2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
37 #include <linux/cpu.h>
39 #include "x86_emulate.h"
40 #include "segment_descriptor.h"
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
45 static DEFINE_SPINLOCK(kvm_lock);
46 static LIST_HEAD(vm_list);
48 struct kvm_arch_ops *kvm_arch_ops;
49 struct kvm_stat kvm_stat;
50 EXPORT_SYMBOL_GPL(kvm_stat);
52 static struct kvm_stats_debugfs_item {
55 struct dentry *dentry;
56 } debugfs_entries[] = {
57 { "pf_fixed", &kvm_stat.pf_fixed },
58 { "pf_guest", &kvm_stat.pf_guest },
59 { "tlb_flush", &kvm_stat.tlb_flush },
60 { "invlpg", &kvm_stat.invlpg },
61 { "exits", &kvm_stat.exits },
62 { "io_exits", &kvm_stat.io_exits },
63 { "mmio_exits", &kvm_stat.mmio_exits },
64 { "signal_exits", &kvm_stat.signal_exits },
65 { "irq_window", &kvm_stat.irq_window_exits },
66 { "halt_exits", &kvm_stat.halt_exits },
67 { "request_irq", &kvm_stat.request_irq_exits },
68 { "irq_exits", &kvm_stat.irq_exits },
72 static struct dentry *debugfs_dir;
74 #define MAX_IO_MSRS 256
76 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
77 #define LMSW_GUEST_MASK 0x0eULL
78 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
79 #define CR8_RESEVED_BITS (~0x0fULL)
80 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
83 // LDT or TSS descriptor in the GDT. 16 bytes.
84 struct segment_descriptor_64 {
85 struct segment_descriptor s;
92 unsigned long segment_base(u16 selector)
94 struct descriptor_table gdt;
95 struct segment_descriptor *d;
96 unsigned long table_base;
97 typedef unsigned long ul;
103 asm ("sgdt %0" : "=m"(gdt));
104 table_base = gdt.base;
106 if (selector & 4) { /* from ldt */
109 asm ("sldt %0" : "=g"(ldt_selector));
110 table_base = segment_base(ldt_selector);
112 d = (struct segment_descriptor *)(table_base + (selector & ~7));
113 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
116 && (d->type == 2 || d->type == 9 || d->type == 11))
117 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
121 EXPORT_SYMBOL_GPL(segment_base);
123 static inline int valid_vcpu(int n)
125 return likely(n >= 0 && n < KVM_MAX_VCPUS);
128 int kvm_read_guest(struct kvm_vcpu *vcpu,
133 unsigned char *host_buf = dest;
134 unsigned long req_size = size;
142 paddr = gva_to_hpa(vcpu, addr);
144 if (is_error_hpa(paddr))
147 guest_buf = (hva_t)kmap_atomic(
148 pfn_to_page(paddr >> PAGE_SHIFT),
150 offset = addr & ~PAGE_MASK;
152 now = min(size, PAGE_SIZE - offset);
153 memcpy(host_buf, (void*)guest_buf, now);
157 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
159 return req_size - size;
161 EXPORT_SYMBOL_GPL(kvm_read_guest);
163 int kvm_write_guest(struct kvm_vcpu *vcpu,
168 unsigned char *host_buf = data;
169 unsigned long req_size = size;
177 paddr = gva_to_hpa(vcpu, addr);
179 if (is_error_hpa(paddr))
182 guest_buf = (hva_t)kmap_atomic(
183 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
184 offset = addr & ~PAGE_MASK;
186 now = min(size, PAGE_SIZE - offset);
187 memcpy((void*)guest_buf, host_buf, now);
191 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
193 return req_size - size;
195 EXPORT_SYMBOL_GPL(kvm_write_guest);
197 static int vcpu_slot(struct kvm_vcpu *vcpu)
199 return vcpu - vcpu->kvm->vcpus;
203 * Switches to specified vcpu, until a matching vcpu_put()
205 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
207 struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
209 mutex_lock(&vcpu->mutex);
210 if (unlikely(!vcpu->vmcs)) {
211 mutex_unlock(&vcpu->mutex);
214 return kvm_arch_ops->vcpu_load(vcpu);
217 static void vcpu_put(struct kvm_vcpu *vcpu)
219 kvm_arch_ops->vcpu_put(vcpu);
220 mutex_unlock(&vcpu->mutex);
223 static int kvm_dev_open(struct inode *inode, struct file *filp)
225 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
231 spin_lock_init(&kvm->lock);
232 INIT_LIST_HEAD(&kvm->active_mmu_pages);
233 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
234 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
236 mutex_init(&vcpu->mutex);
239 vcpu->mmu.root_hpa = INVALID_PAGE;
240 INIT_LIST_HEAD(&vcpu->free_pages);
241 spin_lock(&kvm_lock);
242 list_add(&kvm->vm_list, &vm_list);
243 spin_unlock(&kvm_lock);
245 filp->private_data = kvm;
250 * Free any memory in @free but not in @dont.
252 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
253 struct kvm_memory_slot *dont)
257 if (!dont || free->phys_mem != dont->phys_mem)
258 if (free->phys_mem) {
259 for (i = 0; i < free->npages; ++i)
260 if (free->phys_mem[i])
261 __free_page(free->phys_mem[i]);
262 vfree(free->phys_mem);
265 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
266 vfree(free->dirty_bitmap);
268 free->phys_mem = NULL;
270 free->dirty_bitmap = NULL;
273 static void kvm_free_physmem(struct kvm *kvm)
277 for (i = 0; i < kvm->nmemslots; ++i)
278 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
281 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
283 if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
286 kvm_mmu_destroy(vcpu);
288 kvm_arch_ops->vcpu_free(vcpu);
291 static void kvm_free_vcpus(struct kvm *kvm)
295 for (i = 0; i < KVM_MAX_VCPUS; ++i)
296 kvm_free_vcpu(&kvm->vcpus[i]);
299 static int kvm_dev_release(struct inode *inode, struct file *filp)
301 struct kvm *kvm = filp->private_data;
303 spin_lock(&kvm_lock);
304 list_del(&kvm->vm_list);
305 spin_unlock(&kvm_lock);
307 kvm_free_physmem(kvm);
312 static void inject_gp(struct kvm_vcpu *vcpu)
314 kvm_arch_ops->inject_gp(vcpu, 0);
318 * Load the pae pdptrs. Return true is they are all valid.
320 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
322 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
323 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
328 struct kvm_memory_slot *memslot;
330 spin_lock(&vcpu->kvm->lock);
331 memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
332 /* FIXME: !memslot - emulate? 0xff? */
333 pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
336 for (i = 0; i < 4; ++i) {
337 pdpte = pdpt[offset + i];
338 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
344 for (i = 0; i < 4; ++i)
345 vcpu->pdptrs[i] = pdpt[offset + i];
348 kunmap_atomic(pdpt, KM_USER0);
349 spin_unlock(&vcpu->kvm->lock);
354 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
356 if (cr0 & CR0_RESEVED_BITS) {
357 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
363 if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
364 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
369 if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
370 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
371 "and a clear PE flag\n");
376 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
378 if ((vcpu->shadow_efer & EFER_LME)) {
382 printk(KERN_DEBUG "set_cr0: #GP, start paging "
383 "in long mode while PAE is disabled\n");
387 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
389 printk(KERN_DEBUG "set_cr0: #GP, start paging "
390 "in long mode while CS.L == 1\n");
397 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
398 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
406 kvm_arch_ops->set_cr0(vcpu, cr0);
409 spin_lock(&vcpu->kvm->lock);
410 kvm_mmu_reset_context(vcpu);
411 spin_unlock(&vcpu->kvm->lock);
414 EXPORT_SYMBOL_GPL(set_cr0);
416 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
418 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
419 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
421 EXPORT_SYMBOL_GPL(lmsw);
423 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
425 if (cr4 & CR4_RESEVED_BITS) {
426 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
431 if (is_long_mode(vcpu)) {
432 if (!(cr4 & CR4_PAE_MASK)) {
433 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
438 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
439 && !load_pdptrs(vcpu, vcpu->cr3)) {
440 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
444 if (cr4 & CR4_VMXE_MASK) {
445 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
449 kvm_arch_ops->set_cr4(vcpu, cr4);
450 spin_lock(&vcpu->kvm->lock);
451 kvm_mmu_reset_context(vcpu);
452 spin_unlock(&vcpu->kvm->lock);
454 EXPORT_SYMBOL_GPL(set_cr4);
456 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
458 if (is_long_mode(vcpu)) {
459 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
460 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
465 if (cr3 & CR3_RESEVED_BITS) {
466 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
470 if (is_paging(vcpu) && is_pae(vcpu) &&
471 !load_pdptrs(vcpu, cr3)) {
472 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
480 spin_lock(&vcpu->kvm->lock);
482 * Does the new cr3 value map to physical memory? (Note, we
483 * catch an invalid cr3 even in real-mode, because it would
484 * cause trouble later on when we turn on paging anyway.)
486 * A real CPU would silently accept an invalid cr3 and would
487 * attempt to use it - with largely undefined (and often hard
488 * to debug) behavior on the guest side.
490 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
493 vcpu->mmu.new_cr3(vcpu);
494 spin_unlock(&vcpu->kvm->lock);
496 EXPORT_SYMBOL_GPL(set_cr3);
498 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
500 if ( cr8 & CR8_RESEVED_BITS) {
501 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
507 EXPORT_SYMBOL_GPL(set_cr8);
509 void fx_init(struct kvm_vcpu *vcpu)
511 struct __attribute__ ((__packed__)) fx_image_s {
517 u64 operand;// fpu dp
523 fx_save(vcpu->host_fx_image);
525 fx_save(vcpu->guest_fx_image);
526 fx_restore(vcpu->host_fx_image);
528 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
529 fx_image->mxcsr = 0x1f80;
530 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
531 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
533 EXPORT_SYMBOL_GPL(fx_init);
536 * Creates some virtual cpus. Good luck creating more than one.
538 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
541 struct kvm_vcpu *vcpu;
547 vcpu = &kvm->vcpus[n];
549 mutex_lock(&vcpu->mutex);
552 mutex_unlock(&vcpu->mutex);
556 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
558 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
560 r = kvm_arch_ops->vcpu_create(vcpu);
564 r = kvm_mmu_create(vcpu);
568 kvm_arch_ops->vcpu_load(vcpu);
569 r = kvm_mmu_setup(vcpu);
571 r = kvm_arch_ops->vcpu_setup(vcpu);
581 mutex_unlock(&vcpu->mutex);
587 * Allocate some memory and give it an address in the guest physical address
590 * Discontiguous memory is allowed, mostly for framebuffers.
592 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
593 struct kvm_memory_region *mem)
597 unsigned long npages;
599 struct kvm_memory_slot *memslot;
600 struct kvm_memory_slot old, new;
601 int memory_config_version;
604 /* General sanity checks */
605 if (mem->memory_size & (PAGE_SIZE - 1))
607 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
609 if (mem->slot >= KVM_MEMORY_SLOTS)
611 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
614 memslot = &kvm->memslots[mem->slot];
615 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
616 npages = mem->memory_size >> PAGE_SHIFT;
619 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
622 spin_lock(&kvm->lock);
624 memory_config_version = kvm->memory_config_version;
625 new = old = *memslot;
627 new.base_gfn = base_gfn;
629 new.flags = mem->flags;
631 /* Disallow changing a memory slot's size. */
633 if (npages && old.npages && npages != old.npages)
636 /* Check for overlaps */
638 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
639 struct kvm_memory_slot *s = &kvm->memslots[i];
643 if (!((base_gfn + npages <= s->base_gfn) ||
644 (base_gfn >= s->base_gfn + s->npages)))
648 * Do memory allocations outside lock. memory_config_version will
651 spin_unlock(&kvm->lock);
653 /* Deallocate if slot is being removed */
657 /* Free page dirty bitmap if unneeded */
658 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
659 new.dirty_bitmap = NULL;
663 /* Allocate if a slot is being created */
664 if (npages && !new.phys_mem) {
665 new.phys_mem = vmalloc(npages * sizeof(struct page *));
670 memset(new.phys_mem, 0, npages * sizeof(struct page *));
671 for (i = 0; i < npages; ++i) {
672 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
674 if (!new.phys_mem[i])
676 new.phys_mem[i]->private = 0;
680 /* Allocate page dirty bitmap if needed */
681 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
682 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
684 new.dirty_bitmap = vmalloc(dirty_bytes);
685 if (!new.dirty_bitmap)
687 memset(new.dirty_bitmap, 0, dirty_bytes);
690 spin_lock(&kvm->lock);
692 if (memory_config_version != kvm->memory_config_version) {
693 spin_unlock(&kvm->lock);
694 kvm_free_physmem_slot(&new, &old);
702 if (mem->slot >= kvm->nmemslots)
703 kvm->nmemslots = mem->slot + 1;
706 ++kvm->memory_config_version;
708 spin_unlock(&kvm->lock);
710 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
711 struct kvm_vcpu *vcpu;
713 vcpu = vcpu_load(kvm, i);
716 kvm_mmu_reset_context(vcpu);
720 kvm_free_physmem_slot(&old, &new);
724 spin_unlock(&kvm->lock);
726 kvm_free_physmem_slot(&new, &old);
731 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
733 spin_lock(&vcpu->kvm->lock);
734 kvm_mmu_slot_remove_write_access(vcpu, slot);
735 spin_unlock(&vcpu->kvm->lock);
739 * Get (and clear) the dirty memory log for a memory slot.
741 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
742 struct kvm_dirty_log *log)
744 struct kvm_memory_slot *memslot;
748 unsigned long any = 0;
750 spin_lock(&kvm->lock);
753 * Prevent changes to guest memory configuration even while the lock
757 spin_unlock(&kvm->lock);
759 if (log->slot >= KVM_MEMORY_SLOTS)
762 memslot = &kvm->memslots[log->slot];
764 if (!memslot->dirty_bitmap)
767 n = ALIGN(memslot->npages, 8) / 8;
769 for (i = 0; !any && i < n; ++i)
770 any = memslot->dirty_bitmap[i];
773 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
779 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
780 struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
785 do_remove_write_access(vcpu, log->slot);
786 memset(memslot->dirty_bitmap, 0, n);
789 kvm_arch_ops->tlb_flush(vcpu);
797 spin_lock(&kvm->lock);
799 spin_unlock(&kvm->lock);
803 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
807 for (i = 0; i < kvm->nmemslots; ++i) {
808 struct kvm_memory_slot *memslot = &kvm->memslots[i];
810 if (gfn >= memslot->base_gfn
811 && gfn < memslot->base_gfn + memslot->npages)
816 EXPORT_SYMBOL_GPL(gfn_to_memslot);
818 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
821 struct kvm_memory_slot *memslot = NULL;
822 unsigned long rel_gfn;
824 for (i = 0; i < kvm->nmemslots; ++i) {
825 memslot = &kvm->memslots[i];
827 if (gfn >= memslot->base_gfn
828 && gfn < memslot->base_gfn + memslot->npages) {
830 if (!memslot || !memslot->dirty_bitmap)
833 rel_gfn = gfn - memslot->base_gfn;
836 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
837 set_bit(rel_gfn, memslot->dirty_bitmap);
843 static int emulator_read_std(unsigned long addr,
846 struct x86_emulate_ctxt *ctxt)
848 struct kvm_vcpu *vcpu = ctxt->vcpu;
852 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
853 unsigned offset = addr & (PAGE_SIZE-1);
854 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
856 struct kvm_memory_slot *memslot;
859 if (gpa == UNMAPPED_GVA)
860 return X86EMUL_PROPAGATE_FAULT;
861 pfn = gpa >> PAGE_SHIFT;
862 memslot = gfn_to_memslot(vcpu->kvm, pfn);
864 return X86EMUL_UNHANDLEABLE;
865 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
867 memcpy(data, page + offset, tocopy);
869 kunmap_atomic(page, KM_USER0);
876 return X86EMUL_CONTINUE;
879 static int emulator_write_std(unsigned long addr,
882 struct x86_emulate_ctxt *ctxt)
884 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
886 return X86EMUL_UNHANDLEABLE;
889 static int emulator_read_emulated(unsigned long addr,
892 struct x86_emulate_ctxt *ctxt)
894 struct kvm_vcpu *vcpu = ctxt->vcpu;
896 if (vcpu->mmio_read_completed) {
897 memcpy(val, vcpu->mmio_data, bytes);
898 vcpu->mmio_read_completed = 0;
899 return X86EMUL_CONTINUE;
900 } else if (emulator_read_std(addr, val, bytes, ctxt)
902 return X86EMUL_CONTINUE;
904 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
905 if (gpa == UNMAPPED_GVA)
906 return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
907 vcpu->mmio_needed = 1;
908 vcpu->mmio_phys_addr = gpa;
909 vcpu->mmio_size = bytes;
910 vcpu->mmio_is_write = 0;
912 return X86EMUL_UNHANDLEABLE;
916 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
917 unsigned long val, int bytes)
919 struct kvm_memory_slot *m;
923 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
925 m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
928 page = gfn_to_page(m, gpa >> PAGE_SHIFT);
929 kvm_mmu_pre_write(vcpu, gpa, bytes);
930 virt = kmap_atomic(page, KM_USER0);
931 memcpy(virt + offset_in_page(gpa), &val, bytes);
932 kunmap_atomic(virt, KM_USER0);
933 kvm_mmu_post_write(vcpu, gpa, bytes);
937 static int emulator_write_emulated(unsigned long addr,
940 struct x86_emulate_ctxt *ctxt)
942 struct kvm_vcpu *vcpu = ctxt->vcpu;
943 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
945 if (gpa == UNMAPPED_GVA)
946 return X86EMUL_PROPAGATE_FAULT;
948 if (emulator_write_phys(vcpu, gpa, val, bytes))
949 return X86EMUL_CONTINUE;
951 vcpu->mmio_needed = 1;
952 vcpu->mmio_phys_addr = gpa;
953 vcpu->mmio_size = bytes;
954 vcpu->mmio_is_write = 1;
955 memcpy(vcpu->mmio_data, &val, bytes);
957 return X86EMUL_CONTINUE;
960 static int emulator_cmpxchg_emulated(unsigned long addr,
964 struct x86_emulate_ctxt *ctxt)
970 printk(KERN_WARNING "kvm: emulating exchange as write\n");
972 return emulator_write_emulated(addr, new, bytes, ctxt);
977 static int emulator_cmpxchg8b_emulated(unsigned long addr,
978 unsigned long old_lo,
979 unsigned long old_hi,
980 unsigned long new_lo,
981 unsigned long new_hi,
982 struct x86_emulate_ctxt *ctxt)
989 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
991 r = emulator_write_emulated(addr, new_lo, 4, ctxt);
992 if (r != X86EMUL_CONTINUE)
994 return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
999 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1001 return kvm_arch_ops->get_segment_base(vcpu, seg);
1004 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1006 return X86EMUL_CONTINUE;
1009 int emulate_clts(struct kvm_vcpu *vcpu)
1013 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1014 cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1015 kvm_arch_ops->set_cr0(vcpu, cr0);
1016 return X86EMUL_CONTINUE;
1019 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1021 struct kvm_vcpu *vcpu = ctxt->vcpu;
1025 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1026 return X86EMUL_CONTINUE;
1028 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1030 return X86EMUL_UNHANDLEABLE;
1034 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1036 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1039 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1041 /* FIXME: better handling */
1042 return X86EMUL_UNHANDLEABLE;
1044 return X86EMUL_CONTINUE;
1047 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1049 static int reported;
1051 unsigned long rip = ctxt->vcpu->rip;
1052 unsigned long rip_linear;
1054 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1059 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1061 printk(KERN_ERR "emulation failed but !mmio_needed?"
1062 " rip %lx %02x %02x %02x %02x\n",
1063 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1067 struct x86_emulate_ops emulate_ops = {
1068 .read_std = emulator_read_std,
1069 .write_std = emulator_write_std,
1070 .read_emulated = emulator_read_emulated,
1071 .write_emulated = emulator_write_emulated,
1072 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1073 #ifdef CONFIG_X86_32
1074 .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
1078 int emulate_instruction(struct kvm_vcpu *vcpu,
1079 struct kvm_run *run,
1083 struct x86_emulate_ctxt emulate_ctxt;
1087 kvm_arch_ops->cache_regs(vcpu);
1089 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1091 emulate_ctxt.vcpu = vcpu;
1092 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1093 emulate_ctxt.cr2 = cr2;
1094 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1095 ? X86EMUL_MODE_REAL : cs_l
1096 ? X86EMUL_MODE_PROT64 : cs_db
1097 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1099 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1100 emulate_ctxt.cs_base = 0;
1101 emulate_ctxt.ds_base = 0;
1102 emulate_ctxt.es_base = 0;
1103 emulate_ctxt.ss_base = 0;
1105 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1106 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1107 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1108 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1111 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1112 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1114 vcpu->mmio_is_write = 0;
1115 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1117 if ((r || vcpu->mmio_is_write) && run) {
1118 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1119 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1120 run->mmio.len = vcpu->mmio_size;
1121 run->mmio.is_write = vcpu->mmio_is_write;
1125 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1126 return EMULATE_DONE;
1127 if (!vcpu->mmio_needed) {
1128 report_emulation_failure(&emulate_ctxt);
1129 return EMULATE_FAIL;
1131 return EMULATE_DO_MMIO;
1134 kvm_arch_ops->decache_regs(vcpu);
1135 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1137 if (vcpu->mmio_is_write)
1138 return EMULATE_DO_MMIO;
1140 return EMULATE_DONE;
1142 EXPORT_SYMBOL_GPL(emulate_instruction);
1144 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1146 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1149 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1151 struct descriptor_table dt = { limit, base };
1153 kvm_arch_ops->set_gdt(vcpu, &dt);
1156 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1158 struct descriptor_table dt = { limit, base };
1160 kvm_arch_ops->set_idt(vcpu, &dt);
1163 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1164 unsigned long *rflags)
1167 *rflags = kvm_arch_ops->get_rflags(vcpu);
1170 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1172 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1183 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1188 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1189 unsigned long *rflags)
1193 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1194 *rflags = kvm_arch_ops->get_rflags(vcpu);
1203 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1206 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1210 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1215 case 0xc0010010: /* SYSCFG */
1216 case 0xc0010015: /* HWCR */
1217 case MSR_IA32_PLATFORM_ID:
1218 case MSR_IA32_P5_MC_ADDR:
1219 case MSR_IA32_P5_MC_TYPE:
1220 case MSR_IA32_MC0_CTL:
1221 case MSR_IA32_MCG_STATUS:
1222 case MSR_IA32_MCG_CAP:
1223 case MSR_IA32_MC0_MISC:
1224 case MSR_IA32_MC0_MISC+4:
1225 case MSR_IA32_MC0_MISC+8:
1226 case MSR_IA32_MC0_MISC+12:
1227 case MSR_IA32_MC0_MISC+16:
1228 case MSR_IA32_UCODE_REV:
1229 case MSR_IA32_PERF_STATUS:
1230 /* MTRR registers */
1232 case 0x200 ... 0x2ff:
1235 case 0xcd: /* fsb frequency */
1238 case MSR_IA32_APICBASE:
1239 data = vcpu->apic_base;
1241 case MSR_IA32_MISC_ENABLE:
1242 data = vcpu->ia32_misc_enable_msr;
1244 #ifdef CONFIG_X86_64
1246 data = vcpu->shadow_efer;
1250 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1256 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1259 * Reads an msr value (of 'msr_index') into 'pdata'.
1260 * Returns 0 on success, non-0 otherwise.
1261 * Assumes vcpu_load() was already called.
1263 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1265 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1268 #ifdef CONFIG_X86_64
1270 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1272 if (efer & EFER_RESERVED_BITS) {
1273 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1280 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1281 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1286 kvm_arch_ops->set_efer(vcpu, efer);
1289 efer |= vcpu->shadow_efer & EFER_LMA;
1291 vcpu->shadow_efer = efer;
1296 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1299 #ifdef CONFIG_X86_64
1301 set_efer(vcpu, data);
1304 case MSR_IA32_MC0_STATUS:
1305 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1306 __FUNCTION__, data);
1308 case MSR_IA32_UCODE_REV:
1309 case MSR_IA32_UCODE_WRITE:
1310 case 0x200 ... 0x2ff: /* MTRRs */
1312 case MSR_IA32_APICBASE:
1313 vcpu->apic_base = data;
1315 case MSR_IA32_MISC_ENABLE:
1316 vcpu->ia32_misc_enable_msr = data;
1319 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1324 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1327 * Writes msr value into into the appropriate "register".
1328 * Returns 0 on success, non-0 otherwise.
1329 * Assumes vcpu_load() was already called.
1331 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1333 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1336 void kvm_resched(struct kvm_vcpu *vcpu)
1340 /* Cannot fail - no vcpu unplug yet. */
1341 vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1343 EXPORT_SYMBOL_GPL(kvm_resched);
1345 void load_msrs(struct vmx_msr_entry *e, int n)
1349 for (i = 0; i < n; ++i)
1350 wrmsrl(e[i].index, e[i].data);
1352 EXPORT_SYMBOL_GPL(load_msrs);
1354 void save_msrs(struct vmx_msr_entry *e, int n)
1358 for (i = 0; i < n; ++i)
1359 rdmsrl(e[i].index, e[i].data);
1361 EXPORT_SYMBOL_GPL(save_msrs);
1363 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1365 struct kvm_vcpu *vcpu;
1368 if (!valid_vcpu(kvm_run->vcpu))
1371 vcpu = vcpu_load(kvm, kvm_run->vcpu);
1375 /* re-sync apic's tpr */
1376 vcpu->cr8 = kvm_run->cr8;
1378 if (kvm_run->emulated) {
1379 kvm_arch_ops->skip_emulated_instruction(vcpu);
1380 kvm_run->emulated = 0;
1383 if (kvm_run->mmio_completed) {
1384 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1385 vcpu->mmio_read_completed = 1;
1388 vcpu->mmio_needed = 0;
1390 r = kvm_arch_ops->run(vcpu, kvm_run);
1396 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1398 struct kvm_vcpu *vcpu;
1400 if (!valid_vcpu(regs->vcpu))
1403 vcpu = vcpu_load(kvm, regs->vcpu);
1407 kvm_arch_ops->cache_regs(vcpu);
1409 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1410 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1411 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1412 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1413 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1414 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1415 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1416 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1417 #ifdef CONFIG_X86_64
1418 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1419 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1420 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1421 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1422 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1423 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1424 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1425 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1428 regs->rip = vcpu->rip;
1429 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1432 * Don't leak debug flags in case they were set for guest debugging
1434 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1435 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1442 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1444 struct kvm_vcpu *vcpu;
1446 if (!valid_vcpu(regs->vcpu))
1449 vcpu = vcpu_load(kvm, regs->vcpu);
1453 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1454 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1455 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1456 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1457 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1458 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1459 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1460 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1461 #ifdef CONFIG_X86_64
1462 vcpu->regs[VCPU_REGS_R8] = regs->r8;
1463 vcpu->regs[VCPU_REGS_R9] = regs->r9;
1464 vcpu->regs[VCPU_REGS_R10] = regs->r10;
1465 vcpu->regs[VCPU_REGS_R11] = regs->r11;
1466 vcpu->regs[VCPU_REGS_R12] = regs->r12;
1467 vcpu->regs[VCPU_REGS_R13] = regs->r13;
1468 vcpu->regs[VCPU_REGS_R14] = regs->r14;
1469 vcpu->regs[VCPU_REGS_R15] = regs->r15;
1472 vcpu->rip = regs->rip;
1473 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1475 kvm_arch_ops->decache_regs(vcpu);
1482 static void get_segment(struct kvm_vcpu *vcpu,
1483 struct kvm_segment *var, int seg)
1485 return kvm_arch_ops->get_segment(vcpu, var, seg);
1488 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1490 struct kvm_vcpu *vcpu;
1491 struct descriptor_table dt;
1493 if (!valid_vcpu(sregs->vcpu))
1495 vcpu = vcpu_load(kvm, sregs->vcpu);
1499 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1500 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1501 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1502 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1503 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1504 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1506 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1507 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1509 kvm_arch_ops->get_idt(vcpu, &dt);
1510 sregs->idt.limit = dt.limit;
1511 sregs->idt.base = dt.base;
1512 kvm_arch_ops->get_gdt(vcpu, &dt);
1513 sregs->gdt.limit = dt.limit;
1514 sregs->gdt.base = dt.base;
1516 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1517 sregs->cr0 = vcpu->cr0;
1518 sregs->cr2 = vcpu->cr2;
1519 sregs->cr3 = vcpu->cr3;
1520 sregs->cr4 = vcpu->cr4;
1521 sregs->cr8 = vcpu->cr8;
1522 sregs->efer = vcpu->shadow_efer;
1523 sregs->apic_base = vcpu->apic_base;
1525 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1526 sizeof sregs->interrupt_bitmap);
1533 static void set_segment(struct kvm_vcpu *vcpu,
1534 struct kvm_segment *var, int seg)
1536 return kvm_arch_ops->set_segment(vcpu, var, seg);
1539 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1541 struct kvm_vcpu *vcpu;
1542 int mmu_reset_needed = 0;
1544 struct descriptor_table dt;
1546 if (!valid_vcpu(sregs->vcpu))
1548 vcpu = vcpu_load(kvm, sregs->vcpu);
1552 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1553 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1554 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1555 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1556 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1557 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1559 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1560 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1562 dt.limit = sregs->idt.limit;
1563 dt.base = sregs->idt.base;
1564 kvm_arch_ops->set_idt(vcpu, &dt);
1565 dt.limit = sregs->gdt.limit;
1566 dt.base = sregs->gdt.base;
1567 kvm_arch_ops->set_gdt(vcpu, &dt);
1569 vcpu->cr2 = sregs->cr2;
1570 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1571 vcpu->cr3 = sregs->cr3;
1573 vcpu->cr8 = sregs->cr8;
1575 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1576 #ifdef CONFIG_X86_64
1577 kvm_arch_ops->set_efer(vcpu, sregs->efer);
1579 vcpu->apic_base = sregs->apic_base;
1581 kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1583 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1584 kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1586 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1587 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1588 if (!is_long_mode(vcpu) && is_pae(vcpu))
1589 load_pdptrs(vcpu, vcpu->cr3);
1591 if (mmu_reset_needed)
1592 kvm_mmu_reset_context(vcpu);
1594 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1595 sizeof vcpu->irq_pending);
1596 vcpu->irq_summary = 0;
1597 for (i = 0; i < NR_IRQ_WORDS; ++i)
1598 if (vcpu->irq_pending[i])
1599 __set_bit(i, &vcpu->irq_summary);
1607 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1608 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1610 * This list is modified at module load time to reflect the
1611 * capabilities of the host cpu.
1613 static u32 msrs_to_save[] = {
1614 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1616 #ifdef CONFIG_X86_64
1617 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1619 MSR_IA32_TIME_STAMP_COUNTER,
1622 static unsigned num_msrs_to_save;
1624 static u32 emulated_msrs[] = {
1625 MSR_IA32_MISC_ENABLE,
1628 static __init void kvm_init_msr_list(void)
1633 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1634 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1637 msrs_to_save[j] = msrs_to_save[i];
1640 num_msrs_to_save = j;
1644 * Adapt set_msr() to msr_io()'s calling convention
1646 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1648 return set_msr(vcpu, index, *data);
1652 * Read or write a bunch of msrs. All parameters are kernel addresses.
1654 * @return number of msrs set successfully.
1656 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1657 struct kvm_msr_entry *entries,
1658 int (*do_msr)(struct kvm_vcpu *vcpu,
1659 unsigned index, u64 *data))
1661 struct kvm_vcpu *vcpu;
1664 if (!valid_vcpu(msrs->vcpu))
1667 vcpu = vcpu_load(kvm, msrs->vcpu);
1671 for (i = 0; i < msrs->nmsrs; ++i)
1672 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1681 * Read or write a bunch of msrs. Parameters are user addresses.
1683 * @return number of msrs set successfully.
1685 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1686 int (*do_msr)(struct kvm_vcpu *vcpu,
1687 unsigned index, u64 *data),
1690 struct kvm_msrs msrs;
1691 struct kvm_msr_entry *entries;
1696 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1700 if (msrs.nmsrs >= MAX_IO_MSRS)
1704 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1705 entries = vmalloc(size);
1710 if (copy_from_user(entries, user_msrs->entries, size))
1713 r = n = __msr_io(kvm, &msrs, entries, do_msr);
1718 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1730 * Translate a guest virtual address to a guest physical address.
1732 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1734 unsigned long vaddr = tr->linear_address;
1735 struct kvm_vcpu *vcpu;
1738 vcpu = vcpu_load(kvm, tr->vcpu);
1741 spin_lock(&kvm->lock);
1742 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1743 tr->physical_address = gpa;
1744 tr->valid = gpa != UNMAPPED_GVA;
1747 spin_unlock(&kvm->lock);
1753 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1755 struct kvm_vcpu *vcpu;
1757 if (!valid_vcpu(irq->vcpu))
1759 if (irq->irq < 0 || irq->irq >= 256)
1761 vcpu = vcpu_load(kvm, irq->vcpu);
1765 set_bit(irq->irq, vcpu->irq_pending);
1766 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1773 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1774 struct kvm_debug_guest *dbg)
1776 struct kvm_vcpu *vcpu;
1779 if (!valid_vcpu(dbg->vcpu))
1781 vcpu = vcpu_load(kvm, dbg->vcpu);
1785 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1792 static long kvm_dev_ioctl(struct file *filp,
1793 unsigned int ioctl, unsigned long arg)
1795 struct kvm *kvm = filp->private_data;
1796 void __user *argp = (void __user *)arg;
1800 case KVM_GET_API_VERSION:
1801 r = KVM_API_VERSION;
1803 case KVM_CREATE_VCPU: {
1804 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1810 struct kvm_run kvm_run;
1813 if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
1815 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1816 if (r < 0 && r != -EINTR)
1818 if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
1824 case KVM_GET_REGS: {
1825 struct kvm_regs kvm_regs;
1828 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1830 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1834 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1839 case KVM_SET_REGS: {
1840 struct kvm_regs kvm_regs;
1843 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1845 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1851 case KVM_GET_SREGS: {
1852 struct kvm_sregs kvm_sregs;
1855 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1857 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1861 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1866 case KVM_SET_SREGS: {
1867 struct kvm_sregs kvm_sregs;
1870 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1872 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1878 case KVM_TRANSLATE: {
1879 struct kvm_translation tr;
1882 if (copy_from_user(&tr, argp, sizeof tr))
1884 r = kvm_dev_ioctl_translate(kvm, &tr);
1888 if (copy_to_user(argp, &tr, sizeof tr))
1893 case KVM_INTERRUPT: {
1894 struct kvm_interrupt irq;
1897 if (copy_from_user(&irq, argp, sizeof irq))
1899 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1905 case KVM_DEBUG_GUEST: {
1906 struct kvm_debug_guest dbg;
1909 if (copy_from_user(&dbg, argp, sizeof dbg))
1911 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1917 case KVM_SET_MEMORY_REGION: {
1918 struct kvm_memory_region kvm_mem;
1921 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1923 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1928 case KVM_GET_DIRTY_LOG: {
1929 struct kvm_dirty_log log;
1932 if (copy_from_user(&log, argp, sizeof log))
1934 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1940 r = msr_io(kvm, argp, get_msr, 1);
1943 r = msr_io(kvm, argp, do_set_msr, 0);
1945 case KVM_GET_MSR_INDEX_LIST: {
1946 struct kvm_msr_list __user *user_msr_list = argp;
1947 struct kvm_msr_list msr_list;
1951 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1954 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1955 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1958 if (n < num_msrs_to_save)
1961 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1962 num_msrs_to_save * sizeof(u32)))
1964 if (copy_to_user(user_msr_list->indices
1965 + num_msrs_to_save * sizeof(u32),
1967 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1979 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1980 unsigned long address,
1983 struct kvm *kvm = vma->vm_file->private_data;
1984 unsigned long pgoff;
1985 struct kvm_memory_slot *slot;
1988 *type = VM_FAULT_MINOR;
1989 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1990 slot = gfn_to_memslot(kvm, pgoff);
1992 return NOPAGE_SIGBUS;
1993 page = gfn_to_page(slot, pgoff);
1995 return NOPAGE_SIGBUS;
2000 static struct vm_operations_struct kvm_dev_vm_ops = {
2001 .nopage = kvm_dev_nopage,
2004 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
2006 vma->vm_ops = &kvm_dev_vm_ops;
2010 static struct file_operations kvm_chardev_ops = {
2011 .open = kvm_dev_open,
2012 .release = kvm_dev_release,
2013 .unlocked_ioctl = kvm_dev_ioctl,
2014 .compat_ioctl = kvm_dev_ioctl,
2015 .mmap = kvm_dev_mmap,
2018 static struct miscdevice kvm_dev = {
2024 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2027 if (val == SYS_RESTART) {
2029 * Some (well, at least mine) BIOSes hang on reboot if
2032 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2033 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2038 static struct notifier_block kvm_reboot_notifier = {
2039 .notifier_call = kvm_reboot,
2044 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2047 static void decache_vcpus_on_cpu(int cpu)
2050 struct kvm_vcpu *vcpu;
2053 spin_lock(&kvm_lock);
2054 list_for_each_entry(vm, &vm_list, vm_list)
2055 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2056 vcpu = &vm->vcpus[i];
2058 * If the vcpu is locked, then it is running on some
2059 * other cpu and therefore it is not cached on the
2062 * If it's not locked, check the last cpu it executed
2065 if (mutex_trylock(&vcpu->mutex)) {
2066 if (vcpu->cpu == cpu) {
2067 kvm_arch_ops->vcpu_decache(vcpu);
2070 mutex_unlock(&vcpu->mutex);
2073 spin_unlock(&kvm_lock);
2076 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2083 case CPU_UP_CANCELED:
2084 decache_vcpus_on_cpu(cpu);
2085 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2088 case CPU_UP_PREPARE:
2089 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2096 static struct notifier_block kvm_cpu_notifier = {
2097 .notifier_call = kvm_cpu_hotplug,
2098 .priority = 20, /* must be > scheduler priority */
2101 static __init void kvm_init_debug(void)
2103 struct kvm_stats_debugfs_item *p;
2105 debugfs_dir = debugfs_create_dir("kvm", NULL);
2106 for (p = debugfs_entries; p->name; ++p)
2107 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2111 static void kvm_exit_debug(void)
2113 struct kvm_stats_debugfs_item *p;
2115 for (p = debugfs_entries; p->name; ++p)
2116 debugfs_remove(p->dentry);
2117 debugfs_remove(debugfs_dir);
2120 hpa_t bad_page_address;
2122 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2127 printk(KERN_ERR "kvm: already loaded the other module\n");
2131 if (!ops->cpu_has_kvm_support()) {
2132 printk(KERN_ERR "kvm: no hardware support\n");
2135 if (ops->disabled_by_bios()) {
2136 printk(KERN_ERR "kvm: disabled by bios\n");
2142 r = kvm_arch_ops->hardware_setup();
2146 on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2147 r = register_cpu_notifier(&kvm_cpu_notifier);
2150 register_reboot_notifier(&kvm_reboot_notifier);
2152 kvm_chardev_ops.owner = module;
2154 r = misc_register(&kvm_dev);
2156 printk (KERN_ERR "kvm: misc device register failed\n");
2163 unregister_reboot_notifier(&kvm_reboot_notifier);
2164 unregister_cpu_notifier(&kvm_cpu_notifier);
2166 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2167 kvm_arch_ops->hardware_unsetup();
2171 void kvm_exit_arch(void)
2173 misc_deregister(&kvm_dev);
2175 unregister_reboot_notifier(&kvm_reboot_notifier);
2176 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2177 kvm_arch_ops->hardware_unsetup();
2178 kvm_arch_ops = NULL;
2181 static __init int kvm_init(void)
2183 static struct page *bad_page;
2188 kvm_init_msr_list();
2190 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2195 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2196 memset(__va(bad_page_address), 0, PAGE_SIZE);
2205 static __exit void kvm_exit(void)
2208 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2211 module_init(kvm_init)
2212 module_exit(kvm_exit)
2214 EXPORT_SYMBOL_GPL(kvm_init_arch);
2215 EXPORT_SYMBOL_GPL(kvm_exit_arch);