2 * This file handles the architecture dependent parts of process handling.
4 * Copyright IBM Corp. 1999,2009
5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
6 * Hartmut Penner <hp@de.ibm.com>,
10 #include <linux/compiler.h>
11 #include <linux/cpu.h>
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/utsname.h>
31 #include <linux/tick.h>
32 #include <linux/elfcore.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/syscalls.h>
35 #include <asm/compat.h>
36 #include <asm/uaccess.h>
37 #include <asm/pgtable.h>
38 #include <asm/system.h>
40 #include <asm/processor.h>
42 #include <asm/timer.h>
46 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
49 * Return saved PC of a blocked thread. used in kernel/sched.
50 * resume in entry.S does not create a new stack frame, it
51 * just stores the registers %r6-%r15 to the frame given by
52 * schedule. We want to return the address of the caller of
53 * schedule, so we have to walk the backchain one time to
54 * find the frame schedule() store its return address.
56 unsigned long thread_saved_pc(struct task_struct *tsk)
58 struct stack_frame *sf, *low, *high;
60 if (!tsk || !task_stack_page(tsk))
62 low = task_stack_page(tsk);
63 high = (struct stack_frame *) task_pt_regs(tsk);
64 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
65 if (sf <= low || sf > high)
67 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
68 if (sf <= low || sf > high)
74 * The idle loop on a S390...
76 static void default_idle(void)
78 /* CPU is going idle. */
84 #ifdef CONFIG_HOTPLUG_CPU
85 if (cpu_is_offline(smp_processor_id())) {
86 preempt_enable_no_resched();
91 if (test_thread_flag(TIF_MCCK_PENDING)) {
98 /* Don't trace preempt off for idle. */
99 stop_critical_timings();
100 /* Stop virtual timer and halt the cpu. */
102 /* Reenable preemption tracer. */
103 start_critical_timings();
109 tick_nohz_stop_sched_tick(1);
110 while (!need_resched())
112 tick_nohz_restart_sched_tick();
113 preempt_enable_no_resched();
119 extern void kernel_thread_starter(void);
123 "kernel_thread_starter:\n"
129 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
133 memset(®s, 0, sizeof(regs));
134 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
135 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
136 regs.gprs[9] = (unsigned long) fn;
137 regs.gprs[10] = (unsigned long) arg;
138 regs.gprs[11] = (unsigned long) do_exit;
141 /* Ok, create the new process.. */
142 return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
143 0, ®s, 0, NULL, NULL);
145 EXPORT_SYMBOL(kernel_thread);
148 * Free current thread data structures etc..
150 void exit_thread(void)
154 void flush_thread(void)
157 clear_tsk_thread_flag(current, TIF_USEDFPU);
160 void release_thread(struct task_struct *dead_task)
164 int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
165 unsigned long unused,
166 struct task_struct *p, struct pt_regs *regs)
168 struct thread_info *ti;
171 struct stack_frame sf;
172 struct pt_regs childregs;
175 frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
176 p->thread.ksp = (unsigned long) frame;
177 /* Store access registers to kernel stack of new process. */
178 frame->childregs = *regs;
179 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
180 frame->childregs.gprs[15] = new_stackp;
181 frame->sf.back_chain = 0;
183 /* new return point is ret_from_fork */
184 frame->sf.gprs[8] = (unsigned long) ret_from_fork;
186 /* fake return stack for resume(), don't go back to schedule */
187 frame->sf.gprs[9] = (unsigned long) frame;
189 /* Save access registers to new thread structure. */
190 save_access_regs(&p->thread.acrs[0]);
194 * save fprs to current->thread.fp_regs to merge them with
195 * the emulated registers and then copy the result to the child.
197 save_fp_regs(¤t->thread.fp_regs);
198 memcpy(&p->thread.fp_regs, ¤t->thread.fp_regs,
199 sizeof(s390_fp_regs));
200 /* Set a new TLS ? */
201 if (clone_flags & CLONE_SETTLS)
202 p->thread.acrs[0] = regs->gprs[6];
203 #else /* CONFIG_64BIT */
204 /* Save the fpu registers to new thread structure. */
205 save_fp_regs(&p->thread.fp_regs);
206 /* Set a new TLS ? */
207 if (clone_flags & CLONE_SETTLS) {
208 if (is_compat_task()) {
209 p->thread.acrs[0] = (unsigned int) regs->gprs[6];
211 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
212 p->thread.acrs[1] = (unsigned int) regs->gprs[6];
215 #endif /* CONFIG_64BIT */
216 /* start new process with ar4 pointing to the correct address space */
217 p->thread.mm_segment = get_fs();
218 /* Don't copy debug registers */
219 memset(&p->thread.per_info, 0, sizeof(p->thread.per_info));
220 /* Initialize per thread user and system timer values */
221 ti = task_thread_info(p);
223 ti->system_timer = 0;
227 SYSCALL_DEFINE0(fork)
229 struct pt_regs *regs = task_pt_regs(current);
230 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
233 SYSCALL_DEFINE0(clone)
235 struct pt_regs *regs = task_pt_regs(current);
236 unsigned long clone_flags;
238 int __user *parent_tidptr, *child_tidptr;
240 clone_flags = regs->gprs[3];
241 newsp = regs->orig_gpr2;
242 parent_tidptr = (int __user *) regs->gprs[4];
243 child_tidptr = (int __user *) regs->gprs[5];
245 newsp = regs->gprs[15];
246 return do_fork(clone_flags, newsp, regs, 0,
247 parent_tidptr, child_tidptr);
251 * This is trivial, and on the face of it looks like it
252 * could equally well be done in user mode.
254 * Not so, for quite unobvious reasons - register pressure.
255 * In user mode vfork() cannot have a stack frame, and if
256 * done by calling the "clone()" system call directly, you
257 * do not have enough call-clobbered registers to hold all
258 * the information you need.
260 SYSCALL_DEFINE0(vfork)
262 struct pt_regs *regs = task_pt_regs(current);
263 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
264 regs->gprs[15], regs, 0, NULL, NULL);
267 asmlinkage void execve_tail(void)
270 current->ptrace &= ~PT_DTRACE;
271 task_unlock(current);
272 current->thread.fp_regs.fpc = 0;
273 if (MACHINE_HAS_IEEE)
274 asm volatile("sfpc %0,%0" : : "d" (0));
278 * sys_execve() executes a new program.
280 SYSCALL_DEFINE0(execve)
282 struct pt_regs *regs = task_pt_regs(current);
284 unsigned long result;
287 filename = getname((char __user *) regs->orig_gpr2);
288 if (IS_ERR(filename)) {
289 result = PTR_ERR(filename);
292 rc = do_execve(filename, (char __user * __user *) regs->gprs[3],
293 (char __user * __user *) regs->gprs[4], regs);
299 result = regs->gprs[2];
307 * fill in the FPU structure for a core dump.
309 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
313 * save fprs to current->thread.fp_regs to merge them with
314 * the emulated registers and then copy the result to the dump.
316 save_fp_regs(¤t->thread.fp_regs);
317 memcpy(fpregs, ¤t->thread.fp_regs, sizeof(s390_fp_regs));
318 #else /* CONFIG_64BIT */
319 save_fp_regs(fpregs);
320 #endif /* CONFIG_64BIT */
323 EXPORT_SYMBOL(dump_fpu);
325 unsigned long get_wchan(struct task_struct *p)
327 struct stack_frame *sf, *low, *high;
328 unsigned long return_address;
331 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
333 low = task_stack_page(p);
334 high = (struct stack_frame *) task_pt_regs(p);
335 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
336 if (sf <= low || sf > high)
338 for (count = 0; count < 16; count++) {
339 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
340 if (sf <= low || sf > high)
342 return_address = sf->gprs[8] & PSW_ADDR_INSN;
343 if (!in_sched_functions(return_address))
344 return return_address;