2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
66 #include <net/inet_hashtables.h>
68 #include <net/transp_v6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 int sysctl_tcp_tw_reuse;
82 int sysctl_tcp_low_latency;
84 /* Check TCP sequence numbers in ICMP packets. */
85 #define ICMP_MIN_LENGTH 8
87 /* Socket used for sending RSTs */
88 static struct socket *tcp_socket;
90 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
94 .lhash_users = ATOMIC_INIT(0),
95 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
98 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
100 return inet_csk_get_port(&tcp_hashinfo, sk, snum,
101 inet_csk_bind_conflict);
104 static void tcp_v4_hash(struct sock *sk)
106 inet_hash(&tcp_hashinfo, sk);
109 void tcp_unhash(struct sock *sk)
111 inet_unhash(&tcp_hashinfo, sk);
114 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
116 return secure_tcp_sequence_number(skb->nh.iph->daddr,
122 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
124 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
125 struct tcp_sock *tp = tcp_sk(sk);
127 /* With PAWS, it is safe from the viewpoint
128 of data integrity. Even without PAWS it is safe provided sequence
129 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
131 Actually, the idea is close to VJ's one, only timestamp cache is
132 held not per host, but per port pair and TW bucket is used as state
135 If TW bucket has been already destroyed we fall back to VJ's scheme
136 and use initial timestamp retrieved from peer table.
138 if (tcptw->tw_ts_recent_stamp &&
139 (twp == NULL || (sysctl_tcp_tw_reuse &&
140 xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
141 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
142 if (tp->write_seq == 0)
144 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
145 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
153 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
155 /* This will initiate an outgoing connection. */
156 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
158 struct inet_sock *inet = inet_sk(sk);
159 struct tcp_sock *tp = tcp_sk(sk);
160 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
166 if (addr_len < sizeof(struct sockaddr_in))
169 if (usin->sin_family != AF_INET)
170 return -EAFNOSUPPORT;
172 nexthop = daddr = usin->sin_addr.s_addr;
173 if (inet->opt && inet->opt->srr) {
176 nexthop = inet->opt->faddr;
179 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
180 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 inet->sport, usin->sin_port, sk);
186 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
191 if (!inet->opt || !inet->opt->srr)
195 inet->saddr = rt->rt_src;
196 inet->rcv_saddr = inet->saddr;
198 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
199 /* Reset inherited state */
200 tp->rx_opt.ts_recent = 0;
201 tp->rx_opt.ts_recent_stamp = 0;
205 if (tcp_death_row.sysctl_tw_recycle &&
206 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
207 struct inet_peer *peer = rt_get_peer(rt);
209 /* VJ's idea. We save last timestamp seen from
210 * the destination in peer table, when entering state TIME-WAIT
211 * and initialize rx_opt.ts_recent from it, when trying new connection.
214 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
215 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
216 tp->rx_opt.ts_recent = peer->tcp_ts;
220 inet->dport = usin->sin_port;
223 inet_csk(sk)->icsk_ext_hdr_len = 0;
225 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
227 tp->rx_opt.mss_clamp = 536;
229 /* Socket identity is still unknown (sport may be zero).
230 * However we set state to SYN-SENT and not releasing socket
231 * lock select source port, enter ourselves into the hash tables and
232 * complete initialization after this.
234 tcp_set_state(sk, TCP_SYN_SENT);
235 err = inet_hash_connect(&tcp_death_row, sk);
239 err = ip_route_newports(&rt, IPPROTO_TCP, inet->sport, inet->dport, sk);
243 /* OK, now commit destination to socket. */
244 sk->sk_gso_type = SKB_GSO_TCPV4;
245 sk_setup_caps(sk, &rt->u.dst);
248 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
253 inet->id = tp->write_seq ^ jiffies;
255 err = tcp_connect(sk);
263 /* This unhashes the socket and releases the local port, if necessary. */
264 tcp_set_state(sk, TCP_CLOSE);
266 sk->sk_route_caps = 0;
272 * This routine does path mtu discovery as defined in RFC1191.
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
276 struct dst_entry *dst;
277 struct inet_sock *inet = inet_sk(sk);
279 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 * send out by Linux are always <576bytes so they should go through
283 if (sk->sk_state == TCP_LISTEN)
286 /* We don't check in the destentry if pmtu discovery is forbidden
287 * on this route. We just assume that no packet_to_big packets
288 * are send back when pmtu discovery is not active.
289 * There is a small race when the user changes this flag in the
290 * route, but I think that's acceptable.
292 if ((dst = __sk_dst_check(sk, 0)) == NULL)
295 dst->ops->update_pmtu(dst, mtu);
297 /* Something is about to be wrong... Remember soft error
298 * for the case, if this connection will not able to recover.
300 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301 sk->sk_err_soft = EMSGSIZE;
305 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307 tcp_sync_mss(sk, mtu);
309 /* Resend the TCP packet because it's
310 * clear that the old packet has been
311 * dropped. This is the new "fast" path mtu
314 tcp_simple_retransmit(sk);
315 } /* else let the usual retransmit timer handle it */
319 * This routine is called by the ICMP module when it gets some
320 * sort of error condition. If err < 0 then the socket should
321 * be closed and the error returned to the user. If err > 0
322 * it's just the icmp type << 8 | icmp code. After adjustment
323 * header points to the first 8 bytes of the tcp header. We need
324 * to find the appropriate port.
326 * The locking strategy used here is very "optimistic". When
327 * someone else accesses the socket the ICMP is just dropped
328 * and for some paths there is no check at all.
329 * A more general error queue to queue errors for later handling
330 * is probably better.
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
336 struct iphdr *iph = (struct iphdr *)skb->data;
337 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
339 struct inet_sock *inet;
340 int type = skb->h.icmph->type;
341 int code = skb->h.icmph->code;
346 if (skb->len < (iph->ihl << 2) + 8) {
347 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
351 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
352 th->source, inet_iif(skb));
354 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
357 if (sk->sk_state == TCP_TIME_WAIT) {
358 inet_twsk_put((struct inet_timewait_sock *)sk);
363 /* If too many ICMPs get dropped on busy
364 * servers this needs to be solved differently.
366 if (sock_owned_by_user(sk))
367 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
369 if (sk->sk_state == TCP_CLOSE)
373 seq = ntohl(th->seq);
374 if (sk->sk_state != TCP_LISTEN &&
375 !between(seq, tp->snd_una, tp->snd_nxt)) {
376 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
381 case ICMP_SOURCE_QUENCH:
382 /* Just silently ignore these. */
384 case ICMP_PARAMETERPROB:
387 case ICMP_DEST_UNREACH:
388 if (code > NR_ICMP_UNREACH)
391 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
392 if (!sock_owned_by_user(sk))
393 do_pmtu_discovery(sk, iph, info);
397 err = icmp_err_convert[code].errno;
399 case ICMP_TIME_EXCEEDED:
406 switch (sk->sk_state) {
407 struct request_sock *req, **prev;
409 if (sock_owned_by_user(sk))
412 req = inet_csk_search_req(sk, &prev, th->dest,
413 iph->daddr, iph->saddr);
417 /* ICMPs are not backlogged, hence we cannot get
418 an established socket here.
422 if (seq != tcp_rsk(req)->snt_isn) {
423 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
428 * Still in SYN_RECV, just remove it silently.
429 * There is no good way to pass the error to the newly
430 * created socket, and POSIX does not want network
431 * errors returned from accept().
433 inet_csk_reqsk_queue_drop(sk, req, prev);
437 case TCP_SYN_RECV: /* Cannot happen.
438 It can f.e. if SYNs crossed.
440 if (!sock_owned_by_user(sk)) {
443 sk->sk_error_report(sk);
447 sk->sk_err_soft = err;
452 /* If we've already connected we will keep trying
453 * until we time out, or the user gives up.
455 * rfc1122 4.2.3.9 allows to consider as hard errors
456 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
457 * but it is obsoleted by pmtu discovery).
459 * Note, that in modern internet, where routing is unreliable
460 * and in each dark corner broken firewalls sit, sending random
461 * errors ordered by their masters even this two messages finally lose
462 * their original sense (even Linux sends invalid PORT_UNREACHs)
464 * Now we are in compliance with RFCs.
469 if (!sock_owned_by_user(sk) && inet->recverr) {
471 sk->sk_error_report(sk);
472 } else { /* Only an error on timeout */
473 sk->sk_err_soft = err;
481 /* This routine computes an IPv4 TCP checksum. */
482 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
484 struct inet_sock *inet = inet_sk(sk);
485 struct tcphdr *th = skb->h.th;
487 if (skb->ip_summed == CHECKSUM_HW) {
488 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
489 skb->csum = offsetof(struct tcphdr, check);
491 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
492 csum_partial((char *)th,
498 int tcp_v4_gso_send_check(struct sk_buff *skb)
503 if (!pskb_may_pull(skb, sizeof(*th)))
510 th->check = ~tcp_v4_check(th, skb->len, iph->saddr, iph->daddr, 0);
511 skb->csum = offsetof(struct tcphdr, check);
512 skb->ip_summed = CHECKSUM_HW;
517 * This routine will send an RST to the other tcp.
519 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
521 * Answer: if a packet caused RST, it is not for a socket
522 * existing in our system, if it is matched to a socket,
523 * it is just duplicate segment or bug in other side's TCP.
524 * So that we build reply only basing on parameters
525 * arrived with segment.
526 * Exception: precedence violation. We do not implement it in any case.
529 static void tcp_v4_send_reset(struct sk_buff *skb)
531 struct tcphdr *th = skb->h.th;
533 struct ip_reply_arg arg;
535 /* Never send a reset in response to a reset. */
539 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
542 /* Swap the send and the receive. */
543 memset(&rth, 0, sizeof(struct tcphdr));
544 rth.dest = th->source;
545 rth.source = th->dest;
546 rth.doff = sizeof(struct tcphdr) / 4;
550 rth.seq = th->ack_seq;
553 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
554 skb->len - (th->doff << 2));
557 memset(&arg, 0, sizeof arg);
558 arg.iov[0].iov_base = (unsigned char *)&rth;
559 arg.iov[0].iov_len = sizeof rth;
560 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
561 skb->nh.iph->saddr, /*XXX*/
562 sizeof(struct tcphdr), IPPROTO_TCP, 0);
563 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
565 ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
567 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
568 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
571 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
572 outside socket context is ugly, certainly. What can I do?
575 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
578 struct tcphdr *th = skb->h.th;
583 struct ip_reply_arg arg;
585 memset(&rep.th, 0, sizeof(struct tcphdr));
586 memset(&arg, 0, sizeof arg);
588 arg.iov[0].iov_base = (unsigned char *)&rep;
589 arg.iov[0].iov_len = sizeof(rep.th);
591 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
592 (TCPOPT_TIMESTAMP << 8) |
594 rep.tsopt[1] = htonl(tcp_time_stamp);
595 rep.tsopt[2] = htonl(ts);
596 arg.iov[0].iov_len = sizeof(rep);
599 /* Swap the send and the receive. */
600 rep.th.dest = th->source;
601 rep.th.source = th->dest;
602 rep.th.doff = arg.iov[0].iov_len / 4;
603 rep.th.seq = htonl(seq);
604 rep.th.ack_seq = htonl(ack);
606 rep.th.window = htons(win);
608 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
609 skb->nh.iph->saddr, /*XXX*/
610 arg.iov[0].iov_len, IPPROTO_TCP, 0);
611 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
613 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
615 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
618 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
620 struct inet_timewait_sock *tw = inet_twsk(sk);
621 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
623 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
624 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
629 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
631 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
636 * Send a SYN-ACK after having received an ACK.
637 * This still operates on a request_sock only, not on a big
640 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
641 struct dst_entry *dst)
643 const struct inet_request_sock *ireq = inet_rsk(req);
645 struct sk_buff * skb;
647 /* First, grab a route. */
648 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
651 skb = tcp_make_synack(sk, dst, req);
654 struct tcphdr *th = skb->h.th;
656 th->check = tcp_v4_check(th, skb->len,
659 csum_partial((char *)th, skb->len,
662 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
665 if (err == NET_XMIT_CN)
675 * IPv4 request_sock destructor.
677 static void tcp_v4_reqsk_destructor(struct request_sock *req)
679 kfree(inet_rsk(req)->opt);
682 #ifdef CONFIG_SYN_COOKIES
683 static void syn_flood_warning(struct sk_buff *skb)
685 static unsigned long warntime;
687 if (time_after(jiffies, (warntime + HZ * 60))) {
690 "possible SYN flooding on port %d. Sending cookies.\n",
691 ntohs(skb->h.th->dest));
697 * Save and compile IPv4 options into the request_sock if needed.
699 static struct ip_options *tcp_v4_save_options(struct sock *sk,
702 struct ip_options *opt = &(IPCB(skb)->opt);
703 struct ip_options *dopt = NULL;
705 if (opt && opt->optlen) {
706 int opt_size = optlength(opt);
707 dopt = kmalloc(opt_size, GFP_ATOMIC);
709 if (ip_options_echo(dopt, skb)) {
718 struct request_sock_ops tcp_request_sock_ops = {
720 .obj_size = sizeof(struct tcp_request_sock),
721 .rtx_syn_ack = tcp_v4_send_synack,
722 .send_ack = tcp_v4_reqsk_send_ack,
723 .destructor = tcp_v4_reqsk_destructor,
724 .send_reset = tcp_v4_send_reset,
727 static struct timewait_sock_ops tcp_timewait_sock_ops = {
728 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
729 .twsk_unique = tcp_twsk_unique,
732 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
734 struct inet_request_sock *ireq;
735 struct tcp_options_received tmp_opt;
736 struct request_sock *req;
737 __u32 saddr = skb->nh.iph->saddr;
738 __u32 daddr = skb->nh.iph->daddr;
739 __u32 isn = TCP_SKB_CB(skb)->when;
740 struct dst_entry *dst = NULL;
741 #ifdef CONFIG_SYN_COOKIES
744 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
747 /* Never answer to SYNs send to broadcast or multicast */
748 if (((struct rtable *)skb->dst)->rt_flags &
749 (RTCF_BROADCAST | RTCF_MULTICAST))
752 /* TW buckets are converted to open requests without
753 * limitations, they conserve resources and peer is
754 * evidently real one.
756 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
757 #ifdef CONFIG_SYN_COOKIES
758 if (sysctl_tcp_syncookies) {
765 /* Accept backlog is full. If we have already queued enough
766 * of warm entries in syn queue, drop request. It is better than
767 * clogging syn queue with openreqs with exponentially increasing
770 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
773 req = reqsk_alloc(&tcp_request_sock_ops);
777 tcp_clear_options(&tmp_opt);
778 tmp_opt.mss_clamp = 536;
779 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
781 tcp_parse_options(skb, &tmp_opt, 0);
784 tcp_clear_options(&tmp_opt);
785 tmp_opt.saw_tstamp = 0;
788 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
789 /* Some OSes (unknown ones, but I see them on web server, which
790 * contains information interesting only for windows'
791 * users) do not send their stamp in SYN. It is easy case.
792 * We simply do not advertise TS support.
794 tmp_opt.saw_tstamp = 0;
795 tmp_opt.tstamp_ok = 0;
797 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
799 tcp_openreq_init(req, &tmp_opt, skb);
801 ireq = inet_rsk(req);
802 ireq->loc_addr = daddr;
803 ireq->rmt_addr = saddr;
804 ireq->opt = tcp_v4_save_options(sk, skb);
806 TCP_ECN_create_request(req, skb->h.th);
809 #ifdef CONFIG_SYN_COOKIES
810 syn_flood_warning(skb);
812 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
814 struct inet_peer *peer = NULL;
816 /* VJ's idea. We save last timestamp seen
817 * from the destination in peer table, when entering
818 * state TIME-WAIT, and check against it before
819 * accepting new connection request.
821 * If "isn" is not zero, this request hit alive
822 * timewait bucket, so that all the necessary checks
823 * are made in the function processing timewait state.
825 if (tmp_opt.saw_tstamp &&
826 tcp_death_row.sysctl_tw_recycle &&
827 (dst = inet_csk_route_req(sk, req)) != NULL &&
828 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
829 peer->v4daddr == saddr) {
830 if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
831 (s32)(peer->tcp_ts - req->ts_recent) >
833 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
838 /* Kill the following clause, if you dislike this way. */
839 else if (!sysctl_tcp_syncookies &&
840 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
841 (sysctl_max_syn_backlog >> 2)) &&
842 (!peer || !peer->tcp_ts_stamp) &&
843 (!dst || !dst_metric(dst, RTAX_RTT))) {
844 /* Without syncookies last quarter of
845 * backlog is filled with destinations,
846 * proven to be alive.
847 * It means that we continue to communicate
848 * to destinations, already remembered
849 * to the moment of synflood.
851 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
852 "request from %u.%u.%u.%u/%u\n",
854 ntohs(skb->h.th->source));
859 isn = tcp_v4_init_sequence(sk, skb);
861 tcp_rsk(req)->snt_isn = isn;
863 if (tcp_v4_send_synack(sk, req, dst))
869 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
881 * The three way handshake has completed - we got a valid synack -
882 * now create the new socket.
884 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
885 struct request_sock *req,
886 struct dst_entry *dst)
888 struct inet_request_sock *ireq;
889 struct inet_sock *newinet;
890 struct tcp_sock *newtp;
893 if (sk_acceptq_is_full(sk))
896 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
899 newsk = tcp_create_openreq_child(sk, req, skb);
903 newsk->sk_gso_type = SKB_GSO_TCPV4;
904 sk_setup_caps(newsk, dst);
906 newtp = tcp_sk(newsk);
907 newinet = inet_sk(newsk);
908 ireq = inet_rsk(req);
909 newinet->daddr = ireq->rmt_addr;
910 newinet->rcv_saddr = ireq->loc_addr;
911 newinet->saddr = ireq->loc_addr;
912 newinet->opt = ireq->opt;
914 newinet->mc_index = inet_iif(skb);
915 newinet->mc_ttl = skb->nh.iph->ttl;
916 inet_csk(newsk)->icsk_ext_hdr_len = 0;
918 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
919 newinet->id = newtp->write_seq ^ jiffies;
921 tcp_mtup_init(newsk);
922 tcp_sync_mss(newsk, dst_mtu(dst));
923 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
924 tcp_initialize_rcv_mss(newsk);
926 __inet_hash(&tcp_hashinfo, newsk, 0);
927 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
932 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
934 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
939 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
941 struct tcphdr *th = skb->h.th;
942 struct iphdr *iph = skb->nh.iph;
944 struct request_sock **prev;
945 /* Find possible connection requests. */
946 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
947 iph->saddr, iph->daddr);
949 return tcp_check_req(sk, skb, req, prev);
951 nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
952 th->source, skb->nh.iph->daddr,
953 ntohs(th->dest), inet_iif(skb));
956 if (nsk->sk_state != TCP_TIME_WAIT) {
960 inet_twsk_put((struct inet_timewait_sock *)nsk);
964 #ifdef CONFIG_SYN_COOKIES
965 if (!th->rst && !th->syn && th->ack)
966 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
971 static int tcp_v4_checksum_init(struct sk_buff *skb)
973 if (skb->ip_summed == CHECKSUM_HW) {
974 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
975 skb->nh.iph->daddr, skb->csum)) {
976 skb->ip_summed = CHECKSUM_UNNECESSARY;
981 skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
982 skb->len, IPPROTO_TCP, 0);
984 if (skb->len <= 76) {
985 return __skb_checksum_complete(skb);
991 /* The socket must have it's spinlock held when we get
994 * We have a potential double-lock case here, so even when
995 * doing backlog processing we use the BH locking scheme.
996 * This is because we cannot sleep with the original spinlock
999 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1001 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1002 TCP_CHECK_TIMER(sk);
1003 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
1005 TCP_CHECK_TIMER(sk);
1009 if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
1012 if (sk->sk_state == TCP_LISTEN) {
1013 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1018 if (tcp_child_process(sk, nsk, skb))
1024 TCP_CHECK_TIMER(sk);
1025 if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1027 TCP_CHECK_TIMER(sk);
1031 tcp_v4_send_reset(skb);
1034 /* Be careful here. If this function gets more complicated and
1035 * gcc suffers from register pressure on the x86, sk (in %ebx)
1036 * might be destroyed here. This current version compiles correctly,
1037 * but you have been warned.
1042 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1050 int tcp_v4_rcv(struct sk_buff *skb)
1056 if (skb->pkt_type != PACKET_HOST)
1059 /* Count it even if it's bad */
1060 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1062 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1067 if (th->doff < sizeof(struct tcphdr) / 4)
1069 if (!pskb_may_pull(skb, th->doff * 4))
1072 /* An explanation is required here, I think.
1073 * Packet length and doff are validated by header prediction,
1074 * provided case of th->doff==0 is eliminated.
1075 * So, we defer the checks. */
1076 if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1077 tcp_v4_checksum_init(skb)))
1081 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1082 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1083 skb->len - th->doff * 4);
1084 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1085 TCP_SKB_CB(skb)->when = 0;
1086 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
1087 TCP_SKB_CB(skb)->sacked = 0;
1089 sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1090 skb->nh.iph->daddr, ntohs(th->dest),
1097 if (sk->sk_state == TCP_TIME_WAIT)
1100 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1101 goto discard_and_relse;
1104 if (sk_filter(sk, skb, 0))
1105 goto discard_and_relse;
1109 bh_lock_sock_nested(sk);
1111 if (!sock_owned_by_user(sk)) {
1112 #ifdef CONFIG_NET_DMA
1113 struct tcp_sock *tp = tcp_sk(sk);
1114 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1115 tp->ucopy.dma_chan = get_softnet_dma();
1116 if (tp->ucopy.dma_chan)
1117 ret = tcp_v4_do_rcv(sk, skb);
1121 if (!tcp_prequeue(sk, skb))
1122 ret = tcp_v4_do_rcv(sk, skb);
1125 sk_add_backlog(sk, skb);
1133 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1136 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1138 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1140 tcp_v4_send_reset(skb);
1144 /* Discard frame. */
1153 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1154 inet_twsk_put((struct inet_timewait_sock *) sk);
1158 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1159 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1160 inet_twsk_put((struct inet_timewait_sock *) sk);
1163 switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1166 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1171 inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1173 inet_twsk_put((struct inet_timewait_sock *)sk);
1177 /* Fall through to ACK */
1180 tcp_v4_timewait_ack(sk, skb);
1184 case TCP_TW_SUCCESS:;
1189 /* VJ's idea. Save last timestamp seen from this destination
1190 * and hold it at least for normal timewait interval to use for duplicate
1191 * segment detection in subsequent connections, before they enter synchronized
1195 int tcp_v4_remember_stamp(struct sock *sk)
1197 struct inet_sock *inet = inet_sk(sk);
1198 struct tcp_sock *tp = tcp_sk(sk);
1199 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1200 struct inet_peer *peer = NULL;
1203 if (!rt || rt->rt_dst != inet->daddr) {
1204 peer = inet_getpeer(inet->daddr, 1);
1208 rt_bind_peer(rt, 1);
1213 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1214 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1215 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1216 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1217 peer->tcp_ts = tp->rx_opt.ts_recent;
1227 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1229 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1232 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1234 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1235 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1236 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1237 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1238 peer->tcp_ts = tcptw->tw_ts_recent;
1247 struct inet_connection_sock_af_ops ipv4_specific = {
1248 .queue_xmit = ip_queue_xmit,
1249 .send_check = tcp_v4_send_check,
1250 .rebuild_header = inet_sk_rebuild_header,
1251 .conn_request = tcp_v4_conn_request,
1252 .syn_recv_sock = tcp_v4_syn_recv_sock,
1253 .remember_stamp = tcp_v4_remember_stamp,
1254 .net_header_len = sizeof(struct iphdr),
1255 .setsockopt = ip_setsockopt,
1256 .getsockopt = ip_getsockopt,
1257 .addr2sockaddr = inet_csk_addr2sockaddr,
1258 .sockaddr_len = sizeof(struct sockaddr_in),
1259 #ifdef CONFIG_COMPAT
1260 .compat_setsockopt = compat_ip_setsockopt,
1261 .compat_getsockopt = compat_ip_getsockopt,
1265 /* NOTE: A lot of things set to zero explicitly by call to
1266 * sk_alloc() so need not be done here.
1268 static int tcp_v4_init_sock(struct sock *sk)
1270 struct inet_connection_sock *icsk = inet_csk(sk);
1271 struct tcp_sock *tp = tcp_sk(sk);
1273 skb_queue_head_init(&tp->out_of_order_queue);
1274 tcp_init_xmit_timers(sk);
1275 tcp_prequeue_init(tp);
1277 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1278 tp->mdev = TCP_TIMEOUT_INIT;
1280 /* So many TCP implementations out there (incorrectly) count the
1281 * initial SYN frame in their delayed-ACK and congestion control
1282 * algorithms that we must have the following bandaid to talk
1283 * efficiently to them. -DaveM
1287 /* See draft-stevens-tcpca-spec-01 for discussion of the
1288 * initialization of these values.
1290 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1291 tp->snd_cwnd_clamp = ~0;
1292 tp->mss_cache = 536;
1294 tp->reordering = sysctl_tcp_reordering;
1295 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1297 sk->sk_state = TCP_CLOSE;
1299 sk->sk_write_space = sk_stream_write_space;
1300 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1302 icsk->icsk_af_ops = &ipv4_specific;
1303 icsk->icsk_sync_mss = tcp_sync_mss;
1305 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1306 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1308 atomic_inc(&tcp_sockets_allocated);
1313 int tcp_v4_destroy_sock(struct sock *sk)
1315 struct tcp_sock *tp = tcp_sk(sk);
1317 tcp_clear_xmit_timers(sk);
1319 tcp_cleanup_congestion_control(sk);
1321 /* Cleanup up the write buffer. */
1322 sk_stream_writequeue_purge(sk);
1324 /* Cleans up our, hopefully empty, out_of_order_queue. */
1325 __skb_queue_purge(&tp->out_of_order_queue);
1327 #ifdef CONFIG_NET_DMA
1328 /* Cleans up our sk_async_wait_queue */
1329 __skb_queue_purge(&sk->sk_async_wait_queue);
1332 /* Clean prequeue, it must be empty really */
1333 __skb_queue_purge(&tp->ucopy.prequeue);
1335 /* Clean up a referenced TCP bind bucket. */
1336 if (inet_csk(sk)->icsk_bind_hash)
1337 inet_put_port(&tcp_hashinfo, sk);
1340 * If sendmsg cached page exists, toss it.
1342 if (sk->sk_sndmsg_page) {
1343 __free_page(sk->sk_sndmsg_page);
1344 sk->sk_sndmsg_page = NULL;
1347 atomic_dec(&tcp_sockets_allocated);
1352 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1354 #ifdef CONFIG_PROC_FS
1355 /* Proc filesystem TCP sock list dumping. */
1357 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1359 return hlist_empty(head) ? NULL :
1360 list_entry(head->first, struct inet_timewait_sock, tw_node);
1363 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1365 return tw->tw_node.next ?
1366 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1369 static void *listening_get_next(struct seq_file *seq, void *cur)
1371 struct inet_connection_sock *icsk;
1372 struct hlist_node *node;
1373 struct sock *sk = cur;
1374 struct tcp_iter_state* st = seq->private;
1378 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1384 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1385 struct request_sock *req = cur;
1387 icsk = inet_csk(st->syn_wait_sk);
1391 if (req->rsk_ops->family == st->family) {
1397 if (++st->sbucket >= TCP_SYNQ_HSIZE)
1400 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1402 sk = sk_next(st->syn_wait_sk);
1403 st->state = TCP_SEQ_STATE_LISTENING;
1404 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1406 icsk = inet_csk(sk);
1407 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1408 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1410 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1414 sk_for_each_from(sk, node) {
1415 if (sk->sk_family == st->family) {
1419 icsk = inet_csk(sk);
1420 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1421 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1423 st->uid = sock_i_uid(sk);
1424 st->syn_wait_sk = sk;
1425 st->state = TCP_SEQ_STATE_OPENREQ;
1429 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1431 if (++st->bucket < INET_LHTABLE_SIZE) {
1432 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1440 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1442 void *rc = listening_get_next(seq, NULL);
1444 while (rc && *pos) {
1445 rc = listening_get_next(seq, rc);
1451 static void *established_get_first(struct seq_file *seq)
1453 struct tcp_iter_state* st = seq->private;
1456 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1458 struct hlist_node *node;
1459 struct inet_timewait_sock *tw;
1461 /* We can reschedule _before_ having picked the target: */
1462 cond_resched_softirq();
1464 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1465 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1466 if (sk->sk_family != st->family) {
1472 st->state = TCP_SEQ_STATE_TIME_WAIT;
1473 inet_twsk_for_each(tw, node,
1474 &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1475 if (tw->tw_family != st->family) {
1481 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1482 st->state = TCP_SEQ_STATE_ESTABLISHED;
1488 static void *established_get_next(struct seq_file *seq, void *cur)
1490 struct sock *sk = cur;
1491 struct inet_timewait_sock *tw;
1492 struct hlist_node *node;
1493 struct tcp_iter_state* st = seq->private;
1497 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1501 while (tw && tw->tw_family != st->family) {
1508 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1509 st->state = TCP_SEQ_STATE_ESTABLISHED;
1511 /* We can reschedule between buckets: */
1512 cond_resched_softirq();
1514 if (++st->bucket < tcp_hashinfo.ehash_size) {
1515 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1516 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1524 sk_for_each_from(sk, node) {
1525 if (sk->sk_family == st->family)
1529 st->state = TCP_SEQ_STATE_TIME_WAIT;
1530 tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1538 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1540 void *rc = established_get_first(seq);
1543 rc = established_get_next(seq, rc);
1549 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1552 struct tcp_iter_state* st = seq->private;
1554 inet_listen_lock(&tcp_hashinfo);
1555 st->state = TCP_SEQ_STATE_LISTENING;
1556 rc = listening_get_idx(seq, &pos);
1559 inet_listen_unlock(&tcp_hashinfo);
1561 st->state = TCP_SEQ_STATE_ESTABLISHED;
1562 rc = established_get_idx(seq, pos);
1568 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1570 struct tcp_iter_state* st = seq->private;
1571 st->state = TCP_SEQ_STATE_LISTENING;
1573 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1576 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1579 struct tcp_iter_state* st;
1581 if (v == SEQ_START_TOKEN) {
1582 rc = tcp_get_idx(seq, 0);
1587 switch (st->state) {
1588 case TCP_SEQ_STATE_OPENREQ:
1589 case TCP_SEQ_STATE_LISTENING:
1590 rc = listening_get_next(seq, v);
1592 inet_listen_unlock(&tcp_hashinfo);
1594 st->state = TCP_SEQ_STATE_ESTABLISHED;
1595 rc = established_get_first(seq);
1598 case TCP_SEQ_STATE_ESTABLISHED:
1599 case TCP_SEQ_STATE_TIME_WAIT:
1600 rc = established_get_next(seq, v);
1608 static void tcp_seq_stop(struct seq_file *seq, void *v)
1610 struct tcp_iter_state* st = seq->private;
1612 switch (st->state) {
1613 case TCP_SEQ_STATE_OPENREQ:
1615 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1616 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1618 case TCP_SEQ_STATE_LISTENING:
1619 if (v != SEQ_START_TOKEN)
1620 inet_listen_unlock(&tcp_hashinfo);
1622 case TCP_SEQ_STATE_TIME_WAIT:
1623 case TCP_SEQ_STATE_ESTABLISHED:
1625 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1631 static int tcp_seq_open(struct inode *inode, struct file *file)
1633 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1634 struct seq_file *seq;
1635 struct tcp_iter_state *s;
1638 if (unlikely(afinfo == NULL))
1641 s = kzalloc(sizeof(*s), GFP_KERNEL);
1644 s->family = afinfo->family;
1645 s->seq_ops.start = tcp_seq_start;
1646 s->seq_ops.next = tcp_seq_next;
1647 s->seq_ops.show = afinfo->seq_show;
1648 s->seq_ops.stop = tcp_seq_stop;
1650 rc = seq_open(file, &s->seq_ops);
1653 seq = file->private_data;
1662 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1665 struct proc_dir_entry *p;
1669 afinfo->seq_fops->owner = afinfo->owner;
1670 afinfo->seq_fops->open = tcp_seq_open;
1671 afinfo->seq_fops->read = seq_read;
1672 afinfo->seq_fops->llseek = seq_lseek;
1673 afinfo->seq_fops->release = seq_release_private;
1675 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1683 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1687 proc_net_remove(afinfo->name);
1688 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1691 static void get_openreq4(struct sock *sk, struct request_sock *req,
1692 char *tmpbuf, int i, int uid)
1694 const struct inet_request_sock *ireq = inet_rsk(req);
1695 int ttd = req->expires - jiffies;
1697 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1698 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1701 ntohs(inet_sk(sk)->sport),
1703 ntohs(ireq->rmt_port),
1705 0, 0, /* could print option size, but that is af dependent. */
1706 1, /* timers active (only the expire timer) */
1707 jiffies_to_clock_t(ttd),
1710 0, /* non standard timer */
1711 0, /* open_requests have no inode */
1712 atomic_read(&sk->sk_refcnt),
1716 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1719 unsigned long timer_expires;
1720 struct tcp_sock *tp = tcp_sk(sp);
1721 const struct inet_connection_sock *icsk = inet_csk(sp);
1722 struct inet_sock *inet = inet_sk(sp);
1723 unsigned int dest = inet->daddr;
1724 unsigned int src = inet->rcv_saddr;
1725 __u16 destp = ntohs(inet->dport);
1726 __u16 srcp = ntohs(inet->sport);
1728 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1730 timer_expires = icsk->icsk_timeout;
1731 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1733 timer_expires = icsk->icsk_timeout;
1734 } else if (timer_pending(&sp->sk_timer)) {
1736 timer_expires = sp->sk_timer.expires;
1739 timer_expires = jiffies;
1742 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1743 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1744 i, src, srcp, dest, destp, sp->sk_state,
1745 tp->write_seq - tp->snd_una,
1746 (sp->sk_state == TCP_LISTEN) ? sp->sk_ack_backlog : (tp->rcv_nxt - tp->copied_seq),
1748 jiffies_to_clock_t(timer_expires - jiffies),
1749 icsk->icsk_retransmits,
1751 icsk->icsk_probes_out,
1753 atomic_read(&sp->sk_refcnt), sp,
1756 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1758 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1761 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1763 unsigned int dest, src;
1765 int ttd = tw->tw_ttd - jiffies;
1770 dest = tw->tw_daddr;
1771 src = tw->tw_rcv_saddr;
1772 destp = ntohs(tw->tw_dport);
1773 srcp = ntohs(tw->tw_sport);
1775 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1776 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1777 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1778 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1779 atomic_read(&tw->tw_refcnt), tw);
1784 static int tcp4_seq_show(struct seq_file *seq, void *v)
1786 struct tcp_iter_state* st;
1787 char tmpbuf[TMPSZ + 1];
1789 if (v == SEQ_START_TOKEN) {
1790 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1791 " sl local_address rem_address st tx_queue "
1792 "rx_queue tr tm->when retrnsmt uid timeout "
1798 switch (st->state) {
1799 case TCP_SEQ_STATE_LISTENING:
1800 case TCP_SEQ_STATE_ESTABLISHED:
1801 get_tcp4_sock(v, tmpbuf, st->num);
1803 case TCP_SEQ_STATE_OPENREQ:
1804 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1806 case TCP_SEQ_STATE_TIME_WAIT:
1807 get_timewait4_sock(v, tmpbuf, st->num);
1810 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1815 static struct file_operations tcp4_seq_fops;
1816 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1817 .owner = THIS_MODULE,
1820 .seq_show = tcp4_seq_show,
1821 .seq_fops = &tcp4_seq_fops,
1824 int __init tcp4_proc_init(void)
1826 return tcp_proc_register(&tcp4_seq_afinfo);
1829 void tcp4_proc_exit(void)
1831 tcp_proc_unregister(&tcp4_seq_afinfo);
1833 #endif /* CONFIG_PROC_FS */
1835 struct proto tcp_prot = {
1837 .owner = THIS_MODULE,
1839 .connect = tcp_v4_connect,
1840 .disconnect = tcp_disconnect,
1841 .accept = inet_csk_accept,
1843 .init = tcp_v4_init_sock,
1844 .destroy = tcp_v4_destroy_sock,
1845 .shutdown = tcp_shutdown,
1846 .setsockopt = tcp_setsockopt,
1847 .getsockopt = tcp_getsockopt,
1848 .sendmsg = tcp_sendmsg,
1849 .recvmsg = tcp_recvmsg,
1850 .backlog_rcv = tcp_v4_do_rcv,
1851 .hash = tcp_v4_hash,
1852 .unhash = tcp_unhash,
1853 .get_port = tcp_v4_get_port,
1854 .enter_memory_pressure = tcp_enter_memory_pressure,
1855 .sockets_allocated = &tcp_sockets_allocated,
1856 .orphan_count = &tcp_orphan_count,
1857 .memory_allocated = &tcp_memory_allocated,
1858 .memory_pressure = &tcp_memory_pressure,
1859 .sysctl_mem = sysctl_tcp_mem,
1860 .sysctl_wmem = sysctl_tcp_wmem,
1861 .sysctl_rmem = sysctl_tcp_rmem,
1862 .max_header = MAX_TCP_HEADER,
1863 .obj_size = sizeof(struct tcp_sock),
1864 .twsk_prot = &tcp_timewait_sock_ops,
1865 .rsk_prot = &tcp_request_sock_ops,
1866 #ifdef CONFIG_COMPAT
1867 .compat_setsockopt = compat_tcp_setsockopt,
1868 .compat_getsockopt = compat_tcp_getsockopt,
1872 void __init tcp_v4_init(struct net_proto_family *ops)
1874 if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW, IPPROTO_TCP) < 0)
1875 panic("Failed to create the TCP control socket.\n");
1878 EXPORT_SYMBOL(ipv4_specific);
1879 EXPORT_SYMBOL(tcp_hashinfo);
1880 EXPORT_SYMBOL(tcp_prot);
1881 EXPORT_SYMBOL(tcp_unhash);
1882 EXPORT_SYMBOL(tcp_v4_conn_request);
1883 EXPORT_SYMBOL(tcp_v4_connect);
1884 EXPORT_SYMBOL(tcp_v4_do_rcv);
1885 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1886 EXPORT_SYMBOL(tcp_v4_send_check);
1887 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1889 #ifdef CONFIG_PROC_FS
1890 EXPORT_SYMBOL(tcp_proc_register);
1891 EXPORT_SYMBOL(tcp_proc_unregister);
1893 EXPORT_SYMBOL(sysctl_local_port_range);
1894 EXPORT_SYMBOL(sysctl_tcp_low_latency);