2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
25 * The current flushing context - we pass it instead of 5 arguments:
34 unsigned force_split : 1;
39 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
40 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
41 * entries change the page attribute in parallel to some other cpu
42 * splitting a large page entry along with changing the attribute.
44 static DEFINE_SPINLOCK(cpa_lock);
46 #define CPA_FLUSHTLB 1
50 static unsigned long direct_pages_count[PG_LEVEL_NUM];
52 void update_page_count(int level, unsigned long pages)
56 /* Protect against CPA */
57 spin_lock_irqsave(&pgd_lock, flags);
58 direct_pages_count[level] += pages;
59 spin_unlock_irqrestore(&pgd_lock, flags);
62 static void split_page_count(int level)
64 direct_pages_count[level]--;
65 direct_pages_count[level - 1] += PTRS_PER_PTE;
68 void arch_report_meminfo(struct seq_file *m)
70 seq_printf(m, "DirectMap4k: %8lu kB\n",
71 direct_pages_count[PG_LEVEL_4K] << 2);
72 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
73 seq_printf(m, "DirectMap2M: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_2M] << 11);
76 seq_printf(m, "DirectMap4M: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_2M] << 12);
81 seq_printf(m, "DirectMap1G: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_1G] << 20);
86 static inline void split_page_count(int level) { }
91 static inline unsigned long highmap_start_pfn(void)
93 return __pa(_text) >> PAGE_SHIFT;
96 static inline unsigned long highmap_end_pfn(void)
98 return __pa(roundup((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
103 #ifdef CONFIG_DEBUG_PAGEALLOC
104 # define debug_pagealloc 1
106 # define debug_pagealloc 0
110 within(unsigned long addr, unsigned long start, unsigned long end)
112 return addr >= start && addr < end;
120 * clflush_cache_range - flush a cache range with clflush
121 * @addr: virtual start address
122 * @size: number of bytes to flush
124 * clflush is an unordered instruction which needs fencing with mfence
125 * to avoid ordering issues.
127 void clflush_cache_range(void *vaddr, unsigned int size)
129 void *vend = vaddr + size - 1;
133 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
136 * Flush any possible final partial cacheline:
143 static void __cpa_flush_all(void *arg)
145 unsigned long cache = (unsigned long)arg;
148 * Flush all to work around Errata in early athlons regarding
149 * large page flushing.
153 if (cache && boot_cpu_data.x86_model >= 4)
157 static void cpa_flush_all(unsigned long cache)
159 BUG_ON(irqs_disabled());
161 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
164 static void __cpa_flush_range(void *arg)
167 * We could optimize that further and do individual per page
168 * tlb invalidates for a low number of pages. Caveat: we must
169 * flush the high aliases on 64bit as well.
174 static void cpa_flush_range(unsigned long start, int numpages, int cache)
176 unsigned int i, level;
179 BUG_ON(irqs_disabled());
180 WARN_ON(PAGE_ALIGN(start) != start);
182 on_each_cpu(__cpa_flush_range, NULL, 1);
188 * We only need to flush on one CPU,
189 * clflush is a MESI-coherent instruction that
190 * will cause all other CPUs to flush the same
193 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
194 pte_t *pte = lookup_address(addr, &level);
197 * Only flush present addresses:
199 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
200 clflush_cache_range((void *) addr, PAGE_SIZE);
204 static void cpa_flush_array(unsigned long *start, int numpages, int cache)
206 unsigned int i, level;
209 BUG_ON(irqs_disabled());
211 on_each_cpu(__cpa_flush_range, NULL, 1);
217 if (numpages >= 1024) {
218 if (boot_cpu_data.x86_model >= 4)
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
228 for (i = 0, addr = start; i < numpages; i++, addr++) {
229 pte_t *pte = lookup_address(*addr, &level);
232 * Only flush present addresses:
234 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
235 clflush_cache_range((void *) *addr, PAGE_SIZE);
240 * Certain areas of memory on x86 require very specific protection flags,
241 * for example the BIOS area or kernel text. Callers don't always get this
242 * right (again, ioremap() on BIOS memory is not uncommon) so this function
243 * checks and fixes these known static required protection bits.
245 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
248 pgprot_t forbidden = __pgprot(0);
251 * The BIOS area between 640k and 1Mb needs to be executable for
252 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
254 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
255 pgprot_val(forbidden) |= _PAGE_NX;
258 * The kernel text needs to be executable for obvious reasons
259 * Does not cover __inittext since that is gone later on. On
260 * 64bit we do not enforce !NX on the low mapping
262 if (within(address, (unsigned long)_text, (unsigned long)_etext))
263 pgprot_val(forbidden) |= _PAGE_NX;
266 * The .rodata section needs to be read-only. Using the pfn
267 * catches all aliases.
269 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
270 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
271 pgprot_val(forbidden) |= _PAGE_RW;
273 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
279 * Lookup the page table entry for a virtual address. Return a pointer
280 * to the entry and the level of the mapping.
282 * Note: We return pud and pmd either when the entry is marked large
283 * or when the present bit is not set. Otherwise we would return a
284 * pointer to a nonexisting mapping.
286 pte_t *lookup_address(unsigned long address, unsigned int *level)
288 pgd_t *pgd = pgd_offset_k(address);
292 *level = PG_LEVEL_NONE;
297 pud = pud_offset(pgd, address);
301 *level = PG_LEVEL_1G;
302 if (pud_large(*pud) || !pud_present(*pud))
305 pmd = pmd_offset(pud, address);
309 *level = PG_LEVEL_2M;
310 if (pmd_large(*pmd) || !pmd_present(*pmd))
313 *level = PG_LEVEL_4K;
315 return pte_offset_kernel(pmd, address);
317 EXPORT_SYMBOL_GPL(lookup_address);
320 * Set the new pmd in all the pgds we know about:
322 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
325 set_pte_atomic(kpte, pte);
327 if (!SHARED_KERNEL_PMD) {
330 list_for_each_entry(page, &pgd_list, lru) {
335 pgd = (pgd_t *)page_address(page) + pgd_index(address);
336 pud = pud_offset(pgd, address);
337 pmd = pmd_offset(pud, address);
338 set_pte_atomic((pte_t *)pmd, pte);
345 try_preserve_large_page(pte_t *kpte, unsigned long address,
346 struct cpa_data *cpa)
348 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
349 pte_t new_pte, old_pte, *tmp;
350 pgprot_t old_prot, new_prot;
354 if (cpa->force_split)
357 spin_lock_irqsave(&pgd_lock, flags);
359 * Check for races, another CPU might have split this page
362 tmp = lookup_address(address, &level);
368 psize = PMD_PAGE_SIZE;
369 pmask = PMD_PAGE_MASK;
373 psize = PUD_PAGE_SIZE;
374 pmask = PUD_PAGE_MASK;
383 * Calculate the number of pages, which fit into this large
384 * page starting at address:
386 nextpage_addr = (address + psize) & pmask;
387 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
388 if (numpages < cpa->numpages)
389 cpa->numpages = numpages;
392 * We are safe now. Check whether the new pgprot is the same:
395 old_prot = new_prot = pte_pgprot(old_pte);
397 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
398 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
401 * old_pte points to the large page base address. So we need
402 * to add the offset of the virtual address:
404 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
407 new_prot = static_protections(new_prot, address, pfn);
410 * We need to check the full range, whether
411 * static_protection() requires a different pgprot for one of
412 * the pages in the range we try to preserve:
414 addr = address + PAGE_SIZE;
416 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
417 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
419 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
424 * If there are no changes, return. maxpages has been updated
427 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
433 * We need to change the attributes. Check, whether we can
434 * change the large page in one go. We request a split, when
435 * the address is not aligned and the number of pages is
436 * smaller than the number of pages in the large page. Note
437 * that we limited the number of possible pages already to
438 * the number of pages in the large page.
440 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
442 * The address is aligned and the number of pages
443 * covers the full page.
445 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
446 __set_pmd_pte(kpte, address, new_pte);
447 cpa->flags |= CPA_FLUSHTLB;
452 spin_unlock_irqrestore(&pgd_lock, flags);
457 static int split_large_page(pte_t *kpte, unsigned long address)
459 unsigned long flags, pfn, pfninc = 1;
460 unsigned int i, level;
465 if (!debug_pagealloc)
466 spin_unlock(&cpa_lock);
467 base = alloc_pages(GFP_KERNEL, 0);
468 if (!debug_pagealloc)
469 spin_lock(&cpa_lock);
473 spin_lock_irqsave(&pgd_lock, flags);
475 * Check for races, another CPU might have split this page
478 tmp = lookup_address(address, &level);
482 pbase = (pte_t *)page_address(base);
483 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
484 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
487 if (level == PG_LEVEL_1G) {
488 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
489 pgprot_val(ref_prot) |= _PAGE_PSE;
494 * Get the target pfn from the original entry:
496 pfn = pte_pfn(*kpte);
497 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
498 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
500 if (address >= (unsigned long)__va(0) &&
501 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
502 split_page_count(level);
505 if (address >= (unsigned long)__va(1UL<<32) &&
506 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
507 split_page_count(level);
511 * Install the new, split up pagetable.
513 * We use the standard kernel pagetable protections for the new
514 * pagetable protections, the actual ptes set above control the
515 * primary protection behavior:
517 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
522 * If we dropped out via the lookup_address check under
523 * pgd_lock then stick the page back into the pool:
527 spin_unlock_irqrestore(&pgd_lock, flags);
532 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
536 * Ignore all non primary paths.
542 * Ignore the NULL PTE for kernel identity mapping, as it is expected
544 * Also set numpages to '1' indicating that we processed cpa req for
545 * one virtual address page and its pfn. TBD: numpages can be set based
546 * on the initial value and the level returned by lookup_address().
548 if (within(vaddr, PAGE_OFFSET,
549 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
551 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
554 WARN(1, KERN_WARNING "CPA: called for zero pte. "
555 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
562 static int __change_page_attr(struct cpa_data *cpa, int primary)
564 unsigned long address;
567 pte_t *kpte, old_pte;
569 if (cpa->flags & CPA_ARRAY)
570 address = cpa->vaddr[cpa->curpage];
572 address = *cpa->vaddr;
574 kpte = lookup_address(address, &level);
576 return __cpa_process_fault(cpa, address, primary);
579 if (!pte_val(old_pte))
580 return __cpa_process_fault(cpa, address, primary);
582 if (level == PG_LEVEL_4K) {
584 pgprot_t new_prot = pte_pgprot(old_pte);
585 unsigned long pfn = pte_pfn(old_pte);
587 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
588 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
590 new_prot = static_protections(new_prot, address, pfn);
593 * We need to keep the pfn from the existing PTE,
594 * after all we're only going to change it's attributes
595 * not the memory it points to
597 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
600 * Do we really change anything ?
602 if (pte_val(old_pte) != pte_val(new_pte)) {
603 set_pte_atomic(kpte, new_pte);
604 cpa->flags |= CPA_FLUSHTLB;
611 * Check, whether we can keep the large page intact
612 * and just change the pte:
614 do_split = try_preserve_large_page(kpte, address, cpa);
616 * When the range fits into the existing large page,
617 * return. cp->numpages and cpa->tlbflush have been updated in
624 * We have to split the large page:
626 err = split_large_page(kpte, address);
629 * Do a global flush tlb after splitting the large page
630 * and before we do the actual change page attribute in the PTE.
632 * With out this, we violate the TLB application note, that says
633 * "The TLBs may contain both ordinary and large-page
634 * translations for a 4-KByte range of linear addresses. This
635 * may occur if software modifies the paging structures so that
636 * the page size used for the address range changes. If the two
637 * translations differ with respect to page frame or attributes
638 * (e.g., permissions), processor behavior is undefined and may
639 * be implementation-specific."
641 * We do this global tlb flush inside the cpa_lock, so that we
642 * don't allow any other cpu, with stale tlb entries change the
643 * page attribute in parallel, that also falls into the
644 * just split large page entry.
653 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
655 static int cpa_process_alias(struct cpa_data *cpa)
657 struct cpa_data alias_cpa;
659 unsigned long temp_cpa_vaddr, vaddr;
661 if (cpa->pfn >= max_pfn_mapped)
665 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
669 * No need to redo, when the primary call touched the direct
672 if (cpa->flags & CPA_ARRAY)
673 vaddr = cpa->vaddr[cpa->curpage];
677 if (!(within(vaddr, PAGE_OFFSET,
678 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
681 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
682 alias_cpa.vaddr = &temp_cpa_vaddr;
683 alias_cpa.flags &= ~CPA_ARRAY;
686 ret = __change_page_attr_set_clr(&alias_cpa, 0);
693 * No need to redo, when the primary call touched the high
696 if (within(vaddr, (unsigned long) _text, (unsigned long) _end))
700 * If the physical address is inside the kernel map, we need
701 * to touch the high mapped kernel as well:
703 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
707 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
708 alias_cpa.vaddr = &temp_cpa_vaddr;
709 alias_cpa.flags &= ~CPA_ARRAY;
712 * The high mapping range is imprecise, so ignore the return value.
714 __change_page_attr_set_clr(&alias_cpa, 0);
719 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
721 int ret, numpages = cpa->numpages;
725 * Store the remaining nr of pages for the large page
726 * preservation check.
728 cpa->numpages = numpages;
729 /* for array changes, we can't use large page */
730 if (cpa->flags & CPA_ARRAY)
733 if (!debug_pagealloc)
734 spin_lock(&cpa_lock);
735 ret = __change_page_attr(cpa, checkalias);
736 if (!debug_pagealloc)
737 spin_unlock(&cpa_lock);
742 ret = cpa_process_alias(cpa);
748 * Adjust the number of pages with the result of the
749 * CPA operation. Either a large page has been
750 * preserved or a single page update happened.
752 BUG_ON(cpa->numpages > numpages);
753 numpages -= cpa->numpages;
754 if (cpa->flags & CPA_ARRAY)
757 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
763 static inline int cache_attr(pgprot_t attr)
765 return pgprot_val(attr) &
766 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
769 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
770 pgprot_t mask_set, pgprot_t mask_clr,
771 int force_split, int array)
774 int ret, cache, checkalias;
777 * Check, if we are requested to change a not supported
780 mask_set = canon_pgprot(mask_set);
781 mask_clr = canon_pgprot(mask_clr);
782 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
785 /* Ensure we are PAGE_SIZE aligned */
787 if (*addr & ~PAGE_MASK) {
790 * People should not be passing in unaligned addresses:
796 for (i = 0; i < numpages; i++) {
797 if (addr[i] & ~PAGE_MASK) {
798 addr[i] &= PAGE_MASK;
804 /* Must avoid aliasing mappings in the highmem code */
810 * If we're called with lazy mmu updates enabled, the
811 * in-memory pte state may be stale. Flush pending updates to
812 * bring them up to date.
814 arch_flush_lazy_mmu_mode();
817 cpa.numpages = numpages;
818 cpa.mask_set = mask_set;
819 cpa.mask_clr = mask_clr;
822 cpa.force_split = force_split;
825 cpa.flags |= CPA_ARRAY;
827 /* No alias checking for _NX bit modifications */
828 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
830 ret = __change_page_attr_set_clr(&cpa, checkalias);
833 * Check whether we really changed something:
835 if (!(cpa.flags & CPA_FLUSHTLB))
839 * No need to flush, when we did not set any of the caching
842 cache = cache_attr(mask_set);
845 * On success we use clflush, when the CPU supports it to
846 * avoid the wbindv. If the CPU does not support it and in the
847 * error case we fall back to cpa_flush_all (which uses
850 if (!ret && cpu_has_clflush) {
851 if (cpa.flags & CPA_ARRAY)
852 cpa_flush_array(addr, numpages, cache);
854 cpa_flush_range(*addr, numpages, cache);
856 cpa_flush_all(cache);
859 * If we've been called with lazy mmu updates enabled, then
860 * make sure that everything gets flushed out before we
863 arch_flush_lazy_mmu_mode();
869 static inline int change_page_attr_set(unsigned long *addr, int numpages,
870 pgprot_t mask, int array)
872 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
876 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
877 pgprot_t mask, int array)
879 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
883 int _set_memory_uc(unsigned long addr, int numpages)
886 * for now UC MINUS. see comments in ioremap_nocache()
888 return change_page_attr_set(&addr, numpages,
889 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
892 int set_memory_uc(unsigned long addr, int numpages)
895 * for now UC MINUS. see comments in ioremap_nocache()
897 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
898 _PAGE_CACHE_UC_MINUS, NULL))
901 return _set_memory_uc(addr, numpages);
903 EXPORT_SYMBOL(set_memory_uc);
905 int set_memory_array_uc(unsigned long *addr, int addrinarray)
911 * for now UC MINUS. see comments in ioremap_nocache()
913 for (i = 0; i < addrinarray; i++) {
914 start = __pa(addr[i]);
915 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
916 if (end != __pa(addr[i + 1]))
920 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
924 return change_page_attr_set(addr, addrinarray,
925 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
927 for (i = 0; i < addrinarray; i++) {
928 unsigned long tmp = __pa(addr[i]);
932 for (end = tmp + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
933 if (end != __pa(addr[i + 1]))
937 free_memtype(tmp, end);
941 EXPORT_SYMBOL(set_memory_array_uc);
943 int _set_memory_wc(unsigned long addr, int numpages)
945 return change_page_attr_set(&addr, numpages,
946 __pgprot(_PAGE_CACHE_WC), 0);
949 int set_memory_wc(unsigned long addr, int numpages)
952 return set_memory_uc(addr, numpages);
954 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
955 _PAGE_CACHE_WC, NULL))
958 return _set_memory_wc(addr, numpages);
960 EXPORT_SYMBOL(set_memory_wc);
962 int _set_memory_wb(unsigned long addr, int numpages)
964 return change_page_attr_clear(&addr, numpages,
965 __pgprot(_PAGE_CACHE_MASK), 0);
968 int set_memory_wb(unsigned long addr, int numpages)
970 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
972 return _set_memory_wb(addr, numpages);
974 EXPORT_SYMBOL(set_memory_wb);
976 int set_memory_array_wb(unsigned long *addr, int addrinarray)
980 for (i = 0; i < addrinarray; i++) {
981 unsigned long start = __pa(addr[i]);
984 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
985 if (end != __pa(addr[i + 1]))
989 free_memtype(start, end);
991 return change_page_attr_clear(addr, addrinarray,
992 __pgprot(_PAGE_CACHE_MASK), 1);
994 EXPORT_SYMBOL(set_memory_array_wb);
996 int set_memory_x(unsigned long addr, int numpages)
998 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1000 EXPORT_SYMBOL(set_memory_x);
1002 int set_memory_nx(unsigned long addr, int numpages)
1004 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1006 EXPORT_SYMBOL(set_memory_nx);
1008 int set_memory_ro(unsigned long addr, int numpages)
1010 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1012 EXPORT_SYMBOL_GPL(set_memory_ro);
1014 int set_memory_rw(unsigned long addr, int numpages)
1016 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1018 EXPORT_SYMBOL_GPL(set_memory_rw);
1020 int set_memory_np(unsigned long addr, int numpages)
1022 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1025 int set_memory_4k(unsigned long addr, int numpages)
1027 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1031 int set_pages_uc(struct page *page, int numpages)
1033 unsigned long addr = (unsigned long)page_address(page);
1035 return set_memory_uc(addr, numpages);
1037 EXPORT_SYMBOL(set_pages_uc);
1039 int set_pages_wb(struct page *page, int numpages)
1041 unsigned long addr = (unsigned long)page_address(page);
1043 return set_memory_wb(addr, numpages);
1045 EXPORT_SYMBOL(set_pages_wb);
1047 int set_pages_x(struct page *page, int numpages)
1049 unsigned long addr = (unsigned long)page_address(page);
1051 return set_memory_x(addr, numpages);
1053 EXPORT_SYMBOL(set_pages_x);
1055 int set_pages_nx(struct page *page, int numpages)
1057 unsigned long addr = (unsigned long)page_address(page);
1059 return set_memory_nx(addr, numpages);
1061 EXPORT_SYMBOL(set_pages_nx);
1063 int set_pages_ro(struct page *page, int numpages)
1065 unsigned long addr = (unsigned long)page_address(page);
1067 return set_memory_ro(addr, numpages);
1070 int set_pages_rw(struct page *page, int numpages)
1072 unsigned long addr = (unsigned long)page_address(page);
1074 return set_memory_rw(addr, numpages);
1077 #ifdef CONFIG_DEBUG_PAGEALLOC
1079 static int __set_pages_p(struct page *page, int numpages)
1081 unsigned long tempaddr = (unsigned long) page_address(page);
1082 struct cpa_data cpa = { .vaddr = &tempaddr,
1083 .numpages = numpages,
1084 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1085 .mask_clr = __pgprot(0),
1089 * No alias checking needed for setting present flag. otherwise,
1090 * we may need to break large pages for 64-bit kernel text
1091 * mappings (this adds to complexity if we want to do this from
1092 * atomic context especially). Let's keep it simple!
1094 return __change_page_attr_set_clr(&cpa, 0);
1097 static int __set_pages_np(struct page *page, int numpages)
1099 unsigned long tempaddr = (unsigned long) page_address(page);
1100 struct cpa_data cpa = { .vaddr = &tempaddr,
1101 .numpages = numpages,
1102 .mask_set = __pgprot(0),
1103 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1107 * No alias checking needed for setting not present flag. otherwise,
1108 * we may need to break large pages for 64-bit kernel text
1109 * mappings (this adds to complexity if we want to do this from
1110 * atomic context especially). Let's keep it simple!
1112 return __change_page_attr_set_clr(&cpa, 0);
1115 void kernel_map_pages(struct page *page, int numpages, int enable)
1117 if (PageHighMem(page))
1120 debug_check_no_locks_freed(page_address(page),
1121 numpages * PAGE_SIZE);
1125 * If page allocator is not up yet then do not call c_p_a():
1127 if (!debug_pagealloc_enabled)
1131 * The return value is ignored as the calls cannot fail.
1132 * Large pages for identity mappings are not used at boot time
1133 * and hence no memory allocations during large page split.
1136 __set_pages_p(page, numpages);
1138 __set_pages_np(page, numpages);
1141 * We should perform an IPI and flush all tlbs,
1142 * but that can deadlock->flush only current cpu:
1147 #ifdef CONFIG_HIBERNATION
1149 bool kernel_page_present(struct page *page)
1154 if (PageHighMem(page))
1157 pte = lookup_address((unsigned long)page_address(page), &level);
1158 return (pte_val(*pte) & _PAGE_PRESENT);
1161 #endif /* CONFIG_HIBERNATION */
1163 #endif /* CONFIG_DEBUG_PAGEALLOC */
1166 * The testcases use internal knowledge of the implementation that shouldn't
1167 * be exposed to the rest of the kernel. Include these directly here.
1169 #ifdef CONFIG_CPA_DEBUG
1170 #include "pageattr-test.c"