2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 static int sig_ignored(struct task_struct *t, int sig)
45 void __user * handler;
48 * Tracers always want to know about signals..
50 if (t->ptrace & PT_PTRACED)
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
76 switch (_NSIG_WORDS) {
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
99 static int recalc_sigpending_tsk(struct task_struct *t)
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
119 void recalc_sigpending_and_wake(struct task_struct *t)
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
125 void recalc_sigpending(void)
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
132 /* Given the mask, find the first available signal that should be serviced. */
134 int next_signal(struct sigpending *pending, sigset_t *mask)
136 unsigned long i, *s, *m, x;
139 s = pending->signal.sig;
141 switch (_NSIG_WORDS) {
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
150 case 2: if ((x = s[0] &~ m[0]) != 0)
152 else if ((x = s[1] &~ m[1]) != 0)
159 case 1: if ((x = *s &~ *m) != 0)
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
187 INIT_LIST_HEAD(&q->list);
189 q->user = get_uid(user);
194 static void __sigqueue_free(struct sigqueue *q)
196 if (q->flags & SIGQUEUE_PREALLOC)
198 atomic_dec(&q->user->sigpending);
200 kmem_cache_free(sigqueue_cachep, q);
203 void flush_sigqueue(struct sigpending *queue)
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
216 * Flush all pending signals for a task.
218 void flush_signals(struct task_struct *t)
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
229 void ignore_signals(struct task_struct *t)
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240 * Flush all handlers for a task.
244 flush_signal_handlers(struct task_struct *t, int force_default)
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
252 sigemptyset(&ka->sa.sa_mask);
257 int unhandled_signal(struct task_struct *tsk, int sig)
259 if (is_global_init(tsk))
261 if (tsk->ptrace & PT_PTRACED)
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
281 spin_lock_irqsave(¤t->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
288 /* Notify the system that blocking has ended. */
291 unblock_all_signals(void)
295 spin_lock_irqsave(¤t->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
299 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
307 if (unlikely(!sigismember(&list->signal, sig)))
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
328 sigdelset(&list->signal, sig);
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
348 int sig = next_signal(pending, mask);
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
360 if (!collect_signal(sig, pending, info))
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
371 * All callers have to hold the siglock.
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
380 signr = __dequeue_signal(&tsk->pending, mask, info);
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
409 if (signr && unlikely(sig_kernel_stop(signr))) {
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private){
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
442 * Tell a process that it has a new active signal..
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
452 void signal_wake_up(struct task_struct *t, int resume)
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
465 mask = TASK_INTERRUPTIBLE;
467 mask |= TASK_WAKEKILL;
468 if (!wake_up_state(t, mask))
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
476 * All callers must be holding the siglock.
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
483 struct sigqueue *q, *n;
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
503 * All callers must be holding the siglock.
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
507 struct sigqueue *q, *n;
509 if (!sigtestsetmask(&s->signal, mask))
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
524 * Bad permissions for sending the signal
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
530 if (!valid_signal(sig))
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
546 return security_task_kill(t, info, sig, 0);
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
559 static void handle_stop_signal(int sig, struct task_struct *p)
561 struct task_struct *t;
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
565 * The process is in the middle of dying already.
569 if (sig_kernel_stop(sig)) {
571 * This is a stop signal. Remove SIGCONT from all queues.
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
579 } else if (sig == SIGCONT) {
581 * Remove all stop signals from all queues,
582 * and wake all threads.
584 if (unlikely(p->signal->group_stop_count > 0)) {
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
620 * Wake up the stopped thread _after_ setting
623 state = __TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
628 wake_up_state(t, state);
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
649 p->signal->flags = 0;
651 } else if (sig == SIGKILL) {
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
656 p->signal->flags = 0;
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
663 struct sigqueue * q = NULL;
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
670 signalfd_notify(t, sig);
673 * fast-pathed signals for kernel-internal things like SIGSTOP
676 if (info == SEND_SIG_FORCED)
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 (is_si_special(info) ||
689 info->si_code >= 0)));
691 list_add_tail(&q->list, &signals->list);
692 switch ((unsigned long) info) {
693 case (unsigned long) SEND_SIG_NOINFO:
694 q->info.si_signo = sig;
695 q->info.si_errno = 0;
696 q->info.si_code = SI_USER;
697 q->info.si_pid = task_pid_vnr(current);
698 q->info.si_uid = current->uid;
700 case (unsigned long) SEND_SIG_PRIV:
701 q->info.si_signo = sig;
702 q->info.si_errno = 0;
703 q->info.si_code = SI_KERNEL;
708 copy_siginfo(&q->info, info);
711 } else if (!is_si_special(info)) {
712 if (sig >= SIGRTMIN && info->si_code != SI_USER)
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
721 sigaddset(&signals->signal, sig);
725 #define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
728 int print_fatal_signals;
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current->comm, task_pid_nr(current), signr);
735 #if defined(__i386__) && !defined(__arch_um__)
736 printk("code at %08lx: ", regs->ip);
739 for (i = 0; i < 16; i++) {
742 __get_user(insn, (unsigned char *)(regs->ip + i));
743 printk("%02x ", insn);
751 static int __init setup_print_fatal_signals(char *str)
753 get_option (&str, &print_fatal_signals);
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t->sighand->siglock);
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t, sig))
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
775 if (LEGACY_QUEUE(&t->pending, sig))
778 ret = send_signal(sig, info, t, &t->pending);
779 if (!ret && !sigismember(&t->blocked, sig))
780 signal_wake_up(t, sig == SIGKILL);
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
793 * We don't want to have recursive SIGSEGV's etc, for example.
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 unsigned long int flags;
799 int ret, blocked, ignored;
800 struct k_sigaction *action;
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 action = &t->sighand->action[sig-1];
804 ignored = action->sa.sa_handler == SIG_IGN;
805 blocked = sigismember(&t->blocked, sig);
806 if (blocked || ignored) {
807 action->sa.sa_handler = SIG_DFL;
809 sigdelset(&t->blocked, sig);
810 recalc_sigpending_and_wake(t);
813 ret = specific_send_sig_info(sig, info, t);
814 spin_unlock_irqrestore(&t->sighand->siglock, flags);
820 force_sig_specific(int sig, struct task_struct *t)
822 force_sig_info(sig, SEND_SIG_FORCED, t);
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
833 static inline int wants_signal(int sig, struct task_struct *p)
835 if (sigismember(&p->blocked, sig))
837 if (p->flags & PF_EXITING)
841 if (task_is_stopped_or_traced(p))
843 return task_curr(p) || !signal_pending(p);
847 __group_complete_signal(int sig, struct task_struct *p)
849 struct task_struct *t;
852 * Now find a thread we can wake up to take the signal off the queue.
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
857 if (wants_signal(sig, p))
859 else if (thread_group_empty(p))
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
867 * Otherwise try to find a suitable thread.
869 t = p->signal->curr_target;
871 /* restart balancing at this thread */
872 t = p->signal->curr_target = p;
874 while (!wants_signal(sig, t)) {
876 if (t == p->signal->curr_target)
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
884 p->signal->curr_target = t;
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 !sigismember(&t->real_blocked, sig) &&
893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
895 * This signal will be fatal to the whole group.
897 if (!sig_kernel_coredump(sig)) {
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
904 p->signal->flags = SIGNAL_GROUP_EXIT;
905 p->signal->group_exit_code = sig;
906 p->signal->group_stop_count = 0;
909 sigaddset(&t->pending.signal, SIGKILL);
910 signal_wake_up(t, 1);
911 } while_each_thread(p, t);
917 * The signal is already in the shared-pending queue.
918 * Tell the chosen thread to wake up and dequeue it.
920 signal_wake_up(t, sig == SIGKILL);
925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
929 assert_spin_locked(&p->sighand->siglock);
930 handle_stop_signal(sig, p);
932 /* Short-circuit ignored signals. */
933 if (sig_ignored(p, sig))
936 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
937 /* This is a non-RT signal and we already have one queued. */
941 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 * We always use the shared queue for process-wide signals,
943 * to avoid several races.
945 ret = send_signal(sig, info, p, &p->signal->shared_pending);
949 __group_complete_signal(sig, p);
954 * Nuke all other threads in the group.
956 void zap_other_threads(struct task_struct *p)
958 struct task_struct *t;
960 p->signal->group_stop_count = 0;
962 for (t = next_thread(p); t != p; t = next_thread(t)) {
964 * Don't bother with already dead threads
969 /* SIGKILL will be handled before any pending SIGSTOP */
970 sigaddset(&t->pending.signal, SIGKILL);
971 signal_wake_up(t, 1);
975 int fastcall __fatal_signal_pending(struct task_struct *tsk)
977 return sigismember(&tsk->pending.signal, SIGKILL);
979 EXPORT_SYMBOL(__fatal_signal_pending);
982 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
984 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
986 struct sighand_struct *sighand;
989 sighand = rcu_dereference(tsk->sighand);
990 if (unlikely(sighand == NULL))
993 spin_lock_irqsave(&sighand->siglock, *flags);
994 if (likely(sighand == tsk->sighand))
996 spin_unlock_irqrestore(&sighand->siglock, *flags);
1002 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1004 unsigned long flags;
1007 ret = check_kill_permission(sig, info, p);
1011 if (lock_task_sighand(p, &flags)) {
1012 ret = __group_send_sig_info(sig, info, p);
1013 unlock_task_sighand(p, &flags);
1021 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1022 * control characters do (^C, ^Z etc)
1025 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1027 struct task_struct *p = NULL;
1028 int retval, success;
1032 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1033 int err = group_send_sig_info(sig, info, p);
1036 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1037 return success ? 0 : retval;
1040 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1044 read_lock(&tasklist_lock);
1045 retval = __kill_pgrp_info(sig, info, pgrp);
1046 read_unlock(&tasklist_lock);
1051 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1054 struct task_struct *p;
1057 if (unlikely(sig_needs_tasklist(sig)))
1058 read_lock(&tasklist_lock);
1060 p = pid_task(pid, PIDTYPE_PID);
1063 error = group_send_sig_info(sig, info, p);
1065 if (unlikely(sig_needs_tasklist(sig)))
1066 read_unlock(&tasklist_lock);
1072 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1076 error = kill_pid_info(sig, info, find_vpid(pid));
1081 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1082 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1083 uid_t uid, uid_t euid, u32 secid)
1086 struct task_struct *p;
1088 if (!valid_signal(sig))
1091 read_lock(&tasklist_lock);
1092 p = pid_task(pid, PIDTYPE_PID);
1097 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1098 && (euid != p->suid) && (euid != p->uid)
1099 && (uid != p->suid) && (uid != p->uid)) {
1103 ret = security_task_kill(p, info, sig, secid);
1106 if (sig && p->sighand) {
1107 unsigned long flags;
1108 spin_lock_irqsave(&p->sighand->siglock, flags);
1109 ret = __group_send_sig_info(sig, info, p);
1110 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1113 read_unlock(&tasklist_lock);
1116 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1119 * kill_something_info() interprets pid in interesting ways just like kill(2).
1121 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1122 * is probably wrong. Should make it like BSD or SYSV.
1125 static int kill_something_info(int sig, struct siginfo *info, int pid)
1130 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1131 } else if (pid == -1) {
1132 int retval = 0, count = 0;
1133 struct task_struct * p;
1135 read_lock(&tasklist_lock);
1136 for_each_process(p) {
1137 if (p->pid > 1 && !same_thread_group(p, current)) {
1138 int err = group_send_sig_info(sig, info, p);
1144 read_unlock(&tasklist_lock);
1145 ret = count ? retval : -ESRCH;
1146 } else if (pid < 0) {
1147 ret = kill_pgrp_info(sig, info, find_vpid(-pid));
1149 ret = kill_pid_info(sig, info, find_vpid(pid));
1156 * These are for backward compatibility with the rest of the kernel source.
1160 * These two are the most common entry points. They send a signal
1161 * just to the specific thread.
1164 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1167 unsigned long flags;
1170 * Make sure legacy kernel users don't send in bad values
1171 * (normal paths check this in check_kill_permission).
1173 if (!valid_signal(sig))
1177 * We need the tasklist lock even for the specific
1178 * thread case (when we don't need to follow the group
1179 * lists) in order to avoid races with "p->sighand"
1180 * going away or changing from under us.
1182 read_lock(&tasklist_lock);
1183 spin_lock_irqsave(&p->sighand->siglock, flags);
1184 ret = specific_send_sig_info(sig, info, p);
1185 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1186 read_unlock(&tasklist_lock);
1190 #define __si_special(priv) \
1191 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1194 send_sig(int sig, struct task_struct *p, int priv)
1196 return send_sig_info(sig, __si_special(priv), p);
1200 * This is the entry point for "process-wide" signals.
1201 * They will go to an appropriate thread in the thread group.
1204 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1207 read_lock(&tasklist_lock);
1208 ret = group_send_sig_info(sig, info, p);
1209 read_unlock(&tasklist_lock);
1214 force_sig(int sig, struct task_struct *p)
1216 force_sig_info(sig, SEND_SIG_PRIV, p);
1220 * When things go south during signal handling, we
1221 * will force a SIGSEGV. And if the signal that caused
1222 * the problem was already a SIGSEGV, we'll want to
1223 * make sure we don't even try to deliver the signal..
1226 force_sigsegv(int sig, struct task_struct *p)
1228 if (sig == SIGSEGV) {
1229 unsigned long flags;
1230 spin_lock_irqsave(&p->sighand->siglock, flags);
1231 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1232 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1234 force_sig(SIGSEGV, p);
1238 int kill_pgrp(struct pid *pid, int sig, int priv)
1240 return kill_pgrp_info(sig, __si_special(priv), pid);
1242 EXPORT_SYMBOL(kill_pgrp);
1244 int kill_pid(struct pid *pid, int sig, int priv)
1246 return kill_pid_info(sig, __si_special(priv), pid);
1248 EXPORT_SYMBOL(kill_pid);
1251 kill_proc(pid_t pid, int sig, int priv)
1256 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1262 * These functions support sending signals using preallocated sigqueue
1263 * structures. This is needed "because realtime applications cannot
1264 * afford to lose notifications of asynchronous events, like timer
1265 * expirations or I/O completions". In the case of Posix Timers
1266 * we allocate the sigqueue structure from the timer_create. If this
1267 * allocation fails we are able to report the failure to the application
1268 * with an EAGAIN error.
1271 struct sigqueue *sigqueue_alloc(void)
1275 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1276 q->flags |= SIGQUEUE_PREALLOC;
1280 void sigqueue_free(struct sigqueue *q)
1282 unsigned long flags;
1283 spinlock_t *lock = ¤t->sighand->siglock;
1285 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1287 * If the signal is still pending remove it from the
1288 * pending queue. We must hold ->siglock while testing
1289 * q->list to serialize with collect_signal().
1291 spin_lock_irqsave(lock, flags);
1292 if (!list_empty(&q->list))
1293 list_del_init(&q->list);
1294 spin_unlock_irqrestore(lock, flags);
1296 q->flags &= ~SIGQUEUE_PREALLOC;
1300 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1302 unsigned long flags;
1305 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1308 * The rcu based delayed sighand destroy makes it possible to
1309 * run this without tasklist lock held. The task struct itself
1310 * cannot go away as create_timer did get_task_struct().
1312 * We return -1, when the task is marked exiting, so
1313 * posix_timer_event can redirect it to the group leader
1317 if (!likely(lock_task_sighand(p, &flags))) {
1322 if (unlikely(!list_empty(&q->list))) {
1324 * If an SI_TIMER entry is already queue just increment
1325 * the overrun count.
1327 BUG_ON(q->info.si_code != SI_TIMER);
1328 q->info.si_overrun++;
1331 /* Short-circuit ignored signals. */
1332 if (sig_ignored(p, sig)) {
1337 * Deliver the signal to listening signalfds. This must be called
1338 * with the sighand lock held.
1340 signalfd_notify(p, sig);
1342 list_add_tail(&q->list, &p->pending.list);
1343 sigaddset(&p->pending.signal, sig);
1344 if (!sigismember(&p->blocked, sig))
1345 signal_wake_up(p, sig == SIGKILL);
1348 unlock_task_sighand(p, &flags);
1356 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1358 unsigned long flags;
1361 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1363 read_lock(&tasklist_lock);
1364 /* Since it_lock is held, p->sighand cannot be NULL. */
1365 spin_lock_irqsave(&p->sighand->siglock, flags);
1366 handle_stop_signal(sig, p);
1368 /* Short-circuit ignored signals. */
1369 if (sig_ignored(p, sig)) {
1374 if (unlikely(!list_empty(&q->list))) {
1376 * If an SI_TIMER entry is already queue just increment
1377 * the overrun count. Other uses should not try to
1378 * send the signal multiple times.
1380 BUG_ON(q->info.si_code != SI_TIMER);
1381 q->info.si_overrun++;
1385 * Deliver the signal to listening signalfds. This must be called
1386 * with the sighand lock held.
1388 signalfd_notify(p, sig);
1391 * Put this signal on the shared-pending queue.
1392 * We always use the shared queue for process-wide signals,
1393 * to avoid several races.
1395 list_add_tail(&q->list, &p->signal->shared_pending.list);
1396 sigaddset(&p->signal->shared_pending.signal, sig);
1398 __group_complete_signal(sig, p);
1400 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1401 read_unlock(&tasklist_lock);
1406 * Wake up any threads in the parent blocked in wait* syscalls.
1408 static inline void __wake_up_parent(struct task_struct *p,
1409 struct task_struct *parent)
1411 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1415 * Let a parent know about the death of a child.
1416 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1419 void do_notify_parent(struct task_struct *tsk, int sig)
1421 struct siginfo info;
1422 unsigned long flags;
1423 struct sighand_struct *psig;
1427 /* do_notify_parent_cldstop should have been called instead. */
1428 BUG_ON(task_is_stopped_or_traced(tsk));
1430 BUG_ON(!tsk->ptrace &&
1431 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1433 info.si_signo = sig;
1436 * we are under tasklist_lock here so our parent is tied to
1437 * us and cannot exit and release its namespace.
1439 * the only it can is to switch its nsproxy with sys_unshare,
1440 * bu uncharing pid namespaces is not allowed, so we'll always
1441 * see relevant namespace
1443 * write_lock() currently calls preempt_disable() which is the
1444 * same as rcu_read_lock(), but according to Oleg, this is not
1445 * correct to rely on this
1448 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1451 info.si_uid = tsk->uid;
1453 /* FIXME: find out whether or not this is supposed to be c*time. */
1454 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1455 tsk->signal->utime));
1456 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1457 tsk->signal->stime));
1459 info.si_status = tsk->exit_code & 0x7f;
1460 if (tsk->exit_code & 0x80)
1461 info.si_code = CLD_DUMPED;
1462 else if (tsk->exit_code & 0x7f)
1463 info.si_code = CLD_KILLED;
1465 info.si_code = CLD_EXITED;
1466 info.si_status = tsk->exit_code >> 8;
1469 psig = tsk->parent->sighand;
1470 spin_lock_irqsave(&psig->siglock, flags);
1471 if (!tsk->ptrace && sig == SIGCHLD &&
1472 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1473 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1475 * We are exiting and our parent doesn't care. POSIX.1
1476 * defines special semantics for setting SIGCHLD to SIG_IGN
1477 * or setting the SA_NOCLDWAIT flag: we should be reaped
1478 * automatically and not left for our parent's wait4 call.
1479 * Rather than having the parent do it as a magic kind of
1480 * signal handler, we just set this to tell do_exit that we
1481 * can be cleaned up without becoming a zombie. Note that
1482 * we still call __wake_up_parent in this case, because a
1483 * blocked sys_wait4 might now return -ECHILD.
1485 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1486 * is implementation-defined: we do (if you don't want
1487 * it, just use SIG_IGN instead).
1489 tsk->exit_signal = -1;
1490 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1493 if (valid_signal(sig) && sig > 0)
1494 __group_send_sig_info(sig, &info, tsk->parent);
1495 __wake_up_parent(tsk, tsk->parent);
1496 spin_unlock_irqrestore(&psig->siglock, flags);
1499 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1501 struct siginfo info;
1502 unsigned long flags;
1503 struct task_struct *parent;
1504 struct sighand_struct *sighand;
1506 if (tsk->ptrace & PT_PTRACED)
1507 parent = tsk->parent;
1509 tsk = tsk->group_leader;
1510 parent = tsk->real_parent;
1513 info.si_signo = SIGCHLD;
1516 * see comment in do_notify_parent() abot the following 3 lines
1519 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1522 info.si_uid = tsk->uid;
1524 /* FIXME: find out whether or not this is supposed to be c*time. */
1525 info.si_utime = cputime_to_jiffies(tsk->utime);
1526 info.si_stime = cputime_to_jiffies(tsk->stime);
1531 info.si_status = SIGCONT;
1534 info.si_status = tsk->signal->group_exit_code & 0x7f;
1537 info.si_status = tsk->exit_code & 0x7f;
1543 sighand = parent->sighand;
1544 spin_lock_irqsave(&sighand->siglock, flags);
1545 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1546 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1547 __group_send_sig_info(SIGCHLD, &info, parent);
1549 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1551 __wake_up_parent(tsk, parent);
1552 spin_unlock_irqrestore(&sighand->siglock, flags);
1555 static inline int may_ptrace_stop(void)
1557 if (!likely(current->ptrace & PT_PTRACED))
1560 if (unlikely(current->parent == current->real_parent &&
1561 (current->ptrace & PT_ATTACHED)))
1565 * Are we in the middle of do_coredump?
1566 * If so and our tracer is also part of the coredump stopping
1567 * is a deadlock situation, and pointless because our tracer
1568 * is dead so don't allow us to stop.
1569 * If SIGKILL was already sent before the caller unlocked
1570 * ->siglock we must see ->core_waiters != 0. Otherwise it
1571 * is safe to enter schedule().
1573 if (unlikely(current->mm->core_waiters) &&
1574 unlikely(current->mm == current->parent->mm))
1581 * Return nonzero if there is a SIGKILL that should be waking us up.
1582 * Called with the siglock held.
1584 static int sigkill_pending(struct task_struct *tsk)
1586 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1587 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1588 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1592 * This must be called with current->sighand->siglock held.
1594 * This should be the path for all ptrace stops.
1595 * We always set current->last_siginfo while stopped here.
1596 * That makes it a way to test a stopped process for
1597 * being ptrace-stopped vs being job-control-stopped.
1599 * If we actually decide not to stop at all because the tracer is gone,
1600 * we leave nostop_code in current->exit_code.
1602 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1606 if (arch_ptrace_stop_needed(exit_code, info)) {
1608 * The arch code has something special to do before a
1609 * ptrace stop. This is allowed to block, e.g. for faults
1610 * on user stack pages. We can't keep the siglock while
1611 * calling arch_ptrace_stop, so we must release it now.
1612 * To preserve proper semantics, we must do this before
1613 * any signal bookkeeping like checking group_stop_count.
1614 * Meanwhile, a SIGKILL could come in before we retake the
1615 * siglock. That must prevent us from sleeping in TASK_TRACED.
1616 * So after regaining the lock, we must check for SIGKILL.
1618 spin_unlock_irq(¤t->sighand->siglock);
1619 arch_ptrace_stop(exit_code, info);
1620 spin_lock_irq(¤t->sighand->siglock);
1621 killed = sigkill_pending(current);
1625 * If there is a group stop in progress,
1626 * we must participate in the bookkeeping.
1628 if (current->signal->group_stop_count > 0)
1629 --current->signal->group_stop_count;
1631 current->last_siginfo = info;
1632 current->exit_code = exit_code;
1634 /* Let the debugger run. */
1635 __set_current_state(TASK_TRACED);
1636 spin_unlock_irq(¤t->sighand->siglock);
1638 read_lock(&tasklist_lock);
1639 if (!unlikely(killed) && may_ptrace_stop()) {
1640 do_notify_parent_cldstop(current, CLD_TRAPPED);
1641 read_unlock(&tasklist_lock);
1645 * By the time we got the lock, our tracer went away.
1648 read_unlock(&tasklist_lock);
1649 set_current_state(TASK_RUNNING);
1650 current->exit_code = nostop_code;
1654 * We are back. Now reacquire the siglock before touching
1655 * last_siginfo, so that we are sure to have synchronized with
1656 * any signal-sending on another CPU that wants to examine it.
1658 spin_lock_irq(¤t->sighand->siglock);
1659 current->last_siginfo = NULL;
1662 * Queued signals ignored us while we were stopped for tracing.
1663 * So check for any that we should take before resuming user mode.
1664 * This sets TIF_SIGPENDING, but never clears it.
1666 recalc_sigpending_tsk(current);
1669 void ptrace_notify(int exit_code)
1673 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1675 memset(&info, 0, sizeof info);
1676 info.si_signo = SIGTRAP;
1677 info.si_code = exit_code;
1678 info.si_pid = task_pid_vnr(current);
1679 info.si_uid = current->uid;
1681 /* Let the debugger run. */
1682 spin_lock_irq(¤t->sighand->siglock);
1683 ptrace_stop(exit_code, 0, &info);
1684 spin_unlock_irq(¤t->sighand->siglock);
1688 finish_stop(int stop_count)
1691 * If there are no other threads in the group, or if there is
1692 * a group stop in progress and we are the last to stop,
1693 * report to the parent. When ptraced, every thread reports itself.
1695 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1696 read_lock(&tasklist_lock);
1697 do_notify_parent_cldstop(current, CLD_STOPPED);
1698 read_unlock(&tasklist_lock);
1703 } while (try_to_freeze());
1705 * Now we don't run again until continued.
1707 current->exit_code = 0;
1711 * This performs the stopping for SIGSTOP and other stop signals.
1712 * We have to stop all threads in the thread group.
1713 * Returns nonzero if we've actually stopped and released the siglock.
1714 * Returns zero if we didn't stop and still hold the siglock.
1716 static int do_signal_stop(int signr)
1718 struct signal_struct *sig = current->signal;
1721 if (sig->group_stop_count > 0) {
1723 * There is a group stop in progress. We don't need to
1724 * start another one.
1726 stop_count = --sig->group_stop_count;
1728 struct task_struct *t;
1730 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1731 unlikely(sig->group_exit_task))
1734 * There is no group stop already in progress.
1735 * We must initiate one now.
1737 sig->group_exit_code = signr;
1740 for (t = next_thread(current); t != current; t = next_thread(t))
1742 * Setting state to TASK_STOPPED for a group
1743 * stop is always done with the siglock held,
1744 * so this check has no races.
1746 if (!t->exit_state &&
1747 !task_is_stopped_or_traced(t)) {
1749 signal_wake_up(t, 0);
1751 sig->group_stop_count = stop_count;
1754 if (stop_count == 0)
1755 sig->flags = SIGNAL_STOP_STOPPED;
1756 current->exit_code = sig->group_exit_code;
1757 __set_current_state(TASK_STOPPED);
1759 spin_unlock_irq(¤t->sighand->siglock);
1760 finish_stop(stop_count);
1764 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1765 struct pt_regs *regs, void *cookie)
1767 sigset_t *mask = ¤t->blocked;
1773 spin_lock_irq(¤t->sighand->siglock);
1775 struct k_sigaction *ka;
1777 if (unlikely(current->signal->group_stop_count > 0) &&
1781 signr = dequeue_signal(current, mask, info);
1784 break; /* will return 0 */
1786 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1787 ptrace_signal_deliver(regs, cookie);
1789 /* Let the debugger run. */
1790 ptrace_stop(signr, signr, info);
1792 /* We're back. Did the debugger cancel the sig? */
1793 signr = current->exit_code;
1797 current->exit_code = 0;
1799 /* Update the siginfo structure if the signal has
1800 changed. If the debugger wanted something
1801 specific in the siginfo structure then it should
1802 have updated *info via PTRACE_SETSIGINFO. */
1803 if (signr != info->si_signo) {
1804 info->si_signo = signr;
1806 info->si_code = SI_USER;
1807 info->si_pid = task_pid_vnr(current->parent);
1808 info->si_uid = current->parent->uid;
1811 /* If the (new) signal is now blocked, requeue it. */
1812 if (sigismember(¤t->blocked, signr)) {
1813 specific_send_sig_info(signr, info, current);
1818 ka = ¤t->sighand->action[signr-1];
1819 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1821 if (ka->sa.sa_handler != SIG_DFL) {
1822 /* Run the handler. */
1825 if (ka->sa.sa_flags & SA_ONESHOT)
1826 ka->sa.sa_handler = SIG_DFL;
1828 break; /* will return non-zero "signr" value */
1832 * Now we are doing the default action for this signal.
1834 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1838 * Global init gets no signals it doesn't want.
1840 if (is_global_init(current))
1843 if (sig_kernel_stop(signr)) {
1845 * The default action is to stop all threads in
1846 * the thread group. The job control signals
1847 * do nothing in an orphaned pgrp, but SIGSTOP
1848 * always works. Note that siglock needs to be
1849 * dropped during the call to is_orphaned_pgrp()
1850 * because of lock ordering with tasklist_lock.
1851 * This allows an intervening SIGCONT to be posted.
1852 * We need to check for that and bail out if necessary.
1854 if (signr != SIGSTOP) {
1855 spin_unlock_irq(¤t->sighand->siglock);
1857 /* signals can be posted during this window */
1859 if (is_current_pgrp_orphaned())
1862 spin_lock_irq(¤t->sighand->siglock);
1865 if (likely(do_signal_stop(signr))) {
1866 /* It released the siglock. */
1871 * We didn't actually stop, due to a race
1872 * with SIGCONT or something like that.
1877 spin_unlock_irq(¤t->sighand->siglock);
1880 * Anything else is fatal, maybe with a core dump.
1882 current->flags |= PF_SIGNALED;
1883 if ((signr != SIGKILL) && print_fatal_signals)
1884 print_fatal_signal(regs, signr);
1885 if (sig_kernel_coredump(signr)) {
1887 * If it was able to dump core, this kills all
1888 * other threads in the group and synchronizes with
1889 * their demise. If we lost the race with another
1890 * thread getting here, it set group_exit_code
1891 * first and our do_group_exit call below will use
1892 * that value and ignore the one we pass it.
1894 do_coredump((long)signr, signr, regs);
1898 * Death signals, no core dump.
1900 do_group_exit(signr);
1903 spin_unlock_irq(¤t->sighand->siglock);
1907 EXPORT_SYMBOL(recalc_sigpending);
1908 EXPORT_SYMBOL_GPL(dequeue_signal);
1909 EXPORT_SYMBOL(flush_signals);
1910 EXPORT_SYMBOL(force_sig);
1911 EXPORT_SYMBOL(kill_proc);
1912 EXPORT_SYMBOL(ptrace_notify);
1913 EXPORT_SYMBOL(send_sig);
1914 EXPORT_SYMBOL(send_sig_info);
1915 EXPORT_SYMBOL(sigprocmask);
1916 EXPORT_SYMBOL(block_all_signals);
1917 EXPORT_SYMBOL(unblock_all_signals);
1921 * System call entry points.
1924 asmlinkage long sys_restart_syscall(void)
1926 struct restart_block *restart = ¤t_thread_info()->restart_block;
1927 return restart->fn(restart);
1930 long do_no_restart_syscall(struct restart_block *param)
1936 * We don't need to get the kernel lock - this is all local to this
1937 * particular thread.. (and that's good, because this is _heavily_
1938 * used by various programs)
1942 * This is also useful for kernel threads that want to temporarily
1943 * (or permanently) block certain signals.
1945 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1946 * interface happily blocks "unblockable" signals like SIGKILL
1949 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1953 spin_lock_irq(¤t->sighand->siglock);
1955 *oldset = current->blocked;
1960 sigorsets(¤t->blocked, ¤t->blocked, set);
1963 signandsets(¤t->blocked, ¤t->blocked, set);
1966 current->blocked = *set;
1971 recalc_sigpending();
1972 spin_unlock_irq(¤t->sighand->siglock);
1978 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1980 int error = -EINVAL;
1981 sigset_t old_set, new_set;
1983 /* XXX: Don't preclude handling different sized sigset_t's. */
1984 if (sigsetsize != sizeof(sigset_t))
1989 if (copy_from_user(&new_set, set, sizeof(*set)))
1991 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1993 error = sigprocmask(how, &new_set, &old_set);
1999 spin_lock_irq(¤t->sighand->siglock);
2000 old_set = current->blocked;
2001 spin_unlock_irq(¤t->sighand->siglock);
2005 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2013 long do_sigpending(void __user *set, unsigned long sigsetsize)
2015 long error = -EINVAL;
2018 if (sigsetsize > sizeof(sigset_t))
2021 spin_lock_irq(¤t->sighand->siglock);
2022 sigorsets(&pending, ¤t->pending.signal,
2023 ¤t->signal->shared_pending.signal);
2024 spin_unlock_irq(¤t->sighand->siglock);
2026 /* Outside the lock because only this thread touches it. */
2027 sigandsets(&pending, ¤t->blocked, &pending);
2030 if (!copy_to_user(set, &pending, sigsetsize))
2038 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2040 return do_sigpending(set, sigsetsize);
2043 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2045 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2049 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2051 if (from->si_code < 0)
2052 return __copy_to_user(to, from, sizeof(siginfo_t))
2055 * If you change siginfo_t structure, please be sure
2056 * this code is fixed accordingly.
2057 * Please remember to update the signalfd_copyinfo() function
2058 * inside fs/signalfd.c too, in case siginfo_t changes.
2059 * It should never copy any pad contained in the structure
2060 * to avoid security leaks, but must copy the generic
2061 * 3 ints plus the relevant union member.
2063 err = __put_user(from->si_signo, &to->si_signo);
2064 err |= __put_user(from->si_errno, &to->si_errno);
2065 err |= __put_user((short)from->si_code, &to->si_code);
2066 switch (from->si_code & __SI_MASK) {
2068 err |= __put_user(from->si_pid, &to->si_pid);
2069 err |= __put_user(from->si_uid, &to->si_uid);
2072 err |= __put_user(from->si_tid, &to->si_tid);
2073 err |= __put_user(from->si_overrun, &to->si_overrun);
2074 err |= __put_user(from->si_ptr, &to->si_ptr);
2077 err |= __put_user(from->si_band, &to->si_band);
2078 err |= __put_user(from->si_fd, &to->si_fd);
2081 err |= __put_user(from->si_addr, &to->si_addr);
2082 #ifdef __ARCH_SI_TRAPNO
2083 err |= __put_user(from->si_trapno, &to->si_trapno);
2087 err |= __put_user(from->si_pid, &to->si_pid);
2088 err |= __put_user(from->si_uid, &to->si_uid);
2089 err |= __put_user(from->si_status, &to->si_status);
2090 err |= __put_user(from->si_utime, &to->si_utime);
2091 err |= __put_user(from->si_stime, &to->si_stime);
2093 case __SI_RT: /* This is not generated by the kernel as of now. */
2094 case __SI_MESGQ: /* But this is */
2095 err |= __put_user(from->si_pid, &to->si_pid);
2096 err |= __put_user(from->si_uid, &to->si_uid);
2097 err |= __put_user(from->si_ptr, &to->si_ptr);
2099 default: /* this is just in case for now ... */
2100 err |= __put_user(from->si_pid, &to->si_pid);
2101 err |= __put_user(from->si_uid, &to->si_uid);
2110 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2111 siginfo_t __user *uinfo,
2112 const struct timespec __user *uts,
2121 /* XXX: Don't preclude handling different sized sigset_t's. */
2122 if (sigsetsize != sizeof(sigset_t))
2125 if (copy_from_user(&these, uthese, sizeof(these)))
2129 * Invert the set of allowed signals to get those we
2132 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2136 if (copy_from_user(&ts, uts, sizeof(ts)))
2138 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2143 spin_lock_irq(¤t->sighand->siglock);
2144 sig = dequeue_signal(current, &these, &info);
2146 timeout = MAX_SCHEDULE_TIMEOUT;
2148 timeout = (timespec_to_jiffies(&ts)
2149 + (ts.tv_sec || ts.tv_nsec));
2152 /* None ready -- temporarily unblock those we're
2153 * interested while we are sleeping in so that we'll
2154 * be awakened when they arrive. */
2155 current->real_blocked = current->blocked;
2156 sigandsets(¤t->blocked, ¤t->blocked, &these);
2157 recalc_sigpending();
2158 spin_unlock_irq(¤t->sighand->siglock);
2160 timeout = schedule_timeout_interruptible(timeout);
2162 spin_lock_irq(¤t->sighand->siglock);
2163 sig = dequeue_signal(current, &these, &info);
2164 current->blocked = current->real_blocked;
2165 siginitset(¤t->real_blocked, 0);
2166 recalc_sigpending();
2169 spin_unlock_irq(¤t->sighand->siglock);
2174 if (copy_siginfo_to_user(uinfo, &info))
2187 sys_kill(int pid, int sig)
2189 struct siginfo info;
2191 info.si_signo = sig;
2193 info.si_code = SI_USER;
2194 info.si_pid = task_tgid_vnr(current);
2195 info.si_uid = current->uid;
2197 return kill_something_info(sig, &info, pid);
2200 static int do_tkill(int tgid, int pid, int sig)
2203 struct siginfo info;
2204 struct task_struct *p;
2207 info.si_signo = sig;
2209 info.si_code = SI_TKILL;
2210 info.si_pid = task_tgid_vnr(current);
2211 info.si_uid = current->uid;
2213 read_lock(&tasklist_lock);
2214 p = find_task_by_vpid(pid);
2215 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2216 error = check_kill_permission(sig, &info, p);
2218 * The null signal is a permissions and process existence
2219 * probe. No signal is actually delivered.
2221 if (!error && sig && p->sighand) {
2222 spin_lock_irq(&p->sighand->siglock);
2223 handle_stop_signal(sig, p);
2224 error = specific_send_sig_info(sig, &info, p);
2225 spin_unlock_irq(&p->sighand->siglock);
2228 read_unlock(&tasklist_lock);
2234 * sys_tgkill - send signal to one specific thread
2235 * @tgid: the thread group ID of the thread
2236 * @pid: the PID of the thread
2237 * @sig: signal to be sent
2239 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2240 * exists but it's not belonging to the target process anymore. This
2241 * method solves the problem of threads exiting and PIDs getting reused.
2243 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2245 /* This is only valid for single tasks */
2246 if (pid <= 0 || tgid <= 0)
2249 return do_tkill(tgid, pid, sig);
2253 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2256 sys_tkill(int pid, int sig)
2258 /* This is only valid for single tasks */
2262 return do_tkill(0, pid, sig);
2266 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2270 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2273 /* Not even root can pretend to send signals from the kernel.
2274 Nor can they impersonate a kill(), which adds source info. */
2275 if (info.si_code >= 0)
2277 info.si_signo = sig;
2279 /* POSIX.1b doesn't mention process groups. */
2280 return kill_proc_info(sig, &info, pid);
2283 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2285 struct k_sigaction *k;
2288 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2291 k = ¤t->sighand->action[sig-1];
2293 spin_lock_irq(¤t->sighand->siglock);
2298 sigdelsetmask(&act->sa.sa_mask,
2299 sigmask(SIGKILL) | sigmask(SIGSTOP));
2303 * "Setting a signal action to SIG_IGN for a signal that is
2304 * pending shall cause the pending signal to be discarded,
2305 * whether or not it is blocked."
2307 * "Setting a signal action to SIG_DFL for a signal that is
2308 * pending and whose default action is to ignore the signal
2309 * (for example, SIGCHLD), shall cause the pending signal to
2310 * be discarded, whether or not it is blocked"
2312 if (act->sa.sa_handler == SIG_IGN ||
2313 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2314 struct task_struct *t = current;
2316 sigaddset(&mask, sig);
2317 rm_from_queue_full(&mask, &t->signal->shared_pending);
2319 rm_from_queue_full(&mask, &t->pending);
2321 } while (t != current);
2325 spin_unlock_irq(¤t->sighand->siglock);
2330 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2336 oss.ss_sp = (void __user *) current->sas_ss_sp;
2337 oss.ss_size = current->sas_ss_size;
2338 oss.ss_flags = sas_ss_flags(sp);
2347 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2348 || __get_user(ss_sp, &uss->ss_sp)
2349 || __get_user(ss_flags, &uss->ss_flags)
2350 || __get_user(ss_size, &uss->ss_size))
2354 if (on_sig_stack(sp))
2360 * Note - this code used to test ss_flags incorrectly
2361 * old code may have been written using ss_flags==0
2362 * to mean ss_flags==SS_ONSTACK (as this was the only
2363 * way that worked) - this fix preserves that older
2366 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2369 if (ss_flags == SS_DISABLE) {
2374 if (ss_size < MINSIGSTKSZ)
2378 current->sas_ss_sp = (unsigned long) ss_sp;
2379 current->sas_ss_size = ss_size;
2384 if (copy_to_user(uoss, &oss, sizeof(oss)))
2393 #ifdef __ARCH_WANT_SYS_SIGPENDING
2396 sys_sigpending(old_sigset_t __user *set)
2398 return do_sigpending(set, sizeof(*set));
2403 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2404 /* Some platforms have their own version with special arguments others
2405 support only sys_rt_sigprocmask. */
2408 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2411 old_sigset_t old_set, new_set;
2415 if (copy_from_user(&new_set, set, sizeof(*set)))
2417 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2419 spin_lock_irq(¤t->sighand->siglock);
2420 old_set = current->blocked.sig[0];
2428 sigaddsetmask(¤t->blocked, new_set);
2431 sigdelsetmask(¤t->blocked, new_set);
2434 current->blocked.sig[0] = new_set;
2438 recalc_sigpending();
2439 spin_unlock_irq(¤t->sighand->siglock);
2445 old_set = current->blocked.sig[0];
2448 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2455 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2457 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2459 sys_rt_sigaction(int sig,
2460 const struct sigaction __user *act,
2461 struct sigaction __user *oact,
2464 struct k_sigaction new_sa, old_sa;
2467 /* XXX: Don't preclude handling different sized sigset_t's. */
2468 if (sigsetsize != sizeof(sigset_t))
2472 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2476 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2479 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2485 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2487 #ifdef __ARCH_WANT_SYS_SGETMASK
2490 * For backwards compatibility. Functionality superseded by sigprocmask.
2496 return current->blocked.sig[0];
2500 sys_ssetmask(int newmask)
2504 spin_lock_irq(¤t->sighand->siglock);
2505 old = current->blocked.sig[0];
2507 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2509 recalc_sigpending();
2510 spin_unlock_irq(¤t->sighand->siglock);
2514 #endif /* __ARCH_WANT_SGETMASK */
2516 #ifdef __ARCH_WANT_SYS_SIGNAL
2518 * For backwards compatibility. Functionality superseded by sigaction.
2520 asmlinkage unsigned long
2521 sys_signal(int sig, __sighandler_t handler)
2523 struct k_sigaction new_sa, old_sa;
2526 new_sa.sa.sa_handler = handler;
2527 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2528 sigemptyset(&new_sa.sa.sa_mask);
2530 ret = do_sigaction(sig, &new_sa, &old_sa);
2532 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2534 #endif /* __ARCH_WANT_SYS_SIGNAL */
2536 #ifdef __ARCH_WANT_SYS_PAUSE
2541 current->state = TASK_INTERRUPTIBLE;
2543 return -ERESTARTNOHAND;
2548 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2549 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2553 /* XXX: Don't preclude handling different sized sigset_t's. */
2554 if (sigsetsize != sizeof(sigset_t))
2557 if (copy_from_user(&newset, unewset, sizeof(newset)))
2559 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2561 spin_lock_irq(¤t->sighand->siglock);
2562 current->saved_sigmask = current->blocked;
2563 current->blocked = newset;
2564 recalc_sigpending();
2565 spin_unlock_irq(¤t->sighand->siglock);
2567 current->state = TASK_INTERRUPTIBLE;
2569 set_thread_flag(TIF_RESTORE_SIGMASK);
2570 return -ERESTARTNOHAND;
2572 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2574 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2579 void __init signals_init(void)
2581 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);