1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
15 See the file COPYING in this distribution for more information.
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
30 #define DRV_NAME "de2104x"
31 #define DRV_VERSION "0.7"
32 #define DRV_RELDATE "Mar 17, 2004"
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/ethtool.h>
42 #include <linux/compiler.h>
43 #include <linux/rtnetlink.h>
44 #include <linux/crc32.h>
48 #include <asm/uaccess.h>
49 #include <asm/unaligned.h>
51 /* These identify the driver base version and may not be removed. */
52 static char version[] =
53 KERN_INFO DRV_NAME " PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
55 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
56 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(DRV_VERSION);
60 static int debug = -1;
61 module_param (debug, int, 0);
62 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
66 || defined(__sparc_) || defined(__ia64__) \
67 || defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
70 static int rx_copybreak = 100;
72 module_param (rx_copybreak, int, 0);
73 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
75 #define PFX DRV_NAME ": "
77 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
85 #define DE_RX_RING_SIZE 64
86 #define DE_TX_RING_SIZE 64
87 #define DE_RING_BYTES \
88 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
89 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
90 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
91 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
92 #define TX_BUFFS_AVAIL(CP) \
93 (((CP)->tx_tail <= (CP)->tx_head) ? \
94 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
95 (CP)->tx_tail - (CP)->tx_head - 1)
97 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
100 #define DE_SETUP_SKB ((struct sk_buff *) 1)
101 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
102 #define DE_SETUP_FRAME_WORDS 96
103 #define DE_EEPROM_WORDS 256
104 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
105 #define DE_MAX_MEDIA 5
107 #define DE_MEDIA_TP_AUTO 0
108 #define DE_MEDIA_BNC 1
109 #define DE_MEDIA_AUI 2
110 #define DE_MEDIA_TP 3
111 #define DE_MEDIA_TP_FD 4
112 #define DE_MEDIA_INVALID DE_MAX_MEDIA
113 #define DE_MEDIA_FIRST 0
114 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
115 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
117 #define DE_TIMER_LINK (60 * HZ)
118 #define DE_TIMER_NO_LINK (5 * HZ)
120 #define DE_NUM_REGS 16
121 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
122 #define DE_REGS_VER 1
124 /* Time in jiffies before concluding the transmitter is hung. */
125 #define TX_TIMEOUT (6*HZ)
127 #define DE_UNALIGNED_16(a) (u16)(get_unaligned((u16 *)(a)))
129 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
130 to support a pre-NWay full-duplex signaling mechanism using short frames.
131 No one knows what it should be, but if left at its default value some
132 10base2(!) packets trigger a full-duplex-request interrupt. */
133 #define FULL_DUPLEX_MAGIC 0x6969
156 CacheAlign16 = 0x00008000,
157 BurstLen4 = 0x00000400,
160 NormalTxPoll = (1 << 0),
161 NormalRxPoll = (1 << 0),
163 /* Tx/Rx descriptor status bits */
166 RxErrLong = (1 << 7),
168 RxErrFIFO = (1 << 0),
169 RxErrRunt = (1 << 11),
170 RxErrFrame = (1 << 14),
172 FirstFrag = (1 << 29),
173 LastFrag = (1 << 30),
175 TxFIFOUnder = (1 << 1),
176 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
179 TxJabber = (1 << 14),
180 SetupFrame = (1 << 27),
191 TxState = (1 << 22) | (1 << 21) | (1 << 20),
192 RxState = (1 << 19) | (1 << 18) | (1 << 17),
193 LinkFail = (1 << 12),
195 RxStopped = (1 << 8),
196 TxStopped = (1 << 1),
199 TxEnable = (1 << 13),
201 RxTx = TxEnable | RxEnable,
202 FullDuplex = (1 << 9),
203 AcceptAllMulticast = (1 << 7),
204 AcceptAllPhys = (1 << 6),
206 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
207 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
210 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
211 EE_CS = 0x01, /* EEPROM chip select. */
212 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
215 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
216 EE_ENB = (0x4800 | EE_CS),
218 /* The EEPROM commands include the alway-set leading bit. */
222 RxMissedOver = (1 << 16),
223 RxMissedMask = 0xffff,
225 /* SROM-related bits */
227 MediaBlockMask = 0x3f,
228 MediaCustomCSRs = (1 << 6),
231 PM_Sleep = (1 << 31),
232 PM_Snooze = (1 << 30),
233 PM_Mask = PM_Sleep | PM_Snooze,
236 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
237 NWayRestart = (1 << 12),
238 NonselPortActive = (1 << 9),
239 LinkFailStatus = (1 << 2),
240 NetCxnErr = (1 << 1),
243 static const u32 de_intr_mask =
244 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
245 LinkPass | LinkFail | PciErr;
248 * Set the programmable burst length to 4 longwords for all:
249 * DMA errors result without these values. Cache align 16 long.
251 static const u32 de_bus_mode = CacheAlign16 | BurstLen4;
253 struct de_srom_media_block {
258 } __attribute__((packed));
260 struct de_srom_info_leaf {
264 } __attribute__((packed));
274 u16 type; /* DE_MEDIA_xxx */
291 struct net_device *dev;
294 struct de_desc *rx_ring;
295 struct de_desc *tx_ring;
296 struct ring_info tx_skb[DE_TX_RING_SIZE];
297 struct ring_info rx_skb[DE_RX_RING_SIZE];
303 struct net_device_stats net_stats;
305 struct pci_dev *pdev;
307 u16 setup_frame[DE_SETUP_FRAME_WORDS];
312 struct media_info media[DE_MAX_MEDIA];
313 struct timer_list media_timer;
317 unsigned de21040 : 1;
318 unsigned media_lock : 1;
322 static void de_set_rx_mode (struct net_device *dev);
323 static void de_tx (struct de_private *de);
324 static void de_clean_rings (struct de_private *de);
325 static void de_media_interrupt (struct de_private *de, u32 status);
326 static void de21040_media_timer (unsigned long data);
327 static void de21041_media_timer (unsigned long data);
328 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
331 static struct pci_device_id de_pci_tbl[] = {
332 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
333 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
334 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
335 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
338 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
340 static const char * const media_name[DE_MAX_MEDIA] = {
348 /* 21040 transceiver register settings:
349 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
350 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
351 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
352 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
354 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
355 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
356 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, };
357 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
360 #define dr32(reg) readl(de->regs + (reg))
361 #define dw32(reg,val) writel((val), de->regs + (reg))
364 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
367 if (netif_msg_rx_err (de))
369 "%s: rx err, slot %d status 0x%x len %d\n",
370 de->dev->name, rx_tail, status, len);
372 if ((status & 0x38000300) != 0x0300) {
373 /* Ingore earlier buffers. */
374 if ((status & 0xffff) != 0x7fff) {
375 if (netif_msg_rx_err(de))
376 printk(KERN_WARNING "%s: Oversized Ethernet frame "
377 "spanned multiple buffers, status %8.8x!\n",
378 de->dev->name, status);
379 de->net_stats.rx_length_errors++;
381 } else if (status & RxError) {
382 /* There was a fatal error. */
383 de->net_stats.rx_errors++; /* end of a packet.*/
384 if (status & 0x0890) de->net_stats.rx_length_errors++;
385 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
386 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
390 static void de_rx (struct de_private *de)
392 unsigned rx_tail = de->rx_tail;
393 unsigned rx_work = DE_RX_RING_SIZE;
400 struct sk_buff *skb, *copy_skb;
401 unsigned copying_skb, buflen;
403 skb = de->rx_skb[rx_tail].skb;
406 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
407 if (status & DescOwn)
410 len = ((status >> 16) & 0x7ff) - 4;
411 mapping = de->rx_skb[rx_tail].mapping;
413 if (unlikely(drop)) {
414 de->net_stats.rx_dropped++;
418 if (unlikely((status & 0x38008300) != 0x0300)) {
419 de_rx_err_acct(de, rx_tail, status, len);
423 copying_skb = (len <= rx_copybreak);
425 if (unlikely(netif_msg_rx_status(de)))
426 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n",
427 de->dev->name, rx_tail, status, len,
430 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
431 copy_skb = dev_alloc_skb (buflen);
432 if (unlikely(!copy_skb)) {
433 de->net_stats.rx_dropped++;
438 copy_skb->dev = de->dev;
441 pci_unmap_single(de->pdev, mapping,
442 buflen, PCI_DMA_FROMDEVICE);
446 de->rx_skb[rx_tail].mapping =
447 pci_map_single(de->pdev, copy_skb->data,
448 buflen, PCI_DMA_FROMDEVICE);
449 de->rx_skb[rx_tail].skb = copy_skb;
451 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
452 skb_reserve(copy_skb, RX_OFFSET);
453 memcpy(skb_put(copy_skb, len), skb->data, len);
455 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
457 /* We'll reuse the original ring buffer. */
461 skb->protocol = eth_type_trans (skb, de->dev);
463 de->net_stats.rx_packets++;
464 de->net_stats.rx_bytes += skb->len;
465 de->dev->last_rx = jiffies;
467 if (rc == NET_RX_DROP)
471 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
472 if (rx_tail == (DE_RX_RING_SIZE - 1))
473 de->rx_ring[rx_tail].opts2 =
474 cpu_to_le32(RingEnd | de->rx_buf_sz);
476 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
477 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
478 rx_tail = NEXT_RX(rx_tail);
482 printk(KERN_WARNING "%s: rx work limit reached\n", de->dev->name);
484 de->rx_tail = rx_tail;
487 static irqreturn_t de_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
489 struct net_device *dev = dev_instance;
490 struct de_private *de = dev->priv;
493 status = dr32(MacStatus);
494 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
497 if (netif_msg_intr(de))
498 printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n",
499 dev->name, status, dr32(MacMode), de->rx_tail, de->tx_head, de->tx_tail);
501 dw32(MacStatus, status);
503 if (status & (RxIntr | RxEmpty)) {
505 if (status & RxEmpty)
506 dw32(RxPoll, NormalRxPoll);
509 spin_lock(&de->lock);
511 if (status & (TxIntr | TxEmpty))
514 if (status & (LinkPass | LinkFail))
515 de_media_interrupt(de, status);
517 spin_unlock(&de->lock);
519 if (status & PciErr) {
522 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
523 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
524 printk(KERN_ERR "%s: PCI bus error, status=%08x, PCI status=%04x\n",
525 dev->name, status, pci_status);
531 static void de_tx (struct de_private *de)
533 unsigned tx_head = de->tx_head;
534 unsigned tx_tail = de->tx_tail;
536 while (tx_tail != tx_head) {
541 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
542 if (status & DescOwn)
545 skb = de->tx_skb[tx_tail].skb;
547 if (unlikely(skb == DE_DUMMY_SKB))
550 if (unlikely(skb == DE_SETUP_SKB)) {
551 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
552 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
556 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
557 skb->len, PCI_DMA_TODEVICE);
559 if (status & LastFrag) {
560 if (status & TxError) {
561 if (netif_msg_tx_err(de))
562 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
563 de->dev->name, status);
564 de->net_stats.tx_errors++;
566 de->net_stats.tx_window_errors++;
567 if (status & TxMaxCol)
568 de->net_stats.tx_aborted_errors++;
569 if (status & TxLinkFail)
570 de->net_stats.tx_carrier_errors++;
571 if (status & TxFIFOUnder)
572 de->net_stats.tx_fifo_errors++;
574 de->net_stats.tx_packets++;
575 de->net_stats.tx_bytes += skb->len;
576 if (netif_msg_tx_done(de))
577 printk(KERN_DEBUG "%s: tx done, slot %d\n", de->dev->name, tx_tail);
579 dev_kfree_skb_irq(skb);
583 de->tx_skb[tx_tail].skb = NULL;
585 tx_tail = NEXT_TX(tx_tail);
588 de->tx_tail = tx_tail;
590 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
591 netif_wake_queue(de->dev);
594 static int de_start_xmit (struct sk_buff *skb, struct net_device *dev)
596 struct de_private *de = dev->priv;
597 unsigned int entry, tx_free;
598 u32 mapping, len, flags = FirstFrag | LastFrag;
601 spin_lock_irq(&de->lock);
603 tx_free = TX_BUFFS_AVAIL(de);
605 netif_stop_queue(dev);
606 spin_unlock_irq(&de->lock);
613 txd = &de->tx_ring[entry];
616 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
617 if (entry == (DE_TX_RING_SIZE - 1))
619 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
622 txd->opts2 = cpu_to_le32(flags);
623 txd->addr1 = cpu_to_le32(mapping);
625 de->tx_skb[entry].skb = skb;
626 de->tx_skb[entry].mapping = mapping;
629 txd->opts1 = cpu_to_le32(DescOwn);
632 de->tx_head = NEXT_TX(entry);
633 if (netif_msg_tx_queued(de))
634 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
635 dev->name, entry, skb->len);
638 netif_stop_queue(dev);
640 spin_unlock_irq(&de->lock);
642 /* Trigger an immediate transmit demand. */
643 dw32(TxPoll, NormalTxPoll);
644 dev->trans_start = jiffies;
649 /* Set or clear the multicast filter for this adaptor.
650 Note that we only use exclusion around actually queueing the
651 new frame, not around filling de->setup_frame. This is non-deterministic
652 when re-entered but still correct. */
655 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
657 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
659 struct de_private *de = dev->priv;
661 struct dev_mc_list *mclist;
665 memset(hash_table, 0, sizeof(hash_table));
666 set_bit_le(255, hash_table); /* Broadcast entry */
667 /* This should work on big-endian machines as well. */
668 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
669 i++, mclist = mclist->next) {
670 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
672 set_bit_le(index, hash_table);
674 for (i = 0; i < 32; i++) {
675 *setup_frm++ = hash_table[i];
676 *setup_frm++ = hash_table[i];
678 setup_frm = &de->setup_frame[13*6];
681 /* Fill the final entry with our physical address. */
682 eaddrs = (u16 *)dev->dev_addr;
683 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
684 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
685 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
688 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
690 struct de_private *de = dev->priv;
691 struct dev_mc_list *mclist;
695 /* We have <= 14 addresses so we can use the wonderful
696 16 address perfect filtering of the Tulip. */
697 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
698 i++, mclist = mclist->next) {
699 eaddrs = (u16 *)mclist->dmi_addr;
700 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
701 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
702 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
704 /* Fill the unused entries with the broadcast address. */
705 memset(setup_frm, 0xff, (15-i)*12);
706 setup_frm = &de->setup_frame[15*6];
708 /* Fill the final entry with our physical address. */
709 eaddrs = (u16 *)dev->dev_addr;
710 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
711 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
712 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
716 static void __de_set_rx_mode (struct net_device *dev)
718 struct de_private *de = dev->priv;
723 struct de_desc *dummy_txd = NULL;
725 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
727 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
728 macmode |= AcceptAllMulticast | AcceptAllPhys;
732 if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
733 /* Too many to filter well -- accept all multicasts. */
734 macmode |= AcceptAllMulticast;
738 /* Note that only the low-address shortword of setup_frame is valid!
739 The values are doubled for big-endian architectures. */
740 if (dev->mc_count > 14) /* Must use a multicast hash table. */
741 build_setup_frame_hash (de->setup_frame, dev);
743 build_setup_frame_perfect (de->setup_frame, dev);
746 * Now add this frame to the Tx list.
751 /* Avoid a chip errata by prefixing a dummy entry. */
753 de->tx_skb[entry].skb = DE_DUMMY_SKB;
755 dummy_txd = &de->tx_ring[entry];
756 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
757 cpu_to_le32(RingEnd) : 0;
758 dummy_txd->addr1 = 0;
760 /* Must set DescOwned later to avoid race with chip */
762 entry = NEXT_TX(entry);
765 de->tx_skb[entry].skb = DE_SETUP_SKB;
766 de->tx_skb[entry].mapping = mapping =
767 pci_map_single (de->pdev, de->setup_frame,
768 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
770 /* Put the setup frame on the Tx list. */
771 txd = &de->tx_ring[entry];
772 if (entry == (DE_TX_RING_SIZE - 1))
773 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
775 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
776 txd->addr1 = cpu_to_le32(mapping);
779 txd->opts1 = cpu_to_le32(DescOwn);
783 dummy_txd->opts1 = cpu_to_le32(DescOwn);
787 de->tx_head = NEXT_TX(entry);
789 BUG_ON(TX_BUFFS_AVAIL(de) < 0);
790 if (TX_BUFFS_AVAIL(de) == 0)
791 netif_stop_queue(dev);
793 /* Trigger an immediate transmit demand. */
794 dw32(TxPoll, NormalTxPoll);
797 if (macmode != dr32(MacMode))
798 dw32(MacMode, macmode);
801 static void de_set_rx_mode (struct net_device *dev)
804 struct de_private *de = dev->priv;
806 spin_lock_irqsave (&de->lock, flags);
807 __de_set_rx_mode(dev);
808 spin_unlock_irqrestore (&de->lock, flags);
811 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
813 if (unlikely(rx_missed & RxMissedOver))
814 de->net_stats.rx_missed_errors += RxMissedMask;
816 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
819 static void __de_get_stats(struct de_private *de)
821 u32 tmp = dr32(RxMissed); /* self-clearing */
823 de_rx_missed(de, tmp);
826 static struct net_device_stats *de_get_stats(struct net_device *dev)
828 struct de_private *de = dev->priv;
830 /* The chip only need report frame silently dropped. */
831 spin_lock_irq(&de->lock);
832 if (netif_running(dev) && netif_device_present(dev))
834 spin_unlock_irq(&de->lock);
836 return &de->net_stats;
839 static inline int de_is_running (struct de_private *de)
841 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
844 static void de_stop_rxtx (struct de_private *de)
847 unsigned int work = 1000;
849 macmode = dr32(MacMode);
850 if (macmode & RxTx) {
851 dw32(MacMode, macmode & ~RxTx);
856 if (!de_is_running(de))
861 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name);
864 static inline void de_start_rxtx (struct de_private *de)
868 macmode = dr32(MacMode);
869 if ((macmode & RxTx) != RxTx) {
870 dw32(MacMode, macmode | RxTx);
875 static void de_stop_hw (struct de_private *de)
883 dw32(MacStatus, dr32(MacStatus));
888 de->tx_head = de->tx_tail = 0;
891 static void de_link_up(struct de_private *de)
893 if (!netif_carrier_ok(de->dev)) {
894 netif_carrier_on(de->dev);
895 if (netif_msg_link(de))
896 printk(KERN_INFO "%s: link up, media %s\n",
897 de->dev->name, media_name[de->media_type]);
901 static void de_link_down(struct de_private *de)
903 if (netif_carrier_ok(de->dev)) {
904 netif_carrier_off(de->dev);
905 if (netif_msg_link(de))
906 printk(KERN_INFO "%s: link down\n", de->dev->name);
910 static void de_set_media (struct de_private *de)
912 unsigned media = de->media_type;
913 u32 macmode = dr32(MacMode);
915 BUG_ON(de_is_running(de));
918 dw32(CSR11, FULL_DUPLEX_MAGIC);
919 dw32(CSR13, 0); /* Reset phy */
920 dw32(CSR14, de->media[media].csr14);
921 dw32(CSR15, de->media[media].csr15);
922 dw32(CSR13, de->media[media].csr13);
924 /* must delay 10ms before writing to other registers,
929 if (media == DE_MEDIA_TP_FD)
930 macmode |= FullDuplex;
932 macmode &= ~FullDuplex;
934 if (netif_msg_link(de)) {
935 printk(KERN_INFO "%s: set link %s\n"
936 KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n"
937 KERN_INFO "%s: set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
938 de->dev->name, media_name[media],
939 de->dev->name, dr32(MacMode), dr32(SIAStatus),
940 dr32(CSR13), dr32(CSR14), dr32(CSR15),
941 de->dev->name, macmode, de->media[media].csr13,
942 de->media[media].csr14, de->media[media].csr15);
944 if (macmode != dr32(MacMode))
945 dw32(MacMode, macmode);
948 static void de_next_media (struct de_private *de, u32 *media,
949 unsigned int n_media)
953 for (i = 0; i < n_media; i++) {
954 if (de_ok_to_advertise(de, media[i])) {
955 de->media_type = media[i];
961 static void de21040_media_timer (unsigned long data)
963 struct de_private *de = (struct de_private *) data;
964 struct net_device *dev = de->dev;
965 u32 status = dr32(SIAStatus);
966 unsigned int carrier;
969 carrier = (status & NetCxnErr) ? 0 : 1;
972 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
975 de->media_timer.expires = jiffies + DE_TIMER_LINK;
976 add_timer(&de->media_timer);
977 if (!netif_carrier_ok(dev))
980 if (netif_msg_timer(de))
981 printk(KERN_INFO "%s: %s link ok, status %x\n",
982 dev->name, media_name[de->media_type],
992 if (de->media_type == DE_MEDIA_AUI) {
993 u32 next_state = DE_MEDIA_TP;
994 de_next_media(de, &next_state, 1);
996 u32 next_state = DE_MEDIA_AUI;
997 de_next_media(de, &next_state, 1);
1000 spin_lock_irqsave(&de->lock, flags);
1002 spin_unlock_irqrestore(&de->lock, flags);
1007 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1008 add_timer(&de->media_timer);
1010 if (netif_msg_timer(de))
1011 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1012 dev->name, media_name[de->media_type], status);
1015 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1017 switch (new_media) {
1018 case DE_MEDIA_TP_AUTO:
1019 if (!(de->media_advertise & ADVERTISED_Autoneg))
1021 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1025 if (!(de->media_advertise & ADVERTISED_BNC))
1029 if (!(de->media_advertise & ADVERTISED_AUI))
1033 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1036 case DE_MEDIA_TP_FD:
1037 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1045 static void de21041_media_timer (unsigned long data)
1047 struct de_private *de = (struct de_private *) data;
1048 struct net_device *dev = de->dev;
1049 u32 status = dr32(SIAStatus);
1050 unsigned int carrier;
1051 unsigned long flags;
1053 carrier = (status & NetCxnErr) ? 0 : 1;
1056 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1057 de->media_type == DE_MEDIA_TP ||
1058 de->media_type == DE_MEDIA_TP_FD) &&
1059 (status & LinkFailStatus))
1062 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1063 add_timer(&de->media_timer);
1064 if (!netif_carrier_ok(dev))
1067 if (netif_msg_timer(de))
1068 printk(KERN_INFO "%s: %s link ok, mode %x status %x\n",
1069 dev->name, media_name[de->media_type],
1070 dr32(MacMode), status);
1076 /* if media type locked, don't switch media */
1080 /* if activity detected, use that as hint for new media type */
1081 if (status & NonselPortActive) {
1082 unsigned int have_media = 1;
1084 /* if AUI/BNC selected, then activity is on TP port */
1085 if (de->media_type == DE_MEDIA_AUI ||
1086 de->media_type == DE_MEDIA_BNC) {
1087 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1088 de->media_type = DE_MEDIA_TP_AUTO;
1093 /* TP selected. If there is only TP and BNC, then it's BNC */
1094 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1095 de_ok_to_advertise(de, DE_MEDIA_BNC))
1096 de->media_type = DE_MEDIA_BNC;
1098 /* TP selected. If there is only TP and AUI, then it's AUI */
1099 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1100 de_ok_to_advertise(de, DE_MEDIA_AUI))
1101 de->media_type = DE_MEDIA_AUI;
1103 /* otherwise, ignore the hint */
1112 * Absent or ambiguous activity hint, move to next advertised
1113 * media state. If de->media_type is left unchanged, this
1114 * simply resets the PHY and reloads the current media settings.
1116 if (de->media_type == DE_MEDIA_AUI) {
1117 u32 next_states[] = { DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1118 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1119 } else if (de->media_type == DE_MEDIA_BNC) {
1120 u32 next_states[] = { DE_MEDIA_TP_AUTO, DE_MEDIA_AUI };
1121 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1123 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1124 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1128 spin_lock_irqsave(&de->lock, flags);
1130 spin_unlock_irqrestore(&de->lock, flags);
1135 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1136 add_timer(&de->media_timer);
1138 if (netif_msg_timer(de))
1139 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1140 dev->name, media_name[de->media_type], status);
1143 static void de_media_interrupt (struct de_private *de, u32 status)
1145 if (status & LinkPass) {
1147 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1151 BUG_ON(!(status & LinkFail));
1153 if (netif_carrier_ok(de->dev)) {
1155 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1159 static int de_reset_mac (struct de_private *de)
1164 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1168 if (dr32(BusMode) == 0xffffffff)
1171 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1172 dw32 (BusMode, CmdReset);
1175 dw32 (BusMode, de_bus_mode);
1178 for (tmp = 0; tmp < 5; tmp++) {
1185 status = dr32(MacStatus);
1186 if (status & (RxState | TxState))
1188 if (status == 0xffffffff)
1193 static void de_adapter_wake (struct de_private *de)
1200 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1201 if (pmctl & PM_Mask) {
1203 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1205 /* de4x5.c delays, so we do too */
1210 static void de_adapter_sleep (struct de_private *de)
1217 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1219 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1222 static int de_init_hw (struct de_private *de)
1224 struct net_device *dev = de->dev;
1228 de_adapter_wake(de);
1230 macmode = dr32(MacMode) & ~MacModeClear;
1232 rc = de_reset_mac(de);
1236 de_set_media(de); /* reset phy */
1238 dw32(RxRingAddr, de->ring_dma);
1239 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1241 dw32(MacMode, RxTx | macmode);
1243 dr32(RxMissed); /* self-clearing */
1245 dw32(IntrMask, de_intr_mask);
1247 de_set_rx_mode(dev);
1252 static int de_refill_rx (struct de_private *de)
1256 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1257 struct sk_buff *skb;
1259 skb = dev_alloc_skb(de->rx_buf_sz);
1265 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1266 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1267 de->rx_skb[i].skb = skb;
1269 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1270 if (i == (DE_RX_RING_SIZE - 1))
1271 de->rx_ring[i].opts2 =
1272 cpu_to_le32(RingEnd | de->rx_buf_sz);
1274 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1275 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1276 de->rx_ring[i].addr2 = 0;
1286 static int de_init_rings (struct de_private *de)
1288 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1289 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1292 de->tx_head = de->tx_tail = 0;
1294 return de_refill_rx (de);
1297 static int de_alloc_rings (struct de_private *de)
1299 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1302 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1303 return de_init_rings(de);
1306 static void de_clean_rings (struct de_private *de)
1310 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1311 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1313 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1314 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1317 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1318 if (de->rx_skb[i].skb) {
1319 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1320 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1321 dev_kfree_skb(de->rx_skb[i].skb);
1325 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1326 struct sk_buff *skb = de->tx_skb[i].skb;
1327 if ((skb) && (skb != DE_DUMMY_SKB)) {
1328 if (skb != DE_SETUP_SKB) {
1329 de->net_stats.tx_dropped++;
1330 pci_unmap_single(de->pdev,
1331 de->tx_skb[i].mapping,
1332 skb->len, PCI_DMA_TODEVICE);
1335 pci_unmap_single(de->pdev,
1336 de->tx_skb[i].mapping,
1337 sizeof(de->setup_frame),
1343 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1344 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1347 static void de_free_rings (struct de_private *de)
1350 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1355 static int de_open (struct net_device *dev)
1357 struct de_private *de = dev->priv;
1360 if (netif_msg_ifup(de))
1361 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1363 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1365 rc = de_alloc_rings(de);
1367 printk(KERN_ERR "%s: ring allocation failure, err=%d\n",
1374 rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1376 printk(KERN_ERR "%s: IRQ %d request failure, err=%d\n",
1377 dev->name, dev->irq, rc);
1381 rc = de_init_hw(de);
1383 printk(KERN_ERR "%s: h/w init failure, err=%d\n",
1385 goto err_out_free_irq;
1388 netif_start_queue(dev);
1389 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1394 free_irq(dev->irq, dev);
1400 static int de_close (struct net_device *dev)
1402 struct de_private *de = dev->priv;
1403 unsigned long flags;
1405 if (netif_msg_ifdown(de))
1406 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1408 del_timer_sync(&de->media_timer);
1410 spin_lock_irqsave(&de->lock, flags);
1412 netif_stop_queue(dev);
1413 netif_carrier_off(dev);
1414 spin_unlock_irqrestore(&de->lock, flags);
1416 free_irq(dev->irq, dev);
1419 de_adapter_sleep(de);
1420 pci_disable_device(de->pdev);
1424 static void de_tx_timeout (struct net_device *dev)
1426 struct de_private *de = dev->priv;
1428 printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1429 dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1430 de->rx_tail, de->tx_head, de->tx_tail);
1432 del_timer_sync(&de->media_timer);
1434 disable_irq(dev->irq);
1435 spin_lock_irq(&de->lock);
1438 netif_stop_queue(dev);
1439 netif_carrier_off(dev);
1441 spin_unlock_irq(&de->lock);
1442 enable_irq(dev->irq);
1444 /* Update the error counts. */
1447 synchronize_irq(dev->irq);
1454 netif_wake_queue(dev);
1457 static void __de_get_regs(struct de_private *de, u8 *buf)
1460 u32 *rbuf = (u32 *)buf;
1463 for (i = 0; i < DE_NUM_REGS; i++)
1464 rbuf[i] = dr32(i * 8);
1466 /* handle self-clearing RxMissed counter, CSR8 */
1467 de_rx_missed(de, rbuf[8]);
1470 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1472 ecmd->supported = de->media_supported;
1473 ecmd->transceiver = XCVR_INTERNAL;
1474 ecmd->phy_address = 0;
1475 ecmd->advertising = de->media_advertise;
1477 switch (de->media_type) {
1479 ecmd->port = PORT_AUI;
1483 ecmd->port = PORT_BNC;
1487 ecmd->port = PORT_TP;
1488 ecmd->speed = SPEED_10;
1492 if (dr32(MacMode) & FullDuplex)
1493 ecmd->duplex = DUPLEX_FULL;
1495 ecmd->duplex = DUPLEX_HALF;
1498 ecmd->autoneg = AUTONEG_DISABLE;
1500 ecmd->autoneg = AUTONEG_ENABLE;
1502 /* ignore maxtxpkt, maxrxpkt for now */
1507 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1510 unsigned int media_lock;
1512 if (ecmd->speed != SPEED_10 && ecmd->speed != 5 && ecmd->speed != 2)
1514 if (de->de21040 && ecmd->speed == 2)
1516 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1518 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1520 if (de->de21040 && ecmd->port == PORT_BNC)
1522 if (ecmd->transceiver != XCVR_INTERNAL)
1524 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1526 if (ecmd->advertising & ~de->media_supported)
1528 if (ecmd->autoneg == AUTONEG_ENABLE &&
1529 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1532 switch (ecmd->port) {
1534 new_media = DE_MEDIA_AUI;
1535 if (!(ecmd->advertising & ADVERTISED_AUI))
1539 new_media = DE_MEDIA_BNC;
1540 if (!(ecmd->advertising & ADVERTISED_BNC))
1544 if (ecmd->autoneg == AUTONEG_ENABLE)
1545 new_media = DE_MEDIA_TP_AUTO;
1546 else if (ecmd->duplex == DUPLEX_FULL)
1547 new_media = DE_MEDIA_TP_FD;
1549 new_media = DE_MEDIA_TP;
1550 if (!(ecmd->advertising & ADVERTISED_TP))
1552 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1557 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1559 if ((new_media == de->media_type) &&
1560 (media_lock == de->media_lock) &&
1561 (ecmd->advertising == de->media_advertise))
1562 return 0; /* nothing to change */
1567 de->media_type = new_media;
1568 de->media_lock = media_lock;
1569 de->media_advertise = ecmd->advertising;
1575 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1577 struct de_private *de = dev->priv;
1579 strcpy (info->driver, DRV_NAME);
1580 strcpy (info->version, DRV_VERSION);
1581 strcpy (info->bus_info, pci_name(de->pdev));
1582 info->eedump_len = DE_EEPROM_SIZE;
1585 static int de_get_regs_len(struct net_device *dev)
1587 return DE_REGS_SIZE;
1590 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1592 struct de_private *de = dev->priv;
1595 spin_lock_irq(&de->lock);
1596 rc = __de_get_settings(de, ecmd);
1597 spin_unlock_irq(&de->lock);
1602 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1604 struct de_private *de = dev->priv;
1607 spin_lock_irq(&de->lock);
1608 rc = __de_set_settings(de, ecmd);
1609 spin_unlock_irq(&de->lock);
1614 static u32 de_get_msglevel(struct net_device *dev)
1616 struct de_private *de = dev->priv;
1618 return de->msg_enable;
1621 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1623 struct de_private *de = dev->priv;
1625 de->msg_enable = msglvl;
1628 static int de_get_eeprom(struct net_device *dev,
1629 struct ethtool_eeprom *eeprom, u8 *data)
1631 struct de_private *de = dev->priv;
1635 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1636 (eeprom->len != DE_EEPROM_SIZE))
1638 memcpy(data, de->ee_data, eeprom->len);
1643 static int de_nway_reset(struct net_device *dev)
1645 struct de_private *de = dev->priv;
1648 if (de->media_type != DE_MEDIA_TP_AUTO)
1650 if (netif_carrier_ok(de->dev))
1653 status = dr32(SIAStatus);
1654 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1655 if (netif_msg_link(de))
1656 printk(KERN_INFO "%s: link nway restart, status %x,%x\n",
1657 de->dev->name, status, dr32(SIAStatus));
1661 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1664 struct de_private *de = dev->priv;
1666 regs->version = (DE_REGS_VER << 2) | de->de21040;
1668 spin_lock_irq(&de->lock);
1669 __de_get_regs(de, data);
1670 spin_unlock_irq(&de->lock);
1673 static const struct ethtool_ops de_ethtool_ops = {
1674 .get_link = ethtool_op_get_link,
1675 .get_tx_csum = ethtool_op_get_tx_csum,
1676 .get_sg = ethtool_op_get_sg,
1677 .get_drvinfo = de_get_drvinfo,
1678 .get_regs_len = de_get_regs_len,
1679 .get_settings = de_get_settings,
1680 .set_settings = de_set_settings,
1681 .get_msglevel = de_get_msglevel,
1682 .set_msglevel = de_set_msglevel,
1683 .get_eeprom = de_get_eeprom,
1684 .nway_reset = de_nway_reset,
1685 .get_regs = de_get_regs,
1688 static void __init de21040_get_mac_address (struct de_private *de)
1692 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1694 for (i = 0; i < 6; i++) {
1695 int value, boguscnt = 100000;
1697 value = dr32(ROMCmd);
1698 while (value < 0 && --boguscnt > 0);
1699 de->dev->dev_addr[i] = value;
1702 printk(KERN_WARNING PFX "timeout reading 21040 MAC address byte %u\n", i);
1706 static void __init de21040_get_media_info(struct de_private *de)
1710 de->media_type = DE_MEDIA_TP;
1711 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1712 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1713 de->media_advertise = de->media_supported;
1715 for (i = 0; i < DE_MAX_MEDIA; i++) {
1719 case DE_MEDIA_TP_FD:
1720 de->media[i].type = i;
1721 de->media[i].csr13 = t21040_csr13[i];
1722 de->media[i].csr14 = t21040_csr14[i];
1723 de->media[i].csr15 = t21040_csr15[i];
1726 de->media[i].type = DE_MEDIA_INVALID;
1732 /* Note: this routine returns extra data bits for size detection. */
1733 static unsigned __init tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1736 unsigned retval = 0;
1737 void __iomem *ee_addr = regs + ROMCmd;
1738 int read_cmd = location | (EE_READ_CMD << addr_len);
1740 writel(EE_ENB & ~EE_CS, ee_addr);
1741 writel(EE_ENB, ee_addr);
1743 /* Shift the read command bits out. */
1744 for (i = 4 + addr_len; i >= 0; i--) {
1745 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1746 writel(EE_ENB | dataval, ee_addr);
1748 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1750 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1752 writel(EE_ENB, ee_addr);
1755 for (i = 16; i > 0; i--) {
1756 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1758 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1759 writel(EE_ENB, ee_addr);
1763 /* Terminate the EEPROM access. */
1764 writel(EE_ENB & ~EE_CS, ee_addr);
1768 static void __init de21041_get_srom_info (struct de_private *de)
1770 unsigned i, sa_offset = 0, ofs;
1771 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1772 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1773 struct de_srom_info_leaf *il;
1776 /* download entire eeprom */
1777 for (i = 0; i < DE_EEPROM_WORDS; i++)
1778 ((u16 *)ee_data)[i] =
1779 le16_to_cpu(tulip_read_eeprom(de->regs, i, ee_addr_size));
1781 /* DEC now has a specification but early board makers
1782 just put the address in the first EEPROM locations. */
1783 /* This does memcmp(eedata, eedata+16, 8) */
1785 #ifndef CONFIG_MIPS_COBALT
1787 for (i = 0; i < 8; i ++)
1788 if (ee_data[i] != ee_data[16+i])
1793 /* store MAC address */
1794 for (i = 0; i < 6; i ++)
1795 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1797 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1798 ofs = ee_data[SROMC0InfoLeaf];
1799 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1802 /* get pointer to info leaf */
1803 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1805 /* paranoia checks */
1806 if (il->n_blocks == 0)
1808 if ((sizeof(ee_data) - ofs) <
1809 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1812 /* get default media type */
1813 switch (DE_UNALIGNED_16(&il->default_media)) {
1814 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1815 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1816 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1817 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1820 if (netif_msg_probe(de))
1821 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n",
1823 media_name[de->media_type]);
1825 /* init SIA register values to defaults */
1826 for (i = 0; i < DE_MAX_MEDIA; i++) {
1827 de->media[i].type = DE_MEDIA_INVALID;
1828 de->media[i].csr13 = 0xffff;
1829 de->media[i].csr14 = 0xffff;
1830 de->media[i].csr15 = 0xffff;
1833 /* parse media blocks to see what medias are supported,
1834 * and if any custom CSR values are provided
1836 bufp = ((void *)il) + sizeof(*il);
1837 for (i = 0; i < il->n_blocks; i++) {
1838 struct de_srom_media_block *ib = bufp;
1841 /* index based on media type in media block */
1842 switch(ib->opts & MediaBlockMask) {
1843 case 0: /* 10baseT */
1844 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1845 | SUPPORTED_Autoneg;
1847 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1850 de->media_supported |= SUPPORTED_BNC;
1854 de->media_supported |= SUPPORTED_AUI;
1857 case 4: /* 10baseT-FD */
1858 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1859 | SUPPORTED_Autoneg;
1860 idx = DE_MEDIA_TP_FD;
1861 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1867 de->media[idx].type = idx;
1869 if (netif_msg_probe(de))
1870 printk(KERN_INFO "de%d: media block #%u: %s",
1872 media_name[de->media[idx].type]);
1874 bufp += sizeof (ib->opts);
1876 if (ib->opts & MediaCustomCSRs) {
1877 de->media[idx].csr13 = DE_UNALIGNED_16(&ib->csr13);
1878 de->media[idx].csr14 = DE_UNALIGNED_16(&ib->csr14);
1879 de->media[idx].csr15 = DE_UNALIGNED_16(&ib->csr15);
1880 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1883 if (netif_msg_probe(de))
1884 printk(" (%x,%x,%x)\n",
1885 de->media[idx].csr13,
1886 de->media[idx].csr14,
1887 de->media[idx].csr15);
1889 } else if (netif_msg_probe(de))
1892 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1896 de->media_advertise = de->media_supported;
1899 /* fill in defaults, for cases where custom CSRs not used */
1900 for (i = 0; i < DE_MAX_MEDIA; i++) {
1901 if (de->media[i].csr13 == 0xffff)
1902 de->media[i].csr13 = t21041_csr13[i];
1903 if (de->media[i].csr14 == 0xffff)
1904 de->media[i].csr14 = t21041_csr14[i];
1905 if (de->media[i].csr15 == 0xffff)
1906 de->media[i].csr15 = t21041_csr15[i];
1909 de->ee_data = kmalloc(DE_EEPROM_SIZE, GFP_KERNEL);
1911 memcpy(de->ee_data, &ee_data[0], DE_EEPROM_SIZE);
1916 /* for error cases, it's ok to assume we support all these */
1917 for (i = 0; i < DE_MAX_MEDIA; i++)
1918 de->media[i].type = i;
1919 de->media_supported =
1920 SUPPORTED_10baseT_Half |
1921 SUPPORTED_10baseT_Full |
1929 static int __init de_init_one (struct pci_dev *pdev,
1930 const struct pci_device_id *ent)
1932 struct net_device *dev;
1933 struct de_private *de;
1936 unsigned long pciaddr;
1937 static int board_idx = -1;
1943 printk("%s", version);
1946 /* allocate a new ethernet device structure, and fill in defaults */
1947 dev = alloc_etherdev(sizeof(struct de_private));
1951 SET_MODULE_OWNER(dev);
1952 SET_NETDEV_DEV(dev, &pdev->dev);
1953 dev->open = de_open;
1954 dev->stop = de_close;
1955 dev->set_multicast_list = de_set_rx_mode;
1956 dev->hard_start_xmit = de_start_xmit;
1957 dev->get_stats = de_get_stats;
1958 dev->ethtool_ops = &de_ethtool_ops;
1959 dev->tx_timeout = de_tx_timeout;
1960 dev->watchdog_timeo = TX_TIMEOUT;
1963 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1966 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1967 de->board_idx = board_idx;
1968 spin_lock_init (&de->lock);
1969 init_timer(&de->media_timer);
1971 de->media_timer.function = de21040_media_timer;
1973 de->media_timer.function = de21041_media_timer;
1974 de->media_timer.data = (unsigned long) de;
1976 netif_carrier_off(dev);
1977 netif_stop_queue(dev);
1979 /* wake up device, assign resources */
1980 rc = pci_enable_device(pdev);
1984 /* reserve PCI resources to ensure driver atomicity */
1985 rc = pci_request_regions(pdev, DRV_NAME);
1987 goto err_out_disable;
1989 /* check for invalid IRQ value */
1990 if (pdev->irq < 2) {
1992 printk(KERN_ERR PFX "invalid irq (%d) for pci dev %s\n",
1993 pdev->irq, pci_name(pdev));
1997 dev->irq = pdev->irq;
1999 /* obtain and check validity of PCI I/O address */
2000 pciaddr = pci_resource_start(pdev, 1);
2003 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
2007 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2009 printk(KERN_ERR PFX "MMIO resource (%llx) too small on pci dev %s\n",
2010 (unsigned long long)pci_resource_len(pdev, 1), pci_name(pdev));
2014 /* remap CSR registers */
2015 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2018 printk(KERN_ERR PFX "Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2019 (unsigned long long)pci_resource_len(pdev, 1),
2020 pciaddr, pci_name(pdev));
2023 dev->base_addr = (unsigned long) regs;
2026 de_adapter_wake(de);
2028 /* make sure hardware is not running */
2029 rc = de_reset_mac(de);
2031 printk(KERN_ERR PFX "Cannot reset MAC, pci dev %s\n",
2036 /* get MAC address, initialize default media type and
2037 * get list of supported media
2040 de21040_get_mac_address(de);
2041 de21040_get_media_info(de);
2043 de21041_get_srom_info(de);
2046 /* register new network interface with kernel */
2047 rc = register_netdev(dev);
2051 /* print info about board and interface just registered */
2052 printk (KERN_INFO "%s: %s at 0x%lx, "
2053 "%02x:%02x:%02x:%02x:%02x:%02x, "
2056 de->de21040 ? "21040" : "21041",
2058 dev->dev_addr[0], dev->dev_addr[1],
2059 dev->dev_addr[2], dev->dev_addr[3],
2060 dev->dev_addr[4], dev->dev_addr[5],
2063 pci_set_drvdata(pdev, dev);
2065 /* enable busmastering */
2066 pci_set_master(pdev);
2068 /* put adapter to sleep */
2069 de_adapter_sleep(de);
2077 pci_release_regions(pdev);
2079 pci_disable_device(pdev);
2085 static void __exit de_remove_one (struct pci_dev *pdev)
2087 struct net_device *dev = pci_get_drvdata(pdev);
2088 struct de_private *de = dev->priv;
2091 unregister_netdev(dev);
2094 pci_release_regions(pdev);
2095 pci_disable_device(pdev);
2096 pci_set_drvdata(pdev, NULL);
2102 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2104 struct net_device *dev = pci_get_drvdata (pdev);
2105 struct de_private *de = dev->priv;
2108 if (netif_running (dev)) {
2109 del_timer_sync(&de->media_timer);
2111 disable_irq(dev->irq);
2112 spin_lock_irq(&de->lock);
2115 netif_stop_queue(dev);
2116 netif_device_detach(dev);
2117 netif_carrier_off(dev);
2119 spin_unlock_irq(&de->lock);
2120 enable_irq(dev->irq);
2122 /* Update the error counts. */
2125 synchronize_irq(dev->irq);
2128 de_adapter_sleep(de);
2129 pci_disable_device(pdev);
2131 netif_device_detach(dev);
2137 static int de_resume (struct pci_dev *pdev)
2139 struct net_device *dev = pci_get_drvdata (pdev);
2140 struct de_private *de = dev->priv;
2144 if (netif_device_present(dev))
2146 if (!netif_running(dev))
2148 if ((retval = pci_enable_device(pdev))) {
2149 printk (KERN_ERR "%s: pci_enable_device failed in resume\n",
2155 netif_device_attach(dev);
2161 #endif /* CONFIG_PM */
2163 static struct pci_driver de_driver = {
2165 .id_table = de_pci_tbl,
2166 .probe = de_init_one,
2167 .remove = __exit_p(de_remove_one),
2169 .suspend = de_suspend,
2170 .resume = de_resume,
2174 static int __init de_init (void)
2177 printk("%s", version);
2179 return pci_register_driver(&de_driver);
2182 static void __exit de_exit (void)
2184 pci_unregister_driver (&de_driver);
2187 module_init(de_init);
2188 module_exit(de_exit);