we might get into trouble
328 * if our filesystem had 8Kb blocks. We might use long long, but that would
329 * kill us on x86. Oh, well, at least the sign propagation does not matter -
330 * i_block would have to be negative in the very beginning, so we would not
334 static int ext4_block_to_path(struct inode *inode,
336 ext4_lblk_t offsets[4], int *boundary)
338 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
339 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
340 const long direct_blocks = EXT4_NDIR_BLOCKS,
341 indirect_blocks = ptrs,
342 double_blocks = (1 << (ptrs_bits * 2));
347 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
348 } else if (i_block < direct_blocks) {
349 offsets[n++] = i_block;
350 final = direct_blocks;
351 } else if ((i_block -= direct_blocks) < indirect_blocks) {
352 offsets[n++] = EXT4_IND_BLOCK;
353 offsets[n++] = i_block;
355 } else if ((i_block -= indirect_blocks) < double_blocks) {
356 offsets[n++] = EXT4_DIND_BLOCK;
357 offsets[n++] = i_block >> ptrs_bits;
358 offsets[n++] = i_block & (ptrs - 1);
360 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
361 offsets[n++] = EXT4_TIND_BLOCK;
362 offsets[n++] = i_block >> (ptrs_bits * 2);
363 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
364 offsets[n++] = i_block & (ptrs - 1);
367 ext4_warning(inode->i_sb, "ext4_block_to_path",
368 "block %lu > max in inode %lu",
369 i_block + direct_blocks +
370 indirect_blocks + double_blocks, inode->i_ino);
373 *boundary = final - 1 - (i_block & (ptrs - 1));
377 static int __ext4_check_blockref(const char *function, struct inode *inode,
378 __le32 *p, unsigned int max)
383 while (bref < p+max) {
384 blk = le32_to_cpu(*bref++);
386 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
388 ext4_error(inode->i_sb, function,
389 "invalid block reference %u "
390 "in inode #%lu", blk, inode->i_ino);
398 #define ext4_check_indirect_blockref(inode, bh) \
399 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
400 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
402 #define ext4_check_inode_blockref(inode) \
403 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
407 * ext4_get_branch - read the chain of indirect blocks leading to data
408 * @inode: inode in question
409 * @depth: depth of the chain (1 - direct pointer, etc.)
410 * @offsets: offsets of pointers in inode/indirect blocks
411 * @chain: place to store the result
412 * @err: here we store the error value
414 * Function fills the array of triples <key, p, bh> and returns %NULL
415 * if everything went OK or the pointer to the last filled triple
416 * (incomplete one) otherwise. Upon the return chain[i].key contains
417 * the number of (i+1)-th block in the chain (as it is stored in memory,
418 * i.e. little-endian 32-bit), chain[i].p contains the address of that
419 * number (it points into struct inode for i==0 and into the bh->b_data
420 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
421 * block for i>0 and NULL for i==0. In other words, it holds the block
422 * numbers of the chain, addresses they were taken from (and where we can
423 * verify that chain did not change) and buffer_heads hosting these
426 * Function stops when it stumbles upon zero pointer (absent block)
427 * (pointer to last triple returned, *@err == 0)
428 * or when it gets an IO error reading an indirect block
429 * (ditto, *@err == -EIO)
430 * or when it reads all @depth-1 indirect blocks successfully and finds
431 * the whole chain, all way to the data (returns %NULL, *err == 0).
433 * Need to be called with
434 * down_read(&EXT4_I(inode)->i_data_sem)
436 static Indirect *ext4_get_branch(struct inode *inode, int depth,
437 ext4_lblk_t *offsets,
438 Indirect chain[4], int *err)
440 struct super_block *sb = inode->i_sb;
442 struct buffer_head *bh;
445 /* i_data is not going away, no lock needed */
446 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
450 bh = sb_getblk(sb, le32_to_cpu(p->key));
454 if (!bh_uptodate_or_lock(bh)) {
455 if (bh_submit_read(bh) < 0) {
459 /* validate block references */
460 if (ext4_check_indirect_blockref(inode, bh)) {
466 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
480 * ext4_find_near - find a place for allocation with sufficient locality
482 * @ind: descriptor of indirect block.
484 * This function returns the preferred place for block allocation.
485 * It is used when heuristic for sequential allocation fails.
487 * + if there is a block to the left of our position - allocate near it.
488 * + if pointer will live in indirect block - allocate near that block.
489 * + if pointer will live in inode - allocate in the same
492 * In the latter case we colour the starting block by the callers PID to
493 * prevent it from clashing with concurrent allocations for a different inode
494 * in the same block group. The PID is used here so that functionally related
495 * files will be close-by on-disk.
497 * Caller must make sure that @ind is valid and will stay that way.
499 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
501 struct ext4_inode_info *ei = EXT4_I(inode);
502 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
504 ext4_fsblk_t bg_start;
505 ext4_fsblk_t last_block;
506 ext4_grpblk_t colour;
507 ext4_group_t block_group;
508 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
510 /* Try to find previous block */
511 for (p = ind->p - 1; p >= start; p--) {
513 return le32_to_cpu(*p);
516 /* No such thing, so let's try location of indirect block */
518 return ind->bh->b_blocknr;
521 * It is going to be referred to from the inode itself? OK, just put it
522 * into the same cylinder group then.
524 block_group = ei->i_block_group;
525 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
526 block_group &= ~(flex_size-1);
527 if (S_ISREG(inode->i_mode))
530 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
531 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
534 * If we are doing delayed allocation, we don't need take
535 * colour into account.
537 if (test_opt(inode->i_sb, DELALLOC))
540 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
541 colour = (current->pid % 16) *
542 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
544 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
545 return bg_start + colour;
549 * ext4_find_goal - find a preferred place for allocation.
551 * @block: block we want
552 * @partial: pointer to the last triple within a chain
554 * Normally this function find the preferred place for block allocation,
557 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
561 * XXX need to get goal block from mballoc's data structures
564 return ext4_find_near(inode, partial);
568 * ext4_blks_to_allocate: Look up the block map and count the number
569 * of direct blocks need to be allocated for the given branch.
571 * @branch: chain of indirect blocks
572 * @k: number of blocks need for indirect blocks
573 * @blks: number of data blocks to be mapped.
574 * @blocks_to_boundary: the offset in the indirect block
576 * return the total number of blocks to be allocate, including the
577 * direct and indirect blocks.
579 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
580 int blocks_to_boundary)
582 unsigned int count = 0;
585 * Simple case, [t,d]Indirect block(s) has not allocated yet
586 * then it's clear blocks on that path have not allocated
589 /* right now we don't handle cross boundary allocation */
590 if (blks < blocks_to_boundary + 1)
593 count += blocks_to_boundary + 1;
598 while (count < blks && count <= blocks_to_boundary &&
599 le32_to_cpu(*(branch[0].p + count)) == 0) {
606 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
607 * @indirect_blks: the number of blocks need to allocate for indirect
610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block,
612 * @blks: on return it will store the total number of allocated
615 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
616 ext4_lblk_t iblock, ext4_fsblk_t goal,
617 int indirect_blks, int blks,
618 ext4_fsblk_t new_blocks[4], int *err)
620 struct ext4_allocation_request ar;
622 unsigned long count = 0, blk_allocated = 0;
624 ext4_fsblk_t current_block = 0;
628 * Here we try to allocate the requested multiple blocks at once,
629 * on a best-effort basis.
630 * To build a branch, we should allocate blocks for
631 * the indirect blocks(if not allocated yet), and at least
632 * the first direct block of this branch. That's the
633 * minimum number of blocks need to allocate(required)
635 /* first we try to allocate the indirect blocks */
636 target = indirect_blks;
639 /* allocating blocks for indirect blocks and direct blocks */
640 current_block = ext4_new_meta_blocks(handle, inode,
646 /* allocate blocks for indirect blocks */
647 while (index < indirect_blks && count) {
648 new_blocks[index++] = current_block++;
653 * save the new block number
654 * for the first direct block
656 new_blocks[index] = current_block;
657 printk(KERN_INFO "%s returned more blocks than "
658 "requested\n", __func__);
664 target = blks - count ;
665 blk_allocated = count;
668 /* Now allocate data blocks */
669 memset(&ar, 0, sizeof(ar));
674 if (S_ISREG(inode->i_mode))
675 /* enable in-core preallocation only for regular files */
676 ar.flags = EXT4_MB_HINT_DATA;
678 current_block = ext4_mb_new_blocks(handle, &ar, err);
680 if (*err && (target == blks)) {
682 * if the allocation failed and we didn't allocate
688 if (target == blks) {
690 * save the new block number
691 * for the first direct block
693 new_blocks[index] = current_block;
695 blk_allocated += ar.len;
698 /* total number of blocks allocated for direct blocks */
703 for (i = 0; i < index; i++)
704 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
709 * ext4_alloc_branch - allocate and set up a chain of blocks.
711 * @indirect_blks: number of allocated indirect blocks
712 * @blks: number of allocated direct blocks
713 * @offsets: offsets (in the blocks) to store the pointers to next.
714 * @branch: place to store the chain in.
716 * This function allocates blocks, zeroes out all but the last one,
717 * links them into chain and (if we are synchronous) writes them to disk.
718 * In other words, it prepares a branch that can be spliced onto the
719 * inode. It stores the information about that chain in the branch[], in
720 * the same format as ext4_get_branch() would do. We are calling it after
721 * we had read the existing part of chain and partial points to the last
722 * triple of that (one with zero ->key). Upon the exit we have the same
723 * picture as after the successful ext4_get_block(), except that in one
724 * place chain is disconnected - *branch->p is still zero (we did not
725 * set the last link), but branch->key contains the number that should
726 * be placed into *branch->p to fill that gap.
728 * If allocation fails we free all blocks we've allocated (and forget
729 * their buffer_heads) and return the error value the from failed
730 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
731 * as described above and return 0.
733 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
734 ext4_lblk_t iblock, int indirect_blks,
735 int *blks, ext4_fsblk_t goal,
736 ext4_lblk_t *offsets, Indirect *branch)
738 int blocksize = inode->i_sb->s_blocksize;
741 struct buffer_head *bh;
743 ext4_fsblk_t new_blocks[4];
744 ext4_fsblk_t current_block;
746 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
747 *blks, new_blocks, &err);
751 branch[0].key = cpu_to_le32(new_blocks[0]);
753 * metadata blocks and data blocks are allocated.
755 for (n = 1; n <= indirect_blks; n++) {
757 * Get buffer_head for parent block, zero it out
758 * and set the pointer to new one, then send
761 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
764 BUFFER_TRACE(bh, "call get_create_access");
765 err = ext4_journal_get_create_access(handle, bh);
772 memset(bh->b_data, 0, blocksize);
773 branch[n].p = (__le32 *) bh->b_data + offsets[n];
774 branch[n].key = cpu_to_le32(new_blocks[n]);
775 *branch[n].p = branch[n].key;
776 if (n == indirect_blks) {
777 current_block = new_blocks[n];
779 * End of chain, update the last new metablock of
780 * the chain to point to the new allocated
781 * data blocks numbers
783 for (i = 1; i < num; i++)
784 *(branch[n].p + i) = cpu_to_le32(++current_block);
786 BUFFER_TRACE(bh, "marking uptodate");
787 set_buffer_uptodate(bh);
790 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
791 err = ext4_handle_dirty_metadata(handle, inode, bh);
798 /* Allocation failed, free what we already allocated */
799 for (i = 1; i <= n ; i++) {
800 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
801 ext4_journal_forget(handle, branch[i].bh);
803 for (i = 0; i < indirect_blks; i++)
804 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
806 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
812 * ext4_splice_branch - splice the allocated branch onto inode.
814 * @block: (logical) number of block we are adding
815 * @chain: chain of indirect blocks (with a missing link - see
817 * @where: location of missing link
818 * @num: number of indirect blocks we are adding
819 * @blks: number of direct blocks we are adding
821 * This function fills the missing link and does all housekeeping needed in
822 * inode (->i_blocks, etc.). In case of success we end up with the full
823 * chain to new block and return 0.
825 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
826 ext4_lblk_t block, Indirect *where, int num,
831 ext4_fsblk_t current_block;
834 * If we're splicing into a [td]indirect block (as opposed to the
835 * inode) then we need to get write access to the [td]indirect block
839 BUFFER_TRACE(where->bh, "get_write_access");
840 err = ext4_journal_get_write_access(handle, where->bh);
846 *where->p = where->key;
849 * Update the host buffer_head or inode to point to more just allocated
850 * direct blocks blocks
852 if (num == 0 && blks > 1) {
853 current_block = le32_to_cpu(where->key) + 1;
854 for (i = 1; i < blks; i++)
855 *(where->p + i) = cpu_to_le32(current_block++);
858 /* We are done with atomic stuff, now do the rest of housekeeping */
859 /* had we spliced it onto indirect block? */
862 * If we spliced it onto an indirect block, we haven't
863 * altered the inode. Note however that if it is being spliced
864 * onto an indirect block at the very end of the file (the
865 * file is growing) then we *will* alter the inode to reflect
866 * the new i_size. But that is not done here - it is done in
867 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
869 jbd_debug(5, "splicing indirect only\n");
870 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
876 * OK, we spliced it into the inode itself on a direct block.
878 ext4_mark_inode_dirty(handle, inode);
879 jbd_debug(5, "splicing direct\n");
884 for (i = 1; i <= num; i++) {
885 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
886 ext4_journal_forget(handle, where[i].bh);
887 ext4_free_blocks(handle, inode,
888 le32_to_cpu(where[i-1].key), 1, 0);
890 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
896 * The ext4_ind_get_blocks() function handles non-extents inodes
897 * (i.e., using the traditional indirect/double-indirect i_blocks
898 * scheme) for ext4_get_blocks().
900 * Allocation strategy is simple: if we have to allocate something, we will
901 * have to go the whole way to leaf. So let's do it before attaching anything
902 * to tree, set linkage between the newborn blocks, write them if sync is
903 * required, recheck the path, free and repeat if check fails, otherwise
904 * set the last missing link (that will protect us from any truncate-generated
905 * removals - all blocks on the path are immune now) and possibly force the
906 * write on the parent block.
907 * That has a nice additional property: no special recovery from the failed
908 * allocations is needed - we simply release blocks and do not touch anything
909 * reachable from inode.
911 * `handle' can be NULL if create == 0.
913 * return > 0, # of blocks mapped or allocated.
914 * return = 0, if plain lookup failed.
915 * return < 0, error case.
917 * The ext4_ind_get_blocks() function should be called with
918 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
923 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
924 ext4_lblk_t iblock, unsigned int maxblocks,
925 struct buffer_head *bh_result,
929 ext4_lblk_t offsets[4];
934 int blocks_to_boundary = 0;
937 ext4_fsblk_t first_block = 0;
939 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
941 depth = ext4_block_to_path(inode, iblock, offsets,
942 &blocks_to_boundary);
947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
949 /* Simplest case - block found, no allocation needed */
951 first_block = le32_to_cpu(chain[depth - 1].key);
952 clear_buffer_new(bh_result);
955 while (count < maxblocks && count <= blocks_to_boundary) {
958 blk = le32_to_cpu(*(chain[depth-1].p + count));
960 if (blk == first_block + count)
968 /* Next simple case - plain lookup or failed read of indirect block */
969 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
973 * Okay, we need to do block allocation.
975 goal = ext4_find_goal(inode, iblock, partial);
977 /* the number of blocks need to allocate for [d,t]indirect blocks */
978 indirect_blks = (chain + depth) - partial - 1;
981 * Next look up the indirect map to count the totoal number of
982 * direct blocks to allocate for this branch.
984 count = ext4_blks_to_allocate(partial, indirect_blks,
985 maxblocks, blocks_to_boundary);
987 * Block out ext4_truncate while we alter the tree
989 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
991 offsets + (partial - chain), partial);
994 * The ext4_splice_branch call will free and forget any buffers
995 * on the new chain if there is a failure, but that risks using
996 * up transaction credits, especially for bitmaps where the
997 * credits cannot be returned. Can we handle this somehow? We
998 * may need to return -EAGAIN upwards in the worst case. --sct
1001 err = ext4_splice_branch(handle, inode, iblock,
1002 partial, indirect_blks, count);
1006 set_buffer_new(bh_result);
1008 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1009 if (count > blocks_to_boundary)
1010 set_buffer_boundary(bh_result);
1012 /* Clean up and exit */
1013 partial = chain + depth - 1; /* the whole chain */
1015 while (partial > chain) {
1016 BUFFER_TRACE(partial->bh, "call brelse");
1017 brelse(partial->bh);
1020 BUFFER_TRACE(bh_result, "returned");
1025 qsize_t ext4_get_reserved_space(struct inode *inode)
1027 unsigned long long total;
1029 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1030 total = EXT4_I(inode)->i_reserved_data_blocks +
1031 EXT4_I(inode)->i_reserved_meta_blocks;
1032 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1037 * Calculate the number of metadata blocks need to reserve
1038 * to allocate @blocks for non extent file based file
1040 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1042 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1043 int ind_blks, dind_blks, tind_blks;
1045 /* number of new indirect blocks needed */
1046 ind_blks = (blocks + icap - 1) / icap;
1048 dind_blks = (ind_blks + icap - 1) / icap;
1052 return ind_blks + dind_blks + tind_blks;
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate given number of blocks
1059 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 return ext4_ext_calc_metadata_amount(inode, blocks);
1067 return ext4_indirect_calc_metadata_amount(inode, blocks);
1070 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1072 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1073 int total, mdb, mdb_free;
1075 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1076 /* recalculate the number of metablocks still need to be reserved */
1077 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1078 mdb = ext4_calc_metadata_amount(inode, total);
1080 /* figure out how many metablocks to release */
1081 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1082 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1085 /* Account for allocated meta_blocks */
1086 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1088 /* update fs dirty blocks counter */
1089 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1091 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1094 /* update per-inode reservations */
1095 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1096 EXT4_I(inode)->i_reserved_data_blocks -= used;
1097 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1100 * free those over-booking quota for metadata blocks
1103 vfs_dq_release_reservation_block(inode, mdb_free);
1106 * If we have done all the pending block allocations and if
1107 * there aren't any writers on the inode, we can discard the
1108 * inode's preallocations.
1110 if (!total && (atomic_read(&inode->i_writecount) == 0))
1111 ext4_discard_preallocations(inode);
1114 static int check_block_validity(struct inode *inode, sector_t logical,
1115 sector_t phys, int len)
1117 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1118 ext4_error(inode->i_sb, "check_block_validity",
1119 "inode #%lu logical block %llu mapped to %llu "
1120 "(size %d)", inode->i_ino,
1121 (unsigned long long) logical,
1122 (unsigned long long) phys, len);
1130 * The ext4_get_blocks() function tries to look up the requested blocks,
1131 * and returns if the blocks are already mapped.
1133 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1134 * and store the allocated blocks in the result buffer head and mark it
1137 * If file type is extents based, it will call ext4_ext_get_blocks(),
1138 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1141 * On success, it returns the number of blocks being mapped or allocate.
1142 * if create==0 and the blocks are pre-allocated and uninitialized block,
1143 * the result buffer head is unmapped. If the create ==1, it will make sure
1144 * the buffer head is mapped.
1146 * It returns 0 if plain look up failed (blocks have not been allocated), in
1147 * that casem, buffer head is unmapped
1149 * It returns the error in case of allocation failure.
1151 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1152 unsigned int max_blocks, struct buffer_head *bh,
1157 clear_buffer_mapped(bh);
1158 clear_buffer_unwritten(bh);
1161 * Try to see if we can get the block without requesting a new
1162 * file system block.
1164 down_read((&EXT4_I(inode)->i_data_sem));
1165 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1166 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1169 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1172 up_read((&EXT4_I(inode)->i_data_sem));
1174 if (retval > 0 && buffer_mapped(bh)) {
1175 int ret = check_block_validity(inode, block,
1176 bh->b_blocknr, retval);
1181 /* If it is only a block(s) look up */
1182 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1186 * Returns if the blocks have already allocated
1188 * Note that if blocks have been preallocated
1189 * ext4_ext_get_block() returns th create = 0
1190 * with buffer head unmapped.
1192 if (retval > 0 && buffer_mapped(bh))
1196 * When we call get_blocks without the create flag, the
1197 * BH_Unwritten flag could have gotten set if the blocks
1198 * requested were part of a uninitialized extent. We need to
1199 * clear this flag now that we are committed to convert all or
1200 * part of the uninitialized extent to be an initialized
1201 * extent. This is because we need to avoid the combination
1202 * of BH_Unwritten and BH_Mapped flags being simultaneously
1203 * set on the buffer_head.
1205 clear_buffer_unwritten(bh);
1208 * New blocks allocate and/or writing to uninitialized extent
1209 * will possibly result in updating i_data, so we take
1210 * the write lock of i_data_sem, and call get_blocks()
1211 * with create == 1 flag.
1213 down_write((&EXT4_I(inode)->i_data_sem));
1216 * if the caller is from delayed allocation writeout path
1217 * we have already reserved fs blocks for allocation
1218 * let the underlying get_block() function know to
1219 * avoid double accounting
1221 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1222 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1224 * We need to check for EXT4 here because migrate
1225 * could have changed the inode type in between
1227 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1228 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1231 retval = ext4_ind_get_blocks(handle, inode, block,
1232 max_blocks, bh, flags);
1234 if (retval > 0 && buffer_new(bh)) {
1236 * We allocated new blocks which will result in
1237 * i_data's format changing. Force the migrate
1238 * to fail by clearing migrate flags
1240 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1245 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1246 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1249 * Update reserved blocks/metadata blocks after successful
1250 * block allocation which had been deferred till now.
1252 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1253 ext4_da_update_reserve_space(inode, retval);
1255 up_write((&EXT4_I(inode)->i_data_sem));
1256 if (retval > 0 && buffer_mapped(bh)) {
1257 int ret = check_block_validity(inode, block,
1258 bh->b_blocknr, retval);
1265 /* Maximum number of blocks we map for direct IO at once. */
1266 #define DIO_MAX_BLOCKS 4096
1268 int ext4_get_block(struct inode *inode, sector_t iblock,
1269 struct buffer_head *bh_result, int create)
1271 handle_t *handle = ext4_journal_current_handle();
1272 int ret = 0, started = 0;
1273 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1276 if (create && !handle) {
1277 /* Direct IO write... */
1278 if (max_blocks > DIO_MAX_BLOCKS)
1279 max_blocks = DIO_MAX_BLOCKS;
1280 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1281 handle = ext4_journal_start(inode, dio_credits);
1282 if (IS_ERR(handle)) {
1283 ret = PTR_ERR(handle);
1289 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1290 create ? EXT4_GET_BLOCKS_CREATE : 0);
1292 bh_result->b_size = (ret << inode->i_blkbits);
1296 ext4_journal_stop(handle);
1302 * `handle' can be NULL if create is zero
1304 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1305 ext4_lblk_t block, int create, int *errp)
1307 struct buffer_head dummy;
1311 J_ASSERT(handle != NULL || create == 0);
1314 dummy.b_blocknr = -1000;
1315 buffer_trace_init(&dummy.b_history);
1317 flags |= EXT4_GET_BLOCKS_CREATE;
1318 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1320 * ext4_get_blocks() returns number of blocks mapped. 0 in
1329 if (!err && buffer_mapped(&dummy)) {
1330 struct buffer_head *bh;
1331 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1336 if (buffer_new(&dummy)) {
1337 J_ASSERT(create != 0);
1338 J_ASSERT(handle != NULL);
1341 * Now that we do not always journal data, we should
1342 * keep in mind whether this should always journal the
1343 * new buffer as metadata. For now, regular file
1344 * writes use ext4_get_block instead, so it's not a
1348 BUFFER_TRACE(bh, "call get_create_access");
1349 fatal = ext4_journal_get_create_access(handle, bh);
1350 if (!fatal && !buffer_uptodate(bh)) {
1351 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1352 set_buffer_uptodate(bh);
1355 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1356 err = ext4_handle_dirty_metadata(handle, inode, bh);
1360 BUFFER_TRACE(bh, "not a new buffer");
1373 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1374 ext4_lblk_t block, int create, int *err)
1376 struct buffer_head *bh;
1378 bh = ext4_getblk(handle, inode, block, create, err);
1381 if (buffer_uptodate(bh))
1383 ll_rw_block(READ_META, 1, &bh);
1385 if (buffer_uptodate(bh))
1392 static int walk_page_buffers(handle_t *handle,
1393 struct buffer_head *head,
1397 int (*fn)(handle_t *handle,
1398 struct buffer_head *bh))
1400 struct buffer_head *bh;
1401 unsigned block_start, block_end;
1402 unsigned blocksize = head->b_size;
1404 struct buffer_head *next;
1406 for (bh = head, block_start = 0;
1407 ret == 0 && (bh != head || !block_start);
1408 block_start = block_end, bh = next) {
1409 next = bh->b_this_page;
1410 block_end = block_start + blocksize;
1411 if (block_end <= from || block_start >= to) {
1412 if (partial && !buffer_uptodate(bh))
1416 err = (*fn)(handle, bh);
1424 * To preserve ordering, it is essential that the hole instantiation and
1425 * the data write be encapsulated in a single transaction. We cannot
1426 * close off a transaction and start a new one between the ext4_get_block()
1427 * and the commit_write(). So doing the jbd2_journal_start at the start of
1428 * prepare_write() is the right place.
1430 * Also, this function can nest inside ext4_writepage() ->
1431 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1432 * has generated enough buffer credits to do the whole page. So we won't
1433 * block on the journal in that case, which is good, because the caller may
1436 * By accident, ext4 can be reentered when a transaction is open via
1437 * quota file writes. If we were to commit the transaction while thus
1438 * reentered, there can be a deadlock - we would be holding a quota
1439 * lock, and the commit would never complete if another thread had a
1440 * transaction open and was blocking on the quota lock - a ranking
1443 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1444 * will _not_ run commit under these circumstances because handle->h_ref
1445 * is elevated. We'll still have enough credits for the tiny quotafile
1448 static int do_journal_get_write_access(handle_t *handle,
1449 struct buffer_head *bh)
1451 if (!buffer_mapped(bh) || buffer_freed(bh))
1453 return ext4_journal_get_write_access(handle, bh);
1456 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1457 loff_t pos, unsigned len, unsigned flags,
1458 struct page **pagep, void **fsdata)
1460 struct inode *inode = mapping->host;
1461 int ret, needed_blocks;
1468 trace_ext4_write_begin(inode, pos, len, flags);
1470 * Reserve one block more for addition to orphan list in case
1471 * we allocate blocks but write fails for some reason
1473 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1474 index = pos >> PAGE_CACHE_SHIFT;
1475 from = pos & (PAGE_CACHE_SIZE - 1);
1479 handle = ext4_journal_start(inode, needed_blocks);
1480 if (IS_ERR(handle)) {
1481 ret = PTR_ERR(handle);
1485 /* We cannot recurse into the filesystem as the transaction is already
1487 flags |= AOP_FLAG_NOFS;
1489 page = grab_cache_page_write_begin(mapping, index, flags);
1491 ext4_journal_stop(handle);
1497 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1500 if (!ret && ext4_should_journal_data(inode)) {
1501 ret = walk_page_buffers(handle, page_buffers(page),
1502 from, to, NULL, do_journal_get_write_access);
1507 page_cache_release(page);
1509 * block_write_begin may have instantiated a few blocks
1510 * outside i_size. Trim these off again. Don't need
1511 * i_size_read because we hold i_mutex.
1513 * Add inode to orphan list in case we crash before
1516 if (pos + len > inode->i_size)
1517 ext4_orphan_add(handle, inode);
1519 ext4_journal_stop(handle);
1520 if (pos + len > inode->i_size) {
1521 vmtruncate(inode, inode->i_size);
1523 * If vmtruncate failed early the inode might
1524 * still be on the orphan list; we need to
1525 * make sure the inode is removed from the
1526 * orphan list in that case.
1529 ext4_orphan_del(NULL, inode);
1533 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1539 /* For write_end() in data=journal mode */
1540 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1542 if (!buffer_mapped(bh) || buffer_freed(bh))
1544 set_buffer_uptodate(bh);
1545 return ext4_handle_dirty_metadata(handle, NULL, bh);
1548 static int ext4_generic_write_end(struct file *file,
1549 struct address_space *mapping,
1550 loff_t pos, unsigned len, unsigned copied,
1551 struct page *page, void *fsdata)
1553 int i_size_changed = 0;
1554 struct inode *inode = mapping->host;
1555 handle_t *handle = ext4_journal_current_handle();
1557 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1560 * No need to use i_size_read() here, the i_size
1561 * cannot change under us because we hold i_mutex.
1563 * But it's important to update i_size while still holding page lock:
1564 * page writeout could otherwise come in and zero beyond i_size.
1566 if (pos + copied > inode->i_size) {
1567 i_size_write(inode, pos + copied);
1571 if (pos + copied > EXT4_I(inode)->i_disksize) {
1572 /* We need to mark inode dirty even if
1573 * new_i_size is less that inode->i_size
1574 * bu greater than i_disksize.(hint delalloc)
1576 ext4_update_i_disksize(inode, (pos + copied));
1580 page_cache_release(page);
1583 * Don't mark the inode dirty under page lock. First, it unnecessarily
1584 * makes the holding time of page lock longer. Second, it forces lock
1585 * ordering of page lock and transaction start for journaling
1589 ext4_mark_inode_dirty(handle, inode);
1595 * We need to pick up the new inode size which generic_commit_write gave us
1596 * `file' can be NULL - eg, when called from page_symlink().
1598 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1599 * buffers are managed internally.
1601 static int ext4_ordered_write_end(struct file *file,
1602 struct address_space *mapping,
1603 loff_t pos, unsigned len, unsigned copied,
1604 struct page *page, void *fsdata)
1606 handle_t *handle = ext4_journal_current_handle();
1607 struct inode *inode = mapping->host;
1610 trace_ext4_ordered_write_end(inode, pos, len, copied);
1611 ret = ext4_jbd2_file_inode(handle, inode);
1614 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1617 if (pos + len > inode->i_size)
1618 /* if we have allocated more blocks and copied
1619 * less. We will have blocks allocated outside
1620 * inode->i_size. So truncate them
1622 ext4_orphan_add(handle, inode);
1626 ret2 = ext4_journal_stop(handle);
1630 if (pos + len > inode->i_size) {
1631 vmtruncate(inode, inode->i_size);
1633 * If vmtruncate failed early the inode might still be
1634 * on the orphan list; we need to make sure the inode
1635 * is removed from the orphan list in that case.
1638 ext4_orphan_del(NULL, inode);
1642 return ret ? ret : copied;
1645 static int ext4_writeback_write_end(struct file *file,
1646 struct address_space *mapping,
1647 loff_t pos, unsigned len, unsigned copied,
1648 struct page *page, void *fsdata)
1650 handle_t *handle = ext4_journal_current_handle();
1651 struct inode *inode = mapping->host;
1654 trace_ext4_writeback_write_end(inode, pos, len, copied);
1655 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1658 if (pos + len > inode->i_size)
1659 /* if we have allocated more blocks and copied
1660 * less. We will have blocks allocated outside
1661 * inode->i_size. So truncate them
1663 ext4_orphan_add(handle, inode);
1668 ret2 = ext4_journal_stop(handle);
1672 if (pos + len > inode->i_size) {
1673 vmtruncate(inode, inode->i_size);
1675 * If vmtruncate failed early the inode might still be
1676 * on the orphan list; we need to make sure the inode
1677 * is removed from the orphan list in that case.
1680 ext4_orphan_del(NULL, inode);
1683 return ret ? ret : copied;
1686 static int ext4_journalled_write_end(struct file *file,
1687 struct address_space *mapping,
1688 loff_t pos, unsigned len, unsigned copied,
1689 struct page *page, void *fsdata)
1691 handle_t *handle = ext4_journal_current_handle();
1692 struct inode *inode = mapping->host;
1698 trace_ext4_journalled_write_end(inode, pos, len, copied);
1699 from = pos & (PAGE_CACHE_SIZE - 1);
1703 if (!PageUptodate(page))
1705 page_zero_new_buffers(page, from+copied, to);
1708 ret = walk_page_buffers(handle, page_buffers(page), from,
1709 to, &partial, write_end_fn);
1711 SetPageUptodate(page);
1712 new_i_size = pos + copied;
1713 if (new_i_size > inode->i_size)
1714 i_size_write(inode, pos+copied);
1715 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1716 if (new_i_size > EXT4_I(inode)->i_disksize) {
1717 ext4_update_i_disksize(inode, new_i_size);
1718 ret2 = ext4_mark_inode_dirty(handle, inode);
1724 page_cache_release(page);
1725 if (pos + len > inode->i_size)
1726 /* if we have allocated more blocks and copied
1727 * less. We will have blocks allocated outside
1728 * inode->i_size. So truncate them
1730 ext4_orphan_add(handle, inode);
1732 ret2 = ext4_journal_stop(handle);
1735 if (pos + len > inode->i_size) {
1736 vmtruncate(inode, inode->i_size);
1738 * If vmtruncate failed early the inode might still be
1739 * on the orphan list; we need to make sure the inode
1740 * is removed from the orphan list in that case.
1743 ext4_orphan_del(NULL, inode);
1746 return ret ? ret : copied;
1749 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1752 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1753 unsigned long md_needed, mdblocks, total = 0;
1756 * recalculate the amount of metadata blocks to reserve
1757 * in order to allocate nrblocks
1758 * worse case is one extent per block
1761 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1762 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1763 mdblocks = ext4_calc_metadata_amount(inode, total);
1764 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1766 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1767 total = md_needed + nrblocks;
1770 * Make quota reservation here to prevent quota overflow
1771 * later. Real quota accounting is done at pages writeout
1774 if (vfs_dq_reserve_block(inode, total)) {
1775 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1779 if (ext4_claim_free_blocks(sbi, total)) {
1780 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1781 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1785 vfs_dq_release_reservation_block(inode, total);
1788 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1789 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1791 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1792 return 0; /* success */
1795 static void ext4_da_release_space(struct inode *inode, int to_free)
1797 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1798 int total, mdb, mdb_free, release;
1801 return; /* Nothing to release, exit */
1803 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1805 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1807 * if there is no reserved blocks, but we try to free some
1808 * then the counter is messed up somewhere.
1809 * but since this function is called from invalidate
1810 * page, it's harmless to return without any action
1812 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1813 "blocks for inode %lu, but there is no reserved "
1814 "data blocks\n", to_free, inode->i_ino);
1815 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1819 /* recalculate the number of metablocks still need to be reserved */
1820 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1821 mdb = ext4_calc_metadata_amount(inode, total);
1823 /* figure out how many metablocks to release */
1824 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1825 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1827 release = to_free + mdb_free;
1829 /* update fs dirty blocks counter for truncate case */
1830 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1832 /* update per-inode reservations */
1833 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1834 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1836 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1837 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1838 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1840 vfs_dq_release_reservation_block(inode, release);
1843 static void ext4_da_page_release_reservation(struct page *page,
1844 unsigned long offset)
1847 struct buffer_head *head, *bh;
1848 unsigned int curr_off = 0;
1850 head = page_buffers(page);
1853 unsigned int next_off = curr_off + bh->b_size;
1855 if ((offset <= curr_off) && (buffer_delay(bh))) {
1857 clear_buffer_delay(bh);
1859 curr_off = next_off;
1860 } while ((bh = bh->b_this_page) != head);
1861 ext4_da_release_space(page->mapping->host, to_release);
1865 * Delayed allocation stuff
1868 struct mpage_da_data {
1869 struct inode *inode;
1870 sector_t b_blocknr; /* start block number of extent */
1871 size_t b_size; /* size of extent */
1872 unsigned long b_state; /* state of the extent */
1873 unsigned long first_page, next_page; /* extent of pages */
1874 struct writeback_control *wbc;
1881 * mpage_da_submit_io - walks through extent of pages and try to write
1882 * them with writepage() call back
1884 * @mpd->inode: inode
1885 * @mpd->first_page: first page of the extent
1886 * @mpd->next_page: page after the last page of the extent
1888 * By the time mpage_da_submit_io() is called we expect all blocks
1889 * to be allocated. this may be wrong if allocation failed.
1891 * As pages are already locked by write_cache_pages(), we can't use it
1893 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1896 struct pagevec pvec;
1897 unsigned long index, end;
1898 int ret = 0, err, nr_pages, i;
1899 struct inode *inode = mpd->inode;
1900 struct address_space *mapping = inode->i_mapping;
1902 BUG_ON(mpd->next_page <= mpd->first_page);
1904 * We need to start from the first_page to the next_page - 1
1905 * to make sure we also write the mapped dirty buffer_heads.
1906 * If we look at mpd->b_blocknr we would only be looking
1907 * at the currently mapped buffer_heads.
1909 index = mpd->first_page;
1910 end = mpd->next_page - 1;
1912 pagevec_init(&pvec, 0);
1913 while (index <= end) {
1914 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1917 for (i = 0; i < nr_pages; i++) {
1918 struct page *page = pvec.pages[i];
1920 index = page->index;
1925 BUG_ON(!PageLocked(page));
1926 BUG_ON(PageWriteback(page));
1928 pages_skipped = mpd->wbc->pages_skipped;
1929 err = mapping->a_ops->writepage(page, mpd->wbc);
1930 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1932 * have successfully written the page
1933 * without skipping the same
1935 mpd->pages_written++;
1937 * In error case, we have to continue because
1938 * remaining pages are still locked
1939 * XXX: unlock and re-dirty them?
1944 pagevec_release(&pvec);
1950 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1952 * @mpd->inode - inode to walk through
1953 * @exbh->b_blocknr - first block on a disk
1954 * @exbh->b_size - amount of space in bytes
1955 * @logical - first logical block to start assignment with
1957 * the function goes through all passed space and put actual disk
1958 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1960 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1961 struct buffer_head *exbh)
1963 struct inode *inode = mpd->inode;
1964 struct address_space *mapping = inode->i_mapping;
1965 int blocks = exbh->b_size >> inode->i_blkbits;
1966 sector_t pblock = exbh->b_blocknr, cur_logical;
1967 struct buffer_head *head, *bh;
1969 struct pagevec pvec;
1972 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1973 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1974 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1976 pagevec_init(&pvec, 0);
1978 while (index <= end) {
1979 /* XXX: optimize tail */
1980 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1983 for (i = 0; i < nr_pages; i++) {
1984 struct page *page = pvec.pages[i];
1986 index = page->index;
1991 BUG_ON(!PageLocked(page));
1992 BUG_ON(PageWriteback(page));
1993 BUG_ON(!page_has_buffers(page));
1995 bh = page_buffers(page);
1998 /* skip blocks out of the range */
2000 if (cur_logical >= logical)
2003 } while ((bh = bh->b_this_page) != head);
2006 if (cur_logical >= logical + blocks)
2009 if (buffer_delay(bh) ||
2010 buffer_unwritten(bh)) {
2012 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2014 if (buffer_delay(bh)) {
2015 clear_buffer_delay(bh);
2016 bh->b_blocknr = pblock;
2019 * unwritten already should have
2020 * blocknr assigned. Verify that
2022 clear_buffer_unwritten(bh);
2023 BUG_ON(bh->b_blocknr != pblock);
2026 } else if (buffer_mapped(bh))
2027 BUG_ON(bh->b_blocknr != pblock);
2031 } while ((bh = bh->b_this_page) != head);
2033 pagevec_release(&pvec);
2039 * __unmap_underlying_blocks - just a helper function to unmap
2040 * set of blocks described by @bh
2042 static inline void __unmap_underlying_blocks(struct inode *inode,
2043 struct buffer_head *bh)
2045 struct block_device *bdev = inode->i_sb->s_bdev;
2048 blocks = bh->b_size >> inode->i_blkbits;
2049 for (i = 0; i < blocks; i++)
2050 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2053 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2054 sector_t logical, long blk_cnt)
2058 struct pagevec pvec;
2059 struct inode *inode = mpd->inode;
2060 struct address_space *mapping = inode->i_mapping;
2062 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2063 end = (logical + blk_cnt - 1) >>
2064 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2065 while (index <= end) {
2066 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2069 for (i = 0; i < nr_pages; i++) {
2070 struct page *page = pvec.pages[i];
2071 index = page->index;
2076 BUG_ON(!PageLocked(page));
2077 BUG_ON(PageWriteback(page));
2078 block_invalidatepage(page, 0);
2079 ClearPageUptodate(page);
2086 static void ext4_print_free_blocks(struct inode *inode)
2088 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2089 printk(KERN_EMERG "Total free blocks count %lld\n",
2090 ext4_count_free_blocks(inode->i_sb));
2091 printk(KERN_EMERG "Free/Dirty block details\n");
2092 printk(KERN_EMERG "free_blocks=%lld\n",
2093 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2094 printk(KERN_EMERG "dirty_blocks=%lld\n",
2095 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2096 printk(KERN_EMERG "Block reservation details\n");
2097 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2098 EXT4_I(inode)->i_reserved_data_blocks);
2099 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2100 EXT4_I(inode)->i_reserved_meta_blocks);
2105 * mpage_da_map_blocks - go through given space
2107 * @mpd - bh describing space
2109 * The function skips space we know is already mapped to disk blocks.
2112 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2114 int err, blks, get_blocks_flags;
2115 struct buffer_head new;
2116 sector_t next = mpd->b_blocknr;
2117 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2118 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2119 handle_t *handle = NULL;
2122 * We consider only non-mapped and non-allocated blocks
2124 if ((mpd->b_state & (1 << BH_Mapped)) &&
2125 !(mpd->b_state & (1 << BH_Delay)) &&
2126 !(mpd->b_state & (1 << BH_Unwritten)))
2130 * If we didn't accumulate anything to write simply return
2135 handle = ext4_journal_current_handle();
2139 * Call ext4_get_blocks() to allocate any delayed allocation
2140 * blocks, or to convert an uninitialized extent to be
2141 * initialized (in the case where we have written into
2142 * one or more preallocated blocks).
2144 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2145 * indicate that we are on the delayed allocation path. This
2146 * affects functions in many different parts of the allocation
2147 * call path. This flag exists primarily because we don't
2148 * want to change *many* call functions, so ext4_get_blocks()
2149 * will set the magic i_delalloc_reserved_flag once the
2150 * inode's allocation semaphore is taken.
2152 * If the blocks in questions were delalloc blocks, set
2153 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2154 * variables are updated after the blocks have been allocated.
2157 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2158 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2159 if (mpd->b_state & (1 << BH_Delay))
2160 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2161 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2162 &new, get_blocks_flags);
2166 * If get block returns with error we simply
2167 * return. Later writepage will redirty the page and
2168 * writepages will find the dirty page again
2173 if (err == -ENOSPC &&
2174 ext4_count_free_blocks(mpd->inode->i_sb)) {
2180 * get block failure will cause us to loop in
2181 * writepages, because a_ops->writepage won't be able
2182 * to make progress. The page will be redirtied by
2183 * writepage and writepages will again try to write
2186 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2187 "at logical offset %llu with max blocks "
2188 "%zd with error %d\n",
2189 __func__, mpd->inode->i_ino,
2190 (unsigned long long)next,
2191 mpd->b_size >> mpd->inode->i_blkbits, err);
2192 printk(KERN_EMERG "This should not happen.!! "
2193 "Data will be lost\n");
2194 if (err == -ENOSPC) {
2195 ext4_print_free_blocks(mpd->inode);
2197 /* invalidate all the pages */
2198 ext4_da_block_invalidatepages(mpd, next,
2199 mpd->b_size >> mpd->inode->i_blkbits);
2204 new.b_size = (blks << mpd->inode->i_blkbits);
2206 if (buffer_new(&new))
2207 __unmap_underlying_blocks(mpd->inode, &new);
2210 * If blocks are delayed marked, we need to
2211 * put actual blocknr and drop delayed bit
2213 if ((mpd->b_state & (1 << BH_Delay)) ||
2214 (mpd->b_state & (1 << BH_Unwritten)))
2215 mpage_put_bnr_to_bhs(mpd, next, &new);
2217 if (ext4_should_order_data(mpd->inode)) {
2218 err = ext4_jbd2_file_inode(handle, mpd->inode);
2224 * Update on-disk size along with block allocation.
2226 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2227 if (disksize > i_size_read(mpd->inode))
2228 disksize = i_size_read(mpd->inode);
2229 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2230 ext4_update_i_disksize(mpd->inode, disksize);
2231 return ext4_mark_inode_dirty(handle, mpd->inode);
2237 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2238 (1 << BH_Delay) | (1 << BH_Unwritten))
2241 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2243 * @mpd->lbh - extent of blocks
2244 * @logical - logical number of the block in the file
2245 * @bh - bh of the block (used to access block's state)
2247 * the function is used to collect contig. blocks in same state
2249 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2250 sector_t logical, size_t b_size,
2251 unsigned long b_state)
2254 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2256 /* check if thereserved journal credits might overflow */
2257 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2258 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2260 * With non-extent format we are limited by the journal
2261 * credit available. Total credit needed to insert
2262 * nrblocks contiguous blocks is dependent on the
2263 * nrblocks. So limit nrblocks.
2266 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2267 EXT4_MAX_TRANS_DATA) {
2269 * Adding the new buffer_head would make it cross the
2270 * allowed limit for which we have journal credit
2271 * reserved. So limit the new bh->b_size
2273 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2274 mpd->inode->i_blkbits;
2275 /* we will do mpage_da_submit_io in the next loop */
2279 * First block in the extent
2281 if (mpd->b_size == 0) {
2282 mpd->b_blocknr = logical;
2283 mpd->b_size = b_size;
2284 mpd->b_state = b_state & BH_FLAGS;
2288 next = mpd->b_blocknr + nrblocks;
2290 * Can we merge the block to our big extent?
2292 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2293 mpd->b_size += b_size;
2299 * We couldn't merge the block to our extent, so we
2300 * need to flush current extent and start new one
2302 if (mpage_da_map_blocks(mpd) == 0)
2303 mpage_da_submit_io(mpd);
2308 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2311 * unmapped buffer is possible for holes.
2312 * delay buffer is possible with delayed allocation.
2313 * We also need to consider unwritten buffer as unmapped.
2315 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2316 buffer_unwritten(bh)) && buffer_dirty(bh);
2320 * __mpage_da_writepage - finds extent of pages and blocks
2322 * @page: page to consider
2323 * @wbc: not used, we just follow rules
2326 * The function finds extents of pages and scan them for all blocks.
2328 static int __mpage_da_writepage(struct page *page,
2329 struct writeback_control *wbc, void *data)
2331 struct mpage_da_data *mpd = data;
2332 struct inode *inode = mpd->inode;
2333 struct buffer_head *bh, *head;
2338 * Rest of the page in the page_vec
2339 * redirty then and skip then. We will
2340 * try to to write them again after
2341 * starting a new transaction
2343 redirty_page_for_writepage(wbc, page);
2345 return MPAGE_DA_EXTENT_TAIL;
2348 * Can we merge this page to current extent?
2350 if (mpd->next_page != page->index) {
2352 * Nope, we can't. So, we map non-allocated blocks
2353 * and start IO on them using writepage()
2355 if (mpd->next_page != mpd->first_page) {
2356 if (mpage_da_map_blocks(mpd) == 0)
2357 mpage_da_submit_io(mpd);
2359 * skip rest of the page in the page_vec
2362 redirty_page_for_writepage(wbc, page);
2364 return MPAGE_DA_EXTENT_TAIL;
2368 * Start next extent of pages ...
2370 mpd->first_page = page->index;
2380 mpd->next_page = page->index + 1;
2381 logical = (sector_t) page->index <<
2382 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2384 if (!page_has_buffers(page)) {
2385 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2386 (1 << BH_Dirty) | (1 << BH_Uptodate));
2388 return MPAGE_DA_EXTENT_TAIL;
2391 * Page with regular buffer heads, just add all dirty ones
2393 head = page_buffers(page);
2396 BUG_ON(buffer_locked(bh));
2398 * We need to try to allocate
2399 * unmapped blocks in the same page.
2400 * Otherwise we won't make progress
2401 * with the page in ext4_da_writepage
2403 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2404 mpage_add_bh_to_extent(mpd, logical,
2408 return MPAGE_DA_EXTENT_TAIL;
2409 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2411 * mapped dirty buffer. We need to update
2412 * the b_state because we look at
2413 * b_state in mpage_da_map_blocks. We don't
2414 * update b_size because if we find an
2415 * unmapped buffer_head later we need to
2416 * use the b_state flag of that buffer_head.
2418 if (mpd->b_size == 0)
2419 mpd->b_state = bh->b_state & BH_FLAGS;
2422 } while ((bh = bh->b_this_page) != head);
2429 * This is a special get_blocks_t callback which is used by
2430 * ext4_da_write_begin(). It will either return mapped block or
2431 * reserve space for a single block.
2433 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2434 * We also have b_blocknr = -1 and b_bdev initialized properly
2436 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2437 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2438 * initialized properly.
2440 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2441 struct buffer_head *bh_result, int create)
2444 sector_t invalid_block = ~((sector_t) 0xffff);
2446 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2449 BUG_ON(create == 0);
2450 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2453 * first, we need to know whether the block is allocated already
2454 * preallocated blocks are unmapped but should treated
2455 * the same as allocated blocks.
2457 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2458 if ((ret == 0) && !buffer_delay(bh_result)) {
2459 /* the block isn't (pre)allocated yet, let's reserve space */
2461 * XXX: __block_prepare_write() unmaps passed block,
2464 ret = ext4_da_reserve_space(inode, 1);
2466 /* not enough space to reserve */
2469 map_bh(bh_result, inode->i_sb, invalid_block);
2470 set_buffer_new(bh_result);
2471 set_buffer_delay(bh_result);
2472 } else if (ret > 0) {
2473 bh_result->b_size = (ret << inode->i_blkbits);
2474 if (buffer_unwritten(bh_result)) {
2475 /* A delayed write to unwritten bh should
2476 * be marked new and mapped. Mapped ensures
2477 * that we don't do get_block multiple times
2478 * when we write to the same offset and new
2479 * ensures that we do proper zero out for
2482 set_buffer_new(bh_result);
2483 set_buffer_mapped(bh_result);
2492 * This function is used as a standard get_block_t calback function
2493 * when there is no desire to allocate any blocks. It is used as a
2494 * callback function for block_prepare_write(), nobh_writepage(), and
2495 * block_write_full_page(). These functions should only try to map a
2496 * single block at a time.
2498 * Since this function doesn't do block allocations even if the caller
2499 * requests it by passing in create=1, it is critically important that
2500 * any caller checks to make sure that any buffer heads are returned
2501 * by this function are either all already mapped or marked for
2502 * delayed allocation before calling nobh_writepage() or
2503 * block_write_full_page(). Otherwise, b_blocknr could be left
2504 * unitialized, and the page write functions will be taken by
2507 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2508 struct buffer_head *bh_result, int create)
2511 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2513 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2516 * we don't want to do block allocation in writepage
2517 * so call get_block_wrap with create = 0
2519 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2520 BUG_ON(create && ret == 0);
2522 bh_result->b_size = (ret << inode->i_blkbits);
2529 * This function can get called via...
2530 * - ext4_da_writepages after taking page lock (have journal handle)
2531 * - journal_submit_inode_data_buffers (no journal handle)
2532 * - shrink_page_list via pdflush (no journal handle)
2533 * - grab_page_cache when doing write_begin (have journal handle)
2535 static int ext4_da_writepage(struct page *page,
2536 struct writeback_control *wbc)
2541 struct buffer_head *page_bufs;
2542 struct inode *inode = page->mapping->host;
2544 trace_ext4_da_writepage(inode, page);
2545 size = i_size_read(inode);
2546 if (page->index == size >> PAGE_CACHE_SHIFT)
2547 len = size & ~PAGE_CACHE_MASK;
2549 len = PAGE_CACHE_SIZE;
2551 if (page_has_buffers(page)) {
2552 page_bufs = page_buffers(page);
2553 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2554 ext4_bh_unmapped_or_delay)) {
2556 * We don't want to do block allocation
2557 * So redirty the page and return
2558 * We may reach here when we do a journal commit
2559 * via journal_submit_inode_data_buffers.
2560 * If we don't have mapping block we just ignore
2561 * them. We can also reach here via shrink_page_list
2563 redirty_page_for_writepage(wbc, page);
2569 * The test for page_has_buffers() is subtle:
2570 * We know the page is dirty but it lost buffers. That means
2571 * that at some moment in time after write_begin()/write_end()
2572 * has been called all buffers have been clean and thus they
2573 * must have been written at least once. So they are all
2574 * mapped and we can happily proceed with mapping them
2575 * and writing the page.
2577 * Try to initialize the buffer_heads and check whether
2578 * all are mapped and non delay. We don't want to
2579 * do block allocation here.
2581 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2582 noalloc_get_block_write);
2584 page_bufs = page_buffers(page);
2585 /* check whether all are mapped and non delay */
2586 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2587 ext4_bh_unmapped_or_delay)) {
2588 redirty_page_for_writepage(wbc, page);
2594 * We can't do block allocation here
2595 * so just redity the page and unlock
2598 redirty_page_for_writepage(wbc, page);
2602 /* now mark the buffer_heads as dirty and uptodate */
2603 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2606 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2607 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2609 ret = block_write_full_page(page, noalloc_get_block_write,
2616 * This is called via ext4_da_writepages() to
2617 * calulate the total number of credits to reserve to fit
2618 * a single extent allocation into a single transaction,
2619 * ext4_da_writpeages() will loop calling this before
2620 * the block allocation.
2623 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2625 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2628 * With non-extent format the journal credit needed to
2629 * insert nrblocks contiguous block is dependent on
2630 * number of contiguous block. So we will limit
2631 * number of contiguous block to a sane value
2633 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2634 (max_blocks > EXT4_MAX_TRANS_DATA))
2635 max_blocks = EXT4_MAX_TRANS_DATA;
2637 return ext4_chunk_trans_blocks(inode, max_blocks);
2640 static int ext4_da_writepages(struct address_space *mapping,
2641 struct writeback_control *wbc)
2644 int range_whole = 0;
2645 handle_t *handle = NULL;
2646 struct mpage_da_data mpd;
2647 struct inode *inode = mapping->host;
2648 int no_nrwrite_index_update;
2649 int pages_written = 0;
2651 int range_cyclic, cycled = 1, io_done = 0;
2652 int needed_blocks, ret = 0, nr_to_writebump = 0;
2653 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2655 trace_ext4_da_writepages(inode, wbc);
2658 * No pages to write? This is mainly a kludge to avoid starting
2659 * a transaction for special inodes like journal inode on last iput()
2660 * because that could violate lock ordering on umount
2662 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2666 * If the filesystem has aborted, it is read-only, so return
2667 * right away instead of dumping stack traces later on that
2668 * will obscure the real source of the problem. We test
2669 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2670 * the latter could be true if the filesystem is mounted
2671 * read-only, and in that case, ext4_da_writepages should
2672 * *never* be called, so if that ever happens, we would want
2675 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2679 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2680 * This make sure small files blocks are allocated in
2681 * single attempt. This ensure that small files
2682 * get less fragmented.
2684 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2685 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2686 wbc->nr_to_write = sbi->s_mb_stream_request;
2688 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2691 range_cyclic = wbc->range_cyclic;
2692 if (wbc->range_cyclic) {
2693 index = mapping->writeback_index;
2696 wbc->range_start = index << PAGE_CACHE_SHIFT;
2697 wbc->range_end = LLONG_MAX;
2698 wbc->range_cyclic = 0;
2700 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2703 mpd.inode = mapping->host;
2706 * we don't want write_cache_pages to update
2707 * nr_to_write and writeback_index
2709 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2710 wbc->no_nrwrite_index_update = 1;
2711 pages_skipped = wbc->pages_skipped;
2714 while (!ret && wbc->nr_to_write > 0) {
2717 * we insert one extent at a time. So we need
2718 * credit needed for single extent allocation.
2719 * journalled mode is currently not supported
2722 BUG_ON(ext4_should_journal_data(inode));
2723 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2725 /* start a new transaction*/
2726 handle = ext4_journal_start(inode, needed_blocks);
2727 if (IS_ERR(handle)) {
2728 ret = PTR_ERR(handle);
2729 printk(KERN_CRIT "%s: jbd2_start: "
2730 "%ld pages, ino %lu; err %d\n", __func__,
2731 wbc->nr_to_write, inode->i_ino, ret);
2733 goto out_writepages;
2737 * Now call __mpage_da_writepage to find the next
2738 * contiguous region of logical blocks that need
2739 * blocks to be allocated by ext4. We don't actually
2740 * submit the blocks for I/O here, even though
2741 * write_cache_pages thinks it will, and will set the
2742 * pages as clean for write before calling
2743 * __mpage_da_writepage().
2751 mpd.pages_written = 0;
2753 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2756 * If we have a contigous extent of pages and we
2757 * haven't done the I/O yet, map the blocks and submit
2760 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2761 if (mpage_da_map_blocks(&mpd) == 0)
2762 mpage_da_submit_io(&mpd);
2764 ret = MPAGE_DA_EXTENT_TAIL;
2766 wbc->nr_to_write -= mpd.pages_written;
2768 ext4_journal_stop(handle);
2770 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2771 /* commit the transaction which would
2772 * free blocks released in the transaction
2775 jbd2_journal_force_commit_nested(sbi->s_journal);
2776 wbc->pages_skipped = pages_skipped;
2778 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2780 * got one extent now try with
2783 pages_written += mpd.pages_written;
2784 wbc->pages_skipped = pages_skipped;
2787 } else if (wbc->nr_to_write)
2789 * There is no more writeout needed
2790 * or we requested for a noblocking writeout
2791 * and we found the device congested
2795 if (!io_done && !cycled) {
2798 wbc->range_start = index << PAGE_CACHE_SHIFT;
2799 wbc->range_end = mapping->writeback_index - 1;
2802 if (pages_skipped != wbc->pages_skipped)
2803 printk(KERN_EMERG "This should not happen leaving %s "
2804 "with nr_to_write = %ld ret = %d\n",
2805 __func__, wbc->nr_to_write, ret);
2808 index += pages_written;
2809 wbc->range_cyclic = range_cyclic;
2810 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2812 * set the writeback_index so that range_cyclic
2813 * mode will write it back later
2815 mapping->writeback_index = index;
2818 if (!no_nrwrite_index_update)
2819 wbc->no_nrwrite_index_update = 0;
2820 wbc->nr_to_write -= nr_to_writebump;
2821 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2825 #define FALL_BACK_TO_NONDELALLOC 1
2826 static int ext4_nonda_switch(struct super_block *sb)
2828 s64 free_blocks, dirty_blocks;
2829 struct ext4_sb_info *sbi = EXT4_SB(sb);
2832 * switch to non delalloc mode if we are running low
2833 * on free block. The free block accounting via percpu
2834 * counters can get slightly wrong with percpu_counter_batch getting
2835 * accumulated on each CPU without updating global counters
2836 * Delalloc need an accurate free block accounting. So switch
2837 * to non delalloc when we are near to error range.
2839 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2840 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2841 if (2 * free_blocks < 3 * dirty_blocks ||
2842 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2844 * free block count is less that 150% of dirty blocks
2845 * or free blocks is less that watermark
2852 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2853 loff_t pos, unsigned len, unsigned flags,
2854 struct page **pagep, void **fsdata)
2856 int ret, retries = 0;
2860 struct inode *inode = mapping->host;
2863 index = pos >> PAGE_CACHE_SHIFT;
2864 from = pos & (PAGE_CACHE_SIZE - 1);
2867 if (ext4_nonda_switch(inode->i_sb)) {
2868 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2869 return ext4_write_begin(file, mapping, pos,
2870 len, flags, pagep, fsdata);
2872 *fsdata = (void *)0;
2873 trace_ext4_da_write_begin(inode, pos, len, flags);
2876 * With delayed allocation, we don't log the i_disksize update
2877 * if there is delayed block allocation. But we still need
2878 * to journalling the i_disksize update if writes to the end
2879 * of file which has an already mapped buffer.
2881 handle = ext4_journal_start(inode, 1);
2882 if (IS_ERR(handle)) {
2883 ret = PTR_ERR(handle);
2886 /* We cannot recurse into the filesystem as the transaction is already
2888 flags |= AOP_FLAG_NOFS;
2890 page = grab_cache_page_write_begin(mapping, index, flags);
2892 ext4_journal_stop(handle);
2898 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2899 ext4_da_get_block_prep);
2902 ext4_journal_stop(handle);
2903 page_cache_release(page);
2905 * block_write_begin may have instantiated a few blocks
2906 * outside i_size. Trim these off again. Don't need
2907 * i_size_read because we hold i_mutex.
2909 if (pos + len > inode->i_size)
2910 vmtruncate(inode, inode->i_size);
2913 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2920 * Check if we should update i_disksize
2921 * when write to the end of file but not require block allocation
2923 static int ext4_da_should_update_i_disksize(struct page *page,
2924 unsigned long offset)
2926 struct buffer_head *bh;
2927 struct inode *inode = page->mapping->host;
2931 bh = page_buffers(page);
2932 idx = offset >> inode->i_blkbits;
2934 for (i = 0; i < idx; i++)
2935 bh = bh->b_this_page;
2937 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2942 static int ext4_da_write_end(struct file *file,
2943 struct address_space *mapping,
2944 loff_t pos, unsigned len, unsigned copied,
2945 struct page *page, void *fsdata)
2947 struct inode *inode = mapping->host;
2949 handle_t *handle = ext4_journal_current_handle();
2951 unsigned long start, end;
2952 int write_mode = (int)(unsigned long)fsdata;
2954 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2955 if (ext4_should_order_data(inode)) {
2956 return ext4_ordered_write_end(file, mapping, pos,
2957 len, copied, page, fsdata);
2958 } else if (ext4_should_writeback_data(inode)) {
2959 return ext4_writeback_write_end(file, mapping, pos,
2960 len, copied, page, fsdata);
2966 trace_ext4_da_write_end(inode, pos, len, copied);
2967 start = pos & (PAGE_CACHE_SIZE - 1);
2968 end = start + copied - 1;
2971 * generic_write_end() will run mark_inode_dirty() if i_size
2972 * changes. So let's piggyback the i_disksize mark_inode_dirty
2976 new_i_size = pos + copied;
2977 if (new_i_size > EXT4_I(inode)->i_disksize) {
2978 if (ext4_da_should_update_i_disksize(page, end)) {
2979 down_write(&EXT4_I(inode)->i_data_sem);
2980 if (new_i_size > EXT4_I(inode)->i_disksize) {
2982 * Updating i_disksize when extending file
2983 * without needing block allocation
2985 if (ext4_should_order_data(inode))
2986 ret = ext4_jbd2_file_inode(handle,
2989 EXT4_I(inode)->i_disksize = new_i_size;
2991 up_write(&EXT4_I(inode)->i_data_sem);
2992 /* We need to mark inode dirty even if
2993 * new_i_size is less that inode->i_size
2994 * bu greater than i_disksize.(hint delalloc)
2996 ext4_mark_inode_dirty(handle, inode);
2999 ret2 = generic_write_end(file, mapping, pos, len, copied,
3004 ret2 = ext4_journal_stop(handle);
3008 return ret ? ret : copied;
3011 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3014 * Drop reserved blocks
3016 BUG_ON(!PageLocked(page));
3017 if (!page_has_buffers(page))
3020 ext4_da_page_release_reservation(page, offset);
3023 ext4_invalidatepage(page, offset);
3029 * Force all delayed allocation blocks to be allocated for a given inode.
3031 int ext4_alloc_da_blocks(struct inode *inode)
3033 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3034 !EXT4_I(inode)->i_reserved_meta_blocks)
3038 * We do something simple for now. The filemap_flush() will
3039 * also start triggering a write of the data blocks, which is
3040 * not strictly speaking necessary (and for users of
3041 * laptop_mode, not even desirable). However, to do otherwise
3042 * would require replicating code paths in:
3044 * ext4_da_writepages() ->
3045 * write_cache_pages() ---> (via passed in callback function)
3046 * __mpage_da_writepage() -->
3047 * mpage_add_bh_to_extent()
3048 * mpage_da_map_blocks()
3050 * The problem is that write_cache_pages(), located in
3051 * mm/page-writeback.c, marks pages clean in preparation for
3052 * doing I/O, which is not desirable if we're not planning on
3055 * We could call write_cache_pages(), and then redirty all of
3056 * the pages by calling redirty_page_for_writeback() but that
3057 * would be ugly in the extreme. So instead we would need to
3058 * replicate parts of the code in the above functions,
3059 * simplifying them becuase we wouldn't actually intend to
3060 * write out the pages, but rather only collect contiguous
3061 * logical block extents, call the multi-block allocator, and
3062 * then update the buffer heads with the block allocations.
3064 * For now, though, we'll cheat by calling filemap_flush(),
3065 * which will map the blocks, and start the I/O, but not
3066 * actually wait for the I/O to complete.
3068 return filemap_flush(inode->i_mapping);
3072 * bmap() is special. It gets used by applications such as lilo and by
3073 * the swapper to find the on-disk block of a specific piece of data.
3075 * Naturally, this is dangerous if the block concerned is still in the
3076 * journal. If somebody makes a swapfile on an ext4 data-journaling
3077 * filesystem and enables swap, then they may get a nasty shock when the
3078 * data getting swapped to that swapfile suddenly gets overwritten by
3079 * the original zero's written out previously to the journal and
3080 * awaiting writeback in the kernel's buffer cache.
3082 * So, if we see any bmap calls here on a modified, data-journaled file,
3083 * take extra steps to flush any blocks which might be in the cache.
3085 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3087 struct inode *inode = mapping->host;
3091 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3092 test_opt(inode->i_sb, DELALLOC)) {
3094 * With delalloc we want to sync the file
3095 * so that we can make sure we allocate
3098 filemap_write_and_wait(mapping);
3101 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3103 * This is a REALLY heavyweight approach, but the use of
3104 * bmap on dirty files is expected to be extremely rare:
3105 * only if we run lilo or swapon on a freshly made file
3106 * do we expect this to happen.
3108 * (bmap requires CAP_SYS_RAWIO so this does not
3109 * represent an unprivileged user DOS attack --- we'd be
3110 * in trouble if mortal users could trigger this path at
3113 * NB. EXT4_STATE_JDATA is not set on files other than
3114 * regular files. If somebody wants to bmap a directory
3115 * or symlink and gets confused because the buffer
3116 * hasn't yet been flushed to disk, they deserve
3117 * everything they get.
3120 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3121 journal = EXT4_JOURNAL(inode);
3122 jbd2_journal_lock_updates(journal);
3123 err = jbd2_journal_flush(journal);
3124 jbd2_journal_unlock_updates(journal);
3130 return generic_block_bmap(mapping, block, ext4_get_block);
3133 static int bget_one(handle_t *handle, struct buffer_head *bh)
3139 static int bput_one(handle_t *handle, struct buffer_head *bh)
3146 * Note that we don't need to start a transaction unless we're journaling data
3147 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3148 * need to file the inode to the transaction's list in ordered mode because if
3149 * we are writing back data added by write(), the inode is already there and if
3150 * we are writing back data modified via mmap(), noone guarantees in which
3151 * transaction the data will hit the disk. In case we are journaling data, we
3152 * cannot start transaction directly because transaction start ranks above page
3153 * lock so we have to do some magic.
3155 * In all journaling modes block_write_full_page() will start the I/O.
3159 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3164 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3166 * Same applies to ext4_get_block(). We will deadlock on various things like
3167 * lock_journal and i_data_sem
3169 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3172 * 16May01: If we're reentered then journal_current_handle() will be
3173 * non-zero. We simply *return*.
3175 * 1 July 2001: @@@ FIXME:
3176 * In journalled data mode, a data buffer may be metadata against the
3177 * current transaction. But the same file is part of a shared mapping
3178 * and someone does a writepage() on it.
3180 * We will move the buffer onto the async_data list, but *after* it has
3181 * been dirtied. So there's a small window where we have dirty data on
3184 * Note that this only applies to the last partial page in the file. The
3185 * bit which block_write_full_page() uses prepare/commit for. (That's
3186 * broken code anyway: it's wrong for msync()).
3188 * It's a rare case: affects the final partial page, for journalled data
3189 * where the file is subject to bith write() and writepage() in the same
3190 * transction. To fix it we'll need a custom block_write_full_page().
3191 * We'll probably need that anyway for journalling writepage() output.
3193 * We don't honour synchronous mounts for writepage(). That would be
3194 * disastrous. Any write() or metadata operation will sync the fs for
3198 static int __ext4_normal_writepage(struct page *page,
3199 struct writeback_control *wbc)
3201 struct inode *inode = page->mapping->host;
3203 if (test_opt(inode->i_sb, NOBH))
3204 return nobh_writepage(page, noalloc_get_block_write, wbc);
3206 return block_write_full_page(page, noalloc_get_block_write,
3210 static int ext4_normal_writepage(struct page *page,
3211 struct writeback_control *wbc)
3213 struct inode *inode = page->mapping->host;
3214 loff_t size = i_size_read(inode);
3217 trace_ext4_normal_writepage(inode, page);
3218 J_ASSERT(PageLocked(page));
3219 if (page->index == size >> PAGE_CACHE_SHIFT)
3220 len = size & ~PAGE_CACHE_MASK;
3222 len = PAGE_CACHE_SIZE;
3224 if (page_has_buffers(page)) {
3225 /* if page has buffers it should all be mapped
3226 * and allocated. If there are not buffers attached
3227 * to the page we know the page is dirty but it lost
3228 * buffers. That means that at some moment in time
3229 * after write_begin() / write_end() has been called
3230 * all buffers have been clean and thus they must have been
3231 * written at least once. So they are all mapped and we can
3232 * happily proceed with mapping them and writing the page.
3234 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3235 ext4_bh_unmapped_or_delay));
3238 if (!ext4_journal_current_handle())
3239 return __ext4_normal_writepage(page, wbc);
3241 redirty_page_for_writepage(wbc, page);
3246 static int __ext4_journalled_writepage(struct page *page,
3247 struct writeback_control *wbc)
3249 struct address_space *mapping = page->mapping;
3250 struct inode *inode = mapping->host;
3251 struct buffer_head *page_bufs;
3252 handle_t *handle = NULL;
3256 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3257 noalloc_get_block_write);
3261 page_bufs = page_buffers(page);
3262 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3264 /* As soon as we unlock the page, it can go away, but we have
3265 * references to buffers so we are safe */
3268 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3269 if (IS_ERR(handle)) {
3270 ret = PTR_ERR(handle);
3274 ret = walk_page_buffers(handle, page_bufs, 0,
3275 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3277 err = walk_page_buffers(handle, page_bufs, 0,
3278 PAGE_CACHE_SIZE, NULL, write_end_fn);
3281 err = ext4_journal_stop(handle);
3285 walk_page_buffers(handle, page_bufs, 0,
3286 PAGE_CACHE_SIZE, NULL, bput_one);
3287 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3296 static int ext4_journalled_writepage(struct page *page,
3297 struct writeback_control *wbc)
3299 struct inode *inode = page->mapping->host;
3300 loff_t size = i_size_read(inode);
3303 trace_ext4_journalled_writepage(inode, page);
3304 J_ASSERT(PageLocked(page));
3305 if (page->index == size >> PAGE_CACHE_SHIFT)
3306 len = size & ~PAGE_CACHE_MASK;
3308 len = PAGE_CACHE_SIZE;
3310 if (page_has_buffers(page)) {
3311 /* if page has buffers it should all be mapped
3312 * and allocated. If there are not buffers attached
3313 * to the page we know the page is dirty but it lost
3314 * buffers. That means that at some moment in time
3315 * after write_begin() / write_end() has been called
3316 * all buffers have been clean and thus they must have been
3317 * written at least once. So they are all mapped and we can
3318 * happily proceed with mapping them and writing the page.
3320 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3321 ext4_bh_unmapped_or_delay));
3324 if (ext4_journal_current_handle())
3327 if (PageChecked(page)) {
3329 * It's mmapped pagecache. Add buffers and journal it. There
3330 * doesn't seem much point in redirtying the page here.
3332 ClearPageChecked(page);
3333 return __ext4_journalled_writepage(page, wbc);
3336 * It may be a page full of checkpoint-mode buffers. We don't
3337 * really know unless we go poke around in the buffer_heads.
3338 * But block_write_full_page will do the right thing.
3340 return block_write_full_page(page, noalloc_get_block_write,
3344 redirty_page_for_writepage(wbc, page);
3349 static int ext4_readpage(struct file *file, struct page *page)
3351 return mpage_readpage(page, ext4_get_block);
3355 ext4_readpages(struct file *file, struct address_space *mapping,
3356 struct list_head *pages, unsigned nr_pages)
3358 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3361 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3363 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3366 * If it's a full truncate we just forget about the pending dirtying
3369 ClearPageChecked(page);
3372 jbd2_journal_invalidatepage(journal, page, offset);
3374 block_invalidatepage(page, offset);
3377 static int ext4_releasepage(struct page *page, gfp_t wait)
3379 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3381 WARN_ON(PageChecked(page));
3382 if (!page_has_buffers(page))
3385 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3387 return try_to_free_buffers(page);
3391 * If the O_DIRECT write will extend the file then add this inode to the
3392 * orphan list. So recovery will truncate it back to the original size
3393 * if the machine crashes during the write.
3395 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3396 * crashes then stale disk data _may_ be exposed inside the file. But current
3397 * VFS code falls back into buffered path in that case so we are safe.
3399 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3400 const struct iovec *iov, loff_t offset,
3401 unsigned long nr_segs)
3403 struct file *file = iocb->ki_filp;
3404 struct inode *inode = file->f_mapping->host;
3405 struct ext4_inode_info *ei = EXT4_I(inode);
3409 size_t count = iov_length(iov, nr_segs);
3412 loff_t final_size = offset + count;
3414 if (final_size > inode->i_size) {
3415 /* Credits for sb + inode write */
3416 handle = ext4_journal_start(inode, 2);
3417 if (IS_ERR(handle)) {
3418 ret = PTR_ERR(handle);
3421 ret = ext4_orphan_add(handle, inode);
3423 ext4_journal_stop(handle);
3427 ei->i_disksize = inode->i_size;
3428 ext4_journal_stop(handle);
3432 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3434 ext4_get_block, NULL);
3439 /* Credits for sb + inode write */
3440 handle = ext4_journal_start(inode, 2);
3441 if (IS_ERR(handle)) {
3442 /* This is really bad luck. We've written the data
3443 * but cannot extend i_size. Bail out and pretend
3444 * the write failed... */
3445 ret = PTR_ERR(handle);
3449 ext4_orphan_del(handle, inode);
3451 loff_t end = offset + ret;
3452 if (end > inode->i_size) {
3453 ei->i_disksize = end;
3454 i_size_write(inode, end);
3456 * We're going to return a positive `ret'
3457 * here due to non-zero-length I/O, so there's
3458 * no way of reporting error returns from
3459 * ext4_mark_inode_dirty() to userspace. So
3462 ext4_mark_inode_dirty(handle, inode);
3465 err = ext4_journal_stop(handle);
3474 * Pages can be marked dirty completely asynchronously from ext4's journalling
3475 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3476 * much here because ->set_page_dirty is called under VFS locks. The page is
3477 * not necessarily locked.
3479 * We cannot just dirty the page and leave attached buffers clean, because the
3480 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3481 * or jbddirty because all the journalling code will explode.
3483 * So what we do is to mark the page "pending dirty" and next time writepage
3484 * is called, propagate that into the buffers appropriately.
3486 static int ext4_journalled_set_page_dirty(struct page *page)
3488 SetPageChecked(page);
3489 return __set_page_dirty_nobuffers(page);
3492 static const struct address_space_operations ext4_ordered_aops = {
3493 .readpage = ext4_readpage,
3494 .readpages = ext4_readpages,
3495 .writepage = ext4_normal_writepage,
3496 .sync_page = block_sync_page,
3497 .write_begin = ext4_write_begin,
3498 .write_end = ext4_ordered_write_end,
3500 .invalidatepage = ext4_invalidatepage,
3501 .releasepage = ext4_releasepage,
3502 .direct_IO = ext4_direct_IO,
3503 .migratepage = buffer_migrate_page,
3504 .is_partially_uptodate = block_is_partially_uptodate,
3507 static const struct address_space_operations ext4_writeback_aops = {
3508 .readpage = ext4_readpage,
3509 .readpages = ext4_readpages,
3510 .writepage = ext4_normal_writepage,
3511 .sync_page = block_sync_page,
3512 .write_begin = ext4_write_begin,
3513 .write_end = ext4_writeback_write_end,
3515 .invalidatepage = ext4_invalidatepage,
3516 .releasepage = ext4_releasepage,
3517 .direct_IO = ext4_direct_IO,
3518 .migratepage = buffer_migrate_page,
3519 .is_partially_uptodate = block_is_partially_uptodate,
3522 static const struct address_space_operations ext4_journalled_aops = {
3523 .readpage = ext4_readpage,
3524 .readpages = ext4_readpages,
3525 .writepage = ext4_journalled_writepage,
3526 .sync_page = block_sync_page,
3527 .write_begin = ext4_write_begin,
3528 .write_end = ext4_journalled_write_end,
3529 .set_page_dirty = ext4_journalled_set_page_dirty,
3531 .invalidatepage = ext4_invalidatepage,
3532 .releasepage = ext4_releasepage,
3533 .is_partially_uptodate = block_is_partially_uptodate,
3536 static const struct address_space_operations ext4_da_aops = {
3537 .readpage = ext4_readpage,
3538 .readpages = ext4_readpages,
3539 .writepage = ext4_da_writepage,
3540 .writepages = ext4_da_writepages,
3541 .sync_page = block_sync_page,
3542 .write_begin = ext4_da_write_begin,
3543 .write_end = ext4_da_write_end,
3545 .invalidatepage = ext4_da_invalidatepage,
3546 .releasepage = ext4_releasepage,
3547 .direct_IO = ext4_direct_IO,
3548 .migratepage = buffer_migrate_page,
3549 .is_partially_uptodate = block_is_partially_uptodate,
3552 void ext4_set_aops(struct inode *inode)
3554 if (ext4_should_order_data(inode) &&
3555 test_opt(inode->i_sb, DELALLOC))
3556 inode->i_mapping->a_ops = &ext4_da_aops;
3557 else if (ext4_should_order_data(inode))
3558 inode->i_mapping->a_ops = &ext4_ordered_aops;
3559 else if (ext4_should_writeback_data(inode) &&
3560 test_opt(inode->i_sb, DELALLOC))
3561 inode->i_mapping->a_ops = &ext4_da_aops;
3562 else if (ext4_should_writeback_data(inode))
3563 inode->i_mapping->a_ops = &ext4_writeback_aops;
3565 inode->i_mapping->a_ops = &ext4_journalled_aops;
3569 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3570 * up to the end of the block which corresponds to `from'.
3571 * This required during truncate. We need to physically zero the tail end
3572 * of that block so it doesn't yield old data if the file is later grown.
3574 int ext4_block_truncate_page(handle_t *handle,
3575 struct address_space *mapping, loff_t from)
3577 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3578 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3579 unsigned blocksize, length, pos;
3581 struct inode *inode = mapping->host;
3582 struct buffer_head *bh;
3586 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3590 blocksize = inode->i_sb->s_blocksize;
3591 length = blocksize - (offset & (blocksize - 1));
3592 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3595 * For "nobh" option, we can only work if we don't need to
3596 * read-in the page - otherwise we create buffers to do the IO.
3598 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3599 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3600 zero_user(page, offset, length);
3601 set_page_dirty(page);
3605 if (!page_has_buffers(page))
3606 create_empty_buffers(page, blocksize, 0);
3608 /* Find the buffer that contains "offset" */
3609 bh = page_buffers(page);
3611 while (offset >= pos) {
3612 bh = bh->b_this_page;
3618 if (buffer_freed(bh)) {
3619 BUFFER_TRACE(bh, "freed: skip");
3623 if (!buffer_mapped(bh)) {
3624 BUFFER_TRACE(bh, "unmapped");
3625 ext4_get_block(inode, iblock, bh, 0);
3626 /* unmapped? It's a hole - nothing to do */
3627 if (!buffer_mapped(bh)) {
3628 BUFFER_TRACE(bh, "still unmapped");
3633 /* Ok, it's mapped. Make sure it's up-to-date */
3634 if (PageUptodate(page))
3635 set_buffer_uptodate(bh);
3637 if (!buffer_uptodate(bh)) {
3639 ll_rw_block(READ, 1, &bh);
3641 /* Uhhuh. Read error. Complain and punt. */
3642 if (!buffer_uptodate(bh))
3646 if (ext4_should_journal_data(inode)) {
3647 BUFFER_TRACE(bh, "get write access");
3648 err = ext4_journal_get_write_access(handle, bh);
3653 zero_user(page, offset, length);
3655 BUFFER_TRACE(bh, "zeroed end of block");
3658 if (ext4_should_journal_data(inode)) {
3659 err = ext4_handle_dirty_metadata(handle, inode, bh);
3661 if (ext4_should_order_data(inode))
3662 err = ext4_jbd2_file_inode(handle, inode);
3663 mark_buffer_dirty(bh);
3668 page_cache_release(page);
3673 * Probably it should be a library function... search for first non-zero word
3674 * or memcmp with zero_page, whatever is better for particular architecture.
3677 static inline int all_zeroes(__le32 *p, __le32 *q)
3686 * ext4_find_shared - find the indirect blocks for partial truncation.
3687 * @inode: inode in question
3688 * @depth: depth of the affected branch
3689 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3690 * @chain: place to store the pointers to partial indirect blocks
3691 * @top: place to the (detached) top of branch
3693 * This is a helper function used by ext4_truncate().
3695 * When we do truncate() we may have to clean the ends of several
3696 * indirect blocks but leave the blocks themselves alive. Block is
3697 * partially truncated if some data below the new i_size is refered
3698 * from it (and it is on the path to the first completely truncated
3699 * data block, indeed). We have to free the top of that path along
3700 * with everything to the right of the path. Since no allocation
3701 * past the truncation point is possible until ext4_truncate()
3702 * finishes, we may safely do the latter, but top of branch may
3703 * require special attention - pageout below the truncation point
3704 * might try to populate it.
3706 * We atomically detach the top of branch from the tree, store the
3707 * block number of its root in *@top, pointers to buffer_heads of
3708 * partially truncated blocks - in @chain[].bh and pointers to
3709 * their last elements that should not be removed - in
3710 * @chain[].p. Return value is the pointer to last filled element
3713 * The work left to caller to do the actual freeing of subtrees:
3714 * a) free the subtree starting from *@top
3715 * b) free the subtrees whose roots are stored in
3716 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3717 * c) free the subtrees growing from the inode past the @chain[0].
3718 * (no partially truncated stuff there). */
3720 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3721 ext4_lblk_t offsets[4], Indirect chain[4],
3724 Indirect *partial, *p;
3728 /* Make k index the deepest non-null offest + 1 */
3729 for (k = depth; k > 1 && !offsets[k-1]; k--)
3731 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3732 /* Writer: pointers */
3734 partial = chain + k-1;
3736 * If the branch acquired continuation since we've looked at it -
3737 * fine, it should all survive and (new) top doesn't belong to us.
3739 if (!partial->key && *partial->p)
3742 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3745 * OK, we've found the last block that must survive. The rest of our
3746 * branch should be detached before unlocking. However, if that rest
3747 * of branch is all ours and does not grow immediately from the inode
3748 * it's easier to cheat and just decrement partial->p.
3750 if (p == chain + k - 1 && p > chain) {
3754 /* Nope, don't do this in ext4. Must leave the tree intact */
3761 while (partial > p) {
3762 brelse(partial->bh);
3770 * Zero a number of block pointers in either an inode or an indirect block.
3771 * If we restart the transaction we must again get write access to the
3772 * indirect block for further modification.
3774 * We release `count' blocks on disk, but (last - first) may be greater
3775 * than `count' because there can be holes in there.
3777 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3778 struct buffer_head *bh,
3779 ext4_fsblk_t block_to_free,
3780 unsigned long count, __le32 *first,
3784 if (try_to_extend_transaction(handle, inode)) {
3786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3787 ext4_handle_dirty_metadata(handle, inode, bh);
3789 ext4_mark_inode_dirty(handle, inode);
3790 ext4_journal_test_restart(handle, inode);
3792 BUFFER_TRACE(bh, "retaking write access");
3793 ext4_journal_get_write_access(handle, bh);
3798 * Any buffers which are on the journal will be in memory. We
3799 * find them on the hash table so jbd2_journal_revoke() will
3800 * run jbd2_journal_forget() on them. We've already detached
3801 * each block from the file, so bforget() in
3802 * jbd2_journal_forget() should be safe.
3804 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3806 for (p = first; p < last; p++) {
3807 u32 nr = le32_to_cpu(*p);
3809 struct buffer_head *tbh;
3812 tbh = sb_find_get_block(inode->i_sb, nr);
3813 ext4_forget(handle, 0, inode, tbh, nr);
3817 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3821 * ext4_free_data - free a list of data blocks
3822 * @handle: handle for this transaction
3823 * @inode: inode we are dealing with
3824 * @this_bh: indirect buffer_head which contains *@first and *@last
3825 * @first: array of block numbers
3826 * @last: points immediately past the end of array
3828 * We are freeing all blocks refered from that array (numbers are stored as
3829 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3831 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3832 * blocks are contiguous then releasing them at one time will only affect one
3833 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3834 * actually use a lot of journal space.
3836 * @this_bh will be %NULL if @first and @last point into the inode's direct
3839 static void ext4_free_data(handle_t *handle, struct inode *inode,
3840 struct buffer_head *this_bh,
3841 __le32 *first, __le32 *last)
3843 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3844 unsigned long count = 0; /* Number of blocks in the run */
3845 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3848 ext4_fsblk_t nr; /* Current block # */
3849 __le32 *p; /* Pointer into inode/ind
3850 for current block */
3853 if (this_bh) { /* For indirect block */
3854 BUFFER_TRACE(this_bh, "get_write_access");
3855 err = ext4_journal_get_write_access(handle, this_bh);
3856 /* Important: if we can't update the indirect pointers
3857 * to the blocks, we can't free them. */
3862 for (p = first; p < last; p++) {
3863 nr = le32_to_cpu(*p);
3865 /* accumulate blocks to free if they're contiguous */
3868 block_to_free_p = p;
3870 } else if (nr == block_to_free + count) {
3873 ext4_clear_blocks(handle, inode, this_bh,
3875 count, block_to_free_p, p);
3877 block_to_free_p = p;
3884 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3885 count, block_to_free_p, p);
3888 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3891 * The buffer head should have an attached journal head at this
3892 * point. However, if the data is corrupted and an indirect
3893 * block pointed to itself, it would have been detached when
3894 * the block was cleared. Check for this instead of OOPSing.
3896 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3897 ext4_handle_dirty_metadata(handle, inode, this_bh);
3899 ext4_error(inode->i_sb, __func__,
3900 "circular indirect block detected, "
3901 "inode=%lu, block=%llu",
3903 (unsigned long long) this_bh->b_blocknr);
3908 * ext4_free_branches - free an array of branches
3909 * @handle: JBD handle for this transaction
3910 * @inode: inode we are dealing with
3911 * @parent_bh: the buffer_head which contains *@first and *@last
3912 * @first: array of block numbers
3913 * @last: pointer immediately past the end of array
3914 * @depth: depth of the branches to free
3916 * We are freeing all blocks refered from these branches (numbers are
3917 * stored as little-endian 32-bit) and updating @inode->i_blocks
3920 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3921 struct buffer_head *parent_bh,
3922 __le32 *first, __le32 *last, int depth)
3927 if (ext4_handle_is_aborted(handle))
3931 struct buffer_head *bh;
3932 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3934 while (--p >= first) {
3935 nr = le32_to_cpu(*p);
3937 continue; /* A hole */
3939 /* Go read the buffer for the next level down */
3940 bh = sb_bread(inode->i_sb, nr);
3943 * A read failure? Report error and clear slot
3947 ext4_error(inode->i_sb, "ext4_free_branches",
3948 "Read failure, inode=%lu, block=%llu",
3953 /* This zaps the entire block. Bottom up. */
3954 BUFFER_TRACE(bh, "free child branches");
3955 ext4_free_branches(handle, inode, bh,
3956 (__le32 *) bh->b_data,
3957 (__le32 *) bh->b_data + addr_per_block,
3961 * We've probably journalled the indirect block several
3962 * times during the truncate. But it's no longer
3963 * needed and we now drop it from the transaction via
3964 * jbd2_journal_revoke().
3966 * That's easy if it's exclusively part of this
3967 * transaction. But if it's part of the committing
3968 * transaction then jbd2_journal_forget() will simply
3969 * brelse() it. That means that if the underlying
3970 * block is reallocated in ext4_get_block(),
3971 * unmap_underlying_metadata() will find this block
3972 * and will try to get rid of it. damn, damn.
3974 * If this block has already been committed to the
3975 * journal, a revoke record will be written. And
3976 * revoke records must be emitted *before* clearing
3977 * this block's bit in the bitmaps.
3979 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3982 * Everything below this this pointer has been
3983 * released. Now let this top-of-subtree go.
3985 * We want the freeing of this indirect block to be
3986 * atomic in the journal with the updating of the
3987 * bitmap block which owns it. So make some room in
3990 * We zero the parent pointer *after* freeing its
3991 * pointee in the bitmaps, so if extend_transaction()
3992 * for some reason fails to put the bitmap changes and
3993 * the release into the same transaction, recovery
3994 * will merely complain about releasing a free block,
3995 * rather than leaking blocks.
3997 if (ext4_handle_is_aborted(handle))
3999 if (try_to_extend_transaction(handle, inode)) {
4000 ext4_mark_inode_dirty(handle, inode);
4001 ext4_journal_test_restart(handle, inode);
4004 ext4_free_blocks(handle, inode, nr, 1, 1);
4008 * The block which we have just freed is
4009 * pointed to by an indirect block: journal it
4011 BUFFER_TRACE(parent_bh, "get_write_access");
4012 if (!ext4_journal_get_write_access(handle,
4015 BUFFER_TRACE(parent_bh,
4016 "call ext4_handle_dirty_metadata");
4017 ext4_handle_dirty_metadata(handle,
4024 /* We have reached the bottom of the tree. */
4025 BUFFER_TRACE(parent_bh, "free data blocks");
4026 ext4_free_data(handle, inode, parent_bh, first, last);
4030 int ext4_can_truncate(struct inode *inode)
4032 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4034 if (S_ISREG(inode->i_mode))
4036 if (S_ISDIR(inode->i_mode))
4038 if (S_ISLNK(inode->i_mode))
4039 return !ext4_inode_is_fast_symlink(inode);
4046 * We block out ext4_get_block() block instantiations across the entire
4047 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4048 * simultaneously on behalf of the same inode.
4050 * As we work through the truncate and commmit bits of it to the journal there
4051 * is one core, guiding principle: the file's tree must always be consistent on
4052 * disk. We must be able to restart the truncate after a crash.
4054 * The file's tree may be transiently inconsistent in memory (although it
4055 * probably isn't), but whenever we close off and commit a journal transaction,
4056 * the contents of (the filesystem + the journal) must be consistent and
4057 * restartable. It's pretty simple, really: bottom up, right to left (although
4058 * left-to-right works OK too).
4060 * Note that at recovery time, journal replay occurs *before* the restart of
4061 * truncate against the orphan inode list.
4063 * The committed inode has the new, desired i_size (which is the same as
4064 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4065 * that this inode's truncate did not complete and it will again call
4066 * ext4_truncate() to have another go. So there will be instantiated blocks
4067 * to the right of the truncation point in a crashed ext4 filesystem. But
4068 * that's fine - as long as they are linked from the inode, the post-crash
4069 * ext4_truncate() run will find them and release them.
4071 void ext4_truncate(struct inode *inode)
4074 struct ext4_inode_info *ei = EXT4_I(inode);
4075 __le32 *i_data = ei->i_data;
4076 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4077 struct address_space *mapping = inode->i_mapping;
4078 ext4_lblk_t offsets[4];
4083 ext4_lblk_t last_block;
4084 unsigned blocksize = inode->i_sb->s_blocksize;
4086 if (!ext4_can_truncate(inode))
4089 if (ei->i_disksize && inode->i_size == 0 &&
4090 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4091 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4093 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4094 ext4_ext_truncate(inode);
4098 handle = start_transaction(inode);
4100 return; /* AKPM: return what? */
4102 last_block = (inode->i_size + blocksize-1)
4103 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4105 if (inode->i_size & (blocksize - 1))
4106 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4109 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4111 goto out_stop; /* error */
4114 * OK. This truncate is going to happen. We add the inode to the
4115 * orphan list, so that if this truncate spans multiple transactions,
4116 * and we crash, we will resume the truncate when the filesystem
4117 * recovers. It also marks the inode dirty, to catch the new size.
4119 * Implication: the file must always be in a sane, consistent
4120 * truncatable state while each transaction commits.
4122 if (ext4_orphan_add(handle, inode))
4126 * From here we block out all ext4_get_block() callers who want to
4127 * modify the block allocation tree.
4129 down_write(&ei->i_data_sem);
4131 ext4_discard_preallocations(inode);
4134 * The orphan list entry will now protect us from any crash which
4135 * occurs before the truncate completes, so it is now safe to propagate
4136 * the new, shorter inode size (held for now in i_size) into the
4137 * on-disk inode. We do this via i_disksize, which is the value which
4138 * ext4 *really* writes onto the disk inode.
4140 ei->i_disksize = inode->i_size;
4142 if (n == 1) { /* direct blocks */
4143 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4144 i_data + EXT4_NDIR_BLOCKS);
4148 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4149 /* Kill the top of shared branch (not detached) */
4151 if (partial == chain) {
4152 /* Shared branch grows from the inode */
4153 ext4_free_branches(handle, inode, NULL,
4154 &nr, &nr+1, (chain+n-1) - partial);
4157 * We mark the inode dirty prior to restart,
4158 * and prior to stop. No need for it here.
4161 /* Shared branch grows from an indirect block */
4162 BUFFER_TRACE(partial->bh, "get_write_access");
4163 ext4_free_branches(handle, inode, partial->bh,
4165 partial->p+1, (chain+n-1) - partial);
4168 /* Clear the ends of indirect blocks on the shared branch */
4169 while (partial > chain) {
4170 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4171 (__le32*)partial->bh->b_data+addr_per_block,
4172 (chain+n-1) - partial);
4173 BUFFER_TRACE(partial->bh, "call brelse");
4174 brelse(partial->bh);
4178 /* Kill the remaining (whole) subtrees */
4179 switch (offsets[0]) {
4181 nr = i_data[EXT4_IND_BLOCK];
4183 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4184 i_data[EXT4_IND_BLOCK] = 0;
4186 case EXT4_IND_BLOCK:
4187 nr = i_data[EXT4_DIND_BLOCK];
4189 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4190 i_data[EXT4_DIND_BLOCK] = 0;
4192 case EXT4_DIND_BLOCK:
4193 nr = i_data[EXT4_TIND_BLOCK];
4195 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4196 i_data[EXT4_TIND_BLOCK] = 0;
4198 case EXT4_TIND_BLOCK:
4202 up_write(&ei->i_data_sem);
4203 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4204 ext4_mark_inode_dirty(handle, inode);
4207 * In a multi-transaction truncate, we only make the final transaction
4211 ext4_handle_sync(handle);
4214 * If this was a simple ftruncate(), and the file will remain alive
4215 * then we need to clear up the orphan record which we created above.
4216 * However, if this was a real unlink then we were called by
4217 * ext4_delete_inode(), and we allow that function to clean up the
4218 * orphan info for us.
4221 ext4_orphan_del(handle, inode);
4223 ext4_journal_stop(handle);
4227 * ext4_get_inode_loc returns with an extra refcount against the inode's
4228 * underlying buffer_head on success. If 'in_mem' is true, we have all
4229 * data in memory that is needed to recreate the on-disk version of this
4232 static int __ext4_get_inode_loc(struct inode *inode,
4233 struct ext4_iloc *iloc, int in_mem)
4235 struct ext4_group_desc *gdp;
4236 struct buffer_head *bh;
4237 struct super_block *sb = inode->i_sb;
4239 int inodes_per_block, inode_offset;
4242 if (!ext4_valid_inum(sb, inode->i_ino))
4245 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4246 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4251 * Figure out the offset within the block group inode table
4253 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4254 inode_offset = ((inode->i_ino - 1) %
4255 EXT4_INODES_PER_GROUP(sb));
4256 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4257 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4259 bh = sb_getblk(sb, block);
4261 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4262 "inode block - inode=%lu, block=%llu",
4263 inode->i_ino, block);
4266 if (!buffer_uptodate(bh)) {
4270 * If the buffer has the write error flag, we have failed
4271 * to write out another inode in the same block. In this
4272 * case, we don't have to read the block because we may
4273 * read the old inode data successfully.
4275 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4276 set_buffer_uptodate(bh);
4278 if (buffer_uptodate(bh)) {
4279 /* someone brought it uptodate while we waited */
4285 * If we have all information of the inode in memory and this
4286 * is the only valid inode in the block, we need not read the
4290 struct buffer_head *bitmap_bh;
4293 start = inode_offset & ~(inodes_per_block - 1);
4295 /* Is the inode bitmap in cache? */
4296 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4301 * If the inode bitmap isn't in cache then the
4302 * optimisation may end up performing two reads instead
4303 * of one, so skip it.
4305 if (!buffer_uptodate(bitmap_bh)) {
4309 for (i = start; i < start + inodes_per_block; i++) {
4310 if (i == inode_offset)
4312 if (ext4_test_bit(i, bitmap_bh->b_data))
4316 if (i == start + inodes_per_block) {
4317 /* all other inodes are free, so skip I/O */
4318 memset(bh->b_data, 0, bh->b_size);
4319 set_buffer_uptodate(bh);
4327 * If we need to do any I/O, try to pre-readahead extra
4328 * blocks from the inode table.
4330 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4331 ext4_fsblk_t b, end, table;
4334 table = ext4_inode_table(sb, gdp);
4335 /* s_inode_readahead_blks is always a power of 2 */
4336 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4339 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4340 num = EXT4_INODES_PER_GROUP(sb);
4341 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4342 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4343 num -= ext4_itable_unused_count(sb, gdp);
4344 table += num / inodes_per_block;
4348 sb_breadahead(sb, b++);
4352 * There are other valid inodes in the buffer, this inode
4353 * has in-inode xattrs, or we don't have this inode in memory.
4354 * Read the block from disk.
4357 bh->b_end_io = end_buffer_read_sync;
4358 submit_bh(READ_META, bh);
4360 if (!buffer_uptodate(bh)) {
4361 ext4_error(sb, __func__,
4362 "unable to read inode block - inode=%lu, "
4363 "block=%llu", inode->i_ino, block);
4373 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4375 /* We have all inode data except xattrs in memory here. */
4376 return __ext4_get_inode_loc(inode, iloc,
4377 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4380 void ext4_set_inode_flags(struct inode *inode)
4382 unsigned int flags = EXT4_I(inode)->i_flags;
4384 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4385 if (flags & EXT4_SYNC_FL)
4386 inode->i_flags |= S_SYNC;
4387 if (flags & EXT4_APPEND_FL)
4388 inode->i_flags |= S_APPEND;
4389 if (flags & EXT4_IMMUTABLE_FL)
4390 inode->i_flags |= S_IMMUTABLE;
4391 if (flags & EXT4_NOATIME_FL)
4392 inode->i_flags |= S_NOATIME;
4393 if (flags & EXT4_DIRSYNC_FL)
4394 inode->i_flags |= S_DIRSYNC;
4397 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4398 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4400 unsigned int flags = ei->vfs_inode.i_flags;
4402 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4403 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4405 ei->i_flags |= EXT4_SYNC_FL;
4406 if (flags & S_APPEND)
4407 ei->i_flags |= EXT4_APPEND_FL;
4408 if (flags & S_IMMUTABLE)
4409 ei->i_flags |= EXT4_IMMUTABLE_FL;
4410 if (flags & S_NOATIME)
4411 ei->i_flags |= EXT4_NOATIME_FL;
4412 if (flags & S_DIRSYNC)
4413 ei->i_flags |= EXT4_DIRSYNC_FL;
4416 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4417 struct ext4_inode_info *ei)
4420 struct inode *inode = &(ei->vfs_inode);
4421 struct super_block *sb = inode->i_sb;
4423 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4424 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4425 /* we are using combined 48 bit field */
4426 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4427 le32_to_cpu(raw_inode->i_blocks_lo);
4428 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4429 /* i_blocks represent file system block size */
4430 return i_blocks << (inode->i_blkbits - 9);
4435 return le32_to_cpu(raw_inode->i_blocks_lo);
4439 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4441 struct ext4_iloc iloc;
4442 struct ext4_inode *raw_inode;
4443 struct ext4_inode_info *ei;
4444 struct buffer_head *bh;
4445 struct inode *inode;
4449 inode = iget_locked(sb, ino);
4451 return ERR_PTR(-ENOMEM);
4452 if (!(inode->i_state & I_NEW))
4456 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4457 ei->i_acl = EXT4_ACL_NOT_CACHED;
4458 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4461 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4465 raw_inode = ext4_raw_inode(&iloc);
4466 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4467 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4468 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4469 if (!(test_opt(inode->i_sb, NO_UID32))) {
4470 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4471 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4473 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4476 ei->i_dir_start_lookup = 0;
4477 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4478 /* We now have enough fields to check if the inode was active or not.
4479 * This is needed because nfsd might try to access dead inodes
4480 * the test is that same one that e2fsck uses
4481 * NeilBrown 1999oct15
4483 if (inode->i_nlink == 0) {
4484 if (inode->i_mode == 0 ||
4485 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4486 /* this inode is deleted */
4491 /* The only unlinked inodes we let through here have
4492 * valid i_mode and are being read by the orphan
4493 * recovery code: that's fine, we're about to complete
4494 * the process of deleting those. */
4496 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4497 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4498 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4499 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4501 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4502 inode->i_size = ext4_isize(raw_inode);
4503 ei->i_disksize = inode->i_size;
4504 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4505 ei->i_block_group = iloc.block_group;
4506 ei->i_last_alloc_group = ~0;
4508 * NOTE! The in-memory inode i_data array is in little-endian order
4509 * even on big-endian machines: we do NOT byteswap the block numbers!
4511 for (block = 0; block < EXT4_N_BLOCKS; block++)
4512 ei->i_data[block] = raw_inode->i_block[block];
4513 INIT_LIST_HEAD(&ei->i_orphan);
4515 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4516 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4517 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4518 EXT4_INODE_SIZE(inode->i_sb)) {
4523 if (ei->i_extra_isize == 0) {
4524 /* The extra space is currently unused. Use it. */
4525 ei->i_extra_isize = sizeof(struct ext4_inode) -
4526 EXT4_GOOD_OLD_INODE_SIZE;
4528 __le32 *magic = (void *)raw_inode +
4529 EXT4_GOOD_OLD_INODE_SIZE +
4531 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4532 ei->i_state |= EXT4_STATE_XATTR;
4535 ei->i_extra_isize = 0;
4537 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4538 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4539 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4540 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4542 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4543 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4544 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4546 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4550 if (ei->i_file_acl &&
4552 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4553 EXT4_SB(sb)->s_gdb_count)) ||
4554 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4555 ext4_error(sb, __func__,
4556 "bad extended attribute block %llu in inode #%lu",
4557 ei->i_file_acl, inode->i_ino);
4560 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4561 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4562 (S_ISLNK(inode->i_mode) &&
4563 !ext4_inode_is_fast_symlink(inode)))
4564 /* Validate extent which is part of inode */
4565 ret = ext4_ext_check_inode(inode);
4566 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4567 (S_ISLNK(inode->i_mode) &&
4568 !ext4_inode_is_fast_symlink(inode))) {
4569 /* Validate block references which are part of inode */
4570 ret = ext4_check_inode_blockref(inode);
4577 if (S_ISREG(inode->i_mode)) {
4578 inode->i_op = &ext4_file_inode_operations;
4579 inode->i_fop = &ext4_file_operations;
4580 ext4_set_aops(inode);
4581 } else if (S_ISDIR(inode->i_mode)) {
4582 inode->i_op = &ext4_dir_inode_operations;
4583 inode->i_fop = &ext4_dir_operations;
4584 } else if (S_ISLNK(inode->i_mode)) {
4585 if (ext4_inode_is_fast_symlink(inode)) {
4586 inode->i_op = &ext4_fast_symlink_inode_operations;
4587 nd_terminate_link(ei->i_data, inode->i_size,
4588 sizeof(ei->i_data) - 1);
4590 inode->i_op = &ext4_symlink_inode_operations;
4591 ext4_set_aops(inode);
4593 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4594 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4595 inode->i_op = &ext4_special_inode_operations;
4596 if (raw_inode->i_block[0])
4597 init_special_inode(inode, inode->i_mode,
4598 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4600 init_special_inode(inode, inode->i_mode,
4601 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4605 ext4_error(inode->i_sb, __func__,
4606 "bogus i_mode (%o) for inode=%lu",
4607 inode->i_mode, inode->i_ino);
4611 ext4_set_inode_flags(inode);
4612 unlock_new_inode(inode);
4617 return ERR_PTR(ret);
4620 static int ext4_inode_blocks_set(handle_t *handle,
4621 struct ext4_inode *raw_inode,
4622 struct ext4_inode_info *ei)
4624 struct inode *inode = &(ei->vfs_inode);
4625 u64 i_blocks = inode->i_blocks;
4626 struct super_block *sb = inode->i_sb;
4628 if (i_blocks <= ~0U) {
4630 * i_blocks can be represnted in a 32 bit variable
4631 * as multiple of 512 bytes
4633 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4634 raw_inode->i_blocks_high = 0;
4635 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4638 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4641 if (i_blocks <= 0xffffffffffffULL) {
4643 * i_blocks can be represented in a 48 bit variable
4644 * as multiple of 512 bytes
4646 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4647 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4648 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4650 ei->i_flags |= EXT4_HUGE_FILE_FL;
4651 /* i_block is stored in file system block size */
4652 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4653 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4654 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4660 * Post the struct inode info into an on-disk inode location in the
4661 * buffer-cache. This gobbles the caller's reference to the
4662 * buffer_head in the inode location struct.
4664 * The caller must have write access to iloc->bh.
4666 static int ext4_do_update_inode(handle_t *handle,
4667 struct inode *inode,
4668 struct ext4_iloc *iloc)
4670 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4671 struct ext4_inode_info *ei = EXT4_I(inode);
4672 struct buffer_head *bh = iloc->bh;
4673 int err = 0, rc, block;
4675 /* For fields not not tracking in the in-memory inode,
4676 * initialise them to zero for new inodes. */
4677 if (ei->i_state & EXT4_STATE_NEW)
4678 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4680 ext4_get_inode_flags(ei);
4681 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4682 if (!(test_opt(inode->i_sb, NO_UID32))) {
4683 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4684 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4686 * Fix up interoperability with old kernels. Otherwise, old inodes get
4687 * re-used with the upper 16 bits of the uid/gid intact
4690 raw_inode->i_uid_high =
4691 cpu_to_le16(high_16_bits(inode->i_uid));
4692 raw_inode->i_gid_high =
4693 cpu_to_le16(high_16_bits(inode->i_gid));
4695 raw_inode->i_uid_high = 0;
4696 raw_inode->i_gid_high = 0;
4699 raw_inode->i_uid_low =
4700 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4701 raw_inode->i_gid_low =
4702 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4703 raw_inode->i_uid_high = 0;
4704 raw_inode->i_gid_high = 0;
4706 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4708 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4709 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4710 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4711 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4713 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4715 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4716 /* clear the migrate flag in the raw_inode */
4717 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4718 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4719 cpu_to_le32(EXT4_OS_HURD))
4720 raw_inode->i_file_acl_high =
4721 cpu_to_le16(ei->i_file_acl >> 32);
4722 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4723 ext4_isize_set(raw_inode, ei->i_disksize);
4724 if (ei->i_disksize > 0x7fffffffULL) {
4725 struct super_block *sb = inode->i_sb;
4726 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4727 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4728 EXT4_SB(sb)->s_es->s_rev_level ==
4729 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4730 /* If this is the first large file
4731 * created, add a flag to the superblock.
4733 err = ext4_journal_get_write_access(handle,
4734 EXT4_SB(sb)->s_sbh);
4737 ext4_update_dynamic_rev(sb);
4738 EXT4_SET_RO_COMPAT_FEATURE(sb,
4739 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4741 ext4_handle_sync(handle);
4742 err = ext4_handle_dirty_metadata(handle, inode,
4743 EXT4_SB(sb)->s_sbh);
4746 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4747 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4748 if (old_valid_dev(inode->i_rdev)) {
4749 raw_inode->i_block[0] =
4750 cpu_to_le32(old_encode_dev(inode->i_rdev));
4751 raw_inode->i_block[1] = 0;
4753 raw_inode->i_block[0] = 0;
4754 raw_inode->i_block[1] =
4755 cpu_to_le32(new_encode_dev(inode->i_rdev));
4756 raw_inode->i_block[2] = 0;
4759 for (block = 0; block < EXT4_N_BLOCKS; block++)
4760 raw_inode->i_block[block] = ei->i_data[block];
4762 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4763 if (ei->i_extra_isize) {
4764 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4765 raw_inode->i_version_hi =
4766 cpu_to_le32(inode->i_version >> 32);
4767 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4770 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4771 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4774 ei->i_state &= ~EXT4_STATE_NEW;
4778 ext4_std_error(inode->i_sb, err);
4783 * ext4_write_inode()
4785 * We are called from a few places:
4787 * - Within generic_file_write() for O_SYNC files.
4788 * Here, there will be no transaction running. We wait for any running
4789 * trasnaction to commit.
4791 * - Within sys_sync(), kupdate and such.
4792 * We wait on commit, if tol to.
4794 * - Within prune_icache() (PF_MEMALLOC == true)
4795 * Here we simply return. We can't afford to block kswapd on the
4798 * In all cases it is actually safe for us to return without doing anything,
4799 * because the inode has been copied into a raw inode buffer in
4800 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4803 * Note that we are absolutely dependent upon all inode dirtiers doing the
4804 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4805 * which we are interested.
4807 * It would be a bug for them to not do this. The code:
4809 * mark_inode_dirty(inode)
4811 * inode->i_size = expr;
4813 * is in error because a kswapd-driven write_inode() could occur while
4814 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4815 * will no longer be on the superblock's dirty inode list.
4817 int ext4_write_inode(struct inode *inode, int wait)
4819 if (current->flags & PF_MEMALLOC)
4822 if (ext4_journal_current_handle()) {
4823 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4831 return ext4_force_commit(inode->i_sb);
4837 * Called from notify_change.
4839 * We want to trap VFS attempts to truncate the file as soon as
4840 * possible. In particular, we want to make sure that when the VFS
4841 * shrinks i_size, we put the inode on the orphan list and modify
4842 * i_disksize immediately, so that during the subsequent flushing of
4843 * dirty pages and freeing of disk blocks, we can guarantee that any
4844 * commit will leave the blocks being flushed in an unused state on
4845 * disk. (On recovery, the inode will get truncated and the blocks will
4846 * be freed, so we have a strong guarantee that no future commit will
4847 * leave these blocks visible to the user.)
4849 * Another thing we have to assure is that if we are in ordered mode
4850 * and inode is still attached to the committing transaction, we must
4851 * we start writeout of all the dirty pages which are being truncated.
4852 * This way we are sure that all the data written in the previous
4853 * transaction are already on disk (truncate waits for pages under
4856 * Called with inode->i_mutex down.
4858 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4860 struct inode *inode = dentry->d_inode;
4862 const unsigned int ia_valid = attr->ia_valid;
4864 error = inode_change_ok(inode, attr);
4868 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4869 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4872 /* (user+group)*(old+new) structure, inode write (sb,
4873 * inode block, ? - but truncate inode update has it) */
4874 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4875 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4876 if (IS_ERR(handle)) {
4877 error = PTR_ERR(handle);
4880 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4882 ext4_journal_stop(handle);
4885 /* Update corresponding info in inode so that everything is in
4886 * one transaction */
4887 if (attr->ia_valid & ATTR_UID)
4888 inode->i_uid = attr->ia_uid;
4889 if (attr->ia_valid & ATTR_GID)
4890 inode->i_gid = attr->ia_gid;
4891 error = ext4_mark_inode_dirty(handle, inode);
4892 ext4_journal_stop(handle);
4895 if (attr->ia_valid & ATTR_SIZE) {
4896 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4897 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4899 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4906 if (S_ISREG(inode->i_mode) &&
4907 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4910 handle = ext4_journal_start(inode, 3);
4911 if (IS_ERR(handle)) {
4912 error = PTR_ERR(handle);
4916 error = ext4_orphan_add(handle, inode);
4917 EXT4_I(inode)->i_disksize = attr->ia_size;
4918 rc = ext4_mark_inode_dirty(handle, inode);
4921 ext4_journal_stop(handle);
4923 if (ext4_should_order_data(inode)) {
4924 error = ext4_begin_ordered_truncate(inode,
4927 /* Do as much error cleanup as possible */
4928 handle = ext4_journal_start(inode, 3);
4929 if (IS_ERR(handle)) {
4930 ext4_orphan_del(NULL, inode);
4933 ext4_orphan_del(handle, inode);
4934 ext4_journal_stop(handle);
4940 rc = inode_setattr(inode, attr);
4942 /* If inode_setattr's call to ext4_truncate failed to get a
4943 * transaction handle at all, we need to clean up the in-core
4944 * orphan list manually. */
4946 ext4_orphan_del(NULL, inode);
4948 if (!rc && (ia_valid & ATTR_MODE))
4949 rc = ext4_acl_chmod(inode);
4952 ext4_std_error(inode->i_sb, error);
4958 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4961 struct inode *inode;
4962 unsigned long delalloc_blocks;
4964 inode = dentry->d_inode;
4965 generic_fillattr(inode, stat);
4968 * We can't update i_blocks if the block allocation is delayed
4969 * otherwise in the case of system crash before the real block
4970 * allocation is done, we will have i_blocks inconsistent with
4971 * on-disk file blocks.
4972 * We always keep i_blocks updated together with real
4973 * allocation. But to not confuse with user, stat
4974 * will return the blocks that include the delayed allocation
4975 * blocks for this file.
4977 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4978 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4979 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4981 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4985 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4990 /* if nrblocks are contiguous */
4993 * With N contiguous data blocks, it need at most
4994 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4995 * 2 dindirect blocks
4998 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4999 return indirects + 3;
5002 * if nrblocks are not contiguous, worse case, each block touch
5003 * a indirect block, and each indirect block touch a double indirect
5004 * block, plus a triple indirect block
5006 indirects = nrblocks * 2 + 1;
5010 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5012 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5013 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5014 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5018 * Account for index blocks, block groups bitmaps and block group
5019 * descriptor blocks if modify datablocks and index blocks
5020 * worse case, the indexs blocks spread over different block groups
5022 * If datablocks are discontiguous, they are possible to spread over
5023 * different block groups too. If they are contiugous, with flexbg,
5024 * they could still across block group boundary.
5026 * Also account for superblock, inode, quota and xattr blocks
5028 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5030 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5036 * How many index blocks need to touch to modify nrblocks?
5037 * The "Chunk" flag indicating whether the nrblocks is
5038 * physically contiguous on disk
5040 * For Direct IO and fallocate, they calls get_block to allocate
5041 * one single extent at a time, so they could set the "Chunk" flag
5043 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5048 * Now let's see how many group bitmaps and group descriptors need
5058 if (groups > ngroups)
5060 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5061 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5063 /* bitmaps and block group descriptor blocks */
5064 ret += groups + gdpblocks;
5066 /* Blocks for super block, inode, quota and xattr blocks */
5067 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5073 * Calulate the total number of credits to reserve to fit
5074 * the modification of a single pages into a single transaction,
5075 * which may include multiple chunks of block allocations.
5077 * This could be called via ext4_write_begin()
5079 * We need to consider the worse case, when
5080 * one new block per extent.
5082 int ext4_writepage_trans_blocks(struct inode *inode)
5084 int bpp = ext4_journal_blocks_per_page(inode);
5087 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5089 /* Account for data blocks for journalled mode */
5090 if (ext4_should_journal_data(inode))
5096 * Calculate the journal credits for a chunk of data modification.
5098 * This is called from DIO, fallocate or whoever calling
5099 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5101 * journal buffers for data blocks are not included here, as DIO
5102 * and fallocate do no need to journal data buffers.
5104 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5106 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5110 * The caller must have previously called ext4_reserve_inode_write().
5111 * Give this, we know that the caller already has write access to iloc->bh.
5113 int ext4_mark_iloc_dirty(handle_t *handle,
5114 struct inode *inode, struct ext4_iloc *iloc)
5118 if (test_opt(inode->i_sb, I_VERSION))
5119 inode_inc_iversion(inode);
5121 /* the do_update_inode consumes one bh->b_count */
5124 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5125 err = ext4_do_update_inode(handle, inode, iloc);
5131 * On success, We end up with an outstanding reference count against
5132 * iloc->bh. This _must_ be cleaned up later.
5136 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5137 struct ext4_iloc *iloc)
5141 err = ext4_get_inode_loc(inode, iloc);
5143 BUFFER_TRACE(iloc->bh, "get_write_access");
5144 err = ext4_journal_get_write_access(handle, iloc->bh);
5150 ext4_std_error(inode->i_sb, err);
5155 * Expand an inode by new_extra_isize bytes.
5156 * Returns 0 on success or negative error number on failure.
5158 static int ext4_expand_extra_isize(struct inode *inode,
5159 unsigned int new_extra_isize,
5160 struct ext4_iloc iloc,
5163 struct ext4_inode *raw_inode;
5164 struct ext4_xattr_ibody_header *header;
5165 struct ext4_xattr_entry *entry;
5167 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5170 raw_inode = ext4_raw_inode(&iloc);
5172 header = IHDR(inode, raw_inode);
5173 entry = IFIRST(header);
5175 /* No extended attributes present */
5176 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5177 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5178 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5180 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5184 /* try to expand with EAs present */
5185 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5190 * What we do here is to mark the in-core inode as clean with respect to inode
5191 * dirtiness (it may still be data-dirty).
5192 * This means that the in-core inode may be reaped by prune_icache
5193 * without having to perform any I/O. This is a very good thing,
5194 * because *any* task may call prune_icache - even ones which
5195 * have a transaction open against a different journal.
5197 * Is this cheating? Not really. Sure, we haven't written the
5198 * inode out, but prune_icache isn't a user-visible syncing function.
5199 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5200 * we start and wait on commits.
5202 * Is this efficient/effective? Well, we're being nice to the system
5203 * by cleaning up our inodes proactively so they can be reaped
5204 * without I/O. But we are potentially leaving up to five seconds'
5205 * worth of inodes floating about which prune_icache wants us to
5206 * write out. One way to fix that would be to get prune_icache()
5207 * to do a write_super() to free up some memory. It has the desired
5210 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5212 struct ext4_iloc iloc;
5213 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5214 static unsigned int mnt_count;
5218 err = ext4_reserve_inode_write(handle, inode, &iloc);
5219 if (ext4_handle_valid(handle) &&
5220 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5221 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5223 * We need extra buffer credits since we may write into EA block
5224 * with this same handle. If journal_extend fails, then it will
5225 * only result in a minor loss of functionality for that inode.
5226 * If this is felt to be critical, then e2fsck should be run to
5227 * force a large enough s_min_extra_isize.
5229 if ((jbd2_journal_extend(handle,
5230 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5231 ret = ext4_expand_extra_isize(inode,
5232 sbi->s_want_extra_isize,
5235 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5237 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5238 ext4_warning(inode->i_sb, __func__,
5239 "Unable to expand inode %lu. Delete"
5240 " some EAs or run e2fsck.",
5243 le16_to_cpu(sbi->s_es->s_mnt_count);
5249 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5254 * ext4_dirty_inode() is called from __mark_inode_dirty()
5256 * We're really interested in the case where a file is being extended.
5257 * i_size has been changed by generic_commit_write() and we thus need
5258 * to include the updated inode in the current transaction.
5260 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5261 * are allocated to the file.
5263 * If the inode is marked synchronous, we don't honour that here - doing
5264 * so would cause a commit on atime updates, which we don't bother doing.
5265 * We handle synchronous inodes at the highest possible level.
5267 void ext4_dirty_inode(struct inode *inode)
5269 handle_t *current_handle = ext4_journal_current_handle();
5272 if (!ext4_handle_valid(current_handle)) {
5273 ext4_mark_inode_dirty(current_handle, inode);
5277 handle = ext4_journal_start(inode, 2);
5280 if (current_handle &&
5281 current_handle->h_transaction != handle->h_transaction) {
5282 /* This task has a transaction open against a different fs */
5283 printk(KERN_EMERG "%s: transactions do not match!\n",
5286 jbd_debug(5, "marking dirty. outer handle=%p\n",
5288 ext4_mark_inode_dirty(handle, inode);
5290 ext4_journal_stop(handle);
5297 * Bind an inode's backing buffer_head into this transaction, to prevent
5298 * it from being flushed to disk early. Unlike
5299 * ext4_reserve_inode_write, this leaves behind no bh reference and
5300 * returns no iloc structure, so the caller needs to repeat the iloc
5301 * lookup to mark the inode dirty later.
5303 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5305 struct ext4_iloc iloc;
5309 err = ext4_get_inode_loc(inode, &iloc);
5311 BUFFER_TRACE(iloc.bh, "get_write_access");
5312 err = jbd2_journal_get_write_access(handle, iloc.bh);
5314 err = ext4_handle_dirty_metadata(handle,
5320 ext4_std_error(inode->i_sb, err);
5325 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5332 * We have to be very careful here: changing a data block's
5333 * journaling status dynamically is dangerous. If we write a
5334 * data block to the journal, change the status and then delete
5335 * that block, we risk forgetting to revoke the old log record
5336 * from the journal and so a subsequent replay can corrupt data.
5337 * So, first we make sure that the journal is empty and that
5338 * nobody is changing anything.
5341 journal = EXT4_JOURNAL(inode);
5344 if (is_journal_aborted(journal))
5347 jbd2_journal_lock_updates(journal);
5348 jbd2_journal_flush(journal);
5351 * OK, there are no updates running now, and all cached data is
5352 * synced to disk. We are now in a completely consistent state
5353 * which doesn't have anything in the journal, and we know that
5354 * no filesystem updates are running, so it is safe to modify
5355 * the inode's in-core data-journaling state flag now.
5359 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5361 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5362 ext4_set_aops(inode);
5364 jbd2_journal_unlock_updates(journal);
5366 /* Finally we can mark the inode as dirty. */
5368 handle = ext4_journal_start(inode, 1);
5370 return PTR_ERR(handle);
5372 err = ext4_mark_inode_dirty(handle, inode);
5373 ext4_handle_sync(handle);
5374 ext4_journal_stop(handle);
5375 ext4_std_error(inode->i_sb, err);
5380 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5382 return !buffer_mapped(bh);
5385 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5387 struct page *page = vmf->page;
5392 struct file *file = vma->vm_file;
5393 struct inode *inode = file->f_path.dentry->d_inode;
5394 struct address_space *mapping = inode->i_mapping;
5397 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5398 * get i_mutex because we are already holding mmap_sem.
5400 down_read(&inode->i_alloc_sem);
5401 size = i_size_read(inode);
5402 if (page->mapping != mapping || size <= page_offset(page)
5403 || !PageUptodate(page)) {
5404 /* page got truncated from under us? */
5408 if (PageMappedToDisk(page))
5411 if (page->index == size >> PAGE_CACHE_SHIFT)
5412 len = size & ~PAGE_CACHE_MASK;
5414 len = PAGE_CACHE_SIZE;
5416 if (page_has_buffers(page)) {
5417 /* return if we have all the buffers mapped */
5418 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5423 * OK, we need to fill the hole... Do write_begin write_end
5424 * to do block allocation/reservation.We are not holding
5425 * inode.i__mutex here. That allow * parallel write_begin,
5426 * write_end call. lock_page prevent this from happening
5427 * on the same page though
5429 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5430 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5433 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5434 len, len, page, fsdata);
5440 ret = VM_FAULT_SIGBUS;
5441 up_read(&inode->i_alloc_sem);