5 #include <linux/types.h>
6 #include <linux/init.h>
7 #include <linux/stringify.h>
8 #include <linux/lguest.h>
9 #include <linux/lguest_launcher.h>
10 #include <linux/wait.h>
11 #include <linux/hrtimer.h>
12 #include <linux/err.h>
14 #include <asm/lguest.h>
16 void free_pagetables(void);
17 int init_pagetables(struct page **switcher_page, unsigned int pages);
25 /* We have two pages shared with guests, per cpu. */
28 /* This is the stack page mapped rw in guest */
29 char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
30 struct lguest_regs regs;
32 /* This is the host state & guest descriptor page, ro in guest */
33 struct lguest_ro_state state;
34 } __attribute__((aligned(PAGE_SIZE)));
38 #define CHANGED_GDT_TLS 4 /* Actually a subset of CHANGED_GDT */
46 struct task_struct *tsk;
47 struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
54 /* Bitmap of what has changed: see CHANGED_* above. */
57 unsigned long pending_notify; /* pfn from LHCALL_NOTIFY */
59 /* At end of a page shared mapped over lguest_pages in guest. */
60 unsigned long regs_page;
61 struct lguest_regs *regs;
63 struct lguest_pages *last_pages;
65 int cpu_pgd; /* which pgd this cpu is currently using */
67 /* If a hypercall was asked for, this points to the arguments. */
68 struct hcall_args *hcall;
71 /* Virtual clock device */
74 /* Do we need to stop what we're doing and return to userspace? */
76 wait_queue_head_t break_wq;
79 /* Pending virtual interrupts */
80 DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
82 struct lg_cpu_arch arch;
85 /* The private info the thread maintains about the guest. */
88 struct lguest_data __user *lguest_data;
89 struct lg_cpu cpus[NR_CPUS];
93 /* This provides the offset to the base of guest-physical
94 * memory in the Launcher. */
95 void __user *mem_base;
96 unsigned long kernel_address;
98 struct pgdir pgdirs[4];
100 unsigned long noirq_start, noirq_end;
102 unsigned int stack_pages;
109 extern struct mutex lguest_lock;
112 bool lguest_address_ok(const struct lguest *lg,
113 unsigned long addr, unsigned long len);
114 void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
115 void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
117 /*H:035 Using memory-copy operations like that is usually inconvient, so we
118 * have the following helper macros which read and write a specific type (often
121 * This reads into a variable of the given type then returns that. */
122 #define lgread(cpu, addr, type) \
123 ({ type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })
125 /* This checks that the variable is of the given type, then writes it out. */
126 #define lgwrite(cpu, addr, type, val) \
128 typecheck(type, val); \
129 __lgwrite((cpu), (addr), &(val), sizeof(val)); \
131 /* (end of memory access helper routines) :*/
133 int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
135 /* Helper macros to obtain the first 12 or the last 20 bits, this is only the
136 * first step in the migration to the kernel types. pte_pfn is already defined
138 #define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
139 #define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
141 /* interrupts_and_traps.c: */
142 void maybe_do_interrupt(struct lg_cpu *cpu);
143 bool deliver_trap(struct lg_cpu *cpu, unsigned int num);
144 void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
146 void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages);
147 void pin_stack_pages(struct lg_cpu *cpu);
148 void setup_default_idt_entries(struct lguest_ro_state *state,
149 const unsigned long *def);
150 void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
151 const unsigned long *def);
152 void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
153 void init_clockdev(struct lg_cpu *cpu);
154 bool check_syscall_vector(struct lguest *lg);
155 int init_interrupts(void);
156 void free_interrupts(void);
159 void setup_default_gdt_entries(struct lguest_ro_state *state);
160 void setup_guest_gdt(struct lg_cpu *cpu);
161 void load_guest_gdt_entry(struct lg_cpu *cpu, unsigned int i,
163 void guest_load_tls(struct lg_cpu *cpu, unsigned long tls_array);
164 void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt);
165 void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
168 int init_guest_pagetable(struct lguest *lg);
169 void free_guest_pagetable(struct lguest *lg);
170 void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
171 void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
172 void guest_pagetable_clear_all(struct lg_cpu *cpu);
173 void guest_pagetable_flush_user(struct lg_cpu *cpu);
174 void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
175 unsigned long vaddr, pte_t val);
176 void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
177 bool demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode);
178 void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
179 unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
180 void page_table_guest_data_init(struct lg_cpu *cpu);
183 void lguest_arch_host_init(void);
184 void lguest_arch_host_fini(void);
185 void lguest_arch_run_guest(struct lg_cpu *cpu);
186 void lguest_arch_handle_trap(struct lg_cpu *cpu);
187 int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
188 int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
189 void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
191 /* <arch>/switcher.S: */
192 extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
195 int lguest_device_init(void);
196 void lguest_device_remove(void);
199 void do_hypercalls(struct lg_cpu *cpu);
200 void write_timestamp(struct lg_cpu *cpu);
203 * Let's step aside for the moment, to study one important routine that's used
204 * widely in the Host code.
206 * There are many cases where the Guest can do something invalid, like pass crap
207 * to a hypercall. Since only the Guest kernel can make hypercalls, it's quite
208 * acceptable to simply terminate the Guest and give the Launcher a nicely
209 * formatted reason. It's also simpler for the Guest itself, which doesn't
210 * need to check most hypercalls for "success"; if you're still running, it
213 * Once this is called, the Guest will never run again, so most Host code can
214 * call this then continue as if nothing had happened. This means many
215 * functions don't have to explicitly return an error code, which keeps the
218 * It also means that this can be called more than once: only the first one is
219 * remembered. The only trick is that we still need to kill the Guest even if
220 * we can't allocate memory to store the reason. Linux has a neat way of
221 * packing error codes into invalid pointers, so we use that here.
223 * Like any macro which uses an "if", it is safely wrapped in a run-once "do {
226 #define kill_guest(cpu, fmt...) \
228 if (!(cpu)->lg->dead) { \
229 (cpu)->lg->dead = kasprintf(GFP_ATOMIC, fmt); \
230 if (!(cpu)->lg->dead) \
231 (cpu)->lg->dead = ERR_PTR(-ENOMEM); \
234 /* (End of aside) :*/
236 #endif /* __ASSEMBLY__ */
237 #endif /* _LGUEST_H */