Automatic merge of /spare/repo/netdev-2.6 branch dm9000
[linux-2.6] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/raid/raid10.h>
22
23 /*
24  * RAID10 provides a combination of RAID0 and RAID1 functionality.
25  * The layout of data is defined by
26  *    chunk_size
27  *    raid_disks
28  *    near_copies (stored in low byte of layout)
29  *    far_copies (stored in second byte of layout)
30  *
31  * The data to be stored is divided into chunks using chunksize.
32  * Each device is divided into far_copies sections.
33  * In each section, chunks are laid out in a style similar to raid0, but
34  * near_copies copies of each chunk is stored (each on a different drive).
35  * The starting device for each section is offset near_copies from the starting
36  * device of the previous section.
37  * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38  * drive.
39  * near_copies and far_copies must be at least one, and their product is at most
40  * raid_disks.
41  */
42
43 /*
44  * Number of guaranteed r10bios in case of extreme VM load:
45  */
46 #define NR_RAID10_BIOS 256
47
48 static void unplug_slaves(mddev_t *mddev);
49
50 static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
51 {
52         conf_t *conf = data;
53         r10bio_t *r10_bio;
54         int size = offsetof(struct r10bio_s, devs[conf->copies]);
55
56         /* allocate a r10bio with room for raid_disks entries in the bios array */
57         r10_bio = kmalloc(size, gfp_flags);
58         if (r10_bio)
59                 memset(r10_bio, 0, size);
60         else
61                 unplug_slaves(conf->mddev);
62
63         return r10_bio;
64 }
65
66 static void r10bio_pool_free(void *r10_bio, void *data)
67 {
68         kfree(r10_bio);
69 }
70
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
76
77 /*
78  * When performing a resync, we need to read and compare, so
79  * we need as many pages are there are copies.
80  * When performing a recovery, we need 2 bios, one for read,
81  * one for write (we recover only one drive per r10buf)
82  *
83  */
84 static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
85 {
86         conf_t *conf = data;
87         struct page *page;
88         r10bio_t *r10_bio;
89         struct bio *bio;
90         int i, j;
91         int nalloc;
92
93         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94         if (!r10_bio) {
95                 unplug_slaves(conf->mddev);
96                 return NULL;
97         }
98
99         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100                 nalloc = conf->copies; /* resync */
101         else
102                 nalloc = 2; /* recovery */
103
104         /*
105          * Allocate bios.
106          */
107         for (j = nalloc ; j-- ; ) {
108                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109                 if (!bio)
110                         goto out_free_bio;
111                 r10_bio->devs[j].bio = bio;
112         }
113         /*
114          * Allocate RESYNC_PAGES data pages and attach them
115          * where needed.
116          */
117         for (j = 0 ; j < nalloc; j++) {
118                 bio = r10_bio->devs[j].bio;
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                 }
126         }
127
128         return r10_bio;
129
130 out_free_pages:
131         for ( ; i > 0 ; i--)
132                 __free_page(bio->bi_io_vec[i-1].bv_page);
133         while (j--)
134                 for (i = 0; i < RESYNC_PAGES ; i++)
135                         __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136         j = -1;
137 out_free_bio:
138         while ( ++j < nalloc )
139                 bio_put(r10_bio->devs[j].bio);
140         r10bio_pool_free(r10_bio, conf);
141         return NULL;
142 }
143
144 static void r10buf_pool_free(void *__r10_bio, void *data)
145 {
146         int i;
147         conf_t *conf = data;
148         r10bio_t *r10bio = __r10_bio;
149         int j;
150
151         for (j=0; j < conf->copies; j++) {
152                 struct bio *bio = r10bio->devs[j].bio;
153                 if (bio) {
154                         for (i = 0; i < RESYNC_PAGES; i++) {
155                                 __free_page(bio->bi_io_vec[i].bv_page);
156                                 bio->bi_io_vec[i].bv_page = NULL;
157                         }
158                         bio_put(bio);
159                 }
160         }
161         r10bio_pool_free(r10bio, conf);
162 }
163
164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165 {
166         int i;
167
168         for (i = 0; i < conf->copies; i++) {
169                 struct bio **bio = & r10_bio->devs[i].bio;
170                 if (*bio)
171                         bio_put(*bio);
172                 *bio = NULL;
173         }
174 }
175
176 static inline void free_r10bio(r10bio_t *r10_bio)
177 {
178         unsigned long flags;
179
180         conf_t *conf = mddev_to_conf(r10_bio->mddev);
181
182         /*
183          * Wake up any possible resync thread that waits for the device
184          * to go idle.
185          */
186         spin_lock_irqsave(&conf->resync_lock, flags);
187         if (!--conf->nr_pending) {
188                 wake_up(&conf->wait_idle);
189                 wake_up(&conf->wait_resume);
190         }
191         spin_unlock_irqrestore(&conf->resync_lock, flags);
192
193         put_all_bios(conf, r10_bio);
194         mempool_free(r10_bio, conf->r10bio_pool);
195 }
196
197 static inline void put_buf(r10bio_t *r10_bio)
198 {
199         conf_t *conf = mddev_to_conf(r10_bio->mddev);
200         unsigned long flags;
201
202         mempool_free(r10_bio, conf->r10buf_pool);
203
204         spin_lock_irqsave(&conf->resync_lock, flags);
205         if (!conf->barrier)
206                 BUG();
207         --conf->barrier;
208         wake_up(&conf->wait_resume);
209         wake_up(&conf->wait_idle);
210
211         if (!--conf->nr_pending) {
212                 wake_up(&conf->wait_idle);
213                 wake_up(&conf->wait_resume);
214         }
215         spin_unlock_irqrestore(&conf->resync_lock, flags);
216 }
217
218 static void reschedule_retry(r10bio_t *r10_bio)
219 {
220         unsigned long flags;
221         mddev_t *mddev = r10_bio->mddev;
222         conf_t *conf = mddev_to_conf(mddev);
223
224         spin_lock_irqsave(&conf->device_lock, flags);
225         list_add(&r10_bio->retry_list, &conf->retry_list);
226         spin_unlock_irqrestore(&conf->device_lock, flags);
227
228         md_wakeup_thread(mddev->thread);
229 }
230
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238         struct bio *bio = r10_bio->master_bio;
239
240         bio_endio(bio, bio->bi_size,
241                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242         free_r10bio(r10_bio);
243 }
244
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250         conf_t *conf = mddev_to_conf(r10_bio->mddev);
251
252         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253                 r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255
256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257 {
258         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260         int slot, dev;
261         conf_t *conf = mddev_to_conf(r10_bio->mddev);
262
263         if (bio->bi_size)
264                 return 1;
265
266         slot = r10_bio->read_slot;
267         dev = r10_bio->devs[slot].devnum;
268         /*
269          * this branch is our 'one mirror IO has finished' event handler:
270          */
271         if (!uptodate)
272                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273         else
274                 /*
275                  * Set R10BIO_Uptodate in our master bio, so that
276                  * we will return a good error code to the higher
277                  * levels even if IO on some other mirrored buffer fails.
278                  *
279                  * The 'master' represents the composite IO operation to
280                  * user-side. So if something waits for IO, then it will
281                  * wait for the 'master' bio.
282                  */
283                 set_bit(R10BIO_Uptodate, &r10_bio->state);
284
285         update_head_pos(slot, r10_bio);
286
287         /*
288          * we have only one bio on the read side
289          */
290         if (uptodate)
291                 raid_end_bio_io(r10_bio);
292         else {
293                 /*
294                  * oops, read error:
295                  */
296                 char b[BDEVNAME_SIZE];
297                 if (printk_ratelimit())
298                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300                 reschedule_retry(r10_bio);
301         }
302
303         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304         return 0;
305 }
306
307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311         int slot, dev;
312         conf_t *conf = mddev_to_conf(r10_bio->mddev);
313
314         if (bio->bi_size)
315                 return 1;
316
317         for (slot = 0; slot < conf->copies; slot++)
318                 if (r10_bio->devs[slot].bio == bio)
319                         break;
320         dev = r10_bio->devs[slot].devnum;
321
322         /*
323          * this branch is our 'one mirror IO has finished' event handler:
324          */
325         if (!uptodate)
326                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327         else
328                 /*
329                  * Set R10BIO_Uptodate in our master bio, so that
330                  * we will return a good error code for to the higher
331                  * levels even if IO on some other mirrored buffer fails.
332                  *
333                  * The 'master' represents the composite IO operation to
334                  * user-side. So if something waits for IO, then it will
335                  * wait for the 'master' bio.
336                  */
337                 set_bit(R10BIO_Uptodate, &r10_bio->state);
338
339         update_head_pos(slot, r10_bio);
340
341         /*
342          *
343          * Let's see if all mirrored write operations have finished
344          * already.
345          */
346         if (atomic_dec_and_test(&r10_bio->remaining)) {
347                 md_write_end(r10_bio->mddev);
348                 raid_end_bio_io(r10_bio);
349         }
350
351         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352         return 0;
353 }
354
355
356 /*
357  * RAID10 layout manager
358  * Aswell as the chunksize and raid_disks count, there are two
359  * parameters: near_copies and far_copies.
360  * near_copies * far_copies must be <= raid_disks.
361  * Normally one of these will be 1.
362  * If both are 1, we get raid0.
363  * If near_copies == raid_disks, we get raid1.
364  *
365  * Chunks are layed out in raid0 style with near_copies copies of the
366  * first chunk, followed by near_copies copies of the next chunk and
367  * so on.
368  * If far_copies > 1, then after 1/far_copies of the array has been assigned
369  * as described above, we start again with a device offset of near_copies.
370  * So we effectively have another copy of the whole array further down all
371  * the drives, but with blocks on different drives.
372  * With this layout, and block is never stored twice on the one device.
373  *
374  * raid10_find_phys finds the sector offset of a given virtual sector
375  * on each device that it is on. If a block isn't on a device,
376  * that entry in the array is set to MaxSector.
377  *
378  * raid10_find_virt does the reverse mapping, from a device and a
379  * sector offset to a virtual address
380  */
381
382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383 {
384         int n,f;
385         sector_t sector;
386         sector_t chunk;
387         sector_t stripe;
388         int dev;
389
390         int slot = 0;
391
392         /* now calculate first sector/dev */
393         chunk = r10bio->sector >> conf->chunk_shift;
394         sector = r10bio->sector & conf->chunk_mask;
395
396         chunk *= conf->near_copies;
397         stripe = chunk;
398         dev = sector_div(stripe, conf->raid_disks);
399
400         sector += stripe << conf->chunk_shift;
401
402         /* and calculate all the others */
403         for (n=0; n < conf->near_copies; n++) {
404                 int d = dev;
405                 sector_t s = sector;
406                 r10bio->devs[slot].addr = sector;
407                 r10bio->devs[slot].devnum = d;
408                 slot++;
409
410                 for (f = 1; f < conf->far_copies; f++) {
411                         d += conf->near_copies;
412                         if (d >= conf->raid_disks)
413                                 d -= conf->raid_disks;
414                         s += conf->stride;
415                         r10bio->devs[slot].devnum = d;
416                         r10bio->devs[slot].addr = s;
417                         slot++;
418                 }
419                 dev++;
420                 if (dev >= conf->raid_disks) {
421                         dev = 0;
422                         sector += (conf->chunk_mask + 1);
423                 }
424         }
425         BUG_ON(slot != conf->copies);
426 }
427
428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429 {
430         sector_t offset, chunk, vchunk;
431
432         while (sector > conf->stride) {
433                 sector -= conf->stride;
434                 if (dev < conf->near_copies)
435                         dev += conf->raid_disks - conf->near_copies;
436                 else
437                         dev -= conf->near_copies;
438         }
439
440         offset = sector & conf->chunk_mask;
441         chunk = sector >> conf->chunk_shift;
442         vchunk = chunk * conf->raid_disks + dev;
443         sector_div(vchunk, conf->near_copies);
444         return (vchunk << conf->chunk_shift) + offset;
445 }
446
447 /**
448  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *      @q: request queue
450  *      @bio: the buffer head that's been built up so far
451  *      @biovec: the request that could be merged to it.
452  *
453  *      Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458                                 struct bio_vec *bio_vec)
459 {
460         mddev_t *mddev = q->queuedata;
461         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462         int max;
463         unsigned int chunk_sectors = mddev->chunk_size >> 9;
464         unsigned int bio_sectors = bio->bi_size >> 9;
465
466         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468         if (max <= bio_vec->bv_len && bio_sectors == 0)
469                 return bio_vec->bv_len;
470         else
471                 return max;
472 }
473
474 /*
475  * This routine returns the disk from which the requested read should
476  * be done. There is a per-array 'next expected sequential IO' sector
477  * number - if this matches on the next IO then we use the last disk.
478  * There is also a per-disk 'last know head position' sector that is
479  * maintained from IRQ contexts, both the normal and the resync IO
480  * completion handlers update this position correctly. If there is no
481  * perfect sequential match then we pick the disk whose head is closest.
482  *
483  * If there are 2 mirrors in the same 2 devices, performance degrades
484  * because position is mirror, not device based.
485  *
486  * The rdev for the device selected will have nr_pending incremented.
487  */
488
489 /*
490  * FIXME: possibly should rethink readbalancing and do it differently
491  * depending on near_copies / far_copies geometry.
492  */
493 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494 {
495         const unsigned long this_sector = r10_bio->sector;
496         int disk, slot, nslot;
497         const int sectors = r10_bio->sectors;
498         sector_t new_distance, current_distance;
499
500         raid10_find_phys(conf, r10_bio);
501         rcu_read_lock();
502         /*
503          * Check if we can balance. We can balance on the whole
504          * device if no resync is going on, or below the resync window.
505          * We take the first readable disk when above the resync window.
506          */
507         if (conf->mddev->recovery_cp < MaxSector
508             && (this_sector + sectors >= conf->next_resync)) {
509                 /* make sure that disk is operational */
510                 slot = 0;
511                 disk = r10_bio->devs[slot].devnum;
512
513                 while (!conf->mirrors[disk].rdev ||
514                        !conf->mirrors[disk].rdev->in_sync) {
515                         slot++;
516                         if (slot == conf->copies) {
517                                 slot = 0;
518                                 disk = -1;
519                                 break;
520                         }
521                         disk = r10_bio->devs[slot].devnum;
522                 }
523                 goto rb_out;
524         }
525
526
527         /* make sure the disk is operational */
528         slot = 0;
529         disk = r10_bio->devs[slot].devnum;
530         while (!conf->mirrors[disk].rdev ||
531                !conf->mirrors[disk].rdev->in_sync) {
532                 slot ++;
533                 if (slot == conf->copies) {
534                         disk = -1;
535                         goto rb_out;
536                 }
537                 disk = r10_bio->devs[slot].devnum;
538         }
539
540
541         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
542
543         /* Find the disk whose head is closest */
544
545         for (nslot = slot; nslot < conf->copies; nslot++) {
546                 int ndisk = r10_bio->devs[nslot].devnum;
547
548
549                 if (!conf->mirrors[ndisk].rdev ||
550                     !conf->mirrors[ndisk].rdev->in_sync)
551                         continue;
552
553                 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) {
554                         disk = ndisk;
555                         slot = nslot;
556                         break;
557                 }
558                 new_distance = abs(r10_bio->devs[nslot].addr -
559                                    conf->mirrors[ndisk].head_position);
560                 if (new_distance < current_distance) {
561                         current_distance = new_distance;
562                         disk = ndisk;
563                         slot = nslot;
564                 }
565         }
566
567 rb_out:
568         r10_bio->read_slot = slot;
569 /*      conf->next_seq_sect = this_sector + sectors;*/
570
571         if (disk >= 0 && conf->mirrors[disk].rdev)
572                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
573         rcu_read_unlock();
574
575         return disk;
576 }
577
578 static void unplug_slaves(mddev_t *mddev)
579 {
580         conf_t *conf = mddev_to_conf(mddev);
581         int i;
582
583         rcu_read_lock();
584         for (i=0; i<mddev->raid_disks; i++) {
585                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
586                 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
587                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
588
589                         atomic_inc(&rdev->nr_pending);
590                         rcu_read_unlock();
591
592                         if (r_queue->unplug_fn)
593                                 r_queue->unplug_fn(r_queue);
594
595                         rdev_dec_pending(rdev, mddev);
596                         rcu_read_lock();
597                 }
598         }
599         rcu_read_unlock();
600 }
601
602 static void raid10_unplug(request_queue_t *q)
603 {
604         unplug_slaves(q->queuedata);
605 }
606
607 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
608                              sector_t *error_sector)
609 {
610         mddev_t *mddev = q->queuedata;
611         conf_t *conf = mddev_to_conf(mddev);
612         int i, ret = 0;
613
614         rcu_read_lock();
615         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
616                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
617                 if (rdev && !rdev->faulty) {
618                         struct block_device *bdev = rdev->bdev;
619                         request_queue_t *r_queue = bdev_get_queue(bdev);
620
621                         if (!r_queue->issue_flush_fn)
622                                 ret = -EOPNOTSUPP;
623                         else {
624                                 atomic_inc(&rdev->nr_pending);
625                                 rcu_read_unlock();
626                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
627                                                               error_sector);
628                                 rdev_dec_pending(rdev, mddev);
629                                 rcu_read_lock();
630                         }
631                 }
632         }
633         rcu_read_unlock();
634         return ret;
635 }
636
637 /*
638  * Throttle resync depth, so that we can both get proper overlapping of
639  * requests, but are still able to handle normal requests quickly.
640  */
641 #define RESYNC_DEPTH 32
642
643 static void device_barrier(conf_t *conf, sector_t sect)
644 {
645         spin_lock_irq(&conf->resync_lock);
646         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
647                             conf->resync_lock, unplug_slaves(conf->mddev));
648
649         if (!conf->barrier++) {
650                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
651                                     conf->resync_lock, unplug_slaves(conf->mddev));
652                 if (conf->nr_pending)
653                         BUG();
654         }
655         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
656                             conf->resync_lock, unplug_slaves(conf->mddev));
657         conf->next_resync = sect;
658         spin_unlock_irq(&conf->resync_lock);
659 }
660
661 static int make_request(request_queue_t *q, struct bio * bio)
662 {
663         mddev_t *mddev = q->queuedata;
664         conf_t *conf = mddev_to_conf(mddev);
665         mirror_info_t *mirror;
666         r10bio_t *r10_bio;
667         struct bio *read_bio;
668         int i;
669         int chunk_sects = conf->chunk_mask + 1;
670
671         /* If this request crosses a chunk boundary, we need to
672          * split it.  This will only happen for 1 PAGE (or less) requests.
673          */
674         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
675                       > chunk_sects &&
676                     conf->near_copies < conf->raid_disks)) {
677                 struct bio_pair *bp;
678                 /* Sanity check -- queue functions should prevent this happening */
679                 if (bio->bi_vcnt != 1 ||
680                     bio->bi_idx != 0)
681                         goto bad_map;
682                 /* This is a one page bio that upper layers
683                  * refuse to split for us, so we need to split it.
684                  */
685                 bp = bio_split(bio, bio_split_pool,
686                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
687                 if (make_request(q, &bp->bio1))
688                         generic_make_request(&bp->bio1);
689                 if (make_request(q, &bp->bio2))
690                         generic_make_request(&bp->bio2);
691
692                 bio_pair_release(bp);
693                 return 0;
694         bad_map:
695                 printk("raid10_make_request bug: can't convert block across chunks"
696                        " or bigger than %dk %llu %d\n", chunk_sects/2,
697                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
698
699                 bio_io_error(bio, bio->bi_size);
700                 return 0;
701         }
702
703         /*
704          * Register the new request and wait if the reconstruction
705          * thread has put up a bar for new requests.
706          * Continue immediately if no resync is active currently.
707          */
708         spin_lock_irq(&conf->resync_lock);
709         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
710         conf->nr_pending++;
711         spin_unlock_irq(&conf->resync_lock);
712
713         if (bio_data_dir(bio)==WRITE) {
714                 disk_stat_inc(mddev->gendisk, writes);
715                 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
716         } else {
717                 disk_stat_inc(mddev->gendisk, reads);
718                 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
719         }
720
721         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
722
723         r10_bio->master_bio = bio;
724         r10_bio->sectors = bio->bi_size >> 9;
725
726         r10_bio->mddev = mddev;
727         r10_bio->sector = bio->bi_sector;
728
729         if (bio_data_dir(bio) == READ) {
730                 /*
731                  * read balancing logic:
732                  */
733                 int disk = read_balance(conf, r10_bio);
734                 int slot = r10_bio->read_slot;
735                 if (disk < 0) {
736                         raid_end_bio_io(r10_bio);
737                         return 0;
738                 }
739                 mirror = conf->mirrors + disk;
740
741                 read_bio = bio_clone(bio, GFP_NOIO);
742
743                 r10_bio->devs[slot].bio = read_bio;
744
745                 read_bio->bi_sector = r10_bio->devs[slot].addr +
746                         mirror->rdev->data_offset;
747                 read_bio->bi_bdev = mirror->rdev->bdev;
748                 read_bio->bi_end_io = raid10_end_read_request;
749                 read_bio->bi_rw = READ;
750                 read_bio->bi_private = r10_bio;
751
752                 generic_make_request(read_bio);
753                 return 0;
754         }
755
756         /*
757          * WRITE:
758          */
759         /* first select target devices under spinlock and
760          * inc refcount on their rdev.  Record them by setting
761          * bios[x] to bio
762          */
763         raid10_find_phys(conf, r10_bio);
764         rcu_read_lock();
765         for (i = 0;  i < conf->copies; i++) {
766                 int d = r10_bio->devs[i].devnum;
767                 if (conf->mirrors[d].rdev &&
768                     !conf->mirrors[d].rdev->faulty) {
769                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
770                         r10_bio->devs[i].bio = bio;
771                 } else
772                         r10_bio->devs[i].bio = NULL;
773         }
774         rcu_read_unlock();
775
776         atomic_set(&r10_bio->remaining, 1);
777         md_write_start(mddev);
778         for (i = 0; i < conf->copies; i++) {
779                 struct bio *mbio;
780                 int d = r10_bio->devs[i].devnum;
781                 if (!r10_bio->devs[i].bio)
782                         continue;
783
784                 mbio = bio_clone(bio, GFP_NOIO);
785                 r10_bio->devs[i].bio = mbio;
786
787                 mbio->bi_sector = r10_bio->devs[i].addr+
788                         conf->mirrors[d].rdev->data_offset;
789                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
790                 mbio->bi_end_io = raid10_end_write_request;
791                 mbio->bi_rw = WRITE;
792                 mbio->bi_private = r10_bio;
793
794                 atomic_inc(&r10_bio->remaining);
795                 generic_make_request(mbio);
796         }
797
798         if (atomic_dec_and_test(&r10_bio->remaining)) {
799                 md_write_end(mddev);
800                 raid_end_bio_io(r10_bio);
801         }
802
803         return 0;
804 }
805
806 static void status(struct seq_file *seq, mddev_t *mddev)
807 {
808         conf_t *conf = mddev_to_conf(mddev);
809         int i;
810
811         if (conf->near_copies < conf->raid_disks)
812                 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
813         if (conf->near_copies > 1)
814                 seq_printf(seq, " %d near-copies", conf->near_copies);
815         if (conf->far_copies > 1)
816                 seq_printf(seq, " %d far-copies", conf->far_copies);
817
818         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
819                                                 conf->working_disks);
820         for (i = 0; i < conf->raid_disks; i++)
821                 seq_printf(seq, "%s",
822                               conf->mirrors[i].rdev &&
823                               conf->mirrors[i].rdev->in_sync ? "U" : "_");
824         seq_printf(seq, "]");
825 }
826
827 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
828 {
829         char b[BDEVNAME_SIZE];
830         conf_t *conf = mddev_to_conf(mddev);
831
832         /*
833          * If it is not operational, then we have already marked it as dead
834          * else if it is the last working disks, ignore the error, let the
835          * next level up know.
836          * else mark the drive as failed
837          */
838         if (rdev->in_sync
839             && conf->working_disks == 1)
840                 /*
841                  * Don't fail the drive, just return an IO error.
842                  * The test should really be more sophisticated than
843                  * "working_disks == 1", but it isn't critical, and
844                  * can wait until we do more sophisticated "is the drive
845                  * really dead" tests...
846                  */
847                 return;
848         if (rdev->in_sync) {
849                 mddev->degraded++;
850                 conf->working_disks--;
851                 /*
852                  * if recovery is running, make sure it aborts.
853                  */
854                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
855         }
856         rdev->in_sync = 0;
857         rdev->faulty = 1;
858         mddev->sb_dirty = 1;
859         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
860                 "       Operation continuing on %d devices\n",
861                 bdevname(rdev->bdev,b), conf->working_disks);
862 }
863
864 static void print_conf(conf_t *conf)
865 {
866         int i;
867         mirror_info_t *tmp;
868
869         printk("RAID10 conf printout:\n");
870         if (!conf) {
871                 printk("(!conf)\n");
872                 return;
873         }
874         printk(" --- wd:%d rd:%d\n", conf->working_disks,
875                 conf->raid_disks);
876
877         for (i = 0; i < conf->raid_disks; i++) {
878                 char b[BDEVNAME_SIZE];
879                 tmp = conf->mirrors + i;
880                 if (tmp->rdev)
881                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
882                                 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
883                                 bdevname(tmp->rdev->bdev,b));
884         }
885 }
886
887 static void close_sync(conf_t *conf)
888 {
889         spin_lock_irq(&conf->resync_lock);
890         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
891                             conf->resync_lock,  unplug_slaves(conf->mddev));
892         spin_unlock_irq(&conf->resync_lock);
893
894         if (conf->barrier) BUG();
895         if (waitqueue_active(&conf->wait_idle)) BUG();
896
897         mempool_destroy(conf->r10buf_pool);
898         conf->r10buf_pool = NULL;
899 }
900
901 static int raid10_spare_active(mddev_t *mddev)
902 {
903         int i;
904         conf_t *conf = mddev->private;
905         mirror_info_t *tmp;
906
907         /*
908          * Find all non-in_sync disks within the RAID10 configuration
909          * and mark them in_sync
910          */
911         for (i = 0; i < conf->raid_disks; i++) {
912                 tmp = conf->mirrors + i;
913                 if (tmp->rdev
914                     && !tmp->rdev->faulty
915                     && !tmp->rdev->in_sync) {
916                         conf->working_disks++;
917                         mddev->degraded--;
918                         tmp->rdev->in_sync = 1;
919                 }
920         }
921
922         print_conf(conf);
923         return 0;
924 }
925
926
927 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
928 {
929         conf_t *conf = mddev->private;
930         int found = 0;
931         int mirror;
932         mirror_info_t *p;
933
934         if (mddev->recovery_cp < MaxSector)
935                 /* only hot-add to in-sync arrays, as recovery is
936                  * very different from resync
937                  */
938                 return 0;
939
940         for (mirror=0; mirror < mddev->raid_disks; mirror++)
941                 if ( !(p=conf->mirrors+mirror)->rdev) {
942
943                         blk_queue_stack_limits(mddev->queue,
944                                                rdev->bdev->bd_disk->queue);
945                         /* as we don't honour merge_bvec_fn, we must never risk
946                          * violating it, so limit ->max_sector to one PAGE, as
947                          * a one page request is never in violation.
948                          */
949                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
950                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
951                                 mddev->queue->max_sectors = (PAGE_SIZE>>9);
952
953                         p->head_position = 0;
954                         rdev->raid_disk = mirror;
955                         found = 1;
956                         p->rdev = rdev;
957                         break;
958                 }
959
960         print_conf(conf);
961         return found;
962 }
963
964 static int raid10_remove_disk(mddev_t *mddev, int number)
965 {
966         conf_t *conf = mddev->private;
967         int err = 0;
968         mdk_rdev_t *rdev;
969         mirror_info_t *p = conf->mirrors+ number;
970
971         print_conf(conf);
972         rdev = p->rdev;
973         if (rdev) {
974                 if (rdev->in_sync ||
975                     atomic_read(&rdev->nr_pending)) {
976                         err = -EBUSY;
977                         goto abort;
978                 }
979                 p->rdev = NULL;
980                 synchronize_rcu();
981                 if (atomic_read(&rdev->nr_pending)) {
982                         /* lost the race, try later */
983                         err = -EBUSY;
984                         p->rdev = rdev;
985                 }
986         }
987 abort:
988
989         print_conf(conf);
990         return err;
991 }
992
993
994 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
995 {
996         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
997         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
998         conf_t *conf = mddev_to_conf(r10_bio->mddev);
999         int i,d;
1000
1001         if (bio->bi_size)
1002                 return 1;
1003
1004         for (i=0; i<conf->copies; i++)
1005                 if (r10_bio->devs[i].bio == bio)
1006                         break;
1007         if (i == conf->copies)
1008                 BUG();
1009         update_head_pos(i, r10_bio);
1010         d = r10_bio->devs[i].devnum;
1011         if (!uptodate)
1012                 md_error(r10_bio->mddev,
1013                          conf->mirrors[d].rdev);
1014
1015         /* for reconstruct, we always reschedule after a read.
1016          * for resync, only after all reads
1017          */
1018         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1019             atomic_dec_and_test(&r10_bio->remaining)) {
1020                 /* we have read all the blocks,
1021                  * do the comparison in process context in raid10d
1022                  */
1023                 reschedule_retry(r10_bio);
1024         }
1025         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1026         return 0;
1027 }
1028
1029 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1030 {
1031         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1032         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1033         mddev_t *mddev = r10_bio->mddev;
1034         conf_t *conf = mddev_to_conf(mddev);
1035         int i,d;
1036
1037         if (bio->bi_size)
1038                 return 1;
1039
1040         for (i = 0; i < conf->copies; i++)
1041                 if (r10_bio->devs[i].bio == bio)
1042                         break;
1043         d = r10_bio->devs[i].devnum;
1044
1045         if (!uptodate)
1046                 md_error(mddev, conf->mirrors[d].rdev);
1047         update_head_pos(i, r10_bio);
1048
1049         while (atomic_dec_and_test(&r10_bio->remaining)) {
1050                 if (r10_bio->master_bio == NULL) {
1051                         /* the primary of several recovery bios */
1052                         md_done_sync(mddev, r10_bio->sectors, 1);
1053                         put_buf(r10_bio);
1054                         break;
1055                 } else {
1056                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1057                         put_buf(r10_bio);
1058                         r10_bio = r10_bio2;
1059                 }
1060         }
1061         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1062         return 0;
1063 }
1064
1065 /*
1066  * Note: sync and recover and handled very differently for raid10
1067  * This code is for resync.
1068  * For resync, we read through virtual addresses and read all blocks.
1069  * If there is any error, we schedule a write.  The lowest numbered
1070  * drive is authoritative.
1071  * However requests come for physical address, so we need to map.
1072  * For every physical address there are raid_disks/copies virtual addresses,
1073  * which is always are least one, but is not necessarly an integer.
1074  * This means that a physical address can span multiple chunks, so we may
1075  * have to submit multiple io requests for a single sync request.
1076  */
1077 /*
1078  * We check if all blocks are in-sync and only write to blocks that
1079  * aren't in sync
1080  */
1081 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1082 {
1083         conf_t *conf = mddev_to_conf(mddev);
1084         int i, first;
1085         struct bio *tbio, *fbio;
1086
1087         atomic_set(&r10_bio->remaining, 1);
1088
1089         /* find the first device with a block */
1090         for (i=0; i<conf->copies; i++)
1091                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1092                         break;
1093
1094         if (i == conf->copies)
1095                 goto done;
1096
1097         first = i;
1098         fbio = r10_bio->devs[i].bio;
1099
1100         /* now find blocks with errors */
1101         for (i=first+1 ; i < conf->copies ; i++) {
1102                 int vcnt, j, d;
1103
1104                 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1105                         continue;
1106                 /* We know that the bi_io_vec layout is the same for
1107                  * both 'first' and 'i', so we just compare them.
1108                  * All vec entries are PAGE_SIZE;
1109                  */
1110                 tbio = r10_bio->devs[i].bio;
1111                 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1112                 for (j = 0; j < vcnt; j++)
1113                         if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1114                                    page_address(tbio->bi_io_vec[j].bv_page),
1115                                    PAGE_SIZE))
1116                                 break;
1117                 if (j == vcnt)
1118                         continue;
1119                 /* Ok, we need to write this bio
1120                  * First we need to fixup bv_offset, bv_len and
1121                  * bi_vecs, as the read request might have corrupted these
1122                  */
1123                 tbio->bi_vcnt = vcnt;
1124                 tbio->bi_size = r10_bio->sectors << 9;
1125                 tbio->bi_idx = 0;
1126                 tbio->bi_phys_segments = 0;
1127                 tbio->bi_hw_segments = 0;
1128                 tbio->bi_hw_front_size = 0;
1129                 tbio->bi_hw_back_size = 0;
1130                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1131                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1132                 tbio->bi_next = NULL;
1133                 tbio->bi_rw = WRITE;
1134                 tbio->bi_private = r10_bio;
1135                 tbio->bi_sector = r10_bio->devs[i].addr;
1136
1137                 for (j=0; j < vcnt ; j++) {
1138                         tbio->bi_io_vec[j].bv_offset = 0;
1139                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1140
1141                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1142                                page_address(fbio->bi_io_vec[j].bv_page),
1143                                PAGE_SIZE);
1144                 }
1145                 tbio->bi_end_io = end_sync_write;
1146
1147                 d = r10_bio->devs[i].devnum;
1148                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1149                 atomic_inc(&r10_bio->remaining);
1150                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1151
1152                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1153                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1154                 generic_make_request(tbio);
1155         }
1156
1157 done:
1158         if (atomic_dec_and_test(&r10_bio->remaining)) {
1159                 md_done_sync(mddev, r10_bio->sectors, 1);
1160                 put_buf(r10_bio);
1161         }
1162 }
1163
1164 /*
1165  * Now for the recovery code.
1166  * Recovery happens across physical sectors.
1167  * We recover all non-is_sync drives by finding the virtual address of
1168  * each, and then choose a working drive that also has that virt address.
1169  * There is a separate r10_bio for each non-in_sync drive.
1170  * Only the first two slots are in use. The first for reading,
1171  * The second for writing.
1172  *
1173  */
1174
1175 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1176 {
1177         conf_t *conf = mddev_to_conf(mddev);
1178         int i, d;
1179         struct bio *bio, *wbio;
1180
1181
1182         /* move the pages across to the second bio
1183          * and submit the write request
1184          */
1185         bio = r10_bio->devs[0].bio;
1186         wbio = r10_bio->devs[1].bio;
1187         for (i=0; i < wbio->bi_vcnt; i++) {
1188                 struct page *p = bio->bi_io_vec[i].bv_page;
1189                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1190                 wbio->bi_io_vec[i].bv_page = p;
1191         }
1192         d = r10_bio->devs[1].devnum;
1193
1194         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1195         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1196         generic_make_request(wbio);
1197 }
1198
1199
1200 /*
1201  * This is a kernel thread which:
1202  *
1203  *      1.      Retries failed read operations on working mirrors.
1204  *      2.      Updates the raid superblock when problems encounter.
1205  *      3.      Performs writes following reads for array syncronising.
1206  */
1207
1208 static void raid10d(mddev_t *mddev)
1209 {
1210         r10bio_t *r10_bio;
1211         struct bio *bio;
1212         unsigned long flags;
1213         conf_t *conf = mddev_to_conf(mddev);
1214         struct list_head *head = &conf->retry_list;
1215         int unplug=0;
1216         mdk_rdev_t *rdev;
1217
1218         md_check_recovery(mddev);
1219         md_handle_safemode(mddev);
1220
1221         for (;;) {
1222                 char b[BDEVNAME_SIZE];
1223                 spin_lock_irqsave(&conf->device_lock, flags);
1224                 if (list_empty(head))
1225                         break;
1226                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1227                 list_del(head->prev);
1228                 spin_unlock_irqrestore(&conf->device_lock, flags);
1229
1230                 mddev = r10_bio->mddev;
1231                 conf = mddev_to_conf(mddev);
1232                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1233                         sync_request_write(mddev, r10_bio);
1234                         unplug = 1;
1235                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1236                         recovery_request_write(mddev, r10_bio);
1237                         unplug = 1;
1238                 } else {
1239                         int mirror;
1240                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1241                         r10_bio->devs[r10_bio->read_slot].bio = NULL;
1242                         bio_put(bio);
1243                         mirror = read_balance(conf, r10_bio);
1244                         if (mirror == -1) {
1245                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1246                                        " read error for block %llu\n",
1247                                        bdevname(bio->bi_bdev,b),
1248                                        (unsigned long long)r10_bio->sector);
1249                                 raid_end_bio_io(r10_bio);
1250                         } else {
1251                                 rdev = conf->mirrors[mirror].rdev;
1252                                 if (printk_ratelimit())
1253                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1254                                                " another mirror\n",
1255                                                bdevname(rdev->bdev,b),
1256                                                (unsigned long long)r10_bio->sector);
1257                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1258                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1259                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1260                                         + rdev->data_offset;
1261                                 bio->bi_bdev = rdev->bdev;
1262                                 bio->bi_rw = READ;
1263                                 bio->bi_private = r10_bio;
1264                                 bio->bi_end_io = raid10_end_read_request;
1265                                 unplug = 1;
1266                                 generic_make_request(bio);
1267                         }
1268                 }
1269         }
1270         spin_unlock_irqrestore(&conf->device_lock, flags);
1271         if (unplug)
1272                 unplug_slaves(mddev);
1273 }
1274
1275
1276 static int init_resync(conf_t *conf)
1277 {
1278         int buffs;
1279
1280         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1281         if (conf->r10buf_pool)
1282                 BUG();
1283         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1284         if (!conf->r10buf_pool)
1285                 return -ENOMEM;
1286         conf->next_resync = 0;
1287         return 0;
1288 }
1289
1290 /*
1291  * perform a "sync" on one "block"
1292  *
1293  * We need to make sure that no normal I/O request - particularly write
1294  * requests - conflict with active sync requests.
1295  *
1296  * This is achieved by tracking pending requests and a 'barrier' concept
1297  * that can be installed to exclude normal IO requests.
1298  *
1299  * Resync and recovery are handled very differently.
1300  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1301  *
1302  * For resync, we iterate over virtual addresses, read all copies,
1303  * and update if there are differences.  If only one copy is live,
1304  * skip it.
1305  * For recovery, we iterate over physical addresses, read a good
1306  * value for each non-in_sync drive, and over-write.
1307  *
1308  * So, for recovery we may have several outstanding complex requests for a
1309  * given address, one for each out-of-sync device.  We model this by allocating
1310  * a number of r10_bio structures, one for each out-of-sync device.
1311  * As we setup these structures, we collect all bio's together into a list
1312  * which we then process collectively to add pages, and then process again
1313  * to pass to generic_make_request.
1314  *
1315  * The r10_bio structures are linked using a borrowed master_bio pointer.
1316  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1317  * has its remaining count decremented to 0, the whole complex operation
1318  * is complete.
1319  *
1320  */
1321
1322 static int sync_request(mddev_t *mddev, sector_t sector_nr, int go_faster)
1323 {
1324         conf_t *conf = mddev_to_conf(mddev);
1325         r10bio_t *r10_bio;
1326         struct bio *biolist = NULL, *bio;
1327         sector_t max_sector, nr_sectors;
1328         int disk;
1329         int i;
1330
1331         sector_t sectors_skipped = 0;
1332         int chunks_skipped = 0;
1333
1334         if (!conf->r10buf_pool)
1335                 if (init_resync(conf))
1336                         return -ENOMEM;
1337
1338  skipped:
1339         max_sector = mddev->size << 1;
1340         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1341                 max_sector = mddev->resync_max_sectors;
1342         if (sector_nr >= max_sector) {
1343                 close_sync(conf);
1344                 return sectors_skipped;
1345         }
1346         if (chunks_skipped >= conf->raid_disks) {
1347                 /* if there has been nothing to do on any drive,
1348                  * then there is nothing to do at all..
1349                  */
1350                 sector_t sec = max_sector - sector_nr;
1351                 md_done_sync(mddev, sec, 1);
1352                 return sec + sectors_skipped;
1353         }
1354
1355         /* make sure whole request will fit in a chunk - if chunks
1356          * are meaningful
1357          */
1358         if (conf->near_copies < conf->raid_disks &&
1359             max_sector > (sector_nr | conf->chunk_mask))
1360                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1361         /*
1362          * If there is non-resync activity waiting for us then
1363          * put in a delay to throttle resync.
1364          */
1365         if (!go_faster && waitqueue_active(&conf->wait_resume))
1366                 msleep_interruptible(1000);
1367         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1368
1369         /* Again, very different code for resync and recovery.
1370          * Both must result in an r10bio with a list of bios that
1371          * have bi_end_io, bi_sector, bi_bdev set,
1372          * and bi_private set to the r10bio.
1373          * For recovery, we may actually create several r10bios
1374          * with 2 bios in each, that correspond to the bios in the main one.
1375          * In this case, the subordinate r10bios link back through a
1376          * borrowed master_bio pointer, and the counter in the master
1377          * includes a ref from each subordinate.
1378          */
1379         /* First, we decide what to do and set ->bi_end_io
1380          * To end_sync_read if we want to read, and
1381          * end_sync_write if we will want to write.
1382          */
1383
1384         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1385                 /* recovery... the complicated one */
1386                 int i, j, k;
1387                 r10_bio = NULL;
1388
1389                 for (i=0 ; i<conf->raid_disks; i++)
1390                         if (conf->mirrors[i].rdev &&
1391                             !conf->mirrors[i].rdev->in_sync) {
1392                                 /* want to reconstruct this device */
1393                                 r10bio_t *rb2 = r10_bio;
1394
1395                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1396                                 spin_lock_irq(&conf->resync_lock);
1397                                 conf->nr_pending++;
1398                                 if (rb2) conf->barrier++;
1399                                 spin_unlock_irq(&conf->resync_lock);
1400                                 atomic_set(&r10_bio->remaining, 0);
1401
1402                                 r10_bio->master_bio = (struct bio*)rb2;
1403                                 if (rb2)
1404                                         atomic_inc(&rb2->remaining);
1405                                 r10_bio->mddev = mddev;
1406                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1407                                 r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1408                                 raid10_find_phys(conf, r10_bio);
1409                                 for (j=0; j<conf->copies;j++) {
1410                                         int d = r10_bio->devs[j].devnum;
1411                                         if (conf->mirrors[d].rdev &&
1412                                             conf->mirrors[d].rdev->in_sync) {
1413                                                 /* This is where we read from */
1414                                                 bio = r10_bio->devs[0].bio;
1415                                                 bio->bi_next = biolist;
1416                                                 biolist = bio;
1417                                                 bio->bi_private = r10_bio;
1418                                                 bio->bi_end_io = end_sync_read;
1419                                                 bio->bi_rw = 0;
1420                                                 bio->bi_sector = r10_bio->devs[j].addr +
1421                                                         conf->mirrors[d].rdev->data_offset;
1422                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1423                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1424                                                 atomic_inc(&r10_bio->remaining);
1425                                                 /* and we write to 'i' */
1426
1427                                                 for (k=0; k<conf->copies; k++)
1428                                                         if (r10_bio->devs[k].devnum == i)
1429                                                                 break;
1430                                                 bio = r10_bio->devs[1].bio;
1431                                                 bio->bi_next = biolist;
1432                                                 biolist = bio;
1433                                                 bio->bi_private = r10_bio;
1434                                                 bio->bi_end_io = end_sync_write;
1435                                                 bio->bi_rw = 1;
1436                                                 bio->bi_sector = r10_bio->devs[k].addr +
1437                                                         conf->mirrors[i].rdev->data_offset;
1438                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1439
1440                                                 r10_bio->devs[0].devnum = d;
1441                                                 r10_bio->devs[1].devnum = i;
1442
1443                                                 break;
1444                                         }
1445                                 }
1446                                 if (j == conf->copies) {
1447                                         BUG();
1448                                 }
1449                         }
1450                 if (biolist == NULL) {
1451                         while (r10_bio) {
1452                                 r10bio_t *rb2 = r10_bio;
1453                                 r10_bio = (r10bio_t*) rb2->master_bio;
1454                                 rb2->master_bio = NULL;
1455                                 put_buf(rb2);
1456                         }
1457                         goto giveup;
1458                 }
1459         } else {
1460                 /* resync. Schedule a read for every block at this virt offset */
1461                 int count = 0;
1462                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1463
1464                 spin_lock_irq(&conf->resync_lock);
1465                 conf->nr_pending++;
1466                 spin_unlock_irq(&conf->resync_lock);
1467
1468                 r10_bio->mddev = mddev;
1469                 atomic_set(&r10_bio->remaining, 0);
1470
1471                 r10_bio->master_bio = NULL;
1472                 r10_bio->sector = sector_nr;
1473                 set_bit(R10BIO_IsSync, &r10_bio->state);
1474                 raid10_find_phys(conf, r10_bio);
1475                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1476
1477                 for (i=0; i<conf->copies; i++) {
1478                         int d = r10_bio->devs[i].devnum;
1479                         bio = r10_bio->devs[i].bio;
1480                         bio->bi_end_io = NULL;
1481                         if (conf->mirrors[d].rdev == NULL ||
1482                             conf->mirrors[d].rdev->faulty)
1483                                 continue;
1484                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1485                         atomic_inc(&r10_bio->remaining);
1486                         bio->bi_next = biolist;
1487                         biolist = bio;
1488                         bio->bi_private = r10_bio;
1489                         bio->bi_end_io = end_sync_read;
1490                         bio->bi_rw = 0;
1491                         bio->bi_sector = r10_bio->devs[i].addr +
1492                                 conf->mirrors[d].rdev->data_offset;
1493                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1494                         count++;
1495                 }
1496
1497                 if (count < 2) {
1498                         for (i=0; i<conf->copies; i++) {
1499                                 int d = r10_bio->devs[i].devnum;
1500                                 if (r10_bio->devs[i].bio->bi_end_io)
1501                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1502                         }
1503                         put_buf(r10_bio);
1504                         biolist = NULL;
1505                         goto giveup;
1506                 }
1507         }
1508
1509         for (bio = biolist; bio ; bio=bio->bi_next) {
1510
1511                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1512                 if (bio->bi_end_io)
1513                         bio->bi_flags |= 1 << BIO_UPTODATE;
1514                 bio->bi_vcnt = 0;
1515                 bio->bi_idx = 0;
1516                 bio->bi_phys_segments = 0;
1517                 bio->bi_hw_segments = 0;
1518                 bio->bi_size = 0;
1519         }
1520
1521         nr_sectors = 0;
1522         do {
1523                 struct page *page;
1524                 int len = PAGE_SIZE;
1525                 disk = 0;
1526                 if (sector_nr + (len>>9) > max_sector)
1527                         len = (max_sector - sector_nr) << 9;
1528                 if (len == 0)
1529                         break;
1530                 for (bio= biolist ; bio ; bio=bio->bi_next) {
1531                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1532                         if (bio_add_page(bio, page, len, 0) == 0) {
1533                                 /* stop here */
1534                                 struct bio *bio2;
1535                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1536                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1537                                         /* remove last page from this bio */
1538                                         bio2->bi_vcnt--;
1539                                         bio2->bi_size -= len;
1540                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1541                                 }
1542                                 goto bio_full;
1543                         }
1544                         disk = i;
1545                 }
1546                 nr_sectors += len>>9;
1547                 sector_nr += len>>9;
1548         } while (biolist->bi_vcnt < RESYNC_PAGES);
1549  bio_full:
1550         r10_bio->sectors = nr_sectors;
1551
1552         while (biolist) {
1553                 bio = biolist;
1554                 biolist = biolist->bi_next;
1555
1556                 bio->bi_next = NULL;
1557                 r10_bio = bio->bi_private;
1558                 r10_bio->sectors = nr_sectors;
1559
1560                 if (bio->bi_end_io == end_sync_read) {
1561                         md_sync_acct(bio->bi_bdev, nr_sectors);
1562                         generic_make_request(bio);
1563                 }
1564         }
1565
1566         return sectors_skipped + nr_sectors;
1567  giveup:
1568         /* There is nowhere to write, so all non-sync
1569          * drives must be failed, so try the next chunk...
1570          */
1571         {
1572         int sec = max_sector - sector_nr;
1573         sectors_skipped += sec;
1574         chunks_skipped ++;
1575         sector_nr = max_sector;
1576         md_done_sync(mddev, sec, 1);
1577         goto skipped;
1578         }
1579 }
1580
1581 static int run(mddev_t *mddev)
1582 {
1583         conf_t *conf;
1584         int i, disk_idx;
1585         mirror_info_t *disk;
1586         mdk_rdev_t *rdev;
1587         struct list_head *tmp;
1588         int nc, fc;
1589         sector_t stride, size;
1590
1591         if (mddev->level != 10) {
1592                 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1593                        mdname(mddev), mddev->level);
1594                 goto out;
1595         }
1596         nc = mddev->layout & 255;
1597         fc = (mddev->layout >> 8) & 255;
1598         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1599             (mddev->layout >> 16)) {
1600                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1601                        mdname(mddev), mddev->layout);
1602                 goto out;
1603         }
1604         /*
1605          * copy the already verified devices into our private RAID10
1606          * bookkeeping area. [whatever we allocate in run(),
1607          * should be freed in stop()]
1608          */
1609         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1610         mddev->private = conf;
1611         if (!conf) {
1612                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1613                         mdname(mddev));
1614                 goto out;
1615         }
1616         memset(conf, 0, sizeof(*conf));
1617         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1618                                  GFP_KERNEL);
1619         if (!conf->mirrors) {
1620                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1621                        mdname(mddev));
1622                 goto out_free_conf;
1623         }
1624         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1625
1626         conf->near_copies = nc;
1627         conf->far_copies = fc;
1628         conf->copies = nc*fc;
1629         conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1630         conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1631         stride = mddev->size >> (conf->chunk_shift-1);
1632         sector_div(stride, fc);
1633         conf->stride = stride << conf->chunk_shift;
1634
1635         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1636                                                 r10bio_pool_free, conf);
1637         if (!conf->r10bio_pool) {
1638                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1639                         mdname(mddev));
1640                 goto out_free_conf;
1641         }
1642
1643         ITERATE_RDEV(mddev, rdev, tmp) {
1644                 disk_idx = rdev->raid_disk;
1645                 if (disk_idx >= mddev->raid_disks
1646                     || disk_idx < 0)
1647                         continue;
1648                 disk = conf->mirrors + disk_idx;
1649
1650                 disk->rdev = rdev;
1651
1652                 blk_queue_stack_limits(mddev->queue,
1653                                        rdev->bdev->bd_disk->queue);
1654                 /* as we don't honour merge_bvec_fn, we must never risk
1655                  * violating it, so limit ->max_sector to one PAGE, as
1656                  * a one page request is never in violation.
1657                  */
1658                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1659                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1660                         mddev->queue->max_sectors = (PAGE_SIZE>>9);
1661
1662                 disk->head_position = 0;
1663                 if (!rdev->faulty && rdev->in_sync)
1664                         conf->working_disks++;
1665         }
1666         conf->raid_disks = mddev->raid_disks;
1667         conf->mddev = mddev;
1668         spin_lock_init(&conf->device_lock);
1669         INIT_LIST_HEAD(&conf->retry_list);
1670
1671         spin_lock_init(&conf->resync_lock);
1672         init_waitqueue_head(&conf->wait_idle);
1673         init_waitqueue_head(&conf->wait_resume);
1674
1675         if (!conf->working_disks) {
1676                 printk(KERN_ERR "raid10: no operational mirrors for %s\n",
1677                         mdname(mddev));
1678                 goto out_free_conf;
1679         }
1680
1681         mddev->degraded = 0;
1682         for (i = 0; i < conf->raid_disks; i++) {
1683
1684                 disk = conf->mirrors + i;
1685
1686                 if (!disk->rdev) {
1687                         disk->head_position = 0;
1688                         mddev->degraded++;
1689                 }
1690         }
1691
1692
1693         mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1694         if (!mddev->thread) {
1695                 printk(KERN_ERR
1696                        "raid10: couldn't allocate thread for %s\n",
1697                        mdname(mddev));
1698                 goto out_free_conf;
1699         }
1700
1701         printk(KERN_INFO
1702                 "raid10: raid set %s active with %d out of %d devices\n",
1703                 mdname(mddev), mddev->raid_disks - mddev->degraded,
1704                 mddev->raid_disks);
1705         /*
1706          * Ok, everything is just fine now
1707          */
1708         size = conf->stride * conf->raid_disks;
1709         sector_div(size, conf->near_copies);
1710         mddev->array_size = size/2;
1711         mddev->resync_max_sectors = size;
1712
1713         mddev->queue->unplug_fn = raid10_unplug;
1714         mddev->queue->issue_flush_fn = raid10_issue_flush;
1715
1716         /* Calculate max read-ahead size.
1717          * We need to readahead at least twice a whole stripe....
1718          * maybe...
1719          */
1720         {
1721                 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1722                 stripe /= conf->near_copies;
1723                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1724                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1725         }
1726
1727         if (conf->near_copies < mddev->raid_disks)
1728                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1729         return 0;
1730
1731 out_free_conf:
1732         if (conf->r10bio_pool)
1733                 mempool_destroy(conf->r10bio_pool);
1734         if (conf->mirrors)
1735                 kfree(conf->mirrors);
1736         kfree(conf);
1737         mddev->private = NULL;
1738 out:
1739         return -EIO;
1740 }
1741
1742 static int stop(mddev_t *mddev)
1743 {
1744         conf_t *conf = mddev_to_conf(mddev);
1745
1746         md_unregister_thread(mddev->thread);
1747         mddev->thread = NULL;
1748         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1749         if (conf->r10bio_pool)
1750                 mempool_destroy(conf->r10bio_pool);
1751         if (conf->mirrors)
1752                 kfree(conf->mirrors);
1753         kfree(conf);
1754         mddev->private = NULL;
1755         return 0;
1756 }
1757
1758
1759 static mdk_personality_t raid10_personality =
1760 {
1761         .name           = "raid10",
1762         .owner          = THIS_MODULE,
1763         .make_request   = make_request,
1764         .run            = run,
1765         .stop           = stop,
1766         .status         = status,
1767         .error_handler  = error,
1768         .hot_add_disk   = raid10_add_disk,
1769         .hot_remove_disk= raid10_remove_disk,
1770         .spare_active   = raid10_spare_active,
1771         .sync_request   = sync_request,
1772 };
1773
1774 static int __init raid_init(void)
1775 {
1776         return register_md_personality(RAID10, &raid10_personality);
1777 }
1778
1779 static void raid_exit(void)
1780 {
1781         unregister_md_personality(RAID10);
1782 }
1783
1784 module_init(raid_init);
1785 module_exit(raid_exit);
1786 MODULE_LICENSE("GPL");
1787 MODULE_ALIAS("md-personality-9"); /* RAID10 */