2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
30 #include <linux/config.h>
31 #include <linux/errno.h>
32 #include <linux/module.h>
33 #include <linux/sched.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/irq.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/bcd.h>
44 #include <linux/profile.h>
46 #include <asm/uaccess.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
58 extern unsigned long wall_jiffies; /* kernel/timer.c */
60 static int set_rtc_mmss(unsigned long);
62 DEFINE_SPINLOCK(rtc_lock);
64 #define TICK_SIZE (tick_nsec / 1000)
67 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69 * for large CPU clock rates.
73 /* lump static variables together for more efficient access: */
75 /* cycle counter last time it got invoked */
77 /* ticks/cycle * 2^48 */
78 unsigned long scaled_ticks_per_cycle;
79 /* last time the CMOS clock got updated */
80 time_t last_rtc_update;
81 /* partial unused tick */
82 unsigned long partial_tick;
85 unsigned long est_cycle_freq;
88 static inline __u32 rpcc(void)
91 asm volatile ("rpcc %0" : "=r"(result));
96 * Scheduler clock - returns current time in nanosec units.
98 * Copied from ARM code for expediency... ;-}
100 unsigned long long sched_clock(void)
102 return (unsigned long long)jiffies * (1000000000 / HZ);
107 * timer_interrupt() needs to keep up the real-time clock,
108 * as well as call the "do_timer()" routine every clocktick
110 irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs)
117 /* Not SMP, do kernel PC profiling here. */
118 profile_tick(CPU_PROFILING, regs);
121 write_seqlock(&xtime_lock);
124 * Calculate how many ticks have passed since the last update,
125 * including any previous partial leftover. Save any resulting
126 * fraction for the next pass.
129 delta = now - state.last_time;
130 state.last_time = now;
131 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
132 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
133 nticks = delta >> FIX_SHIFT;
138 update_process_times(user_mode(regs));
144 * If we have an externally synchronized Linux clock, then update
145 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
146 * called as close as possible to 500 ms before the new second starts.
149 && xtime.tv_sec > state.last_rtc_update + 660
150 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
151 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
152 int tmp = set_rtc_mmss(xtime.tv_sec);
153 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
156 write_sequnlock(&xtime_lock);
161 common_init_rtc(void)
165 /* Reset periodic interrupt frequency. */
166 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
167 /* Test includes known working values on various platforms
168 where 0x26 is wrong; we refuse to change those. */
169 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
170 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
171 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
174 /* Turn on periodic interrupts. */
175 x = CMOS_READ(RTC_CONTROL);
176 if (!(x & RTC_PIE)) {
177 printk("Turning on RTC interrupts.\n");
179 x &= ~(RTC_AIE | RTC_UIE);
180 CMOS_WRITE(x, RTC_CONTROL);
182 (void) CMOS_READ(RTC_INTR_FLAGS);
184 outb(0x36, 0x43); /* pit counter 0: system timer */
188 outb(0xb6, 0x43); /* pit counter 2: speaker */
196 /* Validate a computed cycle counter result against the known bounds for
197 the given processor core. There's too much brokenness in the way of
198 timing hardware for any one method to work everywhere. :-(
200 Return 0 if the result cannot be trusted, otherwise return the argument. */
202 static unsigned long __init
203 validate_cc_value(unsigned long cc)
205 static struct bounds {
206 unsigned int min, max;
207 } cpu_hz[] __initdata = {
208 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
209 [EV4_CPU] = { 100000000, 300000000 },
210 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
211 [EV45_CPU] = { 200000000, 300000000 },
212 [EV5_CPU] = { 250000000, 433000000 },
213 [EV56_CPU] = { 333000000, 667000000 },
214 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
215 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
216 [EV6_CPU] = { 466000000, 600000000 },
217 [EV67_CPU] = { 600000000, 750000000 },
218 [EV68AL_CPU] = { 750000000, 940000000 },
219 [EV68CB_CPU] = { 1000000000, 1333333333 },
220 /* None of the following are shipping as of 2001-11-01. */
221 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
222 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
223 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
224 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
227 /* Allow for some drift in the crystal. 10MHz is more than enough. */
228 const unsigned int deviation = 10000000;
230 struct percpu_struct *cpu;
233 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
234 index = cpu->type & 0xffffffff;
236 /* If index out of bounds, no way to validate. */
237 if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0]))
240 /* If index contains no data, no way to validate. */
241 if (cpu_hz[index].max == 0)
244 if (cc < cpu_hz[index].min - deviation
245 || cc > cpu_hz[index].max + deviation)
253 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
257 #define CALIBRATE_LATCH 0xffff
258 #define TIMEOUT_COUNT 0x100000
260 static unsigned long __init
261 calibrate_cc_with_pit(void)
265 /* Set the Gate high, disable speaker */
266 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
269 * Now let's take care of CTC channel 2
271 * Set the Gate high, program CTC channel 2 for mode 0,
272 * (interrupt on terminal count mode), binary count,
273 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
275 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
276 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
277 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
282 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
285 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
286 if (count <= 1 || count == TIMEOUT_COUNT)
289 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
292 /* The Linux interpretation of the CMOS clock register contents:
293 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
294 RTC registers show the second which has precisely just started.
295 Let's hope other operating systems interpret the RTC the same way. */
297 static unsigned long __init
298 rpcc_after_update_in_progress(void)
300 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
301 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
309 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
310 unsigned long cycle_freq, tolerance;
313 /* Calibrate CPU clock -- attempt #1. */
315 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
317 cc1 = rpcc_after_update_in_progress();
319 /* Calibrate CPU clock -- attempt #2. */
320 if (!est_cycle_freq) {
321 cc2 = rpcc_after_update_in_progress();
322 est_cycle_freq = validate_cc_value(cc2 - cc1);
326 cycle_freq = hwrpb->cycle_freq;
327 if (est_cycle_freq) {
328 /* If the given value is within 250 PPM of what we calculated,
329 accept it. Otherwise, use what we found. */
330 tolerance = cycle_freq / 4000;
331 diff = cycle_freq - est_cycle_freq;
334 if ((unsigned long)diff > tolerance) {
335 cycle_freq = est_cycle_freq;
336 printk("HWRPB cycle frequency bogus. "
337 "Estimated %lu Hz\n", cycle_freq);
341 } else if (! validate_cc_value (cycle_freq)) {
342 printk("HWRPB cycle frequency bogus, "
343 "and unable to estimate a proper value!\n");
346 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
347 to settle, as the Update-In-Progress bit going low isn't good
348 enough on some hardware. 2ms is our guess; we haven't found
349 bogomips yet, but this is close on a 500Mhz box. */
352 sec = CMOS_READ(RTC_SECONDS);
353 min = CMOS_READ(RTC_MINUTES);
354 hour = CMOS_READ(RTC_HOURS);
355 day = CMOS_READ(RTC_DAY_OF_MONTH);
356 mon = CMOS_READ(RTC_MONTH);
357 year = CMOS_READ(RTC_YEAR);
359 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
368 /* PC-like is standard; used for year >= 70 */
372 else if (year >= 20 && year < 48)
375 else if (year >= 48 && year < 70)
376 /* Digital UNIX epoch */
379 printk(KERN_INFO "Using epoch = %d\n", epoch);
381 if ((year += epoch) < 1970)
384 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
387 wall_to_monotonic.tv_sec -= xtime.tv_sec;
388 wall_to_monotonic.tv_nsec = 0;
391 extern void __you_loose (void);
395 state.last_time = cc1;
396 state.scaled_ticks_per_cycle
397 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
398 state.last_rtc_update = 0;
399 state.partial_tick = 0L;
401 /* Startup the timer source. */
406 * Use the cycle counter to estimate an displacement from the last time
407 * tick. Unfortunately the Alpha designers made only the low 32-bits of
408 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
409 * part. So we can't do the "find absolute time in terms of cycles" thing
410 * that the other ports do.
413 do_gettimeofday(struct timeval *tv)
416 unsigned long sec, usec, lost, seq;
417 unsigned long delta_cycles, delta_usec, partial_tick;
420 seq = read_seqbegin_irqsave(&xtime_lock, flags);
422 delta_cycles = rpcc() - state.last_time;
424 usec = (xtime.tv_nsec / 1000);
425 partial_tick = state.partial_tick;
426 lost = jiffies - wall_jiffies;
428 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
431 /* Until and unless we figure out how to get cpu cycle counters
432 in sync and keep them there, we can't use the rpcc tricks. */
433 delta_usec = lost * (1000000 / HZ);
436 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
437 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
438 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
440 * which, given a 600MHz cycle and a 1024Hz tick, has a
441 * dynamic range of about 1.7e17, which is less than the
442 * 1.8e19 in an unsigned long, so we are safe from overflow.
444 * Round, but with .5 up always, since .5 to even is harder
445 * with no clear gain.
448 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
450 + (lost << FIX_SHIFT)) * 15625;
451 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
455 if (usec >= 1000000) {
464 EXPORT_SYMBOL(do_gettimeofday);
467 do_settimeofday(struct timespec *tv)
469 time_t wtm_sec, sec = tv->tv_sec;
470 long wtm_nsec, nsec = tv->tv_nsec;
471 unsigned long delta_nsec;
473 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
476 write_seqlock_irq(&xtime_lock);
478 /* The offset that is added into time in do_gettimeofday above
479 must be subtracted out here to keep a coherent view of the
480 time. Without this, a full-tick error is possible. */
483 delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ);
485 delta_nsec = rpcc() - state.last_time;
486 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
488 + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625;
489 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
495 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
496 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
498 set_normalized_timespec(&xtime, sec, nsec);
499 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
503 write_sequnlock_irq(&xtime_lock);
508 EXPORT_SYMBOL(do_settimeofday);
512 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
513 * called 500 ms after the second nowtime has started, because when
514 * nowtime is written into the registers of the CMOS clock, it will
515 * jump to the next second precisely 500 ms later. Check the Motorola
516 * MC146818A or Dallas DS12887 data sheet for details.
518 * BUG: This routine does not handle hour overflow properly; it just
519 * sets the minutes. Usually you won't notice until after reboot!
524 set_rtc_mmss(unsigned long nowtime)
527 int real_seconds, real_minutes, cmos_minutes;
528 unsigned char save_control, save_freq_select;
530 /* irq are locally disabled here */
531 spin_lock(&rtc_lock);
532 /* Tell the clock it's being set */
533 save_control = CMOS_READ(RTC_CONTROL);
534 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
536 /* Stop and reset prescaler */
537 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
538 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
540 cmos_minutes = CMOS_READ(RTC_MINUTES);
541 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
542 BCD_TO_BIN(cmos_minutes);
545 * since we're only adjusting minutes and seconds,
546 * don't interfere with hour overflow. This avoids
547 * messing with unknown time zones but requires your
548 * RTC not to be off by more than 15 minutes
550 real_seconds = nowtime % 60;
551 real_minutes = nowtime / 60;
552 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
553 /* correct for half hour time zone */
558 if (abs(real_minutes - cmos_minutes) < 30) {
559 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
560 BIN_TO_BCD(real_seconds);
561 BIN_TO_BCD(real_minutes);
563 CMOS_WRITE(real_seconds,RTC_SECONDS);
564 CMOS_WRITE(real_minutes,RTC_MINUTES);
567 "set_rtc_mmss: can't update from %d to %d\n",
568 cmos_minutes, real_minutes);
572 /* The following flags have to be released exactly in this order,
573 * otherwise the DS12887 (popular MC146818A clone with integrated
574 * battery and quartz) will not reset the oscillator and will not
575 * update precisely 500 ms later. You won't find this mentioned in
576 * the Dallas Semiconductor data sheets, but who believes data
577 * sheets anyway ... -- Markus Kuhn
579 CMOS_WRITE(save_control, RTC_CONTROL);
580 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
581 spin_unlock(&rtc_lock);