2 * Implementation of the policy database.
4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
10 * Support for enhanced MLS infrastructure.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation, version 2.
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
26 #include <linux/errno.h>
30 #include "conditional.h"
36 static char *symtab_name[SYM_NUM] = {
48 int selinux_mls_enabled = 0;
50 static unsigned int symtab_sizes[SYM_NUM] = {
61 struct policydb_compat_info {
67 /* These need to be updated if SYM_NUM or OCON_NUM changes */
68 static struct policydb_compat_info policydb_compat[] = {
70 .version = POLICYDB_VERSION_BASE,
71 .sym_num = SYM_NUM - 3,
72 .ocon_num = OCON_NUM - 1,
75 .version = POLICYDB_VERSION_BOOL,
76 .sym_num = SYM_NUM - 2,
77 .ocon_num = OCON_NUM - 1,
80 .version = POLICYDB_VERSION_IPV6,
81 .sym_num = SYM_NUM - 2,
85 .version = POLICYDB_VERSION_NLCLASS,
86 .sym_num = SYM_NUM - 2,
90 .version = POLICYDB_VERSION_MLS,
95 .version = POLICYDB_VERSION_AVTAB,
101 static struct policydb_compat_info *policydb_lookup_compat(int version)
104 struct policydb_compat_info *info = NULL;
106 for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) {
107 if (policydb_compat[i].version == version) {
108 info = &policydb_compat[i];
116 * Initialize the role table.
118 static int roles_init(struct policydb *p)
122 struct role_datum *role;
124 role = kzalloc(sizeof(*role), GFP_KERNEL);
129 role->value = ++p->p_roles.nprim;
130 if (role->value != OBJECT_R_VAL) {
134 key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
139 strcpy(key, OBJECT_R);
140 rc = hashtab_insert(p->p_roles.table, key, role);
154 * Initialize a policy database structure.
156 static int policydb_init(struct policydb *p)
160 memset(p, 0, sizeof(*p));
162 for (i = 0; i < SYM_NUM; i++) {
163 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
165 goto out_free_symtab;
168 rc = avtab_init(&p->te_avtab);
170 goto out_free_symtab;
176 rc = cond_policydb_init(p);
184 avtab_destroy(&p->te_avtab);
187 for (i = 0; i < SYM_NUM; i++)
188 hashtab_destroy(p->symtab[i].table);
193 * The following *_index functions are used to
194 * define the val_to_name and val_to_struct arrays
195 * in a policy database structure. The val_to_name
196 * arrays are used when converting security context
197 * structures into string representations. The
198 * val_to_struct arrays are used when the attributes
199 * of a class, role, or user are needed.
202 static int common_index(void *key, void *datum, void *datap)
205 struct common_datum *comdatum;
209 if (!comdatum->value || comdatum->value > p->p_commons.nprim)
211 p->p_common_val_to_name[comdatum->value - 1] = key;
215 static int class_index(void *key, void *datum, void *datap)
218 struct class_datum *cladatum;
222 if (!cladatum->value || cladatum->value > p->p_classes.nprim)
224 p->p_class_val_to_name[cladatum->value - 1] = key;
225 p->class_val_to_struct[cladatum->value - 1] = cladatum;
229 static int role_index(void *key, void *datum, void *datap)
232 struct role_datum *role;
236 if (!role->value || role->value > p->p_roles.nprim)
238 p->p_role_val_to_name[role->value - 1] = key;
239 p->role_val_to_struct[role->value - 1] = role;
243 static int type_index(void *key, void *datum, void *datap)
246 struct type_datum *typdatum;
251 if (typdatum->primary) {
252 if (!typdatum->value || typdatum->value > p->p_types.nprim)
254 p->p_type_val_to_name[typdatum->value - 1] = key;
260 static int user_index(void *key, void *datum, void *datap)
263 struct user_datum *usrdatum;
267 if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
269 p->p_user_val_to_name[usrdatum->value - 1] = key;
270 p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
274 static int sens_index(void *key, void *datum, void *datap)
277 struct level_datum *levdatum;
282 if (!levdatum->isalias) {
283 if (!levdatum->level->sens ||
284 levdatum->level->sens > p->p_levels.nprim)
286 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
292 static int cat_index(void *key, void *datum, void *datap)
295 struct cat_datum *catdatum;
300 if (!catdatum->isalias) {
301 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
303 p->p_cat_val_to_name[catdatum->value - 1] = key;
309 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
322 * Define the common val_to_name array and the class
323 * val_to_name and val_to_struct arrays in a policy
324 * database structure.
326 * Caller must clean up upon failure.
328 static int policydb_index_classes(struct policydb *p)
332 p->p_common_val_to_name =
333 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
334 if (!p->p_common_val_to_name) {
339 rc = hashtab_map(p->p_commons.table, common_index, p);
343 p->class_val_to_struct =
344 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
345 if (!p->class_val_to_struct) {
350 p->p_class_val_to_name =
351 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
352 if (!p->p_class_val_to_name) {
357 rc = hashtab_map(p->p_classes.table, class_index, p);
363 static void symtab_hash_eval(struct symtab *s)
367 for (i = 0; i < SYM_NUM; i++) {
368 struct hashtab *h = s[i].table;
369 struct hashtab_info info;
371 hashtab_stat(h, &info);
372 printk(KERN_INFO "%s: %d entries and %d/%d buckets used, "
373 "longest chain length %d\n", symtab_name[i], h->nel,
374 info.slots_used, h->size, info.max_chain_len);
380 * Define the other val_to_name and val_to_struct arrays
381 * in a policy database structure.
383 * Caller must clean up on failure.
385 static int policydb_index_others(struct policydb *p)
389 printk(KERN_INFO "security: %d users, %d roles, %d types, %d bools",
390 p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
391 if (selinux_mls_enabled)
392 printk(", %d sens, %d cats", p->p_levels.nprim,
396 printk(KERN_INFO "security: %d classes, %d rules\n",
397 p->p_classes.nprim, p->te_avtab.nel);
400 avtab_hash_eval(&p->te_avtab, "rules");
401 symtab_hash_eval(p->symtab);
404 p->role_val_to_struct =
405 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
407 if (!p->role_val_to_struct) {
412 p->user_val_to_struct =
413 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
415 if (!p->user_val_to_struct) {
420 if (cond_init_bool_indexes(p)) {
425 for (i = SYM_ROLES; i < SYM_NUM; i++) {
426 p->sym_val_to_name[i] =
427 kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
428 if (!p->sym_val_to_name[i]) {
432 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
442 * The following *_destroy functions are used to
443 * free any memory allocated for each kind of
444 * symbol data in the policy database.
447 static int perm_destroy(void *key, void *datum, void *p)
454 static int common_destroy(void *key, void *datum, void *p)
456 struct common_datum *comdatum;
460 hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
461 hashtab_destroy(comdatum->permissions.table);
466 static int class_destroy(void *key, void *datum, void *p)
468 struct class_datum *cladatum;
469 struct constraint_node *constraint, *ctemp;
470 struct constraint_expr *e, *etmp;
474 hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
475 hashtab_destroy(cladatum->permissions.table);
476 constraint = cladatum->constraints;
478 e = constraint->expr;
480 ebitmap_destroy(&e->names);
486 constraint = constraint->next;
490 constraint = cladatum->validatetrans;
492 e = constraint->expr;
494 ebitmap_destroy(&e->names);
500 constraint = constraint->next;
504 kfree(cladatum->comkey);
509 static int role_destroy(void *key, void *datum, void *p)
511 struct role_datum *role;
515 ebitmap_destroy(&role->dominates);
516 ebitmap_destroy(&role->types);
521 static int type_destroy(void *key, void *datum, void *p)
528 static int user_destroy(void *key, void *datum, void *p)
530 struct user_datum *usrdatum;
534 ebitmap_destroy(&usrdatum->roles);
535 ebitmap_destroy(&usrdatum->range.level[0].cat);
536 ebitmap_destroy(&usrdatum->range.level[1].cat);
537 ebitmap_destroy(&usrdatum->dfltlevel.cat);
542 static int sens_destroy(void *key, void *datum, void *p)
544 struct level_datum *levdatum;
548 ebitmap_destroy(&levdatum->level->cat);
549 kfree(levdatum->level);
554 static int cat_destroy(void *key, void *datum, void *p)
561 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
573 static void ocontext_destroy(struct ocontext *c, int i)
575 context_destroy(&c->context[0]);
576 context_destroy(&c->context[1]);
577 if (i == OCON_ISID || i == OCON_FS ||
578 i == OCON_NETIF || i == OCON_FSUSE)
584 * Free any memory allocated by a policy database structure.
586 void policydb_destroy(struct policydb *p)
588 struct ocontext *c, *ctmp;
589 struct genfs *g, *gtmp;
591 struct role_allow *ra, *lra = NULL;
592 struct role_trans *tr, *ltr = NULL;
593 struct range_trans *rt, *lrt = NULL;
595 for (i = 0; i < SYM_NUM; i++) {
596 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
597 hashtab_destroy(p->symtab[i].table);
600 for (i = 0; i < SYM_NUM; i++)
601 kfree(p->sym_val_to_name[i]);
603 kfree(p->class_val_to_struct);
604 kfree(p->role_val_to_struct);
605 kfree(p->user_val_to_struct);
607 avtab_destroy(&p->te_avtab);
609 for (i = 0; i < OCON_NUM; i++) {
614 ocontext_destroy(ctmp,i);
625 ocontext_destroy(ctmp,OCON_FSUSE);
632 cond_policydb_destroy(p);
634 for (tr = p->role_tr; tr; tr = tr->next) {
640 for (ra = p->role_allow; ra; ra = ra -> next) {
646 for (rt = p->range_tr; rt; rt = rt -> next) {
652 if (p->type_attr_map) {
653 for (i = 0; i < p->p_types.nprim; i++)
654 ebitmap_destroy(&p->type_attr_map[i]);
656 kfree(p->type_attr_map);
662 * Load the initial SIDs specified in a policy database
663 * structure into a SID table.
665 int policydb_load_isids(struct policydb *p, struct sidtab *s)
667 struct ocontext *head, *c;
672 printk(KERN_ERR "security: out of memory on SID table init\n");
676 head = p->ocontexts[OCON_ISID];
677 for (c = head; c; c = c->next) {
678 if (!c->context[0].user) {
679 printk(KERN_ERR "security: SID %s was never "
680 "defined.\n", c->u.name);
684 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
685 printk(KERN_ERR "security: unable to load initial "
686 "SID %s.\n", c->u.name);
696 * Return 1 if the fields in the security context
697 * structure `c' are valid. Return 0 otherwise.
699 int policydb_context_isvalid(struct policydb *p, struct context *c)
701 struct role_datum *role;
702 struct user_datum *usrdatum;
704 if (!c->role || c->role > p->p_roles.nprim)
707 if (!c->user || c->user > p->p_users.nprim)
710 if (!c->type || c->type > p->p_types.nprim)
713 if (c->role != OBJECT_R_VAL) {
715 * Role must be authorized for the type.
717 role = p->role_val_to_struct[c->role - 1];
718 if (!ebitmap_get_bit(&role->types,
720 /* role may not be associated with type */
724 * User must be authorized for the role.
726 usrdatum = p->user_val_to_struct[c->user - 1];
730 if (!ebitmap_get_bit(&usrdatum->roles,
732 /* user may not be associated with role */
736 if (!mls_context_isvalid(p, c))
743 * Read a MLS range structure from a policydb binary
744 * representation file.
746 static int mls_read_range_helper(struct mls_range *r, void *fp)
752 rc = next_entry(buf, fp, sizeof(u32));
756 items = le32_to_cpu(buf[0]);
757 if (items > ARRAY_SIZE(buf)) {
758 printk(KERN_ERR "security: mls: range overflow\n");
762 rc = next_entry(buf, fp, sizeof(u32) * items);
764 printk(KERN_ERR "security: mls: truncated range\n");
767 r->level[0].sens = le32_to_cpu(buf[0]);
769 r->level[1].sens = le32_to_cpu(buf[1]);
771 r->level[1].sens = r->level[0].sens;
773 rc = ebitmap_read(&r->level[0].cat, fp);
775 printk(KERN_ERR "security: mls: error reading low "
780 rc = ebitmap_read(&r->level[1].cat, fp);
782 printk(KERN_ERR "security: mls: error reading high "
787 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
789 printk(KERN_ERR "security: mls: out of memory\n");
798 ebitmap_destroy(&r->level[0].cat);
803 * Read and validate a security context structure
804 * from a policydb binary representation file.
806 static int context_read_and_validate(struct context *c,
813 rc = next_entry(buf, fp, sizeof buf);
815 printk(KERN_ERR "security: context truncated\n");
818 c->user = le32_to_cpu(buf[0]);
819 c->role = le32_to_cpu(buf[1]);
820 c->type = le32_to_cpu(buf[2]);
821 if (p->policyvers >= POLICYDB_VERSION_MLS) {
822 if (mls_read_range_helper(&c->range, fp)) {
823 printk(KERN_ERR "security: error reading MLS range of "
830 if (!policydb_context_isvalid(p, c)) {
831 printk(KERN_ERR "security: invalid security context\n");
840 * The following *_read functions are used to
841 * read the symbol data from a policy database
842 * binary representation file.
845 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
848 struct perm_datum *perdatum;
853 perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
859 rc = next_entry(buf, fp, sizeof buf);
863 len = le32_to_cpu(buf[0]);
864 perdatum->value = le32_to_cpu(buf[1]);
866 key = kmalloc(len + 1,GFP_KERNEL);
871 rc = next_entry(key, fp, len);
876 rc = hashtab_insert(h, key, perdatum);
882 perm_destroy(key, perdatum, NULL);
886 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
889 struct common_datum *comdatum;
894 comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
900 rc = next_entry(buf, fp, sizeof buf);
904 len = le32_to_cpu(buf[0]);
905 comdatum->value = le32_to_cpu(buf[1]);
907 rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
910 comdatum->permissions.nprim = le32_to_cpu(buf[2]);
911 nel = le32_to_cpu(buf[3]);
913 key = kmalloc(len + 1,GFP_KERNEL);
918 rc = next_entry(key, fp, len);
923 for (i = 0; i < nel; i++) {
924 rc = perm_read(p, comdatum->permissions.table, fp);
929 rc = hashtab_insert(h, key, comdatum);
935 common_destroy(key, comdatum, NULL);
939 static int read_cons_helper(struct constraint_node **nodep, int ncons,
940 int allowxtarget, void *fp)
942 struct constraint_node *c, *lc;
943 struct constraint_expr *e, *le;
949 for (i = 0; i < ncons; i++) {
950 c = kzalloc(sizeof(*c), GFP_KERNEL);
960 rc = next_entry(buf, fp, (sizeof(u32) * 2));
963 c->permissions = le32_to_cpu(buf[0]);
964 nexpr = le32_to_cpu(buf[1]);
967 for (j = 0; j < nexpr; j++) {
968 e = kzalloc(sizeof(*e), GFP_KERNEL);
978 rc = next_entry(buf, fp, (sizeof(u32) * 3));
981 e->expr_type = le32_to_cpu(buf[0]);
982 e->attr = le32_to_cpu(buf[1]);
983 e->op = le32_to_cpu(buf[2]);
985 switch (e->expr_type) {
997 if (depth == (CEXPR_MAXDEPTH - 1))
1002 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1004 if (depth == (CEXPR_MAXDEPTH - 1))
1007 if (ebitmap_read(&e->names, fp))
1023 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1026 struct class_datum *cladatum;
1028 u32 len, len2, ncons, nel;
1031 cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1037 rc = next_entry(buf, fp, sizeof(u32)*6);
1041 len = le32_to_cpu(buf[0]);
1042 len2 = le32_to_cpu(buf[1]);
1043 cladatum->value = le32_to_cpu(buf[2]);
1045 rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1048 cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1049 nel = le32_to_cpu(buf[4]);
1051 ncons = le32_to_cpu(buf[5]);
1053 key = kmalloc(len + 1,GFP_KERNEL);
1058 rc = next_entry(key, fp, len);
1064 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1065 if (!cladatum->comkey) {
1069 rc = next_entry(cladatum->comkey, fp, len2);
1072 cladatum->comkey[len2] = 0;
1074 cladatum->comdatum = hashtab_search(p->p_commons.table,
1076 if (!cladatum->comdatum) {
1077 printk(KERN_ERR "security: unknown common %s\n",
1083 for (i = 0; i < nel; i++) {
1084 rc = perm_read(p, cladatum->permissions.table, fp);
1089 rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1093 if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1094 /* grab the validatetrans rules */
1095 rc = next_entry(buf, fp, sizeof(u32));
1098 ncons = le32_to_cpu(buf[0]);
1099 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1104 rc = hashtab_insert(h, key, cladatum);
1112 class_destroy(key, cladatum, NULL);
1116 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1119 struct role_datum *role;
1124 role = kzalloc(sizeof(*role), GFP_KERNEL);
1130 rc = next_entry(buf, fp, sizeof buf);
1134 len = le32_to_cpu(buf[0]);
1135 role->value = le32_to_cpu(buf[1]);
1137 key = kmalloc(len + 1,GFP_KERNEL);
1142 rc = next_entry(key, fp, len);
1147 rc = ebitmap_read(&role->dominates, fp);
1151 rc = ebitmap_read(&role->types, fp);
1155 if (strcmp(key, OBJECT_R) == 0) {
1156 if (role->value != OBJECT_R_VAL) {
1157 printk(KERN_ERR "Role %s has wrong value %d\n",
1158 OBJECT_R, role->value);
1166 rc = hashtab_insert(h, key, role);
1172 role_destroy(key, role, NULL);
1176 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1179 struct type_datum *typdatum;
1184 typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1190 rc = next_entry(buf, fp, sizeof buf);
1194 len = le32_to_cpu(buf[0]);
1195 typdatum->value = le32_to_cpu(buf[1]);
1196 typdatum->primary = le32_to_cpu(buf[2]);
1198 key = kmalloc(len + 1,GFP_KERNEL);
1203 rc = next_entry(key, fp, len);
1208 rc = hashtab_insert(h, key, typdatum);
1214 type_destroy(key, typdatum, NULL);
1220 * Read a MLS level structure from a policydb binary
1221 * representation file.
1223 static int mls_read_level(struct mls_level *lp, void *fp)
1228 memset(lp, 0, sizeof(*lp));
1230 rc = next_entry(buf, fp, sizeof buf);
1232 printk(KERN_ERR "security: mls: truncated level\n");
1235 lp->sens = le32_to_cpu(buf[0]);
1237 if (ebitmap_read(&lp->cat, fp)) {
1238 printk(KERN_ERR "security: mls: error reading level "
1248 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1251 struct user_datum *usrdatum;
1256 usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1262 rc = next_entry(buf, fp, sizeof buf);
1266 len = le32_to_cpu(buf[0]);
1267 usrdatum->value = le32_to_cpu(buf[1]);
1269 key = kmalloc(len + 1,GFP_KERNEL);
1274 rc = next_entry(key, fp, len);
1279 rc = ebitmap_read(&usrdatum->roles, fp);
1283 if (p->policyvers >= POLICYDB_VERSION_MLS) {
1284 rc = mls_read_range_helper(&usrdatum->range, fp);
1287 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1292 rc = hashtab_insert(h, key, usrdatum);
1298 user_destroy(key, usrdatum, NULL);
1302 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1305 struct level_datum *levdatum;
1310 levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1316 rc = next_entry(buf, fp, sizeof buf);
1320 len = le32_to_cpu(buf[0]);
1321 levdatum->isalias = le32_to_cpu(buf[1]);
1323 key = kmalloc(len + 1,GFP_ATOMIC);
1328 rc = next_entry(key, fp, len);
1333 levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1334 if (!levdatum->level) {
1338 if (mls_read_level(levdatum->level, fp)) {
1343 rc = hashtab_insert(h, key, levdatum);
1349 sens_destroy(key, levdatum, NULL);
1353 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1356 struct cat_datum *catdatum;
1361 catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1367 rc = next_entry(buf, fp, sizeof buf);
1371 len = le32_to_cpu(buf[0]);
1372 catdatum->value = le32_to_cpu(buf[1]);
1373 catdatum->isalias = le32_to_cpu(buf[2]);
1375 key = kmalloc(len + 1,GFP_ATOMIC);
1380 rc = next_entry(key, fp, len);
1385 rc = hashtab_insert(h, key, catdatum);
1392 cat_destroy(key, catdatum, NULL);
1396 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1408 extern int ss_initialized;
1411 * Read the configuration data from a policy database binary
1412 * representation file into a policy database structure.
1414 int policydb_read(struct policydb *p, void *fp)
1416 struct role_allow *ra, *lra;
1417 struct role_trans *tr, *ltr;
1418 struct ocontext *l, *c, *newc;
1419 struct genfs *genfs_p, *genfs, *newgenfs;
1422 u32 len, len2, config, nprim, nel, nel2;
1424 struct policydb_compat_info *info;
1425 struct range_trans *rt, *lrt;
1429 rc = policydb_init(p);
1433 /* Read the magic number and string length. */
1434 rc = next_entry(buf, fp, sizeof(u32)* 2);
1438 if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1439 printk(KERN_ERR "security: policydb magic number 0x%x does "
1440 "not match expected magic number 0x%x\n",
1441 le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1445 len = le32_to_cpu(buf[1]);
1446 if (len != strlen(POLICYDB_STRING)) {
1447 printk(KERN_ERR "security: policydb string length %d does not "
1448 "match expected length %Zu\n",
1449 len, strlen(POLICYDB_STRING));
1452 policydb_str = kmalloc(len + 1,GFP_KERNEL);
1453 if (!policydb_str) {
1454 printk(KERN_ERR "security: unable to allocate memory for policydb "
1455 "string of length %d\n", len);
1459 rc = next_entry(policydb_str, fp, len);
1461 printk(KERN_ERR "security: truncated policydb string identifier\n");
1462 kfree(policydb_str);
1465 policydb_str[len] = 0;
1466 if (strcmp(policydb_str, POLICYDB_STRING)) {
1467 printk(KERN_ERR "security: policydb string %s does not match "
1468 "my string %s\n", policydb_str, POLICYDB_STRING);
1469 kfree(policydb_str);
1472 /* Done with policydb_str. */
1473 kfree(policydb_str);
1474 policydb_str = NULL;
1476 /* Read the version, config, and table sizes. */
1477 rc = next_entry(buf, fp, sizeof(u32)*4);
1481 p->policyvers = le32_to_cpu(buf[0]);
1482 if (p->policyvers < POLICYDB_VERSION_MIN ||
1483 p->policyvers > POLICYDB_VERSION_MAX) {
1484 printk(KERN_ERR "security: policydb version %d does not match "
1485 "my version range %d-%d\n",
1486 le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1490 if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1491 if (ss_initialized && !selinux_mls_enabled) {
1492 printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1496 selinux_mls_enabled = 1;
1497 config |= POLICYDB_CONFIG_MLS;
1499 if (p->policyvers < POLICYDB_VERSION_MLS) {
1500 printk(KERN_ERR "security policydb version %d (MLS) "
1501 "not backwards compatible\n", p->policyvers);
1505 if (ss_initialized && selinux_mls_enabled) {
1506 printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1512 info = policydb_lookup_compat(p->policyvers);
1514 printk(KERN_ERR "security: unable to find policy compat info "
1515 "for version %d\n", p->policyvers);
1519 if (le32_to_cpu(buf[2]) != info->sym_num ||
1520 le32_to_cpu(buf[3]) != info->ocon_num) {
1521 printk(KERN_ERR "security: policydb table sizes (%d,%d) do "
1522 "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1523 le32_to_cpu(buf[3]),
1524 info->sym_num, info->ocon_num);
1528 for (i = 0; i < info->sym_num; i++) {
1529 rc = next_entry(buf, fp, sizeof(u32)*2);
1532 nprim = le32_to_cpu(buf[0]);
1533 nel = le32_to_cpu(buf[1]);
1534 for (j = 0; j < nel; j++) {
1535 rc = read_f[i](p, p->symtab[i].table, fp);
1540 p->symtab[i].nprim = nprim;
1543 rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1547 if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1548 rc = cond_read_list(p, fp);
1553 rc = next_entry(buf, fp, sizeof(u32));
1556 nel = le32_to_cpu(buf[0]);
1558 for (i = 0; i < nel; i++) {
1559 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1569 rc = next_entry(buf, fp, sizeof(u32)*3);
1572 tr->role = le32_to_cpu(buf[0]);
1573 tr->type = le32_to_cpu(buf[1]);
1574 tr->new_role = le32_to_cpu(buf[2]);
1578 rc = next_entry(buf, fp, sizeof(u32));
1581 nel = le32_to_cpu(buf[0]);
1583 for (i = 0; i < nel; i++) {
1584 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1594 rc = next_entry(buf, fp, sizeof(u32)*2);
1597 ra->role = le32_to_cpu(buf[0]);
1598 ra->new_role = le32_to_cpu(buf[1]);
1602 rc = policydb_index_classes(p);
1606 rc = policydb_index_others(p);
1610 for (i = 0; i < info->ocon_num; i++) {
1611 rc = next_entry(buf, fp, sizeof(u32));
1614 nel = le32_to_cpu(buf[0]);
1616 for (j = 0; j < nel; j++) {
1617 c = kzalloc(sizeof(*c), GFP_KERNEL);
1625 p->ocontexts[i] = c;
1631 rc = next_entry(buf, fp, sizeof(u32));
1634 c->sid[0] = le32_to_cpu(buf[0]);
1635 rc = context_read_and_validate(&c->context[0], p, fp);
1641 rc = next_entry(buf, fp, sizeof(u32));
1644 len = le32_to_cpu(buf[0]);
1645 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1650 rc = next_entry(c->u.name, fp, len);
1654 rc = context_read_and_validate(&c->context[0], p, fp);
1657 rc = context_read_and_validate(&c->context[1], p, fp);
1662 rc = next_entry(buf, fp, sizeof(u32)*3);
1665 c->u.port.protocol = le32_to_cpu(buf[0]);
1666 c->u.port.low_port = le32_to_cpu(buf[1]);
1667 c->u.port.high_port = le32_to_cpu(buf[2]);
1668 rc = context_read_and_validate(&c->context[0], p, fp);
1673 rc = next_entry(buf, fp, sizeof(u32)* 2);
1676 c->u.node.addr = le32_to_cpu(buf[0]);
1677 c->u.node.mask = le32_to_cpu(buf[1]);
1678 rc = context_read_and_validate(&c->context[0], p, fp);
1683 rc = next_entry(buf, fp, sizeof(u32)*2);
1686 c->v.behavior = le32_to_cpu(buf[0]);
1687 if (c->v.behavior > SECURITY_FS_USE_NONE)
1689 len = le32_to_cpu(buf[1]);
1690 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1695 rc = next_entry(c->u.name, fp, len);
1699 rc = context_read_and_validate(&c->context[0], p, fp);
1706 rc = next_entry(buf, fp, sizeof(u32) * 8);
1709 for (k = 0; k < 4; k++)
1710 c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1711 for (k = 0; k < 4; k++)
1712 c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1713 if (context_read_and_validate(&c->context[0], p, fp))
1721 rc = next_entry(buf, fp, sizeof(u32));
1724 nel = le32_to_cpu(buf[0]);
1727 for (i = 0; i < nel; i++) {
1728 rc = next_entry(buf, fp, sizeof(u32));
1731 len = le32_to_cpu(buf[0]);
1732 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1738 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1739 if (!newgenfs->fstype) {
1744 rc = next_entry(newgenfs->fstype, fp, len);
1746 kfree(newgenfs->fstype);
1750 newgenfs->fstype[len] = 0;
1751 for (genfs_p = NULL, genfs = p->genfs; genfs;
1752 genfs_p = genfs, genfs = genfs->next) {
1753 if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1754 printk(KERN_ERR "security: dup genfs "
1755 "fstype %s\n", newgenfs->fstype);
1756 kfree(newgenfs->fstype);
1760 if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1763 newgenfs->next = genfs;
1765 genfs_p->next = newgenfs;
1767 p->genfs = newgenfs;
1768 rc = next_entry(buf, fp, sizeof(u32));
1771 nel2 = le32_to_cpu(buf[0]);
1772 for (j = 0; j < nel2; j++) {
1773 rc = next_entry(buf, fp, sizeof(u32));
1776 len = le32_to_cpu(buf[0]);
1778 newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1784 newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1785 if (!newc->u.name) {
1789 rc = next_entry(newc->u.name, fp, len);
1792 newc->u.name[len] = 0;
1793 rc = next_entry(buf, fp, sizeof(u32));
1796 newc->v.sclass = le32_to_cpu(buf[0]);
1797 if (context_read_and_validate(&newc->context[0], p, fp))
1799 for (l = NULL, c = newgenfs->head; c;
1800 l = c, c = c->next) {
1801 if (!strcmp(newc->u.name, c->u.name) &&
1802 (!c->v.sclass || !newc->v.sclass ||
1803 newc->v.sclass == c->v.sclass)) {
1804 printk(KERN_ERR "security: dup genfs "
1806 newgenfs->fstype, c->u.name);
1809 len = strlen(newc->u.name);
1810 len2 = strlen(c->u.name);
1819 newgenfs->head = newc;
1823 if (p->policyvers >= POLICYDB_VERSION_MLS) {
1824 rc = next_entry(buf, fp, sizeof(u32));
1827 nel = le32_to_cpu(buf[0]);
1829 for (i = 0; i < nel; i++) {
1830 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1839 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1842 rt->dom = le32_to_cpu(buf[0]);
1843 rt->type = le32_to_cpu(buf[1]);
1844 rc = mls_read_range_helper(&rt->range, fp);
1851 p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1852 if (!p->type_attr_map)
1855 for (i = 0; i < p->p_types.nprim; i++) {
1856 ebitmap_init(&p->type_attr_map[i]);
1857 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1858 if (ebitmap_read(&p->type_attr_map[i], fp))
1861 /* add the type itself as the degenerate case */
1862 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1870 ocontext_destroy(newc,OCON_FSUSE);
1874 policydb_destroy(p);