hwmon: (fschmd) Read voltage scaling factors from BIOS DMI
[linux-2.6] / kernel / stop_machine.c
1 /* Copyright 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation.
2  * GPL v2 and any later version.
3  */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/kthread.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/stop_machine.h>
10 #include <linux/syscalls.h>
11 #include <linux/interrupt.h>
12
13 #include <asm/atomic.h>
14 #include <asm/semaphore.h>
15 #include <asm/uaccess.h>
16
17 /* Since we effect priority and affinity (both of which are visible
18  * to, and settable by outside processes) we do indirection via a
19  * kthread. */
20
21 /* Thread to stop each CPU in user context. */
22 enum stopmachine_state {
23         STOPMACHINE_WAIT,
24         STOPMACHINE_PREPARE,
25         STOPMACHINE_DISABLE_IRQ,
26         STOPMACHINE_EXIT,
27 };
28
29 static enum stopmachine_state stopmachine_state;
30 static unsigned int stopmachine_num_threads;
31 static atomic_t stopmachine_thread_ack;
32
33 static int stopmachine(void *cpu)
34 {
35         int irqs_disabled = 0;
36         int prepared = 0;
37
38         set_cpus_allowed(current, cpumask_of_cpu((int)(long)cpu));
39
40         /* Ack: we are alive */
41         smp_mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */
42         atomic_inc(&stopmachine_thread_ack);
43
44         /* Simple state machine */
45         while (stopmachine_state != STOPMACHINE_EXIT) {
46                 if (stopmachine_state == STOPMACHINE_DISABLE_IRQ 
47                     && !irqs_disabled) {
48                         local_irq_disable();
49                         hard_irq_disable();
50                         irqs_disabled = 1;
51                         /* Ack: irqs disabled. */
52                         smp_mb(); /* Must read state first. */
53                         atomic_inc(&stopmachine_thread_ack);
54                 } else if (stopmachine_state == STOPMACHINE_PREPARE
55                            && !prepared) {
56                         /* Everyone is in place, hold CPU. */
57                         preempt_disable();
58                         prepared = 1;
59                         smp_mb(); /* Must read state first. */
60                         atomic_inc(&stopmachine_thread_ack);
61                 }
62                 /* Yield in first stage: migration threads need to
63                  * help our sisters onto their CPUs. */
64                 if (!prepared && !irqs_disabled)
65                         yield();
66                 else
67                         cpu_relax();
68         }
69
70         /* Ack: we are exiting. */
71         smp_mb(); /* Must read state first. */
72         atomic_inc(&stopmachine_thread_ack);
73
74         if (irqs_disabled)
75                 local_irq_enable();
76         if (prepared)
77                 preempt_enable();
78
79         return 0;
80 }
81
82 /* Change the thread state */
83 static void stopmachine_set_state(enum stopmachine_state state)
84 {
85         atomic_set(&stopmachine_thread_ack, 0);
86         smp_wmb();
87         stopmachine_state = state;
88         while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
89                 cpu_relax();
90 }
91
92 static int stop_machine(void)
93 {
94         int i, ret = 0;
95
96         atomic_set(&stopmachine_thread_ack, 0);
97         stopmachine_num_threads = 0;
98         stopmachine_state = STOPMACHINE_WAIT;
99
100         for_each_online_cpu(i) {
101                 if (i == raw_smp_processor_id())
102                         continue;
103                 ret = kernel_thread(stopmachine, (void *)(long)i,CLONE_KERNEL);
104                 if (ret < 0)
105                         break;
106                 stopmachine_num_threads++;
107         }
108
109         /* Wait for them all to come to life. */
110         while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
111                 yield();
112
113         /* If some failed, kill them all. */
114         if (ret < 0) {
115                 stopmachine_set_state(STOPMACHINE_EXIT);
116                 return ret;
117         }
118
119         /* Now they are all started, make them hold the CPUs, ready. */
120         preempt_disable();
121         stopmachine_set_state(STOPMACHINE_PREPARE);
122
123         /* Make them disable irqs. */
124         local_irq_disable();
125         hard_irq_disable();
126         stopmachine_set_state(STOPMACHINE_DISABLE_IRQ);
127
128         return 0;
129 }
130
131 static void restart_machine(void)
132 {
133         stopmachine_set_state(STOPMACHINE_EXIT);
134         local_irq_enable();
135         preempt_enable_no_resched();
136 }
137
138 struct stop_machine_data
139 {
140         int (*fn)(void *);
141         void *data;
142         struct completion done;
143 };
144
145 static int do_stop(void *_smdata)
146 {
147         struct stop_machine_data *smdata = _smdata;
148         int ret;
149
150         ret = stop_machine();
151         if (ret == 0) {
152                 ret = smdata->fn(smdata->data);
153                 restart_machine();
154         }
155
156         /* We're done: you can kthread_stop us now */
157         complete(&smdata->done);
158
159         /* Wait for kthread_stop */
160         set_current_state(TASK_INTERRUPTIBLE);
161         while (!kthread_should_stop()) {
162                 schedule();
163                 set_current_state(TASK_INTERRUPTIBLE);
164         }
165         __set_current_state(TASK_RUNNING);
166         return ret;
167 }
168
169 struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
170                                        unsigned int cpu)
171 {
172         static DEFINE_MUTEX(stopmachine_mutex);
173         struct stop_machine_data smdata;
174         struct task_struct *p;
175
176         smdata.fn = fn;
177         smdata.data = data;
178         init_completion(&smdata.done);
179
180         mutex_lock(&stopmachine_mutex);
181
182         /* If they don't care which CPU fn runs on, bind to any online one. */
183         if (cpu == NR_CPUS)
184                 cpu = raw_smp_processor_id();
185
186         p = kthread_create(do_stop, &smdata, "kstopmachine");
187         if (!IS_ERR(p)) {
188                 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
189
190                 /* One high-prio thread per cpu.  We'll do this one. */
191                 sched_setscheduler(p, SCHED_FIFO, &param);
192                 kthread_bind(p, cpu);
193                 wake_up_process(p);
194                 wait_for_completion(&smdata.done);
195         }
196         mutex_unlock(&stopmachine_mutex);
197         return p;
198 }
199
200 int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu)
201 {
202         struct task_struct *p;
203         int ret;
204
205         /* No CPUs can come up or down during this. */
206         get_online_cpus();
207         p = __stop_machine_run(fn, data, cpu);
208         if (!IS_ERR(p))
209                 ret = kthread_stop(p);
210         else
211                 ret = PTR_ERR(p);
212         put_online_cpus();
213
214         return ret;
215 }
216 EXPORT_SYMBOL_GPL(stop_machine_run);