2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
33 #include <asm/pgtable.h>
34 #include <asm/kdebug.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
38 extern void jprobe_inst_return(void);
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
80 * In this function we check to see if the instruction
81 * is IP relative instruction and update the kprobe
82 * inst flag accordingly
84 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
86 unsigned long kprobe_inst,
89 p->ainsn.inst_flag = 0;
90 p->ainsn.target_br_reg = 0;
92 /* Check for Break instruction
93 * Bits 37:40 Major opcode to be zero
94 * Bits 27:32 X6 to be zero
95 * Bits 32:35 X3 to be zero
97 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
98 /* is a break instruction */
99 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
103 if (bundle_encoding[template][slot] == B) {
104 switch (major_opcode) {
105 case INDIRECT_CALL_OPCODE:
106 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
107 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
109 case IP_RELATIVE_PREDICT_OPCODE:
110 case IP_RELATIVE_BRANCH_OPCODE:
111 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
113 case IP_RELATIVE_CALL_OPCODE:
114 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
116 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
119 } else if (bundle_encoding[template][slot] == X) {
120 switch (major_opcode) {
121 case LONG_CALL_OPCODE:
122 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
123 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
131 * In this function we check to see if the instruction
132 * on which we are inserting kprobe is supported.
133 * Returns 0 if supported
134 * Returns -EINVAL if unsupported
136 static int __kprobes unsupported_inst(uint template, uint slot,
138 unsigned long kprobe_inst,
141 unsigned long addr = (unsigned long)p->addr;
143 if (bundle_encoding[template][slot] == I) {
144 switch (major_opcode) {
145 case 0x0: //I_UNIT_MISC_OPCODE:
147 * Check for Integer speculation instruction
148 * - Bit 33-35 to be equal to 0x1
150 if (((kprobe_inst >> 33) & 0x7) == 1) {
152 "Kprobes on speculation inst at <0x%lx> not supported\n",
158 * IP relative mov instruction
159 * - Bit 27-35 to be equal to 0x30
161 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
163 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
175 * In this function we check to see if the instruction
176 * (qp) cmpx.crel.ctype p1,p2=r2,r3
177 * on which we are inserting kprobe is cmp instruction
180 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
182 unsigned long kprobe_inst)
187 if (!((bundle_encoding[template][slot] == I) ||
188 (bundle_encoding[template][slot] == M)))
191 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
192 (major_opcode == 0xE)))
195 cmp_inst.l = kprobe_inst;
196 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
197 /* Integere compare - Register Register (A6 type)*/
198 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
199 &&(cmp_inst.f.c == 1))
201 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
202 /* Integere compare - Immediate Register (A8 type)*/
203 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
211 * In this function we override the bundle with
212 * the break instruction at the given slot.
214 static void __kprobes prepare_break_inst(uint template, uint slot,
216 unsigned long kprobe_inst,
219 unsigned long break_inst = BREAK_INST;
220 bundle_t *bundle = &p->ainsn.insn.bundle;
223 * Copy the original kprobe_inst qualifying predicate(qp)
224 * to the break instruction iff !is_cmp_ctype_unc_inst
225 * because for cmp instruction with ctype equal to unc,
226 * which is a special instruction always needs to be
227 * executed regradless of qp
229 if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
230 break_inst |= (0x3f & kprobe_inst);
234 bundle->quad0.slot0 = break_inst;
237 bundle->quad0.slot1_p0 = break_inst;
238 bundle->quad1.slot1_p1 = break_inst >> (64-46);
241 bundle->quad1.slot2 = break_inst;
246 * Update the instruction flag, so that we can
247 * emulate the instruction properly after we
248 * single step on original instruction
250 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
253 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
254 unsigned long *kprobe_inst, uint *major_opcode)
256 unsigned long kprobe_inst_p0, kprobe_inst_p1;
257 unsigned int template;
259 template = bundle->quad0.template;
263 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
264 *kprobe_inst = bundle->quad0.slot0;
267 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
268 kprobe_inst_p0 = bundle->quad0.slot1_p0;
269 kprobe_inst_p1 = bundle->quad1.slot1_p1;
270 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
273 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
274 *kprobe_inst = bundle->quad1.slot2;
279 /* Returns non-zero if the addr is in the Interrupt Vector Table */
280 static int __kprobes in_ivt_functions(unsigned long addr)
282 return (addr >= (unsigned long)__start_ivt_text
283 && addr < (unsigned long)__end_ivt_text);
286 static int __kprobes valid_kprobe_addr(int template, int slot,
289 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
290 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
295 if (in_ivt_functions(addr)) {
296 printk(KERN_WARNING "Kprobes can't be inserted inside "
297 "IVT functions at 0x%lx\n", addr);
301 if (slot == 1 && bundle_encoding[template][1] != L) {
302 printk(KERN_WARNING "Inserting kprobes on slot #1 "
303 "is not supported\n");
310 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
312 kcb->prev_kprobe.kp = kprobe_running();
313 kcb->prev_kprobe.status = kcb->kprobe_status;
316 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
318 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
319 kcb->kprobe_status = kcb->prev_kprobe.status;
322 static void __kprobes set_current_kprobe(struct kprobe *p,
323 struct kprobe_ctlblk *kcb)
325 __get_cpu_var(current_kprobe) = p;
328 static void kretprobe_trampoline(void)
333 * At this point the target function has been tricked into
334 * returning into our trampoline. Lookup the associated instance
336 * - call the handler function
337 * - cleanup by marking the instance as unused
338 * - long jump back to the original return address
340 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
342 struct kretprobe_instance *ri = NULL;
343 struct hlist_head *head;
344 struct hlist_node *node, *tmp;
345 unsigned long flags, orig_ret_address = 0;
346 unsigned long trampoline_address =
347 ((struct fnptr *)kretprobe_trampoline)->ip;
349 spin_lock_irqsave(&kretprobe_lock, flags);
350 head = kretprobe_inst_table_head(current);
353 * It is possible to have multiple instances associated with a given
354 * task either because an multiple functions in the call path
355 * have a return probe installed on them, and/or more then one return
356 * return probe was registered for a target function.
358 * We can handle this because:
359 * - instances are always inserted at the head of the list
360 * - when multiple return probes are registered for the same
361 * function, the first instance's ret_addr will point to the
362 * real return address, and all the rest will point to
363 * kretprobe_trampoline
365 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
366 if (ri->task != current)
367 /* another task is sharing our hash bucket */
370 if (ri->rp && ri->rp->handler)
371 ri->rp->handler(ri, regs);
373 orig_ret_address = (unsigned long)ri->ret_addr;
376 if (orig_ret_address != trampoline_address)
378 * This is the real return address. Any other
379 * instances associated with this task are for
380 * other calls deeper on the call stack
385 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
386 regs->cr_iip = orig_ret_address;
388 reset_current_kprobe();
389 spin_unlock_irqrestore(&kretprobe_lock, flags);
390 preempt_enable_no_resched();
393 * By returning a non-zero value, we are telling
394 * kprobe_handler() that we don't want the post_handler
395 * to run (and have re-enabled preemption)
400 /* Called with kretprobe_lock held */
401 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
402 struct pt_regs *regs)
404 struct kretprobe_instance *ri;
406 if ((ri = get_free_rp_inst(rp)) != NULL) {
409 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
411 /* Replace the return addr with trampoline addr */
412 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
420 int __kprobes arch_prepare_kprobe(struct kprobe *p)
422 unsigned long addr = (unsigned long) p->addr;
423 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
424 unsigned long kprobe_inst=0;
425 unsigned int slot = addr & 0xf, template, major_opcode = 0;
426 bundle_t *bundle = &p->ainsn.insn.bundle;
428 memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
429 memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));
431 template = bundle->quad0.template;
433 if(valid_kprobe_addr(template, slot, addr))
436 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
437 if (slot == 1 && bundle_encoding[template][1] == L)
440 /* Get kprobe_inst and major_opcode from the bundle */
441 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
443 if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
446 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
451 void __kprobes flush_insn_slot(struct kprobe *p)
453 unsigned long arm_addr;
455 arm_addr = ((unsigned long)&p->opcode.bundle) & ~0xFULL;
456 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
459 void __kprobes arch_arm_kprobe(struct kprobe *p)
461 unsigned long addr = (unsigned long)p->addr;
462 unsigned long arm_addr = addr & ~0xFULL;
465 memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
466 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
469 void __kprobes arch_disarm_kprobe(struct kprobe *p)
471 unsigned long addr = (unsigned long)p->addr;
472 unsigned long arm_addr = addr & ~0xFULL;
474 /* p->opcode contains the original unaltered bundle */
475 memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
476 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
480 * We are resuming execution after a single step fault, so the pt_regs
481 * structure reflects the register state after we executed the instruction
482 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
483 * the ip to point back to the original stack address. To set the IP address
484 * to original stack address, handle the case where we need to fixup the
485 * relative IP address and/or fixup branch register.
487 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
489 unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
490 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
491 unsigned long template;
492 int slot = ((unsigned long)p->addr & 0xf);
494 template = p->opcode.bundle.quad0.template;
496 if (slot == 1 && bundle_encoding[template][1] == L)
499 if (p->ainsn.inst_flag) {
501 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
502 /* Fix relative IP address */
503 regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
506 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
508 * Fix target branch register, software convention is
509 * to use either b0 or b6 or b7, so just checking
510 * only those registers
512 switch (p->ainsn.target_br_reg) {
514 if ((regs->b0 == bundle_addr) ||
515 (regs->b0 == bundle_addr + 0x10)) {
516 regs->b0 = (regs->b0 - bundle_addr) +
521 if ((regs->b6 == bundle_addr) ||
522 (regs->b6 == bundle_addr + 0x10)) {
523 regs->b6 = (regs->b6 - bundle_addr) +
528 if ((regs->b7 == bundle_addr) ||
529 (regs->b7 == bundle_addr + 0x10)) {
530 regs->b7 = (regs->b7 - bundle_addr) +
540 if (regs->cr_iip == bundle_addr + 0x10) {
541 regs->cr_iip = resume_addr + 0x10;
544 if (regs->cr_iip == bundle_addr) {
545 regs->cr_iip = resume_addr;
550 /* Turn off Single Step bit */
551 ia64_psr(regs)->ss = 0;
554 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
556 unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
557 unsigned long slot = (unsigned long)p->addr & 0xf;
559 /* single step inline if break instruction */
560 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
561 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
563 regs->cr_iip = bundle_addr & ~0xFULL;
568 ia64_psr(regs)->ri = slot;
570 /* turn on single stepping */
571 ia64_psr(regs)->ss = 1;
574 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
576 unsigned int slot = ia64_psr(regs)->ri;
577 unsigned int template, major_opcode;
578 unsigned long kprobe_inst;
579 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
582 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
583 template = bundle.quad0.template;
585 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
586 if (slot == 1 && bundle_encoding[template][1] == L)
589 /* Get Kprobe probe instruction at given slot*/
590 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
592 /* For break instruction,
593 * Bits 37:40 Major opcode to be zero
594 * Bits 27:32 X6 to be zero
595 * Bits 32:35 X3 to be zero
597 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
598 /* Not a break instruction */
602 /* Is a break instruction */
606 static int __kprobes pre_kprobes_handler(struct die_args *args)
610 struct pt_regs *regs = args->regs;
611 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
612 struct kprobe_ctlblk *kcb;
615 * We don't want to be preempted for the entire
616 * duration of kprobe processing
619 kcb = get_kprobe_ctlblk();
621 /* Handle recursion cases */
622 if (kprobe_running()) {
623 p = get_kprobe(addr);
625 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
626 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
627 ia64_psr(regs)->ss = 0;
630 /* We have reentered the pre_kprobe_handler(), since
631 * another probe was hit while within the handler.
632 * We here save the original kprobes variables and
633 * just single step on the instruction of the new probe
634 * without calling any user handlers.
636 save_previous_kprobe(kcb);
637 set_current_kprobe(p, kcb);
638 kprobes_inc_nmissed_count(p);
640 kcb->kprobe_status = KPROBE_REENTER;
642 } else if (args->err == __IA64_BREAK_JPROBE) {
644 * jprobe instrumented function just completed
646 p = __get_cpu_var(current_kprobe);
647 if (p->break_handler && p->break_handler(p, regs)) {
650 } else if (!is_ia64_break_inst(regs)) {
651 /* The breakpoint instruction was removed by
652 * another cpu right after we hit, no further
653 * handling of this interrupt is appropriate
663 p = get_kprobe(addr);
665 if (!is_ia64_break_inst(regs)) {
667 * The breakpoint instruction was removed right
668 * after we hit it. Another cpu has removed
669 * either a probepoint or a debugger breakpoint
670 * at this address. In either case, no further
671 * handling of this interrupt is appropriate.
677 /* Not one of our break, let kernel handle it */
681 set_current_kprobe(p, kcb);
682 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
684 if (p->pre_handler && p->pre_handler(p, regs))
686 * Our pre-handler is specifically requesting that we just
687 * do a return. This is used for both the jprobe pre-handler
688 * and the kretprobe trampoline
694 kcb->kprobe_status = KPROBE_HIT_SS;
698 preempt_enable_no_resched();
702 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
704 struct kprobe *cur = kprobe_running();
705 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
710 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
711 kcb->kprobe_status = KPROBE_HIT_SSDONE;
712 cur->post_handler(cur, regs, 0);
715 resume_execution(cur, regs);
717 /*Restore back the original saved kprobes variables and continue. */
718 if (kcb->kprobe_status == KPROBE_REENTER) {
719 restore_previous_kprobe(kcb);
722 reset_current_kprobe();
725 preempt_enable_no_resched();
729 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
731 struct kprobe *cur = kprobe_running();
732 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
735 switch(kcb->kprobe_status) {
739 * We are here because the instruction being single
740 * stepped caused a page fault. We reset the current
741 * kprobe and the instruction pointer points back to
742 * the probe address and allow the page fault handler
743 * to continue as a normal page fault.
745 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
746 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
747 if (kcb->kprobe_status == KPROBE_REENTER)
748 restore_previous_kprobe(kcb);
750 reset_current_kprobe();
751 preempt_enable_no_resched();
753 case KPROBE_HIT_ACTIVE:
754 case KPROBE_HIT_SSDONE:
756 * We increment the nmissed count for accounting,
757 * we can also use npre/npostfault count for accouting
758 * these specific fault cases.
760 kprobes_inc_nmissed_count(cur);
763 * We come here because instructions in the pre/post
764 * handler caused the page_fault, this could happen
765 * if handler tries to access user space by
766 * copy_from_user(), get_user() etc. Let the
767 * user-specified handler try to fix it first.
769 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
773 * Let ia64_do_page_fault() fix it.
783 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
784 unsigned long val, void *data)
786 struct die_args *args = (struct die_args *)data;
787 int ret = NOTIFY_DONE;
789 if (args->regs && user_mode(args->regs))
794 /* err is break number from ia64_bad_break() */
795 if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
796 if (pre_kprobes_handler(args))
800 /* err is vector number from ia64_fault() */
802 if (post_kprobes_handler(args->regs))
806 /* kprobe_running() needs smp_processor_id() */
808 if (kprobe_running() &&
809 kprobes_fault_handler(args->regs, args->trapnr))
818 struct param_bsp_cfm {
824 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
827 struct param_bsp_cfm *lp = arg;
830 unw_get_ip(info, &ip);
834 unw_get_bsp(info, (unsigned long*)&lp->bsp);
835 unw_get_cfm(info, (unsigned long*)&lp->cfm);
838 } while (unw_unwind(info) >= 0);
844 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
846 struct jprobe *jp = container_of(p, struct jprobe, kp);
847 unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
848 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
849 struct param_bsp_cfm pa;
853 * Callee owns the argument space and could overwrite it, eg
854 * tail call optimization. So to be absolutely safe
855 * we save the argument space before transfering the control
856 * to instrumented jprobe function which runs in
857 * the process context
859 pa.ip = regs->cr_iip;
860 unw_init_running(ia64_get_bsp_cfm, &pa);
861 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
863 memcpy( kcb->jprobes_saved_stacked_regs,
869 /* save architectural state */
870 kcb->jprobe_saved_regs = *regs;
872 /* after rfi, execute the jprobe instrumented function */
873 regs->cr_iip = addr & ~0xFULL;
874 ia64_psr(regs)->ri = addr & 0xf;
875 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
878 * fix the return address to our jprobe_inst_return() function
879 * in the jprobes.S file
881 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
886 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
888 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
891 /* restoring architectural state */
892 *regs = kcb->jprobe_saved_regs;
894 /* restoring the original argument space */
895 flush_register_stack();
896 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
899 kcb->jprobes_saved_stacked_regs,
901 invalidate_stacked_regs();
903 preempt_enable_no_resched();
907 static struct kprobe trampoline_p = {
908 .pre_handler = trampoline_probe_handler
911 int __init arch_init_kprobes(void)
914 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
915 return register_kprobe(&trampoline_p);