powerpc/85xx: Updated generic mpc85xx_defconfig
[linux-2.6] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(
51                                         EXT4_SB(inode->i_sb)->s_journal,
52                                         &EXT4_I(inode)->jinode,
53                                         new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59  * Test whether an inode is a fast symlink.
60  */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63         int ea_blocks = EXT4_I(inode)->i_file_acl ?
64                 (inode->i_sb->s_blocksize >> 9) : 0;
65
66         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70  * The ext4 forget function must perform a revoke if we are freeing data
71  * which has been journaled.  Metadata (eg. indirect blocks) must be
72  * revoked in all cases.
73  *
74  * "bh" may be NULL: a metadata block may have been freed from memory
75  * but there may still be a record of it in the journal, and that record
76  * still needs to be revoked.
77  *
78  * If the handle isn't valid we're not journaling so there's nothing to do.
79  */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81                         struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83         int err;
84
85         if (!ext4_handle_valid(handle))
86                 return 0;
87
88         might_sleep();
89
90         BUFFER_TRACE(bh, "enter");
91
92         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93                   "data mode %lx\n",
94                   bh, is_metadata, inode->i_mode,
95                   test_opt(inode->i_sb, DATA_FLAGS));
96
97         /* Never use the revoke function if we are doing full data
98          * journaling: there is no need to, and a V1 superblock won't
99          * support it.  Otherwise, only skip the revoke on un-journaled
100          * data blocks. */
101
102         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103             (!is_metadata && !ext4_should_journal_data(inode))) {
104                 if (bh) {
105                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
106                         return ext4_journal_forget(handle, bh);
107                 }
108                 return 0;
109         }
110
111         /*
112          * data!=journal && (is_metadata || should_journal_data(inode))
113          */
114         BUFFER_TRACE(bh, "call ext4_journal_revoke");
115         err = ext4_journal_revoke(handle, blocknr, bh);
116         if (err)
117                 ext4_abort(inode->i_sb, __func__,
118                            "error %d when attempting revoke", err);
119         BUFFER_TRACE(bh, "exit");
120         return err;
121 }
122
123 /*
124  * Work out how many blocks we need to proceed with the next chunk of a
125  * truncate transaction.
126  */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129         ext4_lblk_t needed;
130
131         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133         /* Give ourselves just enough room to cope with inodes in which
134          * i_blocks is corrupt: we've seen disk corruptions in the past
135          * which resulted in random data in an inode which looked enough
136          * like a regular file for ext4 to try to delete it.  Things
137          * will go a bit crazy if that happens, but at least we should
138          * try not to panic the whole kernel. */
139         if (needed < 2)
140                 needed = 2;
141
142         /* But we need to bound the transaction so we don't overflow the
143          * journal. */
144         if (needed > EXT4_MAX_TRANS_DATA)
145                 needed = EXT4_MAX_TRANS_DATA;
146
147         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151  * Truncate transactions can be complex and absolutely huge.  So we need to
152  * be able to restart the transaction at a conventient checkpoint to make
153  * sure we don't overflow the journal.
154  *
155  * start_transaction gets us a new handle for a truncate transaction,
156  * and extend_transaction tries to extend the existing one a bit.  If
157  * extend fails, we need to propagate the failure up and restart the
158  * transaction in the top-level truncate loop. --sct
159  */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162         handle_t *result;
163
164         result = ext4_journal_start(inode, blocks_for_truncate(inode));
165         if (!IS_ERR(result))
166                 return result;
167
168         ext4_std_error(inode->i_sb, PTR_ERR(result));
169         return result;
170 }
171
172 /*
173  * Try to extend this transaction for the purposes of truncation.
174  *
175  * Returns 0 if we managed to create more room.  If we can't create more
176  * room, and the transaction must be restarted we return 1.
177  */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180         if (!ext4_handle_valid(handle))
181                 return 0;
182         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183                 return 0;
184         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185                 return 0;
186         return 1;
187 }
188
189 /*
190  * Restart the transaction associated with *handle.  This does a commit,
191  * so before we call here everything must be consistently dirtied against
192  * this transaction.
193  */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196         BUG_ON(EXT4_JOURNAL(inode) == NULL);
197         jbd_debug(2, "restarting handle %p\n", handle);
198         return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202  * Called at the last iput() if i_nlink is zero.
203  */
204 void ext4_delete_inode(struct inode *inode)
205 {
206         handle_t *handle;
207         int err;
208
209         if (ext4_should_order_data(inode))
210                 ext4_begin_ordered_truncate(inode, 0);
211         truncate_inode_pages(&inode->i_data, 0);
212
213         if (is_bad_inode(inode))
214                 goto no_delete;
215
216         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217         if (IS_ERR(handle)) {
218                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219                 /*
220                  * If we're going to skip the normal cleanup, we still need to
221                  * make sure that the in-core orphan linked list is properly
222                  * cleaned up.
223                  */
224                 ext4_orphan_del(NULL, inode);
225                 goto no_delete;
226         }
227
228         if (IS_SYNC(inode))
229                 ext4_handle_sync(handle);
230         inode->i_size = 0;
231         err = ext4_mark_inode_dirty(handle, inode);
232         if (err) {
233                 ext4_warning(inode->i_sb, __func__,
234                              "couldn't mark inode dirty (err %d)", err);
235                 goto stop_handle;
236         }
237         if (inode->i_blocks)
238                 ext4_truncate(inode);
239
240         /*
241          * ext4_ext_truncate() doesn't reserve any slop when it
242          * restarts journal transactions; therefore there may not be
243          * enough credits left in the handle to remove the inode from
244          * the orphan list and set the dtime field.
245          */
246         if (!ext4_handle_has_enough_credits(handle, 3)) {
247                 err = ext4_journal_extend(handle, 3);
248                 if (err > 0)
249                         err = ext4_journal_restart(handle, 3);
250                 if (err != 0) {
251                         ext4_warning(inode->i_sb, __func__,
252                                      "couldn't extend journal (err %d)", err);
253                 stop_handle:
254                         ext4_journal_stop(handle);
255                         goto no_delete;
256                 }
257         }
258
259         /*
260          * Kill off the orphan record which ext4_truncate created.
261          * AKPM: I think this can be inside the above `if'.
262          * Note that ext4_orphan_del() has to be able to cope with the
263          * deletion of a non-existent orphan - this is because we don't
264          * know if ext4_truncate() actually created an orphan record.
265          * (Well, we could do this if we need to, but heck - it works)
266          */
267         ext4_orphan_del(handle, inode);
268         EXT4_I(inode)->i_dtime  = get_seconds();
269
270         /*
271          * One subtle ordering requirement: if anything has gone wrong
272          * (transaction abort, IO errors, whatever), then we can still
273          * do these next steps (the fs will already have been marked as
274          * having errors), but we can't free the inode if the mark_dirty
275          * fails.
276          */
277         if (ext4_mark_inode_dirty(handle, inode))
278                 /* If that failed, just do the required in-core inode clear. */
279                 clear_inode(inode);
280         else
281                 ext4_free_inode(handle, inode);
282         ext4_journal_stop(handle);
283         return;
284 no_delete:
285         clear_inode(inode);     /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289         __le32  *p;
290         __le32  key;
291         struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296         p->key = *(p->p = v);
297         p->bh = bh;
298 }
299
300 /**
301  *      ext4_block_to_path - parse the block number into array of offsets
302  *      @inode: inode in question (we are only interested in its superblock)
303  *      @i_block: block number to be parsed
304  *      @offsets: array to store the offsets in
305  *      @boundary: set this non-zero if the referred-to block is likely to be
306  *             followed (on disk) by an indirect block.
307  *
308  *      To store the locations of file's data ext4 uses a data structure common
309  *      for UNIX filesystems - tree of pointers anchored in the inode, with
310  *      data blocks at leaves and indirect blocks in intermediate nodes.
311  *      This function translates the block number into path in that tree -
312  *      return value is the path length and @offsets[n] is the offset of
313  *      pointer to (n+1)th node in the nth one. If @block is out of range
314  *      (negative or too large) warning is printed and zero returned.
315  *
316  *      Note: function doesn't find node addresses, so no IO is needed. All
317  *      we need to know is the capacity of indirect blocks (taken from the
318  *      inode->i_sb).
319  */
320
321 /*
322  * Portability note: the last comparison (check that we fit into triple
323  * indirect block) is spelled differently, because otherwise on an
324  * architecture with 32-bit longs and 8Kb pages we might get into trouble
325  * if our filesystem had 8Kb blocks. We might use long long, but that would
326  * kill us on x86. Oh, well, at least the sign propagation does not matter -
327  * i_block would have to be negative in the very beginning, so we would not
328  * get there at all.
329  */
330
331 static int ext4_block_to_path(struct inode *inode,
332                         ext4_lblk_t i_block,
333                         ext4_lblk_t offsets[4], int *boundary)
334 {
335         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337         const long direct_blocks = EXT4_NDIR_BLOCKS,
338                 indirect_blocks = ptrs,
339                 double_blocks = (1 << (ptrs_bits * 2));
340         int n = 0;
341         int final = 0;
342
343         if (i_block < 0) {
344                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345         } else if (i_block < direct_blocks) {
346                 offsets[n++] = i_block;
347                 final = direct_blocks;
348         } else if ((i_block -= direct_blocks) < indirect_blocks) {
349                 offsets[n++] = EXT4_IND_BLOCK;
350                 offsets[n++] = i_block;
351                 final = ptrs;
352         } else if ((i_block -= indirect_blocks) < double_blocks) {
353                 offsets[n++] = EXT4_DIND_BLOCK;
354                 offsets[n++] = i_block >> ptrs_bits;
355                 offsets[n++] = i_block & (ptrs - 1);
356                 final = ptrs;
357         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358                 offsets[n++] = EXT4_TIND_BLOCK;
359                 offsets[n++] = i_block >> (ptrs_bits * 2);
360                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361                 offsets[n++] = i_block & (ptrs - 1);
362                 final = ptrs;
363         } else {
364                 ext4_warning(inode->i_sb, "ext4_block_to_path",
365                                 "block %lu > max in inode %lu",
366                                 i_block + direct_blocks +
367                                 indirect_blocks + double_blocks, inode->i_ino);
368         }
369         if (boundary)
370                 *boundary = final - 1 - (i_block & (ptrs - 1));
371         return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375                                  unsigned int *p, unsigned int max) {
376
377         unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378         unsigned int *bref = p;
379         while (bref < p+max) {
380                 if (unlikely(*bref >= maxblocks)) {
381                         ext4_error(inode->i_sb, function,
382                                    "block reference %u >= max (%u) "
383                                    "in inode #%lu, offset=%d",
384                                    *bref, maxblocks,
385                                    inode->i_ino, (int)(bref-p));
386                         return -EIO;
387                 }
388                 bref++;
389         }
390         return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh)                         \
395         __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode)                                \
399         __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449                   
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461                 
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554                 Indirect *partial)
555 {
556         /*
557          * XXX need to get goal block from mballoc's data structures
558          */
559
560         return ext4_find_near(inode, partial);
561 }
562
563 /**
564  *      ext4_blks_to_allocate: Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                 int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @indirect_blks: the number of blocks need to allocate for indirect
604  *                      blocks
605  *
606  *      @new_blocks: on return it will store the new block numbers for
607  *      the indirect blocks(if needed) and the first direct block,
608  *      @blks:  on return it will store the total number of allocated
609  *              direct blocks
610  */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
613                                 int indirect_blks, int blks,
614                                 ext4_fsblk_t new_blocks[4], int *err)
615 {
616         struct ext4_allocation_request ar;
617         int target, i;
618         unsigned long count = 0, blk_allocated = 0;
619         int index = 0;
620         ext4_fsblk_t current_block = 0;
621         int ret = 0;
622
623         /*
624          * Here we try to allocate the requested multiple blocks at once,
625          * on a best-effort basis.
626          * To build a branch, we should allocate blocks for
627          * the indirect blocks(if not allocated yet), and at least
628          * the first direct block of this branch.  That's the
629          * minimum number of blocks need to allocate(required)
630          */
631         /* first we try to allocate the indirect blocks */
632         target = indirect_blks;
633         while (target > 0) {
634                 count = target;
635                 /* allocating blocks for indirect blocks and direct blocks */
636                 current_block = ext4_new_meta_blocks(handle, inode,
637                                                         goal, &count, err);
638                 if (*err)
639                         goto failed_out;
640
641                 target -= count;
642                 /* allocate blocks for indirect blocks */
643                 while (index < indirect_blks && count) {
644                         new_blocks[index++] = current_block++;
645                         count--;
646                 }
647                 if (count > 0) {
648                         /*
649                          * save the new block number
650                          * for the first direct block
651                          */
652                         new_blocks[index] = current_block;
653                         printk(KERN_INFO "%s returned more blocks than "
654                                                 "requested\n", __func__);
655                         WARN_ON(1);
656                         break;
657                 }
658         }
659
660         target = blks - count ;
661         blk_allocated = count;
662         if (!target)
663                 goto allocated;
664         /* Now allocate data blocks */
665         memset(&ar, 0, sizeof(ar));
666         ar.inode = inode;
667         ar.goal = goal;
668         ar.len = target;
669         ar.logical = iblock;
670         if (S_ISREG(inode->i_mode))
671                 /* enable in-core preallocation only for regular files */
672                 ar.flags = EXT4_MB_HINT_DATA;
673
674         current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676         if (*err && (target == blks)) {
677                 /*
678                  * if the allocation failed and we didn't allocate
679                  * any blocks before
680                  */
681                 goto failed_out;
682         }
683         if (!*err) {
684                 if (target == blks) {
685                 /*
686                  * save the new block number
687                  * for the first direct block
688                  */
689                         new_blocks[index] = current_block;
690                 }
691                 blk_allocated += ar.len;
692         }
693 allocated:
694         /* total number of blocks allocated for direct blocks */
695         ret = blk_allocated;
696         *err = 0;
697         return ret;
698 failed_out:
699         for (i = 0; i < index; i++)
700                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701         return ret;
702 }
703
704 /**
705  *      ext4_alloc_branch - allocate and set up a chain of blocks.
706  *      @inode: owner
707  *      @indirect_blks: number of allocated indirect blocks
708  *      @blks: number of allocated direct blocks
709  *      @offsets: offsets (in the blocks) to store the pointers to next.
710  *      @branch: place to store the chain in.
711  *
712  *      This function allocates blocks, zeroes out all but the last one,
713  *      links them into chain and (if we are synchronous) writes them to disk.
714  *      In other words, it prepares a branch that can be spliced onto the
715  *      inode. It stores the information about that chain in the branch[], in
716  *      the same format as ext4_get_branch() would do. We are calling it after
717  *      we had read the existing part of chain and partial points to the last
718  *      triple of that (one with zero ->key). Upon the exit we have the same
719  *      picture as after the successful ext4_get_block(), except that in one
720  *      place chain is disconnected - *branch->p is still zero (we did not
721  *      set the last link), but branch->key contains the number that should
722  *      be placed into *branch->p to fill that gap.
723  *
724  *      If allocation fails we free all blocks we've allocated (and forget
725  *      their buffer_heads) and return the error value the from failed
726  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727  *      as described above and return 0.
728  */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730                                 ext4_lblk_t iblock, int indirect_blks,
731                                 int *blks, ext4_fsblk_t goal,
732                                 ext4_lblk_t *offsets, Indirect *branch)
733 {
734         int blocksize = inode->i_sb->s_blocksize;
735         int i, n = 0;
736         int err = 0;
737         struct buffer_head *bh;
738         int num;
739         ext4_fsblk_t new_blocks[4];
740         ext4_fsblk_t current_block;
741
742         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743                                 *blks, new_blocks, &err);
744         if (err)
745                 return err;
746
747         branch[0].key = cpu_to_le32(new_blocks[0]);
748         /*
749          * metadata blocks and data blocks are allocated.
750          */
751         for (n = 1; n <= indirect_blks;  n++) {
752                 /*
753                  * Get buffer_head for parent block, zero it out
754                  * and set the pointer to new one, then send
755                  * parent to disk.
756                  */
757                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758                 branch[n].bh = bh;
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (err) {
763                         unlock_buffer(bh);
764                         brelse(bh);
765                         goto failed;
766                 }
767
768                 memset(bh->b_data, 0, blocksize);
769                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770                 branch[n].key = cpu_to_le32(new_blocks[n]);
771                 *branch[n].p = branch[n].key;
772                 if (n == indirect_blks) {
773                         current_block = new_blocks[n];
774                         /*
775                          * End of chain, update the last new metablock of
776                          * the chain to point to the new allocated
777                          * data blocks numbers
778                          */
779                         for (i=1; i < num; i++)
780                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
781                 }
782                 BUFFER_TRACE(bh, "marking uptodate");
783                 set_buffer_uptodate(bh);
784                 unlock_buffer(bh);
785
786                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787                 err = ext4_handle_dirty_metadata(handle, inode, bh);
788                 if (err)
789                         goto failed;
790         }
791         *blks = num;
792         return err;
793 failed:
794         /* Allocation failed, free what we already allocated */
795         for (i = 1; i <= n ; i++) {
796                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797                 ext4_journal_forget(handle, branch[i].bh);
798         }
799         for (i = 0; i < indirect_blks; i++)
800                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804         return err;
805 }
806
807 /**
808  * ext4_splice_branch - splice the allocated branch onto inode.
809  * @inode: owner
810  * @block: (logical) number of block we are adding
811  * @chain: chain of indirect blocks (with a missing link - see
812  *      ext4_alloc_branch)
813  * @where: location of missing link
814  * @num:   number of indirect blocks we are adding
815  * @blks:  number of direct blocks we are adding
816  *
817  * This function fills the missing link and does all housekeeping needed in
818  * inode (->i_blocks, etc.). In case of success we end up with the full
819  * chain to new block and return 0.
820  */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822                         ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824         int i;
825         int err = 0;
826         ext4_fsblk_t current_block;
827
828         /*
829          * If we're splicing into a [td]indirect block (as opposed to the
830          * inode) then we need to get write access to the [td]indirect block
831          * before the splice.
832          */
833         if (where->bh) {
834                 BUFFER_TRACE(where->bh, "get_write_access");
835                 err = ext4_journal_get_write_access(handle, where->bh);
836                 if (err)
837                         goto err_out;
838         }
839         /* That's it */
840
841         *where->p = where->key;
842
843         /*
844          * Update the host buffer_head or inode to point to more just allocated
845          * direct blocks blocks
846          */
847         if (num == 0 && blks > 1) {
848                 current_block = le32_to_cpu(where->key) + 1;
849                 for (i = 1; i < blks; i++)
850                         *(where->p + i) = cpu_to_le32(current_block++);
851         }
852
853         /* We are done with atomic stuff, now do the rest of housekeeping */
854
855         inode->i_ctime = ext4_current_time(inode);
856         ext4_mark_inode_dirty(handle, inode);
857
858         /* had we spliced it onto indirect block? */
859         if (where->bh) {
860                 /*
861                  * If we spliced it onto an indirect block, we haven't
862                  * altered the inode.  Note however that if it is being spliced
863                  * onto an indirect block at the very end of the file (the
864                  * file is growing) then we *will* alter the inode to reflect
865                  * the new i_size.  But that is not done here - it is done in
866                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867                  */
868                 jbd_debug(5, "splicing indirect only\n");
869                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871                 if (err)
872                         goto err_out;
873         } else {
874                 /*
875                  * OK, we spliced it into the inode itself on a direct block.
876                  * Inode was dirtied above.
877                  */
878                 jbd_debug(5, "splicing direct\n");
879         }
880         return err;
881
882 err_out:
883         for (i = 1; i <= num; i++) {
884                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885                 ext4_journal_forget(handle, where[i].bh);
886                 ext4_free_blocks(handle, inode,
887                                         le32_to_cpu(where[i-1].key), 1, 0);
888         }
889         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891         return err;
892 }
893
894 /*
895  * Allocation strategy is simple: if we have to allocate something, we will
896  * have to go the whole way to leaf. So let's do it before attaching anything
897  * to tree, set linkage between the newborn blocks, write them if sync is
898  * required, recheck the path, free and repeat if check fails, otherwise
899  * set the last missing link (that will protect us from any truncate-generated
900  * removals - all blocks on the path are immune now) and possibly force the
901  * write on the parent block.
902  * That has a nice additional property: no special recovery from the failed
903  * allocations is needed - we simply release blocks and do not touch anything
904  * reachable from inode.
905  *
906  * `handle' can be NULL if create == 0.
907  *
908  * return > 0, # of blocks mapped or allocated.
909  * return = 0, if plain lookup failed.
910  * return < 0, error case.
911  *
912  *
913  * Need to be called with
914  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916  */
917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918                                   ext4_lblk_t iblock, unsigned int maxblocks,
919                                   struct buffer_head *bh_result,
920                                   int create, int extend_disksize)
921 {
922         int err = -EIO;
923         ext4_lblk_t offsets[4];
924         Indirect chain[4];
925         Indirect *partial;
926         ext4_fsblk_t goal;
927         int indirect_blks;
928         int blocks_to_boundary = 0;
929         int depth;
930         struct ext4_inode_info *ei = EXT4_I(inode);
931         int count = 0;
932         ext4_fsblk_t first_block = 0;
933         loff_t disksize;
934
935
936         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937         J_ASSERT(handle != NULL || create == 0);
938         depth = ext4_block_to_path(inode, iblock, offsets,
939                                         &blocks_to_boundary);
940
941         if (depth == 0)
942                 goto out;
943
944         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946         /* Simplest case - block found, no allocation needed */
947         if (!partial) {
948                 first_block = le32_to_cpu(chain[depth - 1].key);
949                 clear_buffer_new(bh_result);
950                 count++;
951                 /*map more blocks*/
952                 while (count < maxblocks && count <= blocks_to_boundary) {
953                         ext4_fsblk_t blk;
954
955                         blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957                         if (blk == first_block + count)
958                                 count++;
959                         else
960                                 break;
961                 }
962                 goto got_it;
963         }
964
965         /* Next simple case - plain lookup or failed read of indirect block */
966         if (!create || err == -EIO)
967                 goto cleanup;
968
969         /*
970          * Okay, we need to do block allocation.
971         */
972         goal = ext4_find_goal(inode, iblock, partial);
973
974         /* the number of blocks need to allocate for [d,t]indirect blocks */
975         indirect_blks = (chain + depth) - partial - 1;
976
977         /*
978          * Next look up the indirect map to count the totoal number of
979          * direct blocks to allocate for this branch.
980          */
981         count = ext4_blks_to_allocate(partial, indirect_blks,
982                                         maxblocks, blocks_to_boundary);
983         /*
984          * Block out ext4_truncate while we alter the tree
985          */
986         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987                                         &count, goal,
988                                         offsets + (partial - chain), partial);
989
990         /*
991          * The ext4_splice_branch call will free and forget any buffers
992          * on the new chain if there is a failure, but that risks using
993          * up transaction credits, especially for bitmaps where the
994          * credits cannot be returned.  Can we handle this somehow?  We
995          * may need to return -EAGAIN upwards in the worst case.  --sct
996          */
997         if (!err)
998                 err = ext4_splice_branch(handle, inode, iblock,
999                                         partial, indirect_blks, count);
1000         /*
1001          * i_disksize growing is protected by i_data_sem.  Don't forget to
1002          * protect it if you're about to implement concurrent
1003          * ext4_get_block() -bzzz
1004         */
1005         if (!err && extend_disksize) {
1006                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007                 if (disksize > i_size_read(inode))
1008                         disksize = i_size_read(inode);
1009                 if (disksize > ei->i_disksize)
1010                         ei->i_disksize = disksize;
1011         }
1012         if (err)
1013                 goto cleanup;
1014
1015         set_buffer_new(bh_result);
1016 got_it:
1017         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018         if (count > blocks_to_boundary)
1019                 set_buffer_boundary(bh_result);
1020         err = count;
1021         /* Clean up and exit */
1022         partial = chain + depth - 1;    /* the whole chain */
1023 cleanup:
1024         while (partial > chain) {
1025                 BUFFER_TRACE(partial->bh, "call brelse");
1026                 brelse(partial->bh);
1027                 partial--;
1028         }
1029         BUFFER_TRACE(bh_result, "returned");
1030 out:
1031         return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036         unsigned long long total;
1037
1038         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039         total = EXT4_I(inode)->i_reserved_data_blocks +
1040                 EXT4_I(inode)->i_reserved_meta_blocks;
1041         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043         return total;
1044 }
1045 /*
1046  * Calculate the number of metadata blocks need to reserve
1047  * to allocate @blocks for non extent file based file
1048  */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052         int ind_blks, dind_blks, tind_blks;
1053
1054         /* number of new indirect blocks needed */
1055         ind_blks = (blocks + icap - 1) / icap;
1056
1057         dind_blks = (ind_blks + icap - 1) / icap;
1058
1059         tind_blks = 1;
1060
1061         return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065  * Calculate the number of metadata blocks need to reserve
1066  * to allocate given number of blocks
1067  */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070         if (!blocks)
1071                 return 0;
1072
1073         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074                 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076         return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082         int total, mdb, mdb_free;
1083
1084         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085         /* recalculate the number of metablocks still need to be reserved */
1086         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087         mdb = ext4_calc_metadata_amount(inode, total);
1088
1089         /* figure out how many metablocks to release */
1090         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093         if (mdb_free) {
1094                 /* Account for allocated meta_blocks */
1095                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097                 /* update fs dirty blocks counter */
1098                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101         }
1102
1103         /* update per-inode reservations */
1104         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1105         EXT4_I(inode)->i_reserved_data_blocks -= used;
1106         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108         /*
1109          * free those over-booking quota for metadata blocks
1110          */
1111         if (mdb_free)
1112                 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114         /*
1115          * If we have done all the pending block allocations and if
1116          * there aren't any writers on the inode, we can discard the
1117          * inode's preallocations.
1118          */
1119         if (!total && (atomic_read(&inode->i_writecount) == 0))
1120                 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125  * and returns if the blocks are already mapped.
1126  *
1127  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128  * and store the allocated blocks in the result buffer head and mark it
1129  * mapped.
1130  *
1131  * If file type is extents based, it will call ext4_ext_get_blocks(),
1132  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133  * based files
1134  *
1135  * On success, it returns the number of blocks being mapped or allocate.
1136  * if create==0 and the blocks are pre-allocated and uninitialized block,
1137  * the result buffer head is unmapped. If the create ==1, it will make sure
1138  * the buffer head is mapped.
1139  *
1140  * It returns 0 if plain look up failed (blocks have not been allocated), in
1141  * that casem, buffer head is unmapped
1142  *
1143  * It returns the error in case of allocation failure.
1144  */
1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146                         unsigned int max_blocks, struct buffer_head *bh,
1147                         int create, int extend_disksize, int flag)
1148 {
1149         int retval;
1150
1151         clear_buffer_mapped(bh);
1152
1153         /*
1154          * Try to see if we can get  the block without requesting
1155          * for new file system block.
1156          */
1157         down_read((&EXT4_I(inode)->i_data_sem));
1158         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1159                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1160                                 bh, 0, 0);
1161         } else {
1162                 retval = ext4_get_blocks_handle(handle,
1163                                 inode, block, max_blocks, bh, 0, 0);
1164         }
1165         up_read((&EXT4_I(inode)->i_data_sem));
1166
1167         /* If it is only a block(s) look up */
1168         if (!create)
1169                 return retval;
1170
1171         /*
1172          * Returns if the blocks have already allocated
1173          *
1174          * Note that if blocks have been preallocated
1175          * ext4_ext_get_block() returns th create = 0
1176          * with buffer head unmapped.
1177          */
1178         if (retval > 0 && buffer_mapped(bh))
1179                 return retval;
1180
1181         /*
1182          * New blocks allocate and/or writing to uninitialized extent
1183          * will possibly result in updating i_data, so we take
1184          * the write lock of i_data_sem, and call get_blocks()
1185          * with create == 1 flag.
1186          */
1187         down_write((&EXT4_I(inode)->i_data_sem));
1188
1189         /*
1190          * if the caller is from delayed allocation writeout path
1191          * we have already reserved fs blocks for allocation
1192          * let the underlying get_block() function know to
1193          * avoid double accounting
1194          */
1195         if (flag)
1196                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1197         /*
1198          * We need to check for EXT4 here because migrate
1199          * could have changed the inode type in between
1200          */
1201         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1202                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1203                                 bh, create, extend_disksize);
1204         } else {
1205                 retval = ext4_get_blocks_handle(handle, inode, block,
1206                                 max_blocks, bh, create, extend_disksize);
1207
1208                 if (retval > 0 && buffer_new(bh)) {
1209                         /*
1210                          * We allocated new blocks which will result in
1211                          * i_data's format changing.  Force the migrate
1212                          * to fail by clearing migrate flags
1213                          */
1214                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1215                                                         ~EXT4_EXT_MIGRATE;
1216                 }
1217         }
1218
1219         if (flag) {
1220                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1221                 /*
1222                  * Update reserved blocks/metadata blocks
1223                  * after successful block allocation
1224                  * which were deferred till now
1225                  */
1226                 if ((retval > 0) && buffer_delay(bh))
1227                         ext4_da_update_reserve_space(inode, retval);
1228         }
1229
1230         up_write((&EXT4_I(inode)->i_data_sem));
1231         return retval;
1232 }
1233
1234 /* Maximum number of blocks we map for direct IO at once. */
1235 #define DIO_MAX_BLOCKS 4096
1236
1237 int ext4_get_block(struct inode *inode, sector_t iblock,
1238                    struct buffer_head *bh_result, int create)
1239 {
1240         handle_t *handle = ext4_journal_current_handle();
1241         int ret = 0, started = 0;
1242         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1243         int dio_credits;
1244
1245         if (create && !handle) {
1246                 /* Direct IO write... */
1247                 if (max_blocks > DIO_MAX_BLOCKS)
1248                         max_blocks = DIO_MAX_BLOCKS;
1249                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1250                 handle = ext4_journal_start(inode, dio_credits);
1251                 if (IS_ERR(handle)) {
1252                         ret = PTR_ERR(handle);
1253                         goto out;
1254                 }
1255                 started = 1;
1256         }
1257
1258         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1259                                         max_blocks, bh_result, create, 0, 0);
1260         if (ret > 0) {
1261                 bh_result->b_size = (ret << inode->i_blkbits);
1262                 ret = 0;
1263         }
1264         if (started)
1265                 ext4_journal_stop(handle);
1266 out:
1267         return ret;
1268 }
1269
1270 /*
1271  * `handle' can be NULL if create is zero
1272  */
1273 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1274                                 ext4_lblk_t block, int create, int *errp)
1275 {
1276         struct buffer_head dummy;
1277         int fatal = 0, err;
1278
1279         J_ASSERT(handle != NULL || create == 0);
1280
1281         dummy.b_state = 0;
1282         dummy.b_blocknr = -1000;
1283         buffer_trace_init(&dummy.b_history);
1284         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1285                                         &dummy, create, 1, 0);
1286         /*
1287          * ext4_get_blocks_handle() returns number of blocks
1288          * mapped. 0 in case of a HOLE.
1289          */
1290         if (err > 0) {
1291                 if (err > 1)
1292                         WARN_ON(1);
1293                 err = 0;
1294         }
1295         *errp = err;
1296         if (!err && buffer_mapped(&dummy)) {
1297                 struct buffer_head *bh;
1298                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1299                 if (!bh) {
1300                         *errp = -EIO;
1301                         goto err;
1302                 }
1303                 if (buffer_new(&dummy)) {
1304                         J_ASSERT(create != 0);
1305                         J_ASSERT(handle != NULL);
1306
1307                         /*
1308                          * Now that we do not always journal data, we should
1309                          * keep in mind whether this should always journal the
1310                          * new buffer as metadata.  For now, regular file
1311                          * writes use ext4_get_block instead, so it's not a
1312                          * problem.
1313                          */
1314                         lock_buffer(bh);
1315                         BUFFER_TRACE(bh, "call get_create_access");
1316                         fatal = ext4_journal_get_create_access(handle, bh);
1317                         if (!fatal && !buffer_uptodate(bh)) {
1318                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1319                                 set_buffer_uptodate(bh);
1320                         }
1321                         unlock_buffer(bh);
1322                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1323                         err = ext4_handle_dirty_metadata(handle, inode, bh);
1324                         if (!fatal)
1325                                 fatal = err;
1326                 } else {
1327                         BUFFER_TRACE(bh, "not a new buffer");
1328                 }
1329                 if (fatal) {
1330                         *errp = fatal;
1331                         brelse(bh);
1332                         bh = NULL;
1333                 }
1334                 return bh;
1335         }
1336 err:
1337         return NULL;
1338 }
1339
1340 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1341                                ext4_lblk_t block, int create, int *err)
1342 {
1343         struct buffer_head *bh;
1344
1345         bh = ext4_getblk(handle, inode, block, create, err);
1346         if (!bh)
1347                 return bh;
1348         if (buffer_uptodate(bh))
1349                 return bh;
1350         ll_rw_block(READ_META, 1, &bh);
1351         wait_on_buffer(bh);
1352         if (buffer_uptodate(bh))
1353                 return bh;
1354         put_bh(bh);
1355         *err = -EIO;
1356         return NULL;
1357 }
1358
1359 static int walk_page_buffers(handle_t *handle,
1360                              struct buffer_head *head,
1361                              unsigned from,
1362                              unsigned to,
1363                              int *partial,
1364                              int (*fn)(handle_t *handle,
1365                                        struct buffer_head *bh))
1366 {
1367         struct buffer_head *bh;
1368         unsigned block_start, block_end;
1369         unsigned blocksize = head->b_size;
1370         int err, ret = 0;
1371         struct buffer_head *next;
1372
1373         for (bh = head, block_start = 0;
1374              ret == 0 && (bh != head || !block_start);
1375              block_start = block_end, bh = next)
1376         {
1377                 next = bh->b_this_page;
1378                 block_end = block_start + blocksize;
1379                 if (block_end <= from || block_start >= to) {
1380                         if (partial && !buffer_uptodate(bh))
1381                                 *partial = 1;
1382                         continue;
1383                 }
1384                 err = (*fn)(handle, bh);
1385                 if (!ret)
1386                         ret = err;
1387         }
1388         return ret;
1389 }
1390
1391 /*
1392  * To preserve ordering, it is essential that the hole instantiation and
1393  * the data write be encapsulated in a single transaction.  We cannot
1394  * close off a transaction and start a new one between the ext4_get_block()
1395  * and the commit_write().  So doing the jbd2_journal_start at the start of
1396  * prepare_write() is the right place.
1397  *
1398  * Also, this function can nest inside ext4_writepage() ->
1399  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1400  * has generated enough buffer credits to do the whole page.  So we won't
1401  * block on the journal in that case, which is good, because the caller may
1402  * be PF_MEMALLOC.
1403  *
1404  * By accident, ext4 can be reentered when a transaction is open via
1405  * quota file writes.  If we were to commit the transaction while thus
1406  * reentered, there can be a deadlock - we would be holding a quota
1407  * lock, and the commit would never complete if another thread had a
1408  * transaction open and was blocking on the quota lock - a ranking
1409  * violation.
1410  *
1411  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1412  * will _not_ run commit under these circumstances because handle->h_ref
1413  * is elevated.  We'll still have enough credits for the tiny quotafile
1414  * write.
1415  */
1416 static int do_journal_get_write_access(handle_t *handle,
1417                                         struct buffer_head *bh)
1418 {
1419         if (!buffer_mapped(bh) || buffer_freed(bh))
1420                 return 0;
1421         return ext4_journal_get_write_access(handle, bh);
1422 }
1423
1424 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1425                                 loff_t pos, unsigned len, unsigned flags,
1426                                 struct page **pagep, void **fsdata)
1427 {
1428         struct inode *inode = mapping->host;
1429         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1430         handle_t *handle;
1431         int retries = 0;
1432         struct page *page;
1433         pgoff_t index;
1434         unsigned from, to;
1435
1436         trace_mark(ext4_write_begin,
1437                    "dev %s ino %lu pos %llu len %u flags %u",
1438                    inode->i_sb->s_id, inode->i_ino,
1439                    (unsigned long long) pos, len, flags);
1440         index = pos >> PAGE_CACHE_SHIFT;
1441         from = pos & (PAGE_CACHE_SIZE - 1);
1442         to = from + len;
1443
1444 retry:
1445         handle = ext4_journal_start(inode, needed_blocks);
1446         if (IS_ERR(handle)) {
1447                 ret = PTR_ERR(handle);
1448                 goto out;
1449         }
1450
1451         /* We cannot recurse into the filesystem as the transaction is already
1452          * started */
1453         flags |= AOP_FLAG_NOFS;
1454
1455         page = grab_cache_page_write_begin(mapping, index, flags);
1456         if (!page) {
1457                 ext4_journal_stop(handle);
1458                 ret = -ENOMEM;
1459                 goto out;
1460         }
1461         *pagep = page;
1462
1463         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1464                                 ext4_get_block);
1465
1466         if (!ret && ext4_should_journal_data(inode)) {
1467                 ret = walk_page_buffers(handle, page_buffers(page),
1468                                 from, to, NULL, do_journal_get_write_access);
1469         }
1470
1471         if (ret) {
1472                 unlock_page(page);
1473                 ext4_journal_stop(handle);
1474                 page_cache_release(page);
1475                 /*
1476                  * block_write_begin may have instantiated a few blocks
1477                  * outside i_size.  Trim these off again. Don't need
1478                  * i_size_read because we hold i_mutex.
1479                  */
1480                 if (pos + len > inode->i_size)
1481                         vmtruncate(inode, inode->i_size);
1482         }
1483
1484         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1485                 goto retry;
1486 out:
1487         return ret;
1488 }
1489
1490 /* For write_end() in data=journal mode */
1491 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1492 {
1493         if (!buffer_mapped(bh) || buffer_freed(bh))
1494                 return 0;
1495         set_buffer_uptodate(bh);
1496         return ext4_handle_dirty_metadata(handle, NULL, bh);
1497 }
1498
1499 /*
1500  * We need to pick up the new inode size which generic_commit_write gave us
1501  * `file' can be NULL - eg, when called from page_symlink().
1502  *
1503  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1504  * buffers are managed internally.
1505  */
1506 static int ext4_ordered_write_end(struct file *file,
1507                                 struct address_space *mapping,
1508                                 loff_t pos, unsigned len, unsigned copied,
1509                                 struct page *page, void *fsdata)
1510 {
1511         handle_t *handle = ext4_journal_current_handle();
1512         struct inode *inode = mapping->host;
1513         int ret = 0, ret2;
1514
1515         trace_mark(ext4_ordered_write_end,
1516                    "dev %s ino %lu pos %llu len %u copied %u",
1517                    inode->i_sb->s_id, inode->i_ino,
1518                    (unsigned long long) pos, len, copied);
1519         ret = ext4_jbd2_file_inode(handle, inode);
1520
1521         if (ret == 0) {
1522                 loff_t new_i_size;
1523
1524                 new_i_size = pos + copied;
1525                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1526                         ext4_update_i_disksize(inode, new_i_size);
1527                         /* We need to mark inode dirty even if
1528                          * new_i_size is less that inode->i_size
1529                          * bu greater than i_disksize.(hint delalloc)
1530                          */
1531                         ext4_mark_inode_dirty(handle, inode);
1532                 }
1533
1534                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1535                                                         page, fsdata);
1536                 copied = ret2;
1537                 if (ret2 < 0)
1538                         ret = ret2;
1539         }
1540         ret2 = ext4_journal_stop(handle);
1541         if (!ret)
1542                 ret = ret2;
1543
1544         return ret ? ret : copied;
1545 }
1546
1547 static int ext4_writeback_write_end(struct file *file,
1548                                 struct address_space *mapping,
1549                                 loff_t pos, unsigned len, unsigned copied,
1550                                 struct page *page, void *fsdata)
1551 {
1552         handle_t *handle = ext4_journal_current_handle();
1553         struct inode *inode = mapping->host;
1554         int ret = 0, ret2;
1555         loff_t new_i_size;
1556
1557         trace_mark(ext4_writeback_write_end,
1558                    "dev %s ino %lu pos %llu len %u copied %u",
1559                    inode->i_sb->s_id, inode->i_ino,
1560                    (unsigned long long) pos, len, copied);
1561         new_i_size = pos + copied;
1562         if (new_i_size > EXT4_I(inode)->i_disksize) {
1563                 ext4_update_i_disksize(inode, new_i_size);
1564                 /* We need to mark inode dirty even if
1565                  * new_i_size is less that inode->i_size
1566                  * bu greater than i_disksize.(hint delalloc)
1567                  */
1568                 ext4_mark_inode_dirty(handle, inode);
1569         }
1570
1571         ret2 = generic_write_end(file, mapping, pos, len, copied,
1572                                                         page, fsdata);
1573         copied = ret2;
1574         if (ret2 < 0)
1575                 ret = ret2;
1576
1577         ret2 = ext4_journal_stop(handle);
1578         if (!ret)
1579                 ret = ret2;
1580
1581         return ret ? ret : copied;
1582 }
1583
1584 static int ext4_journalled_write_end(struct file *file,
1585                                 struct address_space *mapping,
1586                                 loff_t pos, unsigned len, unsigned copied,
1587                                 struct page *page, void *fsdata)
1588 {
1589         handle_t *handle = ext4_journal_current_handle();
1590         struct inode *inode = mapping->host;
1591         int ret = 0, ret2;
1592         int partial = 0;
1593         unsigned from, to;
1594         loff_t new_i_size;
1595
1596         trace_mark(ext4_journalled_write_end,
1597                    "dev %s ino %lu pos %llu len %u copied %u",
1598                    inode->i_sb->s_id, inode->i_ino,
1599                    (unsigned long long) pos, len, copied);
1600         from = pos & (PAGE_CACHE_SIZE - 1);
1601         to = from + len;
1602
1603         if (copied < len) {
1604                 if (!PageUptodate(page))
1605                         copied = 0;
1606                 page_zero_new_buffers(page, from+copied, to);
1607         }
1608
1609         ret = walk_page_buffers(handle, page_buffers(page), from,
1610                                 to, &partial, write_end_fn);
1611         if (!partial)
1612                 SetPageUptodate(page);
1613         new_i_size = pos + copied;
1614         if (new_i_size > inode->i_size)
1615                 i_size_write(inode, pos+copied);
1616         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1617         if (new_i_size > EXT4_I(inode)->i_disksize) {
1618                 ext4_update_i_disksize(inode, new_i_size);
1619                 ret2 = ext4_mark_inode_dirty(handle, inode);
1620                 if (!ret)
1621                         ret = ret2;
1622         }
1623
1624         unlock_page(page);
1625         ret2 = ext4_journal_stop(handle);
1626         if (!ret)
1627                 ret = ret2;
1628         page_cache_release(page);
1629
1630         return ret ? ret : copied;
1631 }
1632
1633 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1634 {
1635         int retries = 0;
1636         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637         unsigned long md_needed, mdblocks, total = 0;
1638
1639         /*
1640          * recalculate the amount of metadata blocks to reserve
1641          * in order to allocate nrblocks
1642          * worse case is one extent per block
1643          */
1644 repeat:
1645         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1646         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1647         mdblocks = ext4_calc_metadata_amount(inode, total);
1648         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1649
1650         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1651         total = md_needed + nrblocks;
1652
1653         /*
1654          * Make quota reservation here to prevent quota overflow
1655          * later. Real quota accounting is done at pages writeout
1656          * time.
1657          */
1658         if (vfs_dq_reserve_block(inode, total)) {
1659                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1660                 return -EDQUOT;
1661         }
1662
1663         if (ext4_claim_free_blocks(sbi, total)) {
1664                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1665                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1666                         yield();
1667                         goto repeat;
1668                 }
1669                 vfs_dq_release_reservation_block(inode, total);
1670                 return -ENOSPC;
1671         }
1672         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1673         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1674
1675         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1676         return 0;       /* success */
1677 }
1678
1679 static void ext4_da_release_space(struct inode *inode, int to_free)
1680 {
1681         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1682         int total, mdb, mdb_free, release;
1683
1684         if (!to_free)
1685                 return;         /* Nothing to release, exit */
1686
1687         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1688
1689         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1690                 /*
1691                  * if there is no reserved blocks, but we try to free some
1692                  * then the counter is messed up somewhere.
1693                  * but since this function is called from invalidate
1694                  * page, it's harmless to return without any action
1695                  */
1696                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1697                             "blocks for inode %lu, but there is no reserved "
1698                             "data blocks\n", to_free, inode->i_ino);
1699                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1700                 return;
1701         }
1702
1703         /* recalculate the number of metablocks still need to be reserved */
1704         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1705         mdb = ext4_calc_metadata_amount(inode, total);
1706
1707         /* figure out how many metablocks to release */
1708         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1709         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1710
1711         release = to_free + mdb_free;
1712
1713         /* update fs dirty blocks counter for truncate case */
1714         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1715
1716         /* update per-inode reservations */
1717         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1718         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1719
1720         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1721         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1722         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1723
1724         vfs_dq_release_reservation_block(inode, release);
1725 }
1726
1727 static void ext4_da_page_release_reservation(struct page *page,
1728                                                 unsigned long offset)
1729 {
1730         int to_release = 0;
1731         struct buffer_head *head, *bh;
1732         unsigned int curr_off = 0;
1733
1734         head = page_buffers(page);
1735         bh = head;
1736         do {
1737                 unsigned int next_off = curr_off + bh->b_size;
1738
1739                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1740                         to_release++;
1741                         clear_buffer_delay(bh);
1742                 }
1743                 curr_off = next_off;
1744         } while ((bh = bh->b_this_page) != head);
1745         ext4_da_release_space(page->mapping->host, to_release);
1746 }
1747
1748 /*
1749  * Delayed allocation stuff
1750  */
1751
1752 struct mpage_da_data {
1753         struct inode *inode;
1754         sector_t b_blocknr;             /* start block number of extent */
1755         size_t b_size;                  /* size of extent */
1756         unsigned long b_state;          /* state of the extent */
1757         unsigned long first_page, next_page;    /* extent of pages */
1758         struct writeback_control *wbc;
1759         int io_done;
1760         int pages_written;
1761         int retval;
1762 };
1763
1764 /*
1765  * mpage_da_submit_io - walks through extent of pages and try to write
1766  * them with writepage() call back
1767  *
1768  * @mpd->inode: inode
1769  * @mpd->first_page: first page of the extent
1770  * @mpd->next_page: page after the last page of the extent
1771  *
1772  * By the time mpage_da_submit_io() is called we expect all blocks
1773  * to be allocated. this may be wrong if allocation failed.
1774  *
1775  * As pages are already locked by write_cache_pages(), we can't use it
1776  */
1777 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1778 {
1779         long pages_skipped;
1780         struct pagevec pvec;
1781         unsigned long index, end;
1782         int ret = 0, err, nr_pages, i;
1783         struct inode *inode = mpd->inode;
1784         struct address_space *mapping = inode->i_mapping;
1785
1786         BUG_ON(mpd->next_page <= mpd->first_page);
1787         /*
1788          * We need to start from the first_page to the next_page - 1
1789          * to make sure we also write the mapped dirty buffer_heads.
1790          * If we look at mpd->b_blocknr we would only be looking
1791          * at the currently mapped buffer_heads.
1792          */
1793         index = mpd->first_page;
1794         end = mpd->next_page - 1;
1795
1796         pagevec_init(&pvec, 0);
1797         while (index <= end) {
1798                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1799                 if (nr_pages == 0)
1800                         break;
1801                 for (i = 0; i < nr_pages; i++) {
1802                         struct page *page = pvec.pages[i];
1803
1804                         index = page->index;
1805                         if (index > end)
1806                                 break;
1807                         index++;
1808
1809                         BUG_ON(!PageLocked(page));
1810                         BUG_ON(PageWriteback(page));
1811
1812                         pages_skipped = mpd->wbc->pages_skipped;
1813                         err = mapping->a_ops->writepage(page, mpd->wbc);
1814                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1815                                 /*
1816                                  * have successfully written the page
1817                                  * without skipping the same
1818                                  */
1819                                 mpd->pages_written++;
1820                         /*
1821                          * In error case, we have to continue because
1822                          * remaining pages are still locked
1823                          * XXX: unlock and re-dirty them?
1824                          */
1825                         if (ret == 0)
1826                                 ret = err;
1827                 }
1828                 pagevec_release(&pvec);
1829         }
1830         return ret;
1831 }
1832
1833 /*
1834  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1835  *
1836  * @mpd->inode - inode to walk through
1837  * @exbh->b_blocknr - first block on a disk
1838  * @exbh->b_size - amount of space in bytes
1839  * @logical - first logical block to start assignment with
1840  *
1841  * the function goes through all passed space and put actual disk
1842  * block numbers into buffer heads, dropping BH_Delay
1843  */
1844 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1845                                  struct buffer_head *exbh)
1846 {
1847         struct inode *inode = mpd->inode;
1848         struct address_space *mapping = inode->i_mapping;
1849         int blocks = exbh->b_size >> inode->i_blkbits;
1850         sector_t pblock = exbh->b_blocknr, cur_logical;
1851         struct buffer_head *head, *bh;
1852         pgoff_t index, end;
1853         struct pagevec pvec;
1854         int nr_pages, i;
1855
1856         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1857         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1858         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1859
1860         pagevec_init(&pvec, 0);
1861
1862         while (index <= end) {
1863                 /* XXX: optimize tail */
1864                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1865                 if (nr_pages == 0)
1866                         break;
1867                 for (i = 0; i < nr_pages; i++) {
1868                         struct page *page = pvec.pages[i];
1869
1870                         index = page->index;
1871                         if (index > end)
1872                                 break;
1873                         index++;
1874
1875                         BUG_ON(!PageLocked(page));
1876                         BUG_ON(PageWriteback(page));
1877                         BUG_ON(!page_has_buffers(page));
1878
1879                         bh = page_buffers(page);
1880                         head = bh;
1881
1882                         /* skip blocks out of the range */
1883                         do {
1884                                 if (cur_logical >= logical)
1885                                         break;
1886                                 cur_logical++;
1887                         } while ((bh = bh->b_this_page) != head);
1888
1889                         do {
1890                                 if (cur_logical >= logical + blocks)
1891                                         break;
1892                                 if (buffer_delay(bh)) {
1893                                         bh->b_blocknr = pblock;
1894                                         clear_buffer_delay(bh);
1895                                         bh->b_bdev = inode->i_sb->s_bdev;
1896                                 } else if (buffer_unwritten(bh)) {
1897                                         bh->b_blocknr = pblock;
1898                                         clear_buffer_unwritten(bh);
1899                                         set_buffer_mapped(bh);
1900                                         set_buffer_new(bh);
1901                                         bh->b_bdev = inode->i_sb->s_bdev;
1902                                 } else if (buffer_mapped(bh))
1903                                         BUG_ON(bh->b_blocknr != pblock);
1904
1905                                 cur_logical++;
1906                                 pblock++;
1907                         } while ((bh = bh->b_this_page) != head);
1908                 }
1909                 pagevec_release(&pvec);
1910         }
1911 }
1912
1913
1914 /*
1915  * __unmap_underlying_blocks - just a helper function to unmap
1916  * set of blocks described by @bh
1917  */
1918 static inline void __unmap_underlying_blocks(struct inode *inode,
1919                                              struct buffer_head *bh)
1920 {
1921         struct block_device *bdev = inode->i_sb->s_bdev;
1922         int blocks, i;
1923
1924         blocks = bh->b_size >> inode->i_blkbits;
1925         for (i = 0; i < blocks; i++)
1926                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1927 }
1928
1929 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1930                                         sector_t logical, long blk_cnt)
1931 {
1932         int nr_pages, i;
1933         pgoff_t index, end;
1934         struct pagevec pvec;
1935         struct inode *inode = mpd->inode;
1936         struct address_space *mapping = inode->i_mapping;
1937
1938         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1939         end   = (logical + blk_cnt - 1) >>
1940                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1941         while (index <= end) {
1942                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1943                 if (nr_pages == 0)
1944                         break;
1945                 for (i = 0; i < nr_pages; i++) {
1946                         struct page *page = pvec.pages[i];
1947                         index = page->index;
1948                         if (index > end)
1949                                 break;
1950                         index++;
1951
1952                         BUG_ON(!PageLocked(page));
1953                         BUG_ON(PageWriteback(page));
1954                         block_invalidatepage(page, 0);
1955                         ClearPageUptodate(page);
1956                         unlock_page(page);
1957                 }
1958         }
1959         return;
1960 }
1961
1962 static void ext4_print_free_blocks(struct inode *inode)
1963 {
1964         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1965         printk(KERN_EMERG "Total free blocks count %lld\n",
1966                         ext4_count_free_blocks(inode->i_sb));
1967         printk(KERN_EMERG "Free/Dirty block details\n");
1968         printk(KERN_EMERG "free_blocks=%lld\n",
1969                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1970         printk(KERN_EMERG "dirty_blocks=%lld\n",
1971                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1972         printk(KERN_EMERG "Block reservation details\n");
1973         printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1974                         EXT4_I(inode)->i_reserved_data_blocks);
1975         printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1976                         EXT4_I(inode)->i_reserved_meta_blocks);
1977         return;
1978 }
1979
1980 #define         EXT4_DELALLOC_RSVED     1
1981 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1982                                    struct buffer_head *bh_result, int create)
1983 {
1984         int ret;
1985         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1986         loff_t disksize = EXT4_I(inode)->i_disksize;
1987         handle_t *handle = NULL;
1988
1989         handle = ext4_journal_current_handle();
1990         BUG_ON(!handle);
1991         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
1992                                    bh_result, create, 0, EXT4_DELALLOC_RSVED);
1993         if (ret <= 0)
1994                 return ret;
1995
1996         bh_result->b_size = (ret << inode->i_blkbits);
1997
1998         if (ext4_should_order_data(inode)) {
1999                 int retval;
2000                 retval = ext4_jbd2_file_inode(handle, inode);
2001                 if (retval)
2002                         /*
2003                          * Failed to add inode for ordered mode. Don't
2004                          * update file size
2005                          */
2006                         return retval;
2007         }
2008
2009         /*
2010          * Update on-disk size along with block allocation we don't
2011          * use 'extend_disksize' as size may change within already
2012          * allocated block -bzzz
2013          */
2014         disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2015         if (disksize > i_size_read(inode))
2016                 disksize = i_size_read(inode);
2017         if (disksize > EXT4_I(inode)->i_disksize) {
2018                 ext4_update_i_disksize(inode, disksize);
2019                 ret = ext4_mark_inode_dirty(handle, inode);
2020                 return ret;
2021         }
2022         return 0;
2023 }
2024
2025 /*
2026  * mpage_da_map_blocks - go through given space
2027  *
2028  * @mpd - bh describing space
2029  *
2030  * The function skips space we know is already mapped to disk blocks.
2031  *
2032  */
2033 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2034 {
2035         int err = 0;
2036         struct buffer_head new;
2037         sector_t next;
2038
2039         /*
2040          * We consider only non-mapped and non-allocated blocks
2041          */
2042         if ((mpd->b_state  & (1 << BH_Mapped)) &&
2043             !(mpd->b_state & (1 << BH_Delay)))
2044                 return 0;
2045         new.b_state = mpd->b_state;
2046         new.b_blocknr = 0;
2047         new.b_size = mpd->b_size;
2048         next = mpd->b_blocknr;
2049         /*
2050          * If we didn't accumulate anything
2051          * to write simply return
2052          */
2053         if (!new.b_size)
2054                 return 0;
2055
2056         err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2057         if (err) {
2058                 /*
2059                  * If get block returns with error we simply
2060                  * return. Later writepage will redirty the page and
2061                  * writepages will find the dirty page again
2062                  */
2063                 if (err == -EAGAIN)
2064                         return 0;
2065
2066                 if (err == -ENOSPC &&
2067                     ext4_count_free_blocks(mpd->inode->i_sb)) {
2068                         mpd->retval = err;
2069                         return 0;
2070                 }
2071
2072                 /*
2073                  * get block failure will cause us to loop in
2074                  * writepages, because a_ops->writepage won't be able
2075                  * to make progress. The page will be redirtied by
2076                  * writepage and writepages will again try to write
2077                  * the same.
2078                  */
2079                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2080                                   "at logical offset %llu with max blocks "
2081                                   "%zd with error %d\n",
2082                                   __func__, mpd->inode->i_ino,
2083                                   (unsigned long long)next,
2084                                   mpd->b_size >> mpd->inode->i_blkbits, err);
2085                 printk(KERN_EMERG "This should not happen.!! "
2086                                         "Data will be lost\n");
2087                 if (err == -ENOSPC) {
2088                         ext4_print_free_blocks(mpd->inode);
2089                 }
2090                 /* invlaidate all the pages */
2091                 ext4_da_block_invalidatepages(mpd, next,
2092                                 mpd->b_size >> mpd->inode->i_blkbits);
2093                 return err;
2094         }
2095         BUG_ON(new.b_size == 0);
2096
2097         if (buffer_new(&new))
2098                 __unmap_underlying_blocks(mpd->inode, &new);
2099
2100         /*
2101          * If blocks are delayed marked, we need to
2102          * put actual blocknr and drop delayed bit
2103          */
2104         if ((mpd->b_state & (1 << BH_Delay)) ||
2105             (mpd->b_state & (1 << BH_Unwritten)))
2106                 mpage_put_bnr_to_bhs(mpd, next, &new);
2107
2108         return 0;
2109 }
2110
2111 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2112                 (1 << BH_Delay) | (1 << BH_Unwritten))
2113
2114 /*
2115  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2116  *
2117  * @mpd->lbh - extent of blocks
2118  * @logical - logical number of the block in the file
2119  * @bh - bh of the block (used to access block's state)
2120  *
2121  * the function is used to collect contig. blocks in same state
2122  */
2123 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2124                                    sector_t logical, size_t b_size,
2125                                    unsigned long b_state)
2126 {
2127         sector_t next;
2128         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2129
2130         /* check if thereserved journal credits might overflow */
2131         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2132                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2133                         /*
2134                          * With non-extent format we are limited by the journal
2135                          * credit available.  Total credit needed to insert
2136                          * nrblocks contiguous blocks is dependent on the
2137                          * nrblocks.  So limit nrblocks.
2138                          */
2139                         goto flush_it;
2140                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2141                                 EXT4_MAX_TRANS_DATA) {
2142                         /*
2143                          * Adding the new buffer_head would make it cross the
2144                          * allowed limit for which we have journal credit
2145                          * reserved. So limit the new bh->b_size
2146                          */
2147                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2148                                                 mpd->inode->i_blkbits;
2149                         /* we will do mpage_da_submit_io in the next loop */
2150                 }
2151         }
2152         /*
2153          * First block in the extent
2154          */
2155         if (mpd->b_size == 0) {
2156                 mpd->b_blocknr = logical;
2157                 mpd->b_size = b_size;
2158                 mpd->b_state = b_state & BH_FLAGS;
2159                 return;
2160         }
2161
2162         next = mpd->b_blocknr + nrblocks;
2163         /*
2164          * Can we merge the block to our big extent?
2165          */
2166         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2167                 mpd->b_size += b_size;
2168                 return;
2169         }
2170
2171 flush_it:
2172         /*
2173          * We couldn't merge the block to our extent, so we
2174          * need to flush current  extent and start new one
2175          */
2176         if (mpage_da_map_blocks(mpd) == 0)
2177                 mpage_da_submit_io(mpd);
2178         mpd->io_done = 1;
2179         return;
2180 }
2181
2182 /*
2183  * __mpage_da_writepage - finds extent of pages and blocks
2184  *
2185  * @page: page to consider
2186  * @wbc: not used, we just follow rules
2187  * @data: context
2188  *
2189  * The function finds extents of pages and scan them for all blocks.
2190  */
2191 static int __mpage_da_writepage(struct page *page,
2192                                 struct writeback_control *wbc, void *data)
2193 {
2194         struct mpage_da_data *mpd = data;
2195         struct inode *inode = mpd->inode;
2196         struct buffer_head *bh, *head;
2197         sector_t logical;
2198
2199         if (mpd->io_done) {
2200                 /*
2201                  * Rest of the page in the page_vec
2202                  * redirty then and skip then. We will
2203                  * try to to write them again after
2204                  * starting a new transaction
2205                  */
2206                 redirty_page_for_writepage(wbc, page);
2207                 unlock_page(page);
2208                 return MPAGE_DA_EXTENT_TAIL;
2209         }
2210         /*
2211          * Can we merge this page to current extent?
2212          */
2213         if (mpd->next_page != page->index) {
2214                 /*
2215                  * Nope, we can't. So, we map non-allocated blocks
2216                  * and start IO on them using writepage()
2217                  */
2218                 if (mpd->next_page != mpd->first_page) {
2219                         if (mpage_da_map_blocks(mpd) == 0)
2220                                 mpage_da_submit_io(mpd);
2221                         /*
2222                          * skip rest of the page in the page_vec
2223                          */
2224                         mpd->io_done = 1;
2225                         redirty_page_for_writepage(wbc, page);
2226                         unlock_page(page);
2227                         return MPAGE_DA_EXTENT_TAIL;
2228                 }
2229
2230                 /*
2231                  * Start next extent of pages ...
2232                  */
2233                 mpd->first_page = page->index;
2234
2235                 /*
2236                  * ... and blocks
2237                  */
2238                 mpd->b_size = 0;
2239                 mpd->b_state = 0;
2240                 mpd->b_blocknr = 0;
2241         }
2242
2243         mpd->next_page = page->index + 1;
2244         logical = (sector_t) page->index <<
2245                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2246
2247         if (!page_has_buffers(page)) {
2248                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2249                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2250                 if (mpd->io_done)
2251                         return MPAGE_DA_EXTENT_TAIL;
2252         } else {
2253                 /*
2254                  * Page with regular buffer heads, just add all dirty ones
2255                  */
2256                 head = page_buffers(page);
2257                 bh = head;
2258                 do {
2259                         BUG_ON(buffer_locked(bh));
2260                         /*
2261                          * We need to try to allocate
2262                          * unmapped blocks in the same page.
2263                          * Otherwise we won't make progress
2264                          * with the page in ext4_da_writepage
2265                          */
2266                         if (buffer_dirty(bh) &&
2267                             (!buffer_mapped(bh) || buffer_delay(bh))) {
2268                                 mpage_add_bh_to_extent(mpd, logical,
2269                                                        bh->b_size,
2270                                                        bh->b_state);
2271                                 if (mpd->io_done)
2272                                         return MPAGE_DA_EXTENT_TAIL;
2273                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2274                                 /*
2275                                  * mapped dirty buffer. We need to update
2276                                  * the b_state because we look at
2277                                  * b_state in mpage_da_map_blocks. We don't
2278                                  * update b_size because if we find an
2279                                  * unmapped buffer_head later we need to
2280                                  * use the b_state flag of that buffer_head.
2281                                  */
2282                                 if (mpd->b_size == 0)
2283                                         mpd->b_state = bh->b_state & BH_FLAGS;
2284                         }
2285                         logical++;
2286                 } while ((bh = bh->b_this_page) != head);
2287         }
2288
2289         return 0;
2290 }
2291
2292 /*
2293  * this is a special callback for ->write_begin() only
2294  * it's intention is to return mapped block or reserve space
2295  */
2296 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2297                                   struct buffer_head *bh_result, int create)
2298 {
2299         int ret = 0;
2300
2301         BUG_ON(create == 0);
2302         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2303
2304         /*
2305          * first, we need to know whether the block is allocated already
2306          * preallocated blocks are unmapped but should treated
2307          * the same as allocated blocks.
2308          */
2309         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2310         if ((ret == 0) && !buffer_delay(bh_result)) {
2311                 /* the block isn't (pre)allocated yet, let's reserve space */
2312                 /*
2313                  * XXX: __block_prepare_write() unmaps passed block,
2314                  * is it OK?
2315                  */
2316                 ret = ext4_da_reserve_space(inode, 1);
2317                 if (ret)
2318                         /* not enough space to reserve */
2319                         return ret;
2320
2321                 map_bh(bh_result, inode->i_sb, 0);
2322                 set_buffer_new(bh_result);
2323                 set_buffer_delay(bh_result);
2324         } else if (ret > 0) {
2325                 bh_result->b_size = (ret << inode->i_blkbits);
2326                 ret = 0;
2327         }
2328
2329         return ret;
2330 }
2331
2332 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2333 {
2334         /*
2335          * unmapped buffer is possible for holes.
2336          * delay buffer is possible with delayed allocation
2337          */
2338         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2339 }
2340
2341 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2342                                    struct buffer_head *bh_result, int create)
2343 {
2344         int ret = 0;
2345         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2346
2347         /*
2348          * we don't want to do block allocation in writepage
2349          * so call get_block_wrap with create = 0
2350          */
2351         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2352                                    bh_result, 0, 0, 0);
2353         if (ret > 0) {
2354                 bh_result->b_size = (ret << inode->i_blkbits);
2355                 ret = 0;
2356         }
2357         return ret;
2358 }
2359
2360 /*
2361  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2362  * get called via journal_submit_inode_data_buffers (no journal handle)
2363  * get called via shrink_page_list via pdflush (no journal handle)
2364  * or grab_page_cache when doing write_begin (have journal handle)
2365  */
2366 static int ext4_da_writepage(struct page *page,
2367                                 struct writeback_control *wbc)
2368 {
2369         int ret = 0;
2370         loff_t size;
2371         unsigned int len;
2372         struct buffer_head *page_bufs;
2373         struct inode *inode = page->mapping->host;
2374
2375         trace_mark(ext4_da_writepage,
2376                    "dev %s ino %lu page_index %lu",
2377                    inode->i_sb->s_id, inode->i_ino, page->index);
2378         size = i_size_read(inode);
2379         if (page->index == size >> PAGE_CACHE_SHIFT)
2380                 len = size & ~PAGE_CACHE_MASK;
2381         else
2382                 len = PAGE_CACHE_SIZE;
2383
2384         if (page_has_buffers(page)) {
2385                 page_bufs = page_buffers(page);
2386                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2387                                         ext4_bh_unmapped_or_delay)) {
2388                         /*
2389                          * We don't want to do  block allocation
2390                          * So redirty the page and return
2391                          * We may reach here when we do a journal commit
2392                          * via journal_submit_inode_data_buffers.
2393                          * If we don't have mapping block we just ignore
2394                          * them. We can also reach here via shrink_page_list
2395                          */
2396                         redirty_page_for_writepage(wbc, page);
2397                         unlock_page(page);
2398                         return 0;
2399                 }
2400         } else {
2401                 /*
2402                  * The test for page_has_buffers() is subtle:
2403                  * We know the page is dirty but it lost buffers. That means
2404                  * that at some moment in time after write_begin()/write_end()
2405                  * has been called all buffers have been clean and thus they
2406                  * must have been written at least once. So they are all
2407                  * mapped and we can happily proceed with mapping them
2408                  * and writing the page.
2409                  *
2410                  * Try to initialize the buffer_heads and check whether
2411                  * all are mapped and non delay. We don't want to
2412                  * do block allocation here.
2413                  */
2414                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2415                                                 ext4_normal_get_block_write);
2416                 if (!ret) {
2417                         page_bufs = page_buffers(page);
2418                         /* check whether all are mapped and non delay */
2419                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2420                                                 ext4_bh_unmapped_or_delay)) {
2421                                 redirty_page_for_writepage(wbc, page);
2422                                 unlock_page(page);
2423                                 return 0;
2424                         }
2425                 } else {
2426                         /*
2427                          * We can't do block allocation here
2428                          * so just redity the page and unlock
2429                          * and return
2430                          */
2431                         redirty_page_for_writepage(wbc, page);
2432                         unlock_page(page);
2433                         return 0;
2434                 }
2435                 /* now mark the buffer_heads as dirty and uptodate */
2436                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2437         }
2438
2439         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2440                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2441         else
2442                 ret = block_write_full_page(page,
2443                                                 ext4_normal_get_block_write,
2444                                                 wbc);
2445
2446         return ret;
2447 }
2448
2449 /*
2450  * This is called via ext4_da_writepages() to
2451  * calulate the total number of credits to reserve to fit
2452  * a single extent allocation into a single transaction,
2453  * ext4_da_writpeages() will loop calling this before
2454  * the block allocation.
2455  */
2456
2457 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458 {
2459         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2460
2461         /*
2462          * With non-extent format the journal credit needed to
2463          * insert nrblocks contiguous block is dependent on
2464          * number of contiguous block. So we will limit
2465          * number of contiguous block to a sane value
2466          */
2467         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2468             (max_blocks > EXT4_MAX_TRANS_DATA))
2469                 max_blocks = EXT4_MAX_TRANS_DATA;
2470
2471         return ext4_chunk_trans_blocks(inode, max_blocks);
2472 }
2473
2474 static int ext4_da_writepages(struct address_space *mapping,
2475                               struct writeback_control *wbc)
2476 {
2477         pgoff_t index;
2478         int range_whole = 0;
2479         handle_t *handle = NULL;
2480         struct mpage_da_data mpd;
2481         struct inode *inode = mapping->host;
2482         int no_nrwrite_index_update;
2483         int pages_written = 0;
2484         long pages_skipped;
2485         int range_cyclic, cycled = 1, io_done = 0;
2486         int needed_blocks, ret = 0, nr_to_writebump = 0;
2487         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2488
2489         trace_mark(ext4_da_writepages,
2490                    "dev %s ino %lu nr_t_write %ld "
2491                    "pages_skipped %ld range_start %llu "
2492                    "range_end %llu nonblocking %d "
2493                    "for_kupdate %d for_reclaim %d "
2494                    "for_writepages %d range_cyclic %d",
2495                    inode->i_sb->s_id, inode->i_ino,
2496                    wbc->nr_to_write, wbc->pages_skipped,
2497                    (unsigned long long) wbc->range_start,
2498                    (unsigned long long) wbc->range_end,
2499                    wbc->nonblocking, wbc->for_kupdate,
2500                    wbc->for_reclaim, wbc->for_writepages,
2501                    wbc->range_cyclic);
2502
2503         /*
2504          * No pages to write? This is mainly a kludge to avoid starting
2505          * a transaction for special inodes like journal inode on last iput()
2506          * because that could violate lock ordering on umount
2507          */
2508         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2509                 return 0;
2510
2511         /*
2512          * If the filesystem has aborted, it is read-only, so return
2513          * right away instead of dumping stack traces later on that
2514          * will obscure the real source of the problem.  We test
2515          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2516          * the latter could be true if the filesystem is mounted
2517          * read-only, and in that case, ext4_da_writepages should
2518          * *never* be called, so if that ever happens, we would want
2519          * the stack trace.
2520          */
2521         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2522                 return -EROFS;
2523
2524         /*
2525          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2526          * This make sure small files blocks are allocated in
2527          * single attempt. This ensure that small files
2528          * get less fragmented.
2529          */
2530         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2531                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2532                 wbc->nr_to_write = sbi->s_mb_stream_request;
2533         }
2534         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2535                 range_whole = 1;
2536
2537         range_cyclic = wbc->range_cyclic;
2538         if (wbc->range_cyclic) {
2539                 index = mapping->writeback_index;
2540                 if (index)
2541                         cycled = 0;
2542                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2543                 wbc->range_end  = LLONG_MAX;
2544                 wbc->range_cyclic = 0;
2545         } else
2546                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2547
2548         mpd.wbc = wbc;
2549         mpd.inode = mapping->host;
2550
2551         /*
2552          * we don't want write_cache_pages to update
2553          * nr_to_write and writeback_index
2554          */
2555         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2556         wbc->no_nrwrite_index_update = 1;
2557         pages_skipped = wbc->pages_skipped;
2558
2559 retry:
2560         while (!ret && wbc->nr_to_write > 0) {
2561
2562                 /*
2563                  * we  insert one extent at a time. So we need
2564                  * credit needed for single extent allocation.
2565                  * journalled mode is currently not supported
2566                  * by delalloc
2567                  */
2568                 BUG_ON(ext4_should_journal_data(inode));
2569                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2570
2571                 /* start a new transaction*/
2572                 handle = ext4_journal_start(inode, needed_blocks);
2573                 if (IS_ERR(handle)) {
2574                         ret = PTR_ERR(handle);
2575                         printk(KERN_CRIT "%s: jbd2_start: "
2576                                "%ld pages, ino %lu; err %d\n", __func__,
2577                                 wbc->nr_to_write, inode->i_ino, ret);
2578                         dump_stack();
2579                         goto out_writepages;
2580                 }
2581
2582                 /*
2583                  * Now call __mpage_da_writepage to find the next
2584                  * contiguous region of logical blocks that need
2585                  * blocks to be allocated by ext4.  We don't actually
2586                  * submit the blocks for I/O here, even though
2587                  * write_cache_pages thinks it will, and will set the
2588                  * pages as clean for write before calling
2589                  * __mpage_da_writepage().
2590                  */
2591                 mpd.b_size = 0;
2592                 mpd.b_state = 0;
2593                 mpd.b_blocknr = 0;
2594                 mpd.first_page = 0;
2595                 mpd.next_page = 0;
2596                 mpd.io_done = 0;
2597                 mpd.pages_written = 0;
2598                 mpd.retval = 0;
2599                 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2600                                         &mpd);
2601                 /*
2602                  * If we have a contigous extent of pages and we
2603                  * haven't done the I/O yet, map the blocks and submit
2604                  * them for I/O.
2605                  */
2606                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2607                         if (mpage_da_map_blocks(&mpd) == 0)
2608                                 mpage_da_submit_io(&mpd);
2609                         mpd.io_done = 1;
2610                         ret = MPAGE_DA_EXTENT_TAIL;
2611                 }
2612                 wbc->nr_to_write -= mpd.pages_written;
2613
2614                 ext4_journal_stop(handle);
2615
2616                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2617                         /* commit the transaction which would
2618                          * free blocks released in the transaction
2619                          * and try again
2620                          */
2621                         jbd2_journal_force_commit_nested(sbi->s_journal);
2622                         wbc->pages_skipped = pages_skipped;
2623                         ret = 0;
2624                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2625                         /*
2626                          * got one extent now try with
2627                          * rest of the pages
2628                          */
2629                         pages_written += mpd.pages_written;
2630                         wbc->pages_skipped = pages_skipped;
2631                         ret = 0;
2632                         io_done = 1;
2633                 } else if (wbc->nr_to_write)
2634                         /*
2635                          * There is no more writeout needed
2636                          * or we requested for a noblocking writeout
2637                          * and we found the device congested
2638                          */
2639                         break;
2640         }
2641         if (!io_done && !cycled) {
2642                 cycled = 1;
2643                 index = 0;
2644                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2645                 wbc->range_end  = mapping->writeback_index - 1;
2646                 goto retry;
2647         }
2648         if (pages_skipped != wbc->pages_skipped)
2649                 printk(KERN_EMERG "This should not happen leaving %s "
2650                                 "with nr_to_write = %ld ret = %d\n",
2651                                 __func__, wbc->nr_to_write, ret);
2652
2653         /* Update index */
2654         index += pages_written;
2655         wbc->range_cyclic = range_cyclic;
2656         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2657                 /*
2658                  * set the writeback_index so that range_cyclic
2659                  * mode will write it back later
2660                  */
2661                 mapping->writeback_index = index;
2662
2663 out_writepages:
2664         if (!no_nrwrite_index_update)
2665                 wbc->no_nrwrite_index_update = 0;
2666         wbc->nr_to_write -= nr_to_writebump;
2667         trace_mark(ext4_da_writepage_result,
2668                    "dev %s ino %lu ret %d pages_written %d "
2669                    "pages_skipped %ld congestion %d "
2670                    "more_io %d no_nrwrite_index_update %d",
2671                    inode->i_sb->s_id, inode->i_ino, ret,
2672                    pages_written, wbc->pages_skipped,
2673                    wbc->encountered_congestion, wbc->more_io,
2674                    wbc->no_nrwrite_index_update);
2675         return ret;
2676 }
2677
2678 #define FALL_BACK_TO_NONDELALLOC 1
2679 static int ext4_nonda_switch(struct super_block *sb)
2680 {
2681         s64 free_blocks, dirty_blocks;
2682         struct ext4_sb_info *sbi = EXT4_SB(sb);
2683
2684         /*
2685          * switch to non delalloc mode if we are running low
2686          * on free block. The free block accounting via percpu
2687          * counters can get slightly wrong with percpu_counter_batch getting
2688          * accumulated on each CPU without updating global counters
2689          * Delalloc need an accurate free block accounting. So switch
2690          * to non delalloc when we are near to error range.
2691          */
2692         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2693         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2694         if (2 * free_blocks < 3 * dirty_blocks ||
2695                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2696                 /*
2697                  * free block count is less that 150% of dirty blocks
2698                  * or free blocks is less that watermark
2699                  */
2700                 return 1;
2701         }
2702         return 0;
2703 }
2704
2705 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2706                                 loff_t pos, unsigned len, unsigned flags,
2707                                 struct page **pagep, void **fsdata)
2708 {
2709         int ret, retries = 0;
2710         struct page *page;
2711         pgoff_t index;
2712         unsigned from, to;
2713         struct inode *inode = mapping->host;
2714         handle_t *handle;
2715
2716         index = pos >> PAGE_CACHE_SHIFT;
2717         from = pos & (PAGE_CACHE_SIZE - 1);
2718         to = from + len;
2719
2720         if (ext4_nonda_switch(inode->i_sb)) {
2721                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2722                 return ext4_write_begin(file, mapping, pos,
2723                                         len, flags, pagep, fsdata);
2724         }
2725         *fsdata = (void *)0;
2726
2727         trace_mark(ext4_da_write_begin,
2728                    "dev %s ino %lu pos %llu len %u flags %u",
2729                    inode->i_sb->s_id, inode->i_ino,
2730                    (unsigned long long) pos, len, flags);
2731 retry:
2732         /*
2733          * With delayed allocation, we don't log the i_disksize update
2734          * if there is delayed block allocation. But we still need
2735          * to journalling the i_disksize update if writes to the end
2736          * of file which has an already mapped buffer.
2737          */
2738         handle = ext4_journal_start(inode, 1);
2739         if (IS_ERR(handle)) {
2740                 ret = PTR_ERR(handle);
2741                 goto out;
2742         }
2743         /* We cannot recurse into the filesystem as the transaction is already
2744          * started */
2745         flags |= AOP_FLAG_NOFS;
2746
2747         page = grab_cache_page_write_begin(mapping, index, flags);
2748         if (!page) {
2749                 ext4_journal_stop(handle);
2750                 ret = -ENOMEM;
2751                 goto out;
2752         }
2753         *pagep = page;
2754
2755         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2756                                                         ext4_da_get_block_prep);
2757         if (ret < 0) {
2758                 unlock_page(page);
2759                 ext4_journal_stop(handle);
2760                 page_cache_release(page);
2761                 /*
2762                  * block_write_begin may have instantiated a few blocks
2763                  * outside i_size.  Trim these off again. Don't need
2764                  * i_size_read because we hold i_mutex.
2765                  */
2766                 if (pos + len > inode->i_size)
2767                         vmtruncate(inode, inode->i_size);
2768         }
2769
2770         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2771                 goto retry;
2772 out:
2773         return ret;
2774 }
2775
2776 /*
2777  * Check if we should update i_disksize
2778  * when write to the end of file but not require block allocation
2779  */
2780 static int ext4_da_should_update_i_disksize(struct page *page,
2781                                          unsigned long offset)
2782 {
2783         struct buffer_head *bh;
2784         struct inode *inode = page->mapping->host;
2785         unsigned int idx;
2786         int i;
2787
2788         bh = page_buffers(page);
2789         idx = offset >> inode->i_blkbits;
2790
2791         for (i = 0; i < idx; i++)
2792                 bh = bh->b_this_page;
2793
2794         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2795                 return 0;
2796         return 1;
2797 }
2798
2799 static int ext4_da_write_end(struct file *file,
2800                                 struct address_space *mapping,
2801                                 loff_t pos, unsigned len, unsigned copied,
2802                                 struct page *page, void *fsdata)
2803 {
2804         struct inode *inode = mapping->host;
2805         int ret = 0, ret2;
2806         handle_t *handle = ext4_journal_current_handle();
2807         loff_t new_i_size;
2808         unsigned long start, end;
2809         int write_mode = (int)(unsigned long)fsdata;
2810
2811         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2812                 if (ext4_should_order_data(inode)) {
2813                         return ext4_ordered_write_end(file, mapping, pos,
2814                                         len, copied, page, fsdata);
2815                 } else if (ext4_should_writeback_data(inode)) {
2816                         return ext4_writeback_write_end(file, mapping, pos,
2817                                         len, copied, page, fsdata);
2818                 } else {
2819                         BUG();
2820                 }
2821         }
2822
2823         trace_mark(ext4_da_write_end,
2824                    "dev %s ino %lu pos %llu len %u copied %u",
2825                    inode->i_sb->s_id, inode->i_ino,
2826                    (unsigned long long) pos, len, copied);
2827         start = pos & (PAGE_CACHE_SIZE - 1);
2828         end = start + copied - 1;
2829
2830         /*
2831          * generic_write_end() will run mark_inode_dirty() if i_size
2832          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2833          * into that.
2834          */
2835
2836         new_i_size = pos + copied;
2837         if (new_i_size > EXT4_I(inode)->i_disksize) {
2838                 if (ext4_da_should_update_i_disksize(page, end)) {
2839                         down_write(&EXT4_I(inode)->i_data_sem);
2840                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2841                                 /*
2842                                  * Updating i_disksize when extending file
2843                                  * without needing block allocation
2844                                  */
2845                                 if (ext4_should_order_data(inode))
2846                                         ret = ext4_jbd2_file_inode(handle,
2847                                                                    inode);
2848
2849                                 EXT4_I(inode)->i_disksize = new_i_size;
2850                         }
2851                         up_write(&EXT4_I(inode)->i_data_sem);
2852                         /* We need to mark inode dirty even if
2853                          * new_i_size is less that inode->i_size
2854                          * bu greater than i_disksize.(hint delalloc)
2855                          */
2856                         ext4_mark_inode_dirty(handle, inode);
2857                 }
2858         }
2859         ret2 = generic_write_end(file, mapping, pos, len, copied,
2860                                                         page, fsdata);
2861         copied = ret2;
2862         if (ret2 < 0)
2863                 ret = ret2;
2864         ret2 = ext4_journal_stop(handle);
2865         if (!ret)
2866                 ret = ret2;
2867
2868         return ret ? ret : copied;
2869 }
2870
2871 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2872 {
2873         /*
2874          * Drop reserved blocks
2875          */
2876         BUG_ON(!PageLocked(page));
2877         if (!page_has_buffers(page))
2878                 goto out;
2879
2880         ext4_da_page_release_reservation(page, offset);
2881
2882 out:
2883         ext4_invalidatepage(page, offset);
2884
2885         return;
2886 }
2887
2888 /*
2889  * Force all delayed allocation blocks to be allocated for a given inode.
2890  */
2891 int ext4_alloc_da_blocks(struct inode *inode)
2892 {
2893         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2894             !EXT4_I(inode)->i_reserved_meta_blocks)
2895                 return 0;
2896
2897         /*
2898          * We do something simple for now.  The filemap_flush() will
2899          * also start triggering a write of the data blocks, which is
2900          * not strictly speaking necessary (and for users of
2901          * laptop_mode, not even desirable).  However, to do otherwise
2902          * would require replicating code paths in:
2903          * 
2904          * ext4_da_writepages() ->
2905          *    write_cache_pages() ---> (via passed in callback function)
2906          *        __mpage_da_writepage() -->
2907          *           mpage_add_bh_to_extent()
2908          *           mpage_da_map_blocks()
2909          *
2910          * The problem is that write_cache_pages(), located in
2911          * mm/page-writeback.c, marks pages clean in preparation for
2912          * doing I/O, which is not desirable if we're not planning on
2913          * doing I/O at all.
2914          *
2915          * We could call write_cache_pages(), and then redirty all of
2916          * the pages by calling redirty_page_for_writeback() but that
2917          * would be ugly in the extreme.  So instead we would need to
2918          * replicate parts of the code in the above functions,
2919          * simplifying them becuase we wouldn't actually intend to
2920          * write out the pages, but rather only collect contiguous
2921          * logical block extents, call the multi-block allocator, and
2922          * then update the buffer heads with the block allocations.
2923          * 
2924          * For now, though, we'll cheat by calling filemap_flush(),
2925          * which will map the blocks, and start the I/O, but not
2926          * actually wait for the I/O to complete.
2927          */
2928         return filemap_flush(inode->i_mapping);
2929 }
2930
2931 /*
2932  * bmap() is special.  It gets used by applications such as lilo and by
2933  * the swapper to find the on-disk block of a specific piece of data.
2934  *
2935  * Naturally, this is dangerous if the block concerned is still in the
2936  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2937  * filesystem and enables swap, then they may get a nasty shock when the
2938  * data getting swapped to that swapfile suddenly gets overwritten by
2939  * the original zero's written out previously to the journal and
2940  * awaiting writeback in the kernel's buffer cache.
2941  *
2942  * So, if we see any bmap calls here on a modified, data-journaled file,
2943  * take extra steps to flush any blocks which might be in the cache.
2944  */
2945 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2946 {
2947         struct inode *inode = mapping->host;
2948         journal_t *journal;
2949         int err;
2950
2951         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2952                         test_opt(inode->i_sb, DELALLOC)) {
2953                 /*
2954                  * With delalloc we want to sync the file
2955                  * so that we can make sure we allocate
2956                  * blocks for file
2957                  */
2958                 filemap_write_and_wait(mapping);
2959         }
2960
2961         if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2962                 /*
2963                  * This is a REALLY heavyweight approach, but the use of
2964                  * bmap on dirty files is expected to be extremely rare:
2965                  * only if we run lilo or swapon on a freshly made file
2966                  * do we expect this to happen.
2967                  *
2968                  * (bmap requires CAP_SYS_RAWIO so this does not
2969                  * represent an unprivileged user DOS attack --- we'd be
2970                  * in trouble if mortal users could trigger this path at
2971                  * will.)
2972                  *
2973                  * NB. EXT4_STATE_JDATA is not set on files other than
2974                  * regular files.  If somebody wants to bmap a directory
2975                  * or symlink and gets confused because the buffer
2976                  * hasn't yet been flushed to disk, they deserve
2977                  * everything they get.
2978                  */
2979
2980                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2981                 journal = EXT4_JOURNAL(inode);
2982                 jbd2_journal_lock_updates(journal);
2983                 err = jbd2_journal_flush(journal);
2984                 jbd2_journal_unlock_updates(journal);
2985
2986                 if (err)
2987                         return 0;
2988         }
2989
2990         return generic_block_bmap(mapping, block, ext4_get_block);
2991 }
2992
2993 static int bget_one(handle_t *handle, struct buffer_head *bh)
2994 {
2995         get_bh(bh);
2996         return 0;
2997 }
2998
2999 static int bput_one(handle_t *handle, struct buffer_head *bh)
3000 {
3001         put_bh(bh);
3002         return 0;
3003 }
3004
3005 /*
3006  * Note that we don't need to start a transaction unless we're journaling data
3007  * because we should have holes filled from ext4_page_mkwrite(). We even don't
3008  * need to file the inode to the transaction's list in ordered mode because if
3009  * we are writing back data added by write(), the inode is already there and if
3010  * we are writing back data modified via mmap(), noone guarantees in which
3011  * transaction the data will hit the disk. In case we are journaling data, we
3012  * cannot start transaction directly because transaction start ranks above page
3013  * lock so we have to do some magic.
3014  *
3015  * In all journaling modes block_write_full_page() will start the I/O.
3016  *
3017  * Problem:
3018  *
3019  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3020  *              ext4_writepage()
3021  *
3022  * Similar for:
3023  *
3024  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3025  *
3026  * Same applies to ext4_get_block().  We will deadlock on various things like
3027  * lock_journal and i_data_sem
3028  *
3029  * Setting PF_MEMALLOC here doesn't work - too many internal memory
3030  * allocations fail.
3031  *
3032  * 16May01: If we're reentered then journal_current_handle() will be
3033  *          non-zero. We simply *return*.
3034  *
3035  * 1 July 2001: @@@ FIXME:
3036  *   In journalled data mode, a data buffer may be metadata against the
3037  *   current transaction.  But the same file is part of a shared mapping
3038  *   and someone does a writepage() on it.
3039  *
3040  *   We will move the buffer onto the async_data list, but *after* it has
3041  *   been dirtied. So there's a small window where we have dirty data on
3042  *   BJ_Metadata.
3043  *
3044  *   Note that this only applies to the last partial page in the file.  The
3045  *   bit which block_write_full_page() uses prepare/commit for.  (That's
3046  *   broken code anyway: it's wrong for msync()).
3047  *
3048  *   It's a rare case: affects the final partial page, for journalled data
3049  *   where the file is subject to bith write() and writepage() in the same
3050  *   transction.  To fix it we'll need a custom block_write_full_page().
3051  *   We'll probably need that anyway for journalling writepage() output.
3052  *
3053  * We don't honour synchronous mounts for writepage().  That would be
3054  * disastrous.  Any write() or metadata operation will sync the fs for
3055  * us.
3056  *
3057  */
3058 static int __ext4_normal_writepage(struct page *page,
3059                                 struct writeback_control *wbc)
3060 {
3061         struct inode *inode = page->mapping->host;
3062
3063         if (test_opt(inode->i_sb, NOBH))
3064                 return nobh_writepage(page,
3065                                         ext4_normal_get_block_write, wbc);
3066         else
3067                 return block_write_full_page(page,
3068                                                 ext4_normal_get_block_write,
3069                                                 wbc);
3070 }
3071
3072 static int ext4_normal_writepage(struct page *page,
3073                                 struct writeback_control *wbc)
3074 {
3075         struct inode *inode = page->mapping->host;
3076         loff_t size = i_size_read(inode);
3077         loff_t len;
3078
3079         trace_mark(ext4_normal_writepage,
3080                    "dev %s ino %lu page_index %lu",
3081                    inode->i_sb->s_id, inode->i_ino, page->index);
3082         J_ASSERT(PageLocked(page));
3083         if (page->index == size >> PAGE_CACHE_SHIFT)
3084                 len = size & ~PAGE_CACHE_MASK;
3085         else
3086                 len = PAGE_CACHE_SIZE;
3087
3088         if (page_has_buffers(page)) {
3089                 /* if page has buffers it should all be mapped
3090                  * and allocated. If there are not buffers attached
3091                  * to the page we know the page is dirty but it lost
3092                  * buffers. That means that at some moment in time
3093                  * after write_begin() / write_end() has been called
3094                  * all buffers have been clean and thus they must have been
3095                  * written at least once. So they are all mapped and we can
3096                  * happily proceed with mapping them and writing the page.
3097                  */
3098                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3099                                         ext4_bh_unmapped_or_delay));
3100         }
3101
3102         if (!ext4_journal_current_handle())
3103                 return __ext4_normal_writepage(page, wbc);
3104
3105         redirty_page_for_writepage(wbc, page);
3106         unlock_page(page);
3107         return 0;
3108 }
3109
3110 static int __ext4_journalled_writepage(struct page *page,
3111                                 struct writeback_control *wbc)
3112 {
3113         struct address_space *mapping = page->mapping;
3114         struct inode *inode = mapping->host;
3115         struct buffer_head *page_bufs;
3116         handle_t *handle = NULL;
3117         int ret = 0;
3118         int err;
3119
3120         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3121                                         ext4_normal_get_block_write);
3122         if (ret != 0)
3123                 goto out_unlock;
3124
3125         page_bufs = page_buffers(page);
3126         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3127                                                                 bget_one);
3128         /* As soon as we unlock the page, it can go away, but we have
3129          * references to buffers so we are safe */
3130         unlock_page(page);
3131
3132         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3133         if (IS_ERR(handle)) {
3134                 ret = PTR_ERR(handle);
3135                 goto out;
3136         }
3137
3138         ret = walk_page_buffers(handle, page_bufs, 0,
3139                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3140
3141         err = walk_page_buffers(handle, page_bufs, 0,
3142                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
3143         if (ret == 0)
3144                 ret = err;
3145         err = ext4_journal_stop(handle);
3146         if (!ret)
3147                 ret = err;
3148
3149         walk_page_buffers(handle, page_bufs, 0,
3150                                 PAGE_CACHE_SIZE, NULL, bput_one);
3151         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3152         goto out;
3153
3154 out_unlock:
3155         unlock_page(page);
3156 out:
3157         return ret;
3158 }
3159
3160 static int ext4_journalled_writepage(struct page *page,
3161                                 struct writeback_control *wbc)
3162 {
3163         struct inode *inode = page->mapping->host;
3164         loff_t size = i_size_read(inode);
3165         loff_t len;
3166
3167         trace_mark(ext4_journalled_writepage,
3168                    "dev %s ino %lu page_index %lu",
3169                    inode->i_sb->s_id, inode->i_ino, page->index);
3170         J_ASSERT(PageLocked(page));
3171         if (page->index == size >> PAGE_CACHE_SHIFT)
3172                 len = size & ~PAGE_CACHE_MASK;
3173         else
3174                 len = PAGE_CACHE_SIZE;
3175
3176         if (page_has_buffers(page)) {
3177                 /* if page has buffers it should all be mapped
3178                  * and allocated. If there are not buffers attached
3179                  * to the page we know the page is dirty but it lost
3180                  * buffers. That means that at some moment in time
3181                  * after write_begin() / write_end() has been called
3182                  * all buffers have been clean and thus they must have been
3183                  * written at least once. So they are all mapped and we can
3184                  * happily proceed with mapping them and writing the page.
3185                  */
3186                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3187                                         ext4_bh_unmapped_or_delay));
3188         }
3189
3190         if (ext4_journal_current_handle())
3191                 goto no_write;
3192
3193         if (PageChecked(page)) {
3194                 /*
3195                  * It's mmapped pagecache.  Add buffers and journal it.  There
3196                  * doesn't seem much point in redirtying the page here.
3197                  */
3198                 ClearPageChecked(page);
3199                 return __ext4_journalled_writepage(page, wbc);
3200         } else {
3201                 /*
3202                  * It may be a page full of checkpoint-mode buffers.  We don't
3203                  * really know unless we go poke around in the buffer_heads.
3204                  * But block_write_full_page will do the right thing.
3205                  */
3206                 return block_write_full_page(page,
3207                                                 ext4_normal_get_block_write,
3208                                                 wbc);
3209         }
3210 no_write:
3211         redirty_page_for_writepage(wbc, page);
3212         unlock_page(page);
3213         return 0;
3214 }
3215
3216 static int ext4_readpage(struct file *file, struct page *page)
3217 {
3218         return mpage_readpage(page, ext4_get_block);
3219 }
3220
3221 static int
3222 ext4_readpages(struct file *file, struct address_space *mapping,
3223                 struct list_head *pages, unsigned nr_pages)
3224 {
3225         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3226 }
3227
3228 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3229 {
3230         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3231
3232         /*
3233          * If it's a full truncate we just forget about the pending dirtying
3234          */
3235         if (offset == 0)
3236                 ClearPageChecked(page);
3237
3238         if (journal)
3239                 jbd2_journal_invalidatepage(journal, page, offset);
3240         else
3241                 block_invalidatepage(page, offset);
3242 }
3243
3244 static int ext4_releasepage(struct page *page, gfp_t wait)
3245 {
3246         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3247
3248         WARN_ON(PageChecked(page));
3249         if (!page_has_buffers(page))
3250                 return 0;
3251         if (journal)
3252                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3253         else
3254                 return try_to_free_buffers(page);
3255 }
3256
3257 /*
3258  * If the O_DIRECT write will extend the file then add this inode to the
3259  * orphan list.  So recovery will truncate it back to the original size
3260  * if the machine crashes during the write.
3261  *
3262  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3263  * crashes then stale disk data _may_ be exposed inside the file. But current
3264  * VFS code falls back into buffered path in that case so we are safe.
3265  */
3266 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3267                         const struct iovec *iov, loff_t offset,
3268                         unsigned long nr_segs)
3269 {
3270         struct file *file = iocb->ki_filp;
3271         struct inode *inode = file->f_mapping->host;
3272         struct ext4_inode_info *ei = EXT4_I(inode);
3273         handle_t *handle;
3274         ssize_t ret;
3275         int orphan = 0;
3276         size_t count = iov_length(iov, nr_segs);
3277
3278         if (rw == WRITE) {
3279                 loff_t final_size = offset + count;
3280
3281                 if (final_size > inode->i_size) {
3282                         /* Credits for sb + inode write */
3283                         handle = ext4_journal_start(inode, 2);
3284                         if (IS_ERR(handle)) {
3285                                 ret = PTR_ERR(handle);
3286                                 goto out;
3287                         }
3288                         ret = ext4_orphan_add(handle, inode);
3289                         if (ret) {
3290                                 ext4_journal_stop(handle);
3291                                 goto out;
3292                         }
3293                         orphan = 1;
3294                         ei->i_disksize = inode->i_size;
3295                         ext4_journal_stop(handle);
3296                 }
3297         }
3298
3299         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3300                                  offset, nr_segs,
3301                                  ext4_get_block, NULL);
3302
3303         if (orphan) {
3304                 int err;
3305
3306                 /* Credits for sb + inode write */
3307                 handle = ext4_journal_start(inode, 2);
3308                 if (IS_ERR(handle)) {
3309                         /* This is really bad luck. We've written the data
3310                          * but cannot extend i_size. Bail out and pretend
3311                          * the write failed... */
3312                         ret = PTR_ERR(handle);
3313                         goto out;
3314                 }
3315                 if (inode->i_nlink)
3316                         ext4_orphan_del(handle, inode);
3317                 if (ret > 0) {
3318                         loff_t end = offset + ret;
3319                         if (end > inode->i_size) {
3320                                 ei->i_disksize = end;
3321                                 i_size_write(inode, end);
3322                                 /*
3323                                  * We're going to return a positive `ret'
3324                                  * here due to non-zero-length I/O, so there's
3325                                  * no way of reporting error returns from
3326                                  * ext4_mark_inode_dirty() to userspace.  So
3327                                  * ignore it.
3328                                  */
3329                                 ext4_mark_inode_dirty(handle, inode);
3330                         }
3331                 }
3332                 err = ext4_journal_stop(handle);
3333                 if (ret == 0)
3334                         ret = err;
3335         }
3336 out:
3337         return ret;
3338 }
3339
3340 /*
3341  * Pages can be marked dirty completely asynchronously from ext4's journalling
3342  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3343  * much here because ->set_page_dirty is called under VFS locks.  The page is
3344  * not necessarily locked.
3345  *
3346  * We cannot just dirty the page and leave attached buffers clean, because the
3347  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3348  * or jbddirty because all the journalling code will explode.
3349  *
3350  * So what we do is to mark the page "pending dirty" and next time writepage
3351  * is called, propagate that into the buffers appropriately.
3352  */
3353 static int ext4_journalled_set_page_dirty(struct page *page)
3354 {
3355         SetPageChecked(page);
3356         return __set_page_dirty_nobuffers(page);
3357 }
3358
3359 static const struct address_space_operations ext4_ordered_aops = {
3360         .readpage               = ext4_readpage,
3361         .readpages              = ext4_readpages,
3362         .writepage              = ext4_normal_writepage,
3363         .sync_page              = block_sync_page,
3364         .write_begin            = ext4_write_begin,
3365         .write_end              = ext4_ordered_write_end,
3366         .bmap                   = ext4_bmap,
3367         .invalidatepage         = ext4_invalidatepage,
3368         .releasepage            = ext4_releasepage,
3369         .direct_IO              = ext4_direct_IO,
3370         .migratepage            = buffer_migrate_page,
3371         .is_partially_uptodate  = block_is_partially_uptodate,
3372 };
3373
3374 static const struct address_space_operations ext4_writeback_aops = {
3375         .readpage               = ext4_readpage,
3376         .readpages              = ext4_readpages,
3377         .writepage              = ext4_normal_writepage,
3378         .sync_page              = block_sync_page,
3379         .write_begin            = ext4_write_begin,
3380         .write_end              = ext4_writeback_write_end,
3381         .bmap                   = ext4_bmap,
3382         .invalidatepage         = ext4_invalidatepage,
3383         .releasepage            = ext4_releasepage,
3384         .direct_IO              = ext4_direct_IO,
3385         .migratepage            = buffer_migrate_page,
3386         .is_partially_uptodate  = block_is_partially_uptodate,
3387 };
3388
3389 static const struct address_space_operations ext4_journalled_aops = {
3390         .readpage               = ext4_readpage,
3391         .readpages              = ext4_readpages,
3392         .writepage              = ext4_journalled_writepage,
3393         .sync_page              = block_sync_page,
3394         .write_begin            = ext4_write_begin,
3395         .write_end              = ext4_journalled_write_end,
3396         .set_page_dirty         = ext4_journalled_set_page_dirty,
3397         .bmap                   = ext4_bmap,
3398         .invalidatepage         = ext4_invalidatepage,
3399         .releasepage            = ext4_releasepage,
3400         .is_partially_uptodate  = block_is_partially_uptodate,
3401 };
3402
3403 static const struct address_space_operations ext4_da_aops = {
3404         .readpage               = ext4_readpage,
3405         .readpages              = ext4_readpages,
3406         .writepage              = ext4_da_writepage,
3407         .writepages             = ext4_da_writepages,
3408         .sync_page              = block_sync_page,
3409         .write_begin            = ext4_da_write_begin,
3410         .write_end              = ext4_da_write_end,
3411         .bmap                   = ext4_bmap,
3412         .invalidatepage         = ext4_da_invalidatepage,
3413         .releasepage            = ext4_releasepage,
3414         .direct_IO              = ext4_direct_IO,
3415         .migratepage            = buffer_migrate_page,
3416         .is_partially_uptodate  = block_is_partially_uptodate,
3417 };
3418
3419 void ext4_set_aops(struct inode *inode)
3420 {
3421         if (ext4_should_order_data(inode) &&
3422                 test_opt(inode->i_sb, DELALLOC))
3423                 inode->i_mapping->a_ops = &ext4_da_aops;
3424         else if (ext4_should_order_data(inode))
3425                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3426         else if (ext4_should_writeback_data(inode) &&
3427                  test_opt(inode->i_sb, DELALLOC))
3428                 inode->i_mapping->a_ops = &ext4_da_aops;
3429         else if (ext4_should_writeback_data(inode))
3430                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3431         else
3432                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3433 }
3434
3435 /*
3436  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3437  * up to the end of the block which corresponds to `from'.
3438  * This required during truncate. We need to physically zero the tail end
3439  * of that block so it doesn't yield old data if the file is later grown.
3440  */
3441 int ext4_block_truncate_page(handle_t *handle,
3442                 struct address_space *mapping, loff_t from)
3443 {
3444         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3445         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3446         unsigned blocksize, length, pos;
3447         ext4_lblk_t iblock;
3448         struct inode *inode = mapping->host;
3449         struct buffer_head *bh;
3450         struct page *page;
3451         int err = 0;
3452
3453         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3454         if (!page)
3455                 return -EINVAL;
3456
3457         blocksize = inode->i_sb->s_blocksize;
3458         length = blocksize - (offset & (blocksize - 1));
3459         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3460
3461         /*
3462          * For "nobh" option,  we can only work if we don't need to
3463          * read-in the page - otherwise we create buffers to do the IO.
3464          */
3465         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3466              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3467                 zero_user(page, offset, length);
3468                 set_page_dirty(page);
3469                 goto unlock;
3470         }
3471
3472         if (!page_has_buffers(page))
3473                 create_empty_buffers(page, blocksize, 0);
3474
3475         /* Find the buffer that contains "offset" */
3476         bh = page_buffers(page);
3477         pos = blocksize;
3478         while (offset >= pos) {
3479                 bh = bh->b_this_page;
3480                 iblock++;
3481                 pos += blocksize;
3482         }
3483
3484         err = 0;
3485         if (buffer_freed(bh)) {
3486                 BUFFER_TRACE(bh, "freed: skip");
3487                 goto unlock;
3488         }
3489
3490         if (!buffer_mapped(bh)) {
3491                 BUFFER_TRACE(bh, "unmapped");
3492                 ext4_get_block(inode, iblock, bh, 0);
3493                 /* unmapped? It's a hole - nothing to do */
3494                 if (!buffer_mapped(bh)) {
3495                         BUFFER_TRACE(bh, "still unmapped");
3496                         goto unlock;
3497                 }
3498         }
3499
3500         /* Ok, it's mapped. Make sure it's up-to-date */
3501         if (PageUptodate(page))
3502                 set_buffer_uptodate(bh);
3503
3504         if (!buffer_uptodate(bh)) {
3505                 err = -EIO;
3506                 ll_rw_block(READ, 1, &bh);
3507                 wait_on_buffer(bh);
3508                 /* Uhhuh. Read error. Complain and punt. */
3509                 if (!buffer_uptodate(bh))
3510                         goto unlock;
3511         }
3512
3513         if (ext4_should_journal_data(inode)) {
3514                 BUFFER_TRACE(bh, "get write access");
3515                 err = ext4_journal_get_write_access(handle, bh);
3516                 if (err)
3517                         goto unlock;
3518         }
3519
3520         zero_user(page, offset, length);
3521
3522         BUFFER_TRACE(bh, "zeroed end of block");
3523
3524         err = 0;
3525         if (ext4_should_journal_data(inode)) {
3526                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3527         } else {
3528                 if (ext4_should_order_data(inode))
3529                         err = ext4_jbd2_file_inode(handle, inode);
3530                 mark_buffer_dirty(bh);
3531         }
3532
3533 unlock:
3534         unlock_page(page);
3535         page_cache_release(page);
3536         return err;
3537 }
3538
3539 /*
3540  * Probably it should be a library function... search for first non-zero word
3541  * or memcmp with zero_page, whatever is better for particular architecture.
3542  * Linus?
3543  */
3544 static inline int all_zeroes(__le32 *p, __le32 *q)
3545 {
3546         while (p < q)
3547                 if (*p++)
3548                         return 0;
3549         return 1;
3550 }
3551
3552 /**
3553  *      ext4_find_shared - find the indirect blocks for partial truncation.
3554  *      @inode:   inode in question
3555  *      @depth:   depth of the affected branch
3556  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3557  *      @chain:   place to store the pointers to partial indirect blocks
3558  *      @top:     place to the (detached) top of branch
3559  *
3560  *      This is a helper function used by ext4_truncate().
3561  *
3562  *      When we do truncate() we may have to clean the ends of several
3563  *      indirect blocks but leave the blocks themselves alive. Block is
3564  *      partially truncated if some data below the new i_size is refered
3565  *      from it (and it is on the path to the first completely truncated
3566  *      data block, indeed).  We have to free the top of that path along
3567  *      with everything to the right of the path. Since no allocation
3568  *      past the truncation point is possible until ext4_truncate()
3569  *      finishes, we may safely do the latter, but top of branch may
3570  *      require special attention - pageout below the truncation point
3571  *      might try to populate it.
3572  *
3573  *      We atomically detach the top of branch from the tree, store the
3574  *      block number of its root in *@top, pointers to buffer_heads of
3575  *      partially truncated blocks - in @chain[].bh and pointers to
3576  *      their last elements that should not be removed - in
3577  *      @chain[].p. Return value is the pointer to last filled element
3578  *      of @chain.
3579  *
3580  *      The work left to caller to do the actual freeing of subtrees:
3581  *              a) free the subtree starting from *@top
3582  *              b) free the subtrees whose roots are stored in
3583  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3584  *              c) free the subtrees growing from the inode past the @chain[0].
3585  *                      (no partially truncated stuff there).  */
3586
3587 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3588                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3589 {
3590         Indirect *partial, *p;
3591         int k, err;
3592
3593         *top = 0;
3594         /* Make k index the deepest non-null offest + 1 */
3595         for (k = depth; k > 1 && !offsets[k-1]; k--)
3596                 ;
3597         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3598         /* Writer: pointers */
3599         if (!partial)
3600                 partial = chain + k-1;
3601         /*
3602          * If the branch acquired continuation since we've looked at it -
3603          * fine, it should all survive and (new) top doesn't belong to us.
3604          */
3605         if (!partial->key && *partial->p)
3606                 /* Writer: end */
3607                 goto no_top;
3608         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3609                 ;
3610         /*
3611          * OK, we've found the last block that must survive. The rest of our
3612          * branch should be detached before unlocking. However, if that rest
3613          * of branch is all ours and does not grow immediately from the inode
3614          * it's easier to cheat and just decrement partial->p.
3615          */
3616         if (p == chain + k - 1 && p > chain) {
3617                 p->p--;
3618         } else {
3619                 *top = *p->p;
3620                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3621 #if 0
3622                 *p->p = 0;
3623 #endif
3624         }
3625         /* Writer: end */
3626
3627         while (partial > p) {
3628                 brelse(partial->bh);
3629                 partial--;
3630         }
3631 no_top:
3632         return partial;
3633 }
3634
3635 /*
3636  * Zero a number of block pointers in either an inode or an indirect block.
3637  * If we restart the transaction we must again get write access to the
3638  * indirect block for further modification.
3639  *
3640  * We release `count' blocks on disk, but (last - first) may be greater
3641  * than `count' because there can be holes in there.
3642  */
3643 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3644                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3645                 unsigned long count, __le32 *first, __le32 *last)
3646 {
3647         __le32 *p;
3648         if (try_to_extend_transaction(handle, inode)) {
3649                 if (bh) {
3650                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3651                         ext4_handle_dirty_metadata(handle, inode, bh);
3652                 }
3653                 ext4_mark_inode_dirty(handle, inode);
3654                 ext4_journal_test_restart(handle, inode);
3655                 if (bh) {
3656                         BUFFER_TRACE(bh, "retaking write access");
3657                         ext4_journal_get_write_access(handle, bh);
3658                 }
3659         }
3660
3661         /*
3662          * Any buffers which are on the journal will be in memory. We find
3663          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3664          * on them.  We've already detached each block from the file, so
3665          * bforget() in jbd2_journal_forget() should be safe.
3666          *
3667          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3668          */
3669         for (p = first; p < last; p++) {
3670                 u32 nr = le32_to_cpu(*p);
3671                 if (nr) {
3672                         struct buffer_head *tbh;
3673
3674                         *p = 0;
3675                         tbh = sb_find_get_block(inode->i_sb, nr);
3676                         ext4_forget(handle, 0, inode, tbh, nr);
3677                 }
3678         }
3679
3680         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3681 }
3682
3683 /**
3684  * ext4_free_data - free a list of data blocks
3685  * @handle:     handle for this transaction
3686  * @inode:      inode we are dealing with
3687  * @this_bh:    indirect buffer_head which contains *@first and *@last
3688  * @first:      array of block numbers
3689  * @last:       points immediately past the end of array
3690  *
3691  * We are freeing all blocks refered from that array (numbers are stored as
3692  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3693  *
3694  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3695  * blocks are contiguous then releasing them at one time will only affect one
3696  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3697  * actually use a lot of journal space.
3698  *
3699  * @this_bh will be %NULL if @first and @last point into the inode's direct
3700  * block pointers.
3701  */
3702 static void ext4_free_data(handle_t *handle, struct inode *inode,
3703                            struct buffer_head *this_bh,
3704                            __le32 *first, __le32 *last)
3705 {
3706         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3707         unsigned long count = 0;            /* Number of blocks in the run */
3708         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3709                                                corresponding to
3710                                                block_to_free */
3711         ext4_fsblk_t nr;                    /* Current block # */
3712         __le32 *p;                          /* Pointer into inode/ind
3713                                                for current block */
3714         int err;
3715
3716         if (this_bh) {                          /* For indirect block */
3717                 BUFFER_TRACE(this_bh, "get_write_access");
3718                 err = ext4_journal_get_write_access(handle, this_bh);
3719                 /* Important: if we can't update the indirect pointers
3720                  * to the blocks, we can't free them. */
3721                 if (err)
3722                         return;
3723         }
3724
3725         for (p = first; p < last; p++) {
3726                 nr = le32_to_cpu(*p);
3727                 if (nr) {
3728                         /* accumulate blocks to free if they're contiguous */
3729                         if (count == 0) {
3730                                 block_to_free = nr;
3731                                 block_to_free_p = p;
3732                                 count = 1;
3733                         } else if (nr == block_to_free + count) {
3734                                 count++;
3735                         } else {
3736                                 ext4_clear_blocks(handle, inode, this_bh,
3737                                                   block_to_free,
3738                                                   count, block_to_free_p, p);
3739                                 block_to_free = nr;
3740                                 block_to_free_p = p;
3741                                 count = 1;
3742                         }
3743                 }
3744         }
3745
3746         if (count > 0)
3747                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3748                                   count, block_to_free_p, p);
3749
3750         if (this_bh) {
3751                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3752
3753                 /*
3754                  * The buffer head should have an attached journal head at this
3755                  * point. However, if the data is corrupted and an indirect
3756                  * block pointed to itself, it would have been detached when
3757                  * the block was cleared. Check for this instead of OOPSing.
3758                  */
3759                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3760                         ext4_handle_dirty_metadata(handle, inode, this_bh);
3761                 else
3762                         ext4_error(inode->i_sb, __func__,
3763                                    "circular indirect block detected, "
3764                                    "inode=%lu, block=%llu",
3765                                    inode->i_ino,
3766                                    (unsigned long long) this_bh->b_blocknr);
3767         }
3768 }
3769
3770 /**
3771  *      ext4_free_branches - free an array of branches
3772  *      @handle: JBD handle for this transaction
3773  *      @inode: inode we are dealing with
3774  *      @parent_bh: the buffer_head which contains *@first and *@last
3775  *      @first: array of block numbers
3776  *      @last:  pointer immediately past the end of array
3777  *      @depth: depth of the branches to free
3778  *
3779  *      We are freeing all blocks refered from these branches (numbers are
3780  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3781  *      appropriately.
3782  */
3783 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3784                                struct buffer_head *parent_bh,
3785                                __le32 *first, __le32 *last, int depth)
3786 {
3787         ext4_fsblk_t nr;
3788         __le32 *p;
3789
3790         if (ext4_handle_is_aborted(handle))
3791                 return;
3792
3793         if (depth--) {
3794                 struct buffer_head *bh;
3795                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3796                 p = last;
3797                 while (--p >= first) {
3798                         nr = le32_to_cpu(*p);
3799                         if (!nr)
3800                                 continue;               /* A hole */
3801
3802                         /* Go read the buffer for the next level down */
3803                         bh = sb_bread(inode->i_sb, nr);
3804
3805                         /*
3806                          * A read failure? Report error and clear slot
3807                          * (should be rare).
3808                          */
3809                         if (!bh) {
3810                                 ext4_error(inode->i_sb, "ext4_free_branches",
3811                                            "Read failure, inode=%lu, block=%llu",
3812                                            inode->i_ino, nr);
3813                                 continue;
3814                         }
3815
3816                         /* This zaps the entire block.  Bottom up. */
3817                         BUFFER_TRACE(bh, "free child branches");
3818                         ext4_free_branches(handle, inode, bh,
3819                                         (__le32 *) bh->b_data,
3820                                         (__le32 *) bh->b_data + addr_per_block,
3821                                         depth);
3822
3823                         /*
3824                          * We've probably journalled the indirect block several
3825                          * times during the truncate.  But it's no longer
3826                          * needed and we now drop it from the transaction via
3827                          * jbd2_journal_revoke().
3828                          *
3829                          * That's easy if it's exclusively part of this
3830                          * transaction.  But if it's part of the committing
3831                          * transaction then jbd2_journal_forget() will simply
3832                          * brelse() it.  That means that if the underlying
3833                          * block is reallocated in ext4_get_block(),
3834                          * unmap_underlying_metadata() will find this block
3835                          * and will try to get rid of it.  damn, damn.
3836                          *
3837                          * If this block has already been committed to the
3838                          * journal, a revoke record will be written.  And
3839                          * revoke records must be emitted *before* clearing
3840                          * this block's bit in the bitmaps.
3841                          */
3842                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3843
3844                         /*
3845                          * Everything below this this pointer has been
3846                          * released.  Now let this top-of-subtree go.
3847                          *
3848                          * We want the freeing of this indirect block to be
3849                          * atomic in the journal with the updating of the
3850                          * bitmap block which owns it.  So make some room in
3851                          * the journal.
3852                          *
3853                          * We zero the parent pointer *after* freeing its
3854                          * pointee in the bitmaps, so if extend_transaction()
3855                          * for some reason fails to put the bitmap changes and
3856                          * the release into the same transaction, recovery
3857                          * will merely complain about releasing a free block,
3858                          * rather than leaking blocks.
3859                          */
3860                         if (ext4_handle_is_aborted(handle))
3861                                 return;
3862                         if (try_to_extend_transaction(handle, inode)) {
3863                                 ext4_mark_inode_dirty(handle, inode);
3864                                 ext4_journal_test_restart(handle, inode);
3865                         }
3866
3867                         ext4_free_blocks(handle, inode, nr, 1, 1);
3868
3869                         if (parent_bh) {
3870                                 /*
3871                                  * The block which we have just freed is
3872                                  * pointed to by an indirect block: journal it
3873                                  */
3874                                 BUFFER_TRACE(parent_bh, "get_write_access");
3875                                 if (!ext4_journal_get_write_access(handle,
3876                                                                    parent_bh)){
3877                                         *p = 0;
3878                                         BUFFER_TRACE(parent_bh,
3879                                         "call ext4_handle_dirty_metadata");
3880                                         ext4_handle_dirty_metadata(handle,
3881                                                                    inode,
3882                                                                    parent_bh);
3883                                 }
3884                         }
3885                 }
3886         } else {
3887                 /* We have reached the bottom of the tree. */
3888                 BUFFER_TRACE(parent_bh, "free data blocks");
3889                 ext4_free_data(handle, inode, parent_bh, first, last);
3890         }
3891 }
3892
3893 int ext4_can_truncate(struct inode *inode)
3894 {
3895         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3896                 return 0;
3897         if (S_ISREG(inode->i_mode))
3898                 return 1;
3899         if (S_ISDIR(inode->i_mode))
3900                 return 1;
3901         if (S_ISLNK(inode->i_mode))
3902                 return !ext4_inode_is_fast_symlink(inode);
3903         return 0;
3904 }
3905
3906 /*
3907  * ext4_truncate()
3908  *
3909  * We block out ext4_get_block() block instantiations across the entire
3910  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3911  * simultaneously on behalf of the same inode.
3912  *
3913  * As we work through the truncate and commmit bits of it to the journal there
3914  * is one core, guiding principle: the file's tree must always be consistent on
3915  * disk.  We must be able to restart the truncate after a crash.
3916  *
3917  * The file's tree may be transiently inconsistent in memory (although it
3918  * probably isn't), but whenever we close off and commit a journal transaction,
3919  * the contents of (the filesystem + the journal) must be consistent and
3920  * restartable.  It's pretty simple, really: bottom up, right to left (although
3921  * left-to-right works OK too).
3922  *
3923  * Note that at recovery time, journal replay occurs *before* the restart of
3924  * truncate against the orphan inode list.
3925  *
3926  * The committed inode has the new, desired i_size (which is the same as
3927  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3928  * that this inode's truncate did not complete and it will again call
3929  * ext4_truncate() to have another go.  So there will be instantiated blocks
3930  * to the right of the truncation point in a crashed ext4 filesystem.  But
3931  * that's fine - as long as they are linked from the inode, the post-crash
3932  * ext4_truncate() run will find them and release them.
3933  */
3934 void ext4_truncate(struct inode *inode)
3935 {
3936         handle_t *handle;
3937         struct ext4_inode_info *ei = EXT4_I(inode);
3938         __le32 *i_data = ei->i_data;
3939         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3940         struct address_space *mapping = inode->i_mapping;
3941         ext4_lblk_t offsets[4];
3942         Indirect chain[4];
3943         Indirect *partial;
3944         __le32 nr = 0;
3945         int n;
3946         ext4_lblk_t last_block;
3947         unsigned blocksize = inode->i_sb->s_blocksize;
3948
3949         if (!ext4_can_truncate(inode))
3950                 return;
3951
3952         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3953                 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3954
3955         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3956                 ext4_ext_truncate(inode);
3957                 return;
3958         }
3959
3960         handle = start_transaction(inode);
3961         if (IS_ERR(handle))
3962                 return;         /* AKPM: return what? */
3963
3964         last_block = (inode->i_size + blocksize-1)
3965                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3966
3967         if (inode->i_size & (blocksize - 1))
3968                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3969                         goto out_stop;
3970
3971         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3972         if (n == 0)
3973                 goto out_stop;  /* error */
3974
3975         /*
3976          * OK.  This truncate is going to happen.  We add the inode to the
3977          * orphan list, so that if this truncate spans multiple transactions,
3978          * and we crash, we will resume the truncate when the filesystem
3979          * recovers.  It also marks the inode dirty, to catch the new size.
3980          *
3981          * Implication: the file must always be in a sane, consistent
3982          * truncatable state while each transaction commits.
3983          */
3984         if (ext4_orphan_add(handle, inode))
3985                 goto out_stop;
3986
3987         /*
3988          * From here we block out all ext4_get_block() callers who want to
3989          * modify the block allocation tree.
3990          */
3991         down_write(&ei->i_data_sem);
3992
3993         ext4_discard_preallocations(inode);
3994
3995         /*
3996          * The orphan list entry will now protect us from any crash which
3997          * occurs before the truncate completes, so it is now safe to propagate
3998          * the new, shorter inode size (held for now in i_size) into the
3999          * on-disk inode. We do this via i_disksize, which is the value which
4000          * ext4 *really* writes onto the disk inode.
4001          */
4002         ei->i_disksize = inode->i_size;
4003
4004         if (n == 1) {           /* direct blocks */
4005                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4006                                i_data + EXT4_NDIR_BLOCKS);
4007                 goto do_indirects;
4008         }
4009
4010         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4011         /* Kill the top of shared branch (not detached) */
4012         if (nr) {
4013                 if (partial == chain) {
4014                         /* Shared branch grows from the inode */
4015                         ext4_free_branches(handle, inode, NULL,
4016                                            &nr, &nr+1, (chain+n-1) - partial);
4017                         *partial->p = 0;
4018                         /*
4019                          * We mark the inode dirty prior to restart,
4020                          * and prior to stop.  No need for it here.
4021                          */
4022                 } else {
4023                         /* Shared branch grows from an indirect block */
4024                         BUFFER_TRACE(partial->bh, "get_write_access");
4025                         ext4_free_branches(handle, inode, partial->bh,
4026                                         partial->p,
4027                                         partial->p+1, (chain+n-1) - partial);
4028                 }
4029         }
4030         /* Clear the ends of indirect blocks on the shared branch */
4031         while (partial > chain) {
4032                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4033                                    (__le32*)partial->bh->b_data+addr_per_block,
4034                                    (chain+n-1) - partial);
4035                 BUFFER_TRACE(partial->bh, "call brelse");
4036                 brelse (partial->bh);
4037                 partial--;
4038         }
4039 do_indirects:
4040         /* Kill the remaining (whole) subtrees */
4041         switch (offsets[0]) {
4042         default:
4043                 nr = i_data[EXT4_IND_BLOCK];
4044                 if (nr) {
4045                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4046                         i_data[EXT4_IND_BLOCK] = 0;
4047                 }
4048         case EXT4_IND_BLOCK:
4049                 nr = i_data[EXT4_DIND_BLOCK];
4050                 if (nr) {
4051                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4052                         i_data[EXT4_DIND_BLOCK] = 0;
4053                 }
4054         case EXT4_DIND_BLOCK:
4055                 nr = i_data[EXT4_TIND_BLOCK];
4056                 if (nr) {
4057                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4058                         i_data[EXT4_TIND_BLOCK] = 0;
4059                 }
4060         case EXT4_TIND_BLOCK:
4061                 ;
4062         }
4063
4064         up_write(&ei->i_data_sem);
4065         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4066         ext4_mark_inode_dirty(handle, inode);
4067
4068         /*
4069          * In a multi-transaction truncate, we only make the final transaction
4070          * synchronous
4071          */
4072         if (IS_SYNC(inode))
4073                 ext4_handle_sync(handle);
4074 out_stop:
4075         /*
4076          * If this was a simple ftruncate(), and the file will remain alive
4077          * then we need to clear up the orphan record which we created above.
4078          * However, if this was a real unlink then we were called by
4079          * ext4_delete_inode(), and we allow that function to clean up the
4080          * orphan info for us.
4081          */
4082         if (inode->i_nlink)
4083                 ext4_orphan_del(handle, inode);
4084
4085         ext4_journal_stop(handle);
4086 }
4087
4088 /*
4089  * ext4_get_inode_loc returns with an extra refcount against the inode's
4090  * underlying buffer_head on success. If 'in_mem' is true, we have all
4091  * data in memory that is needed to recreate the on-disk version of this
4092  * inode.
4093  */
4094 static int __ext4_get_inode_loc(struct inode *inode,
4095                                 struct ext4_iloc *iloc, int in_mem)
4096 {
4097         struct ext4_group_desc  *gdp;
4098         struct buffer_head      *bh;
4099         struct super_block      *sb = inode->i_sb;
4100         ext4_fsblk_t            block;
4101         int                     inodes_per_block, inode_offset;
4102
4103         iloc->bh = NULL;
4104         if (!ext4_valid_inum(sb, inode->i_ino))
4105                 return -EIO;
4106
4107         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4108         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4109         if (!gdp)
4110                 return -EIO;
4111
4112         /*
4113          * Figure out the offset within the block group inode table
4114          */
4115         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4116         inode_offset = ((inode->i_ino - 1) %
4117                         EXT4_INODES_PER_GROUP(sb));
4118         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4119         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4120
4121         bh = sb_getblk(sb, block);
4122         if (!bh) {
4123                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4124                            "inode block - inode=%lu, block=%llu",
4125                            inode->i_ino, block);
4126                 return -EIO;
4127         }
4128         if (!buffer_uptodate(bh)) {
4129                 lock_buffer(bh);
4130
4131                 /*
4132                  * If the buffer has the write error flag, we have failed
4133                  * to write out another inode in the same block.  In this
4134                  * case, we don't have to read the block because we may
4135                  * read the old inode data successfully.
4136                  */
4137                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4138                         set_buffer_uptodate(bh);
4139
4140                 if (buffer_uptodate(bh)) {
4141                         /* someone brought it uptodate while we waited */
4142                         unlock_buffer(bh);
4143                         goto has_buffer;
4144                 }
4145
4146                 /*
4147                  * If we have all information of the inode in memory and this
4148                  * is the only valid inode in the block, we need not read the
4149                  * block.
4150                  */
4151                 if (in_mem) {
4152                         struct buffer_head *bitmap_bh;
4153                         int i, start;
4154
4155                         start = inode_offset & ~(inodes_per_block - 1);
4156
4157                         /* Is the inode bitmap in cache? */
4158                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4159                         if (!bitmap_bh)
4160                                 goto make_io;
4161
4162                         /*
4163                          * If the inode bitmap isn't in cache then the
4164                          * optimisation may end up performing two reads instead
4165                          * of one, so skip it.
4166                          */
4167                         if (!buffer_uptodate(bitmap_bh)) {
4168                                 brelse(bitmap_bh);
4169                                 goto make_io;
4170                         }
4171                         for (i = start; i < start + inodes_per_block; i++) {
4172                                 if (i == inode_offset)
4173                                         continue;
4174                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4175                                         break;
4176                         }
4177                         brelse(bitmap_bh);
4178                         if (i == start + inodes_per_block) {
4179                                 /* all other inodes are free, so skip I/O */
4180                                 memset(bh->b_data, 0, bh->b_size);
4181                                 set_buffer_uptodate(bh);
4182                                 unlock_buffer(bh);
4183                                 goto has_buffer;
4184                         }
4185                 }
4186
4187 make_io:
4188                 /*
4189                  * If we need to do any I/O, try to pre-readahead extra
4190                  * blocks from the inode table.
4191                  */
4192                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4193                         ext4_fsblk_t b, end, table;
4194                         unsigned num;
4195
4196                         table = ext4_inode_table(sb, gdp);
4197                         /* s_inode_readahead_blks is always a power of 2 */
4198                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4199                         if (table > b)
4200                                 b = table;
4201                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4202                         num = EXT4_INODES_PER_GROUP(sb);
4203                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4204                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4205                                 num -= ext4_itable_unused_count(sb, gdp);
4206                         table += num / inodes_per_block;
4207                         if (end > table)
4208                                 end = table;
4209                         while (b <= end)
4210                                 sb_breadahead(sb, b++);
4211                 }
4212
4213                 /*
4214                  * There are other valid inodes in the buffer, this inode
4215                  * has in-inode xattrs, or we don't have this inode in memory.
4216                  * Read the block from disk.
4217                  */
4218                 get_bh(bh);
4219                 bh->b_end_io = end_buffer_read_sync;
4220                 submit_bh(READ_META, bh);
4221                 wait_on_buffer(bh);
4222                 if (!buffer_uptodate(bh)) {
4223                         ext4_error(sb, __func__,
4224                                    "unable to read inode block - inode=%lu, "
4225                                    "block=%llu", inode->i_ino, block);
4226                         brelse(bh);
4227                         return -EIO;
4228                 }
4229         }
4230 has_buffer:
4231         iloc->bh = bh;
4232         return 0;
4233 }
4234
4235 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4236 {
4237         /* We have all inode data except xattrs in memory here. */
4238         return __ext4_get_inode_loc(inode, iloc,
4239                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4240 }
4241
4242 void ext4_set_inode_flags(struct inode *inode)
4243 {
4244         unsigned int flags = EXT4_I(inode)->i_flags;
4245
4246         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4247         if (flags & EXT4_SYNC_FL)
4248                 inode->i_flags |= S_SYNC;
4249         if (flags & EXT4_APPEND_FL)
4250                 inode->i_flags |= S_APPEND;
4251         if (flags & EXT4_IMMUTABLE_FL)
4252                 inode->i_flags |= S_IMMUTABLE;
4253         if (flags & EXT4_NOATIME_FL)
4254                 inode->i_flags |= S_NOATIME;
4255         if (flags & EXT4_DIRSYNC_FL)
4256                 inode->i_flags |= S_DIRSYNC;
4257 }
4258
4259 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4260 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4261 {
4262         unsigned int flags = ei->vfs_inode.i_flags;
4263
4264         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4265                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4266         if (flags & S_SYNC)
4267                 ei->i_flags |= EXT4_SYNC_FL;
4268         if (flags & S_APPEND)
4269                 ei->i_flags |= EXT4_APPEND_FL;
4270         if (flags & S_IMMUTABLE)
4271                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4272         if (flags & S_NOATIME)
4273                 ei->i_flags |= EXT4_NOATIME_FL;
4274         if (flags & S_DIRSYNC)
4275                 ei->i_flags |= EXT4_DIRSYNC_FL;
4276 }
4277 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4278                                         struct ext4_inode_info *ei)
4279 {
4280         blkcnt_t i_blocks ;
4281         struct inode *inode = &(ei->vfs_inode);
4282         struct super_block *sb = inode->i_sb;
4283
4284         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4285                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4286                 /* we are using combined 48 bit field */
4287                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4288                                         le32_to_cpu(raw_inode->i_blocks_lo);
4289                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4290                         /* i_blocks represent file system block size */
4291                         return i_blocks  << (inode->i_blkbits - 9);
4292                 } else {
4293                         return i_blocks;
4294                 }
4295         } else {
4296                 return le32_to_cpu(raw_inode->i_blocks_lo);
4297         }
4298 }
4299
4300 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4301 {
4302         struct ext4_iloc iloc;
4303         struct ext4_inode *raw_inode;
4304         struct ext4_inode_info *ei;
4305         struct buffer_head *bh;
4306         struct inode *inode;
4307         long ret;
4308         int block;
4309
4310         inode = iget_locked(sb, ino);
4311         if (!inode)
4312                 return ERR_PTR(-ENOMEM);
4313         if (!(inode->i_state & I_NEW))
4314                 return inode;
4315
4316         ei = EXT4_I(inode);
4317 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4318         ei->i_acl = EXT4_ACL_NOT_CACHED;
4319         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4320 #endif
4321
4322         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4323         if (ret < 0)
4324                 goto bad_inode;
4325         bh = iloc.bh;
4326         raw_inode = ext4_raw_inode(&iloc);
4327         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4328         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4329         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4330         if (!(test_opt(inode->i_sb, NO_UID32))) {
4331                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4332                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4333         }
4334         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4335
4336         ei->i_state = 0;
4337         ei->i_dir_start_lookup = 0;
4338         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4339         /* We now have enough fields to check if the inode was active or not.
4340          * This is needed because nfsd might try to access dead inodes
4341          * the test is that same one that e2fsck uses
4342          * NeilBrown 1999oct15
4343          */
4344         if (inode->i_nlink == 0) {
4345                 if (inode->i_mode == 0 ||
4346                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4347                         /* this inode is deleted */
4348                         brelse(bh);
4349                         ret = -ESTALE;
4350                         goto bad_inode;
4351                 }
4352                 /* The only unlinked inodes we let through here have
4353                  * valid i_mode and are being read by the orphan
4354                  * recovery code: that's fine, we're about to complete
4355                  * the process of deleting those. */
4356         }
4357         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4358         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4359         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4360         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4361             cpu_to_le32(EXT4_OS_HURD)) {
4362                 ei->i_file_acl |=
4363                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4364         }
4365         inode->i_size = ext4_isize(raw_inode);
4366         ei->i_disksize = inode->i_size;
4367         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4368         ei->i_block_group = iloc.block_group;
4369         ei->i_last_alloc_group = ~0;
4370         /*
4371          * NOTE! The in-memory inode i_data array is in little-endian order
4372          * even on big-endian machines: we do NOT byteswap the block numbers!
4373          */
4374         for (block = 0; block < EXT4_N_BLOCKS; block++)
4375                 ei->i_data[block] = raw_inode->i_block[block];
4376         INIT_LIST_HEAD(&ei->i_orphan);
4377
4378         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4379                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4380                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4381                     EXT4_INODE_SIZE(inode->i_sb)) {
4382                         brelse(bh);
4383                         ret = -EIO;
4384                         goto bad_inode;
4385                 }
4386                 if (ei->i_extra_isize == 0) {
4387                         /* The extra space is currently unused. Use it. */
4388                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4389                                             EXT4_GOOD_OLD_INODE_SIZE;
4390                 } else {
4391                         __le32 *magic = (void *)raw_inode +
4392                                         EXT4_GOOD_OLD_INODE_SIZE +
4393                                         ei->i_extra_isize;
4394                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4395                                  ei->i_state |= EXT4_STATE_XATTR;
4396                 }
4397         } else
4398                 ei->i_extra_isize = 0;
4399
4400         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4401         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4402         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4403         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4404
4405         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4406         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4407                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4408                         inode->i_version |=
4409                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4410         }
4411
4412         if (ei->i_flags & EXT4_EXTENTS_FL) {
4413                 /* Validate extent which is part of inode */
4414                 ret = ext4_ext_check_inode(inode);
4415         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4416                    (S_ISLNK(inode->i_mode) &&
4417                     !ext4_inode_is_fast_symlink(inode))) {
4418                 /* Validate block references which are part of inode */
4419                 ret = ext4_check_inode_blockref(inode);
4420         }
4421         if (ret) {
4422                 brelse(bh);
4423                 goto bad_inode;
4424         }
4425
4426         if (S_ISREG(inode->i_mode)) {
4427                 inode->i_op = &ext4_file_inode_operations;
4428                 inode->i_fop = &ext4_file_operations;
4429                 ext4_set_aops(inode);
4430         } else if (S_ISDIR(inode->i_mode)) {
4431                 inode->i_op = &ext4_dir_inode_operations;
4432                 inode->i_fop = &ext4_dir_operations;
4433         } else if (S_ISLNK(inode->i_mode)) {
4434                 if (ext4_inode_is_fast_symlink(inode)) {
4435                         inode->i_op = &ext4_fast_symlink_inode_operations;
4436                         nd_terminate_link(ei->i_data, inode->i_size,
4437                                 sizeof(ei->i_data) - 1);
4438                 } else {
4439                         inode->i_op = &ext4_symlink_inode_operations;
4440                         ext4_set_aops(inode);
4441                 }
4442         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4443               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4444                 inode->i_op = &ext4_special_inode_operations;
4445                 if (raw_inode->i_block[0])
4446                         init_special_inode(inode, inode->i_mode,
4447                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4448                 else
4449                         init_special_inode(inode, inode->i_mode,
4450                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4451         } else {
4452                 brelse(bh);
4453                 ret = -EIO;
4454                 ext4_error(inode->i_sb, __func__, 
4455                            "bogus i_mode (%o) for inode=%lu",
4456                            inode->i_mode, inode->i_ino);
4457                 goto bad_inode;
4458         }
4459         brelse(iloc.bh);
4460         ext4_set_inode_flags(inode);
4461         unlock_new_inode(inode);
4462         return inode;
4463
4464 bad_inode:
4465         iget_failed(inode);
4466         return ERR_PTR(ret);
4467 }
4468
4469 static int ext4_inode_blocks_set(handle_t *handle,
4470                                 struct ext4_inode *raw_inode,
4471                                 struct ext4_inode_info *ei)
4472 {
4473         struct inode *inode = &(ei->vfs_inode);
4474         u64 i_blocks = inode->i_blocks;
4475         struct super_block *sb = inode->i_sb;
4476
4477         if (i_blocks <= ~0U) {
4478                 /*
4479                  * i_blocks can be represnted in a 32 bit variable
4480                  * as multiple of 512 bytes
4481                  */
4482                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4483                 raw_inode->i_blocks_high = 0;
4484                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4485                 return 0;
4486         }
4487         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4488                 return -EFBIG;
4489
4490         if (i_blocks <= 0xffffffffffffULL) {
4491                 /*
4492                  * i_blocks can be represented in a 48 bit variable
4493                  * as multiple of 512 bytes
4494                  */
4495                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4496                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4497                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4498         } else {
4499                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4500                 /* i_block is stored in file system block size */
4501                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4502                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4503                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4504         }
4505         return 0;
4506 }
4507
4508 /*
4509  * Post the struct inode info into an on-disk inode location in the
4510  * buffer-cache.  This gobbles the caller's reference to the
4511  * buffer_head in the inode location struct.
4512  *
4513  * The caller must have write access to iloc->bh.
4514  */
4515 static int ext4_do_update_inode(handle_t *handle,
4516                                 struct inode *inode,
4517                                 struct ext4_iloc *iloc)
4518 {
4519         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4520         struct ext4_inode_info *ei = EXT4_I(inode);
4521         struct buffer_head *bh = iloc->bh;
4522         int err = 0, rc, block;
4523
4524         /* For fields not not tracking in the in-memory inode,
4525          * initialise them to zero for new inodes. */
4526         if (ei->i_state & EXT4_STATE_NEW)
4527                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4528
4529         ext4_get_inode_flags(ei);
4530         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4531         if (!(test_opt(inode->i_sb, NO_UID32))) {
4532                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4533                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4534 /*
4535  * Fix up interoperability with old kernels. Otherwise, old inodes get
4536  * re-used with the upper 16 bits of the uid/gid intact
4537  */
4538                 if (!ei->i_dtime) {
4539                         raw_inode->i_uid_high =
4540                                 cpu_to_le16(high_16_bits(inode->i_uid));
4541                         raw_inode->i_gid_high =
4542                                 cpu_to_le16(high_16_bits(inode->i_gid));
4543                 } else {
4544                         raw_inode->i_uid_high = 0;
4545                         raw_inode->i_gid_high = 0;
4546                 }
4547         } else {
4548                 raw_inode->i_uid_low =
4549                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4550                 raw_inode->i_gid_low =
4551                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4552                 raw_inode->i_uid_high = 0;
4553                 raw_inode->i_gid_high = 0;
4554         }
4555         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4556
4557         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4558         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4559         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4560         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4561
4562         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4563                 goto out_brelse;
4564         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4565         /* clear the migrate flag in the raw_inode */
4566         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4567         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4568             cpu_to_le32(EXT4_OS_HURD))
4569                 raw_inode->i_file_acl_high =
4570                         cpu_to_le16(ei->i_file_acl >> 32);
4571         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4572         ext4_isize_set(raw_inode, ei->i_disksize);
4573         if (ei->i_disksize > 0x7fffffffULL) {
4574                 struct super_block *sb = inode->i_sb;
4575                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4576                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4577                                 EXT4_SB(sb)->s_es->s_rev_level ==
4578                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4579                         /* If this is the first large file
4580                          * created, add a flag to the superblock.
4581                          */
4582                         err = ext4_journal_get_write_access(handle,
4583                                         EXT4_SB(sb)->s_sbh);
4584                         if (err)
4585                                 goto out_brelse;
4586                         ext4_update_dynamic_rev(sb);
4587                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4588                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4589                         sb->s_dirt = 1;
4590                         ext4_handle_sync(handle);
4591                         err = ext4_handle_dirty_metadata(handle, inode,
4592                                         EXT4_SB(sb)->s_sbh);
4593                 }
4594         }
4595         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4596         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4597                 if (old_valid_dev(inode->i_rdev)) {
4598                         raw_inode->i_block[0] =
4599                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4600                         raw_inode->i_block[1] = 0;
4601                 } else {
4602                         raw_inode->i_block[0] = 0;
4603                         raw_inode->i_block[1] =
4604                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4605                         raw_inode->i_block[2] = 0;
4606                 }
4607         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4608                 raw_inode->i_block[block] = ei->i_data[block];
4609
4610         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4611         if (ei->i_extra_isize) {
4612                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4613                         raw_inode->i_version_hi =
4614                         cpu_to_le32(inode->i_version >> 32);
4615                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4616         }
4617
4618         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4619         rc = ext4_handle_dirty_metadata(handle, inode, bh);
4620         if (!err)
4621                 err = rc;
4622         ei->i_state &= ~EXT4_STATE_NEW;
4623
4624 out_brelse:
4625         brelse(bh);
4626         ext4_std_error(inode->i_sb, err);
4627         return err;
4628 }
4629
4630 /*
4631  * ext4_write_inode()
4632  *
4633  * We are called from a few places:
4634  *
4635  * - Within generic_file_write() for O_SYNC files.
4636  *   Here, there will be no transaction running. We wait for any running
4637  *   trasnaction to commit.
4638  *
4639  * - Within sys_sync(), kupdate and such.
4640  *   We wait on commit, if tol to.
4641  *
4642  * - Within prune_icache() (PF_MEMALLOC == true)
4643  *   Here we simply return.  We can't afford to block kswapd on the
4644  *   journal commit.
4645  *
4646  * In all cases it is actually safe for us to return without doing anything,
4647  * because the inode has been copied into a raw inode buffer in
4648  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4649  * knfsd.
4650  *
4651  * Note that we are absolutely dependent upon all inode dirtiers doing the
4652  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4653  * which we are interested.
4654  *
4655  * It would be a bug for them to not do this.  The code:
4656  *
4657  *      mark_inode_dirty(inode)
4658  *      stuff();
4659  *      inode->i_size = expr;
4660  *
4661  * is in error because a kswapd-driven write_inode() could occur while
4662  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4663  * will no longer be on the superblock's dirty inode list.
4664  */
4665 int ext4_write_inode(struct inode *inode, int wait)
4666 {
4667         if (current->flags & PF_MEMALLOC)
4668                 return 0;
4669
4670         if (ext4_journal_current_handle()) {
4671                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4672                 dump_stack();
4673                 return -EIO;
4674         }
4675
4676         if (!wait)
4677                 return 0;
4678
4679         return ext4_force_commit(inode->i_sb);
4680 }
4681
4682 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4683 {
4684         int err = 0;
4685
4686         mark_buffer_dirty(bh);
4687         if (inode && inode_needs_sync(inode)) {
4688                 sync_dirty_buffer(bh);
4689                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4690                         ext4_error(inode->i_sb, __func__,
4691                                    "IO error syncing inode, "
4692                                    "inode=%lu, block=%llu",
4693                                    inode->i_ino,
4694                                    (unsigned long long)bh->b_blocknr);
4695                         err = -EIO;
4696                 }
4697         }
4698         return err;
4699 }
4700
4701 /*
4702  * ext4_setattr()
4703  *
4704  * Called from notify_change.
4705  *
4706  * We want to trap VFS attempts to truncate the file as soon as
4707  * possible.  In particular, we want to make sure that when the VFS
4708  * shrinks i_size, we put the inode on the orphan list and modify
4709  * i_disksize immediately, so that during the subsequent flushing of
4710  * dirty pages and freeing of disk blocks, we can guarantee that any
4711  * commit will leave the blocks being flushed in an unused state on
4712  * disk.  (On recovery, the inode will get truncated and the blocks will
4713  * be freed, so we have a strong guarantee that no future commit will
4714  * leave these blocks visible to the user.)
4715  *
4716  * Another thing we have to assure is that if we are in ordered mode
4717  * and inode is still attached to the committing transaction, we must
4718  * we start writeout of all the dirty pages which are being truncated.
4719  * This way we are sure that all the data written in the previous
4720  * transaction are already on disk (truncate waits for pages under
4721  * writeback).
4722  *
4723  * Called with inode->i_mutex down.
4724  */
4725 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4726 {
4727         struct inode *inode = dentry->d_inode;
4728         int error, rc = 0;
4729         const unsigned int ia_valid = attr->ia_valid;
4730
4731         error = inode_change_ok(inode, attr);
4732         if (error)
4733                 return error;
4734
4735         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4736                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4737                 handle_t *handle;
4738
4739                 /* (user+group)*(old+new) structure, inode write (sb,
4740                  * inode block, ? - but truncate inode update has it) */
4741                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4742                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4743                 if (IS_ERR(handle)) {
4744                         error = PTR_ERR(handle);
4745                         goto err_out;
4746                 }
4747                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4748                 if (error) {
4749                         ext4_journal_stop(handle);
4750                         return error;
4751                 }
4752                 /* Update corresponding info in inode so that everything is in
4753                  * one transaction */
4754                 if (attr->ia_valid & ATTR_UID)
4755                         inode->i_uid = attr->ia_uid;
4756                 if (attr->ia_valid & ATTR_GID)
4757                         inode->i_gid = attr->ia_gid;
4758                 error = ext4_mark_inode_dirty(handle, inode);
4759                 ext4_journal_stop(handle);
4760         }
4761
4762         if (attr->ia_valid & ATTR_SIZE) {
4763                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4764                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4765
4766                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4767                                 error = -EFBIG;
4768                                 goto err_out;
4769                         }
4770                 }
4771         }
4772
4773         if (S_ISREG(inode->i_mode) &&
4774             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4775                 handle_t *handle;
4776
4777                 handle = ext4_journal_start(inode, 3);
4778                 if (IS_ERR(handle)) {
4779                         error = PTR_ERR(handle);
4780                         goto err_out;
4781                 }
4782
4783                 error = ext4_orphan_add(handle, inode);
4784                 EXT4_I(inode)->i_disksize = attr->ia_size;
4785                 rc = ext4_mark_inode_dirty(handle, inode);
4786                 if (!error)
4787                         error = rc;
4788                 ext4_journal_stop(handle);
4789
4790                 if (ext4_should_order_data(inode)) {
4791                         error = ext4_begin_ordered_truncate(inode,
4792                                                             attr->ia_size);
4793                         if (error) {
4794                                 /* Do as much error cleanup as possible */
4795                                 handle = ext4_journal_start(inode, 3);
4796                                 if (IS_ERR(handle)) {
4797                                         ext4_orphan_del(NULL, inode);
4798                                         goto err_out;
4799                                 }
4800                                 ext4_orphan_del(handle, inode);
4801                                 ext4_journal_stop(handle);
4802                                 goto err_out;
4803                         }
4804                 }
4805         }
4806
4807         rc = inode_setattr(inode, attr);
4808
4809         /* If inode_setattr's call to ext4_truncate failed to get a
4810          * transaction handle at all, we need to clean up the in-core
4811          * orphan list manually. */
4812         if (inode->i_nlink)
4813                 ext4_orphan_del(NULL, inode);
4814
4815         if (!rc && (ia_valid & ATTR_MODE))
4816                 rc = ext4_acl_chmod(inode);
4817
4818 err_out:
4819         ext4_std_error(inode->i_sb, error);
4820         if (!error)
4821                 error = rc;
4822         return error;
4823 }
4824
4825 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4826                  struct kstat *stat)
4827 {
4828         struct inode *inode;
4829         unsigned long delalloc_blocks;
4830
4831         inode = dentry->d_inode;
4832         generic_fillattr(inode, stat);
4833
4834         /*
4835          * We can't update i_blocks if the block allocation is delayed
4836          * otherwise in the case of system crash before the real block
4837          * allocation is done, we will have i_blocks inconsistent with
4838          * on-disk file blocks.
4839          * We always keep i_blocks updated together with real
4840          * allocation. But to not confuse with user, stat
4841          * will return the blocks that include the delayed allocation
4842          * blocks for this file.
4843          */
4844         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4845         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4846         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4847
4848         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4849         return 0;
4850 }
4851
4852 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4853                                       int chunk)
4854 {
4855         int indirects;
4856
4857         /* if nrblocks are contiguous */
4858         if (chunk) {
4859                 /*
4860                  * With N contiguous data blocks, it need at most
4861                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4862                  * 2 dindirect blocks
4863                  * 1 tindirect block
4864                  */
4865                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4866                 return indirects + 3;
4867         }
4868         /*
4869          * if nrblocks are not contiguous, worse case, each block touch
4870          * a indirect block, and each indirect block touch a double indirect
4871          * block, plus a triple indirect block
4872          */
4873         indirects = nrblocks * 2 + 1;
4874         return indirects;
4875 }
4876
4877 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4878 {
4879         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4880                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4881         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4882 }
4883
4884 /*
4885  * Account for index blocks, block groups bitmaps and block group
4886  * descriptor blocks if modify datablocks and index blocks
4887  * worse case, the indexs blocks spread over different block groups
4888  *
4889  * If datablocks are discontiguous, they are possible to spread over
4890  * different block groups too. If they are contiugous, with flexbg,
4891  * they could still across block group boundary.
4892  *
4893  * Also account for superblock, inode, quota and xattr blocks
4894  */
4895 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4896 {
4897         int groups, gdpblocks;
4898         int idxblocks;
4899         int ret = 0;
4900
4901         /*
4902          * How many index blocks need to touch to modify nrblocks?
4903          * The "Chunk" flag indicating whether the nrblocks is
4904          * physically contiguous on disk
4905          *
4906          * For Direct IO and fallocate, they calls get_block to allocate
4907          * one single extent at a time, so they could set the "Chunk" flag
4908          */
4909         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4910
4911         ret = idxblocks;
4912
4913         /*
4914          * Now let's see how many group bitmaps and group descriptors need
4915          * to account
4916          */
4917         groups = idxblocks;
4918         if (chunk)
4919                 groups += 1;
4920         else
4921                 groups += nrblocks;
4922
4923         gdpblocks = groups;
4924         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4925                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4926         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4927                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4928
4929         /* bitmaps and block group descriptor blocks */
4930         ret += groups + gdpblocks;
4931
4932         /* Blocks for super block, inode, quota and xattr blocks */
4933         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4934
4935         return ret;
4936 }
4937
4938 /*
4939  * Calulate the total number of credits to reserve to fit
4940  * the modification of a single pages into a single transaction,
4941  * which may include multiple chunks of block allocations.
4942  *
4943  * This could be called via ext4_write_begin()
4944  *
4945  * We need to consider the worse case, when
4946  * one new block per extent.
4947  */
4948 int ext4_writepage_trans_blocks(struct inode *inode)
4949 {
4950         int bpp = ext4_journal_blocks_per_page(inode);
4951         int ret;
4952
4953         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4954
4955         /* Account for data blocks for journalled mode */
4956         if (ext4_should_journal_data(inode))
4957                 ret += bpp;
4958         return ret;
4959 }
4960
4961 /*
4962  * Calculate the journal credits for a chunk of data modification.
4963  *
4964  * This is called from DIO, fallocate or whoever calling
4965  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4966  *
4967  * journal buffers for data blocks are not included here, as DIO
4968  * and fallocate do no need to journal data buffers.
4969  */
4970 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4971 {
4972         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4973 }
4974
4975 /*
4976  * The caller must have previously called ext4_reserve_inode_write().
4977  * Give this, we know that the caller already has write access to iloc->bh.
4978  */
4979 int ext4_mark_iloc_dirty(handle_t *handle,
4980                 struct inode *inode, struct ext4_iloc *iloc)
4981 {
4982         int err = 0;
4983
4984         if (test_opt(inode->i_sb, I_VERSION))
4985                 inode_inc_iversion(inode);
4986
4987         /* the do_update_inode consumes one bh->b_count */
4988         get_bh(iloc->bh);
4989
4990         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4991         err = ext4_do_update_inode(handle, inode, iloc);
4992         put_bh(iloc->bh);
4993         return err;
4994 }
4995
4996 /*
4997  * On success, We end up with an outstanding reference count against
4998  * iloc->bh.  This _must_ be cleaned up later.
4999  */
5000
5001 int
5002 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5003                          struct ext4_iloc *iloc)
5004 {
5005         int err;
5006
5007         err = ext4_get_inode_loc(inode, iloc);
5008         if (!err) {
5009                 BUFFER_TRACE(iloc->bh, "get_write_access");
5010                 err = ext4_journal_get_write_access(handle, iloc->bh);
5011                 if (err) {
5012                         brelse(iloc->bh);
5013                         iloc->bh = NULL;
5014                 }
5015         }
5016         ext4_std_error(inode->i_sb, err);
5017         return err;
5018 }
5019
5020 /*
5021  * Expand an inode by new_extra_isize bytes.
5022  * Returns 0 on success or negative error number on failure.
5023  */
5024 static int ext4_expand_extra_isize(struct inode *inode,
5025                                    unsigned int new_extra_isize,
5026                                    struct ext4_iloc iloc,
5027                                    handle_t *handle)
5028 {
5029         struct ext4_inode *raw_inode;
5030         struct ext4_xattr_ibody_header *header;
5031         struct ext4_xattr_entry *entry;
5032
5033         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5034                 return 0;
5035
5036         raw_inode = ext4_raw_inode(&iloc);
5037
5038         header = IHDR(inode, raw_inode);
5039         entry = IFIRST(header);
5040
5041         /* No extended attributes present */
5042         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5043                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5044                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5045                         new_extra_isize);
5046                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5047                 return 0;
5048         }
5049
5050         /* try to expand with EAs present */
5051         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5052                                           raw_inode, handle);
5053 }
5054
5055 /*
5056  * What we do here is to mark the in-core inode as clean with respect to inode
5057  * dirtiness (it may still be data-dirty).
5058  * This means that the in-core inode may be reaped by prune_icache
5059  * without having to perform any I/O.  This is a very good thing,
5060  * because *any* task may call prune_icache - even ones which
5061  * have a transaction open against a different journal.
5062  *
5063  * Is this cheating?  Not really.  Sure, we haven't written the
5064  * inode out, but prune_icache isn't a user-visible syncing function.
5065  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5066  * we start and wait on commits.
5067  *
5068  * Is this efficient/effective?  Well, we're being nice to the system
5069  * by cleaning up our inodes proactively so they can be reaped
5070  * without I/O.  But we are potentially leaving up to five seconds'
5071  * worth of inodes floating about which prune_icache wants us to
5072  * write out.  One way to fix that would be to get prune_icache()
5073  * to do a write_super() to free up some memory.  It has the desired
5074  * effect.
5075  */
5076 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5077 {
5078         struct ext4_iloc iloc;
5079         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5080         static unsigned int mnt_count;
5081         int err, ret;
5082
5083         might_sleep();
5084         err = ext4_reserve_inode_write(handle, inode, &iloc);
5085         if (ext4_handle_valid(handle) &&
5086             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5087             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5088                 /*
5089                  * We need extra buffer credits since we may write into EA block
5090                  * with this same handle. If journal_extend fails, then it will
5091                  * only result in a minor loss of functionality for that inode.
5092                  * If this is felt to be critical, then e2fsck should be run to
5093                  * force a large enough s_min_extra_isize.
5094                  */
5095                 if ((jbd2_journal_extend(handle,
5096                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5097                         ret = ext4_expand_extra_isize(inode,
5098                                                       sbi->s_want_extra_isize,
5099                                                       iloc, handle);
5100                         if (ret) {
5101                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5102                                 if (mnt_count !=
5103                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5104                                         ext4_warning(inode->i_sb, __func__,
5105                                         "Unable to expand inode %lu. Delete"
5106                                         " some EAs or run e2fsck.",
5107                                         inode->i_ino);
5108                                         mnt_count =
5109                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5110                                 }
5111                         }
5112                 }
5113         }
5114         if (!err)
5115                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5116         return err;
5117 }
5118
5119 /*
5120  * ext4_dirty_inode() is called from __mark_inode_dirty()
5121  *
5122  * We're really interested in the case where a file is being extended.
5123  * i_size has been changed by generic_commit_write() and we thus need
5124  * to include the updated inode in the current transaction.
5125  *
5126  * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5127  * are allocated to the file.
5128  *
5129  * If the inode is marked synchronous, we don't honour that here - doing
5130  * so would cause a commit on atime updates, which we don't bother doing.
5131  * We handle synchronous inodes at the highest possible level.
5132  */
5133 void ext4_dirty_inode(struct inode *inode)
5134 {
5135         handle_t *current_handle = ext4_journal_current_handle();
5136         handle_t *handle;
5137
5138         if (!ext4_handle_valid(current_handle)) {
5139                 ext4_mark_inode_dirty(current_handle, inode);
5140                 return;
5141         }
5142
5143         handle = ext4_journal_start(inode, 2);
5144         if (IS_ERR(handle))
5145                 goto out;
5146         if (current_handle &&
5147                 current_handle->h_transaction != handle->h_transaction) {
5148                 /* This task has a transaction open against a different fs */
5149                 printk(KERN_EMERG "%s: transactions do not match!\n",
5150                        __func__);
5151         } else {
5152                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
5153                                 current_handle);
5154                 ext4_mark_inode_dirty(handle, inode);
5155         }
5156         ext4_journal_stop(handle);
5157 out:
5158         return;
5159 }
5160
5161 #if 0
5162 /*
5163  * Bind an inode's backing buffer_head into this transaction, to prevent
5164  * it from being flushed to disk early.  Unlike
5165  * ext4_reserve_inode_write, this leaves behind no bh reference and
5166  * returns no iloc structure, so the caller needs to repeat the iloc
5167  * lookup to mark the inode dirty later.
5168  */
5169 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5170 {
5171         struct ext4_iloc iloc;
5172
5173         int err = 0;
5174         if (handle) {
5175                 err = ext4_get_inode_loc(inode, &iloc);
5176                 if (!err) {
5177                         BUFFER_TRACE(iloc.bh, "get_write_access");
5178                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5179                         if (!err)
5180                                 err = ext4_handle_dirty_metadata(handle,
5181                                                                  inode,
5182                                                                  iloc.bh);
5183                         brelse(iloc.bh);
5184                 }
5185         }
5186         ext4_std_error(inode->i_sb, err);
5187         return err;
5188 }
5189 #endif
5190
5191 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5192 {
5193         journal_t *journal;
5194         handle_t *handle;
5195         int err;
5196
5197         /*
5198          * We have to be very careful here: changing a data block's
5199          * journaling status dynamically is dangerous.  If we write a
5200          * data block to the journal, change the status and then delete
5201          * that block, we risk forgetting to revoke the old log record
5202          * from the journal and so a subsequent replay can corrupt data.
5203          * So, first we make sure that the journal is empty and that
5204          * nobody is changing anything.
5205          */
5206
5207         journal = EXT4_JOURNAL(inode);
5208         if (!journal)
5209                 return 0;
5210         if (is_journal_aborted(journal))
5211                 return -EROFS;
5212
5213         jbd2_journal_lock_updates(journal);
5214         jbd2_journal_flush(journal);
5215
5216         /*
5217          * OK, there are no updates running now, and all cached data is
5218          * synced to disk.  We are now in a completely consistent state
5219          * which doesn't have anything in the journal, and we know that
5220          * no filesystem updates are running, so it is safe to modify
5221          * the inode's in-core data-journaling state flag now.
5222          */
5223
5224         if (val)
5225                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5226         else
5227                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5228         ext4_set_aops(inode);
5229
5230         jbd2_journal_unlock_updates(journal);
5231
5232         /* Finally we can mark the inode as dirty. */
5233
5234         handle = ext4_journal_start(inode, 1);
5235         if (IS_ERR(handle))
5236                 return PTR_ERR(handle);
5237
5238         err = ext4_mark_inode_dirty(handle, inode);
5239         ext4_handle_sync(handle);
5240         ext4_journal_stop(handle);
5241         ext4_std_error(inode->i_sb, err);
5242
5243         return err;
5244 }
5245
5246 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5247 {
5248         return !buffer_mapped(bh);
5249 }
5250
5251 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5252 {
5253         struct page *page = vmf->page;
5254         loff_t size;
5255         unsigned long len;
5256         int ret = -EINVAL;
5257         void *fsdata;
5258         struct file *file = vma->vm_file;
5259         struct inode *inode = file->f_path.dentry->d_inode;
5260         struct address_space *mapping = inode->i_mapping;
5261
5262         /*
5263          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5264          * get i_mutex because we are already holding mmap_sem.
5265          */
5266         down_read(&inode->i_alloc_sem);
5267         size = i_size_read(inode);
5268         if (page->mapping != mapping || size <= page_offset(page)
5269             || !PageUptodate(page)) {
5270                 /* page got truncated from under us? */
5271                 goto out_unlock;
5272         }
5273         ret = 0;
5274         if (PageMappedToDisk(page))
5275                 goto out_unlock;
5276
5277         if (page->index == size >> PAGE_CACHE_SHIFT)
5278                 len = size & ~PAGE_CACHE_MASK;
5279         else
5280                 len = PAGE_CACHE_SIZE;
5281
5282         if (page_has_buffers(page)) {
5283                 /* return if we have all the buffers mapped */
5284                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5285                                        ext4_bh_unmapped))
5286                         goto out_unlock;
5287         }
5288         /*
5289          * OK, we need to fill the hole... Do write_begin write_end
5290          * to do block allocation/reservation.We are not holding
5291          * inode.i__mutex here. That allow * parallel write_begin,
5292          * write_end call. lock_page prevent this from happening
5293          * on the same page though
5294          */
5295         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5296                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5297         if (ret < 0)
5298                 goto out_unlock;
5299         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5300                         len, len, page, fsdata);
5301         if (ret < 0)
5302                 goto out_unlock;
5303         ret = 0;
5304 out_unlock:
5305         if (ret)
5306                 ret = VM_FAULT_SIGBUS;
5307         up_read(&inode->i_alloc_sem);
5308         return ret;
5309 }