Memory controller: accounting setup
[linux-2.6] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24
25 struct cgroup_subsys mem_cgroup_subsys;
26
27 /*
28  * The memory controller data structure. The memory controller controls both
29  * page cache and RSS per cgroup. We would eventually like to provide
30  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
31  * to help the administrator determine what knobs to tune.
32  *
33  * TODO: Add a water mark for the memory controller. Reclaim will begin when
34  * we hit the water mark.
35  */
36 struct mem_cgroup {
37         struct cgroup_subsys_state css;
38         /*
39          * the counter to account for memory usage
40          */
41         struct res_counter res;
42         /*
43          * Per cgroup active and inactive list, similar to the
44          * per zone LRU lists.
45          * TODO: Consider making these lists per zone
46          */
47         struct list_head active_list;
48         struct list_head inactive_list;
49 };
50
51 /*
52  * A page_cgroup page is associated with every page descriptor. The
53  * page_cgroup helps us identify information about the cgroup
54  */
55 struct page_cgroup {
56         struct list_head lru;           /* per cgroup LRU list */
57         struct page *page;
58         struct mem_cgroup *mem_cgroup;
59 };
60
61
62 static inline
63 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
64 {
65         return container_of(cgroup_subsys_state(cont,
66                                 mem_cgroup_subsys_id), struct mem_cgroup,
67                                 css);
68 }
69
70 static inline
71 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
72 {
73         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
74                                 struct mem_cgroup, css);
75 }
76
77 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
78 {
79         struct mem_cgroup *mem;
80
81         mem = mem_cgroup_from_task(p);
82         css_get(&mem->css);
83         mm->mem_cgroup = mem;
84 }
85
86 void mm_free_cgroup(struct mm_struct *mm)
87 {
88         css_put(&mm->mem_cgroup->css);
89 }
90
91 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
92 {
93         page->page_cgroup = (unsigned long)pc;
94 }
95
96 struct page_cgroup *page_get_page_cgroup(struct page *page)
97 {
98         return page->page_cgroup;
99 }
100
101 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
102                         struct file *file, char __user *userbuf, size_t nbytes,
103                         loff_t *ppos)
104 {
105         return res_counter_read(&mem_cgroup_from_cont(cont)->res,
106                                 cft->private, userbuf, nbytes, ppos);
107 }
108
109 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
110                                 struct file *file, const char __user *userbuf,
111                                 size_t nbytes, loff_t *ppos)
112 {
113         return res_counter_write(&mem_cgroup_from_cont(cont)->res,
114                                 cft->private, userbuf, nbytes, ppos);
115 }
116
117 static struct cftype mem_cgroup_files[] = {
118         {
119                 .name = "usage",
120                 .private = RES_USAGE,
121                 .read = mem_cgroup_read,
122         },
123         {
124                 .name = "limit",
125                 .private = RES_LIMIT,
126                 .write = mem_cgroup_write,
127                 .read = mem_cgroup_read,
128         },
129         {
130                 .name = "failcnt",
131                 .private = RES_FAILCNT,
132                 .read = mem_cgroup_read,
133         },
134 };
135
136 static struct mem_cgroup init_mem_cgroup;
137
138 static struct cgroup_subsys_state *
139 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
140 {
141         struct mem_cgroup *mem;
142
143         if (unlikely((cont->parent) == NULL)) {
144                 mem = &init_mem_cgroup;
145                 init_mm.mem_cgroup = mem;
146         } else
147                 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
148
149         if (mem == NULL)
150                 return NULL;
151
152         res_counter_init(&mem->res);
153         return &mem->css;
154 }
155
156 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
157                                 struct cgroup *cont)
158 {
159         kfree(mem_cgroup_from_cont(cont));
160 }
161
162 static int mem_cgroup_populate(struct cgroup_subsys *ss,
163                                 struct cgroup *cont)
164 {
165         return cgroup_add_files(cont, ss, mem_cgroup_files,
166                                         ARRAY_SIZE(mem_cgroup_files));
167 }
168
169 struct cgroup_subsys mem_cgroup_subsys = {
170         .name = "memory",
171         .subsys_id = mem_cgroup_subsys_id,
172         .create = mem_cgroup_create,
173         .destroy = mem_cgroup_destroy,
174         .populate = mem_cgroup_populate,
175         .early_init = 1,
176 };