2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "ref-cache.h"
52 #include "compression.h"
55 struct btrfs_iget_args {
57 struct btrfs_root *root;
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86 static void btrfs_truncate(struct inode *inode);
87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
88 static noinline int cow_file_range(struct inode *inode,
89 struct page *locked_page,
90 u64 start, u64 end, int *page_started,
91 unsigned long *nr_written, int unlock);
93 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
97 err = btrfs_init_acl(inode, dir);
99 err = btrfs_xattr_security_init(inode, dir);
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
119 struct btrfs_file_extent_item *ei;
122 size_t cur_size = size;
124 unsigned long offset;
125 int use_compress = 0;
127 if (compressed_size && compressed_pages) {
129 cur_size = compressed_size;
132 path = btrfs_alloc_path();
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
139 key.objectid = inode->i_ino;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
176 compressed_size -= cur_size;
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
193 BTRFS_I(inode)->disk_i_size = inode->i_size;
194 btrfs_update_inode(trans, root, inode);
197 btrfs_free_path(path);
203 * conditionally insert an inline extent into the file. This
204 * does the checks required to make sure the data is small enough
205 * to fit as an inline extent.
207 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
208 struct btrfs_root *root,
209 struct inode *inode, u64 start, u64 end,
210 size_t compressed_size,
211 struct page **compressed_pages)
213 u64 isize = i_size_read(inode);
214 u64 actual_end = min(end + 1, isize);
215 u64 inline_len = actual_end - start;
216 u64 aligned_end = (end + root->sectorsize - 1) &
217 ~((u64)root->sectorsize - 1);
219 u64 data_len = inline_len;
223 data_len = compressed_size;
226 actual_end >= PAGE_CACHE_SIZE ||
227 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
229 (actual_end & (root->sectorsize - 1)) == 0) ||
231 data_len > root->fs_info->max_inline) {
235 ret = btrfs_drop_extents(trans, root, inode, start,
236 aligned_end, aligned_end, start, &hint_byte);
239 if (isize > actual_end)
240 inline_len = min_t(u64, isize, actual_end);
241 ret = insert_inline_extent(trans, root, inode, start,
242 inline_len, compressed_size,
245 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
249 struct async_extent {
254 unsigned long nr_pages;
255 struct list_head list;
260 struct btrfs_root *root;
261 struct page *locked_page;
264 struct list_head extents;
265 struct btrfs_work work;
268 static noinline int add_async_extent(struct async_cow *cow,
269 u64 start, u64 ram_size,
272 unsigned long nr_pages)
274 struct async_extent *async_extent;
276 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
277 async_extent->start = start;
278 async_extent->ram_size = ram_size;
279 async_extent->compressed_size = compressed_size;
280 async_extent->pages = pages;
281 async_extent->nr_pages = nr_pages;
282 list_add_tail(&async_extent->list, &cow->extents);
287 * we create compressed extents in two phases. The first
288 * phase compresses a range of pages that have already been
289 * locked (both pages and state bits are locked).
291 * This is done inside an ordered work queue, and the compression
292 * is spread across many cpus. The actual IO submission is step
293 * two, and the ordered work queue takes care of making sure that
294 * happens in the same order things were put onto the queue by
295 * writepages and friends.
297 * If this code finds it can't get good compression, it puts an
298 * entry onto the work queue to write the uncompressed bytes. This
299 * makes sure that both compressed inodes and uncompressed inodes
300 * are written in the same order that pdflush sent them down.
302 static noinline int compress_file_range(struct inode *inode,
303 struct page *locked_page,
305 struct async_cow *async_cow,
308 struct btrfs_root *root = BTRFS_I(inode)->root;
309 struct btrfs_trans_handle *trans;
313 u64 blocksize = root->sectorsize;
315 u64 isize = i_size_read(inode);
317 struct page **pages = NULL;
318 unsigned long nr_pages;
319 unsigned long nr_pages_ret = 0;
320 unsigned long total_compressed = 0;
321 unsigned long total_in = 0;
322 unsigned long max_compressed = 128 * 1024;
323 unsigned long max_uncompressed = 128 * 1024;
329 actual_end = min_t(u64, isize, end + 1);
332 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
333 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
336 * we don't want to send crud past the end of i_size through
337 * compression, that's just a waste of CPU time. So, if the
338 * end of the file is before the start of our current
339 * requested range of bytes, we bail out to the uncompressed
340 * cleanup code that can deal with all of this.
342 * It isn't really the fastest way to fix things, but this is a
343 * very uncommon corner.
345 if (actual_end <= start)
346 goto cleanup_and_bail_uncompressed;
348 total_compressed = actual_end - start;
350 /* we want to make sure that amount of ram required to uncompress
351 * an extent is reasonable, so we limit the total size in ram
352 * of a compressed extent to 128k. This is a crucial number
353 * because it also controls how easily we can spread reads across
354 * cpus for decompression.
356 * We also want to make sure the amount of IO required to do
357 * a random read is reasonably small, so we limit the size of
358 * a compressed extent to 128k.
360 total_compressed = min(total_compressed, max_uncompressed);
361 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
362 num_bytes = max(blocksize, num_bytes);
363 disk_num_bytes = num_bytes;
368 * we do compression for mount -o compress and when the
369 * inode has not been flagged as nocompress. This flag can
370 * change at any time if we discover bad compression ratios.
372 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
373 btrfs_test_opt(root, COMPRESS)) {
375 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
377 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
378 total_compressed, pages,
379 nr_pages, &nr_pages_ret,
385 unsigned long offset = total_compressed &
386 (PAGE_CACHE_SIZE - 1);
387 struct page *page = pages[nr_pages_ret - 1];
390 /* zero the tail end of the last page, we might be
391 * sending it down to disk
394 kaddr = kmap_atomic(page, KM_USER0);
395 memset(kaddr + offset, 0,
396 PAGE_CACHE_SIZE - offset);
397 kunmap_atomic(kaddr, KM_USER0);
403 trans = btrfs_join_transaction(root, 1);
405 btrfs_set_trans_block_group(trans, inode);
407 /* lets try to make an inline extent */
408 if (ret || total_in < (actual_end - start)) {
409 /* we didn't compress the entire range, try
410 * to make an uncompressed inline extent.
412 ret = cow_file_range_inline(trans, root, inode,
413 start, end, 0, NULL);
415 /* try making a compressed inline extent */
416 ret = cow_file_range_inline(trans, root, inode,
418 total_compressed, pages);
420 btrfs_end_transaction(trans, root);
423 * inline extent creation worked, we don't need
424 * to create any more async work items. Unlock
425 * and free up our temp pages.
427 extent_clear_unlock_delalloc(inode,
428 &BTRFS_I(inode)->io_tree,
429 start, end, NULL, 1, 0,
438 * we aren't doing an inline extent round the compressed size
439 * up to a block size boundary so the allocator does sane
442 total_compressed = (total_compressed + blocksize - 1) &
446 * one last check to make sure the compression is really a
447 * win, compare the page count read with the blocks on disk
449 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450 ~(PAGE_CACHE_SIZE - 1);
451 if (total_compressed >= total_in) {
454 disk_num_bytes = total_compressed;
455 num_bytes = total_in;
458 if (!will_compress && pages) {
460 * the compression code ran but failed to make things smaller,
461 * free any pages it allocated and our page pointer array
463 for (i = 0; i < nr_pages_ret; i++) {
464 WARN_ON(pages[i]->mapping);
465 page_cache_release(pages[i]);
469 total_compressed = 0;
472 /* flag the file so we don't compress in the future */
473 btrfs_set_flag(inode, NOCOMPRESS);
478 /* the async work queues will take care of doing actual
479 * allocation on disk for these compressed pages,
480 * and will submit them to the elevator.
482 add_async_extent(async_cow, start, num_bytes,
483 total_compressed, pages, nr_pages_ret);
485 if (start + num_bytes < end && start + num_bytes < actual_end) {
492 cleanup_and_bail_uncompressed:
494 * No compression, but we still need to write the pages in
495 * the file we've been given so far. redirty the locked
496 * page if it corresponds to our extent and set things up
497 * for the async work queue to run cow_file_range to do
498 * the normal delalloc dance
500 if (page_offset(locked_page) >= start &&
501 page_offset(locked_page) <= end) {
502 __set_page_dirty_nobuffers(locked_page);
503 /* unlocked later on in the async handlers */
505 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
513 for (i = 0; i < nr_pages_ret; i++) {
514 WARN_ON(pages[i]->mapping);
515 page_cache_release(pages[i]);
523 * phase two of compressed writeback. This is the ordered portion
524 * of the code, which only gets called in the order the work was
525 * queued. We walk all the async extents created by compress_file_range
526 * and send them down to the disk.
528 static noinline int submit_compressed_extents(struct inode *inode,
529 struct async_cow *async_cow)
531 struct async_extent *async_extent;
533 struct btrfs_trans_handle *trans;
534 struct btrfs_key ins;
535 struct extent_map *em;
536 struct btrfs_root *root = BTRFS_I(inode)->root;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 struct extent_io_tree *io_tree;
541 if (list_empty(&async_cow->extents))
544 trans = btrfs_join_transaction(root, 1);
546 while (!list_empty(&async_cow->extents)) {
547 async_extent = list_entry(async_cow->extents.next,
548 struct async_extent, list);
549 list_del(&async_extent->list);
551 io_tree = &BTRFS_I(inode)->io_tree;
553 /* did the compression code fall back to uncompressed IO? */
554 if (!async_extent->pages) {
555 int page_started = 0;
556 unsigned long nr_written = 0;
558 lock_extent(io_tree, async_extent->start,
559 async_extent->start +
560 async_extent->ram_size - 1, GFP_NOFS);
562 /* allocate blocks */
563 cow_file_range(inode, async_cow->locked_page,
565 async_extent->start +
566 async_extent->ram_size - 1,
567 &page_started, &nr_written, 0);
570 * if page_started, cow_file_range inserted an
571 * inline extent and took care of all the unlocking
572 * and IO for us. Otherwise, we need to submit
573 * all those pages down to the drive.
576 extent_write_locked_range(io_tree,
577 inode, async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1,
587 lock_extent(io_tree, async_extent->start,
588 async_extent->start + async_extent->ram_size - 1,
591 * here we're doing allocation and writeback of the
594 btrfs_drop_extent_cache(inode, async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1, 0);
598 ret = btrfs_reserve_extent(trans, root,
599 async_extent->compressed_size,
600 async_extent->compressed_size,
604 em = alloc_extent_map(GFP_NOFS);
605 em->start = async_extent->start;
606 em->len = async_extent->ram_size;
607 em->orig_start = em->start;
609 em->block_start = ins.objectid;
610 em->block_len = ins.offset;
611 em->bdev = root->fs_info->fs_devices->latest_bdev;
612 set_bit(EXTENT_FLAG_PINNED, &em->flags);
613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
616 spin_lock(&em_tree->lock);
617 ret = add_extent_mapping(em_tree, em);
618 spin_unlock(&em_tree->lock);
619 if (ret != -EEXIST) {
623 btrfs_drop_extent_cache(inode, async_extent->start,
624 async_extent->start +
625 async_extent->ram_size - 1, 0);
628 ret = btrfs_add_ordered_extent(inode, async_extent->start,
630 async_extent->ram_size,
632 BTRFS_ORDERED_COMPRESSED);
635 btrfs_end_transaction(trans, root);
638 * clear dirty, set writeback and unlock the pages.
640 extent_clear_unlock_delalloc(inode,
641 &BTRFS_I(inode)->io_tree,
643 async_extent->start +
644 async_extent->ram_size - 1,
645 NULL, 1, 1, 0, 1, 1, 0);
647 ret = btrfs_submit_compressed_write(inode,
649 async_extent->ram_size,
651 ins.offset, async_extent->pages,
652 async_extent->nr_pages);
655 trans = btrfs_join_transaction(root, 1);
656 alloc_hint = ins.objectid + ins.offset;
661 btrfs_end_transaction(trans, root);
666 * when extent_io.c finds a delayed allocation range in the file,
667 * the call backs end up in this code. The basic idea is to
668 * allocate extents on disk for the range, and create ordered data structs
669 * in ram to track those extents.
671 * locked_page is the page that writepage had locked already. We use
672 * it to make sure we don't do extra locks or unlocks.
674 * *page_started is set to one if we unlock locked_page and do everything
675 * required to start IO on it. It may be clean and already done with
678 static noinline int cow_file_range(struct inode *inode,
679 struct page *locked_page,
680 u64 start, u64 end, int *page_started,
681 unsigned long *nr_written,
684 struct btrfs_root *root = BTRFS_I(inode)->root;
685 struct btrfs_trans_handle *trans;
688 unsigned long ram_size;
691 u64 blocksize = root->sectorsize;
693 u64 isize = i_size_read(inode);
694 struct btrfs_key ins;
695 struct extent_map *em;
696 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
699 trans = btrfs_join_transaction(root, 1);
701 btrfs_set_trans_block_group(trans, inode);
703 actual_end = min_t(u64, isize, end + 1);
705 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
706 num_bytes = max(blocksize, num_bytes);
707 disk_num_bytes = num_bytes;
711 /* lets try to make an inline extent */
712 ret = cow_file_range_inline(trans, root, inode,
713 start, end, 0, NULL);
715 extent_clear_unlock_delalloc(inode,
716 &BTRFS_I(inode)->io_tree,
717 start, end, NULL, 1, 1,
719 *nr_written = *nr_written +
720 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
727 BUG_ON(disk_num_bytes >
728 btrfs_super_total_bytes(&root->fs_info->super_copy));
730 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
732 while (disk_num_bytes > 0) {
733 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
734 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
735 root->sectorsize, 0, alloc_hint,
739 em = alloc_extent_map(GFP_NOFS);
741 em->orig_start = em->start;
743 ram_size = ins.offset;
744 em->len = ins.offset;
746 em->block_start = ins.objectid;
747 em->block_len = ins.offset;
748 em->bdev = root->fs_info->fs_devices->latest_bdev;
749 set_bit(EXTENT_FLAG_PINNED, &em->flags);
752 spin_lock(&em_tree->lock);
753 ret = add_extent_mapping(em_tree, em);
754 spin_unlock(&em_tree->lock);
755 if (ret != -EEXIST) {
759 btrfs_drop_extent_cache(inode, start,
760 start + ram_size - 1, 0);
763 cur_alloc_size = ins.offset;
764 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
765 ram_size, cur_alloc_size, 0);
768 if (root->root_key.objectid ==
769 BTRFS_DATA_RELOC_TREE_OBJECTID) {
770 ret = btrfs_reloc_clone_csums(inode, start,
775 if (disk_num_bytes < cur_alloc_size)
778 /* we're not doing compressed IO, don't unlock the first
779 * page (which the caller expects to stay locked), don't
780 * clear any dirty bits and don't set any writeback bits
782 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
783 start, start + ram_size - 1,
784 locked_page, unlock, 1,
786 disk_num_bytes -= cur_alloc_size;
787 num_bytes -= cur_alloc_size;
788 alloc_hint = ins.objectid + ins.offset;
789 start += cur_alloc_size;
793 btrfs_end_transaction(trans, root);
799 * work queue call back to started compression on a file and pages
801 static noinline void async_cow_start(struct btrfs_work *work)
803 struct async_cow *async_cow;
805 async_cow = container_of(work, struct async_cow, work);
807 compress_file_range(async_cow->inode, async_cow->locked_page,
808 async_cow->start, async_cow->end, async_cow,
811 async_cow->inode = NULL;
815 * work queue call back to submit previously compressed pages
817 static noinline void async_cow_submit(struct btrfs_work *work)
819 struct async_cow *async_cow;
820 struct btrfs_root *root;
821 unsigned long nr_pages;
823 async_cow = container_of(work, struct async_cow, work);
825 root = async_cow->root;
826 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
829 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831 if (atomic_read(&root->fs_info->async_delalloc_pages) <
833 waitqueue_active(&root->fs_info->async_submit_wait))
834 wake_up(&root->fs_info->async_submit_wait);
836 if (async_cow->inode)
837 submit_compressed_extents(async_cow->inode, async_cow);
840 static noinline void async_cow_free(struct btrfs_work *work)
842 struct async_cow *async_cow;
843 async_cow = container_of(work, struct async_cow, work);
847 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
848 u64 start, u64 end, int *page_started,
849 unsigned long *nr_written)
851 struct async_cow *async_cow;
852 struct btrfs_root *root = BTRFS_I(inode)->root;
853 unsigned long nr_pages;
855 int limit = 10 * 1024 * 1042;
857 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
858 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
859 while (start < end) {
860 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
861 async_cow->inode = inode;
862 async_cow->root = root;
863 async_cow->locked_page = locked_page;
864 async_cow->start = start;
866 if (btrfs_test_flag(inode, NOCOMPRESS))
869 cur_end = min(end, start + 512 * 1024 - 1);
871 async_cow->end = cur_end;
872 INIT_LIST_HEAD(&async_cow->extents);
874 async_cow->work.func = async_cow_start;
875 async_cow->work.ordered_func = async_cow_submit;
876 async_cow->work.ordered_free = async_cow_free;
877 async_cow->work.flags = 0;
879 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
881 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
883 btrfs_queue_worker(&root->fs_info->delalloc_workers,
886 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
887 wait_event(root->fs_info->async_submit_wait,
888 (atomic_read(&root->fs_info->async_delalloc_pages) <
892 while (atomic_read(&root->fs_info->async_submit_draining) &&
893 atomic_read(&root->fs_info->async_delalloc_pages)) {
894 wait_event(root->fs_info->async_submit_wait,
895 (atomic_read(&root->fs_info->async_delalloc_pages) ==
899 *nr_written += nr_pages;
906 static noinline int csum_exist_in_range(struct btrfs_root *root,
907 u64 bytenr, u64 num_bytes)
910 struct btrfs_ordered_sum *sums;
913 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
914 bytenr + num_bytes - 1, &list);
915 if (ret == 0 && list_empty(&list))
918 while (!list_empty(&list)) {
919 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
920 list_del(&sums->list);
927 * when nowcow writeback call back. This checks for snapshots or COW copies
928 * of the extents that exist in the file, and COWs the file as required.
930 * If no cow copies or snapshots exist, we write directly to the existing
933 static noinline int run_delalloc_nocow(struct inode *inode,
934 struct page *locked_page,
935 u64 start, u64 end, int *page_started, int force,
936 unsigned long *nr_written)
938 struct btrfs_root *root = BTRFS_I(inode)->root;
939 struct btrfs_trans_handle *trans;
940 struct extent_buffer *leaf;
941 struct btrfs_path *path;
942 struct btrfs_file_extent_item *fi;
943 struct btrfs_key found_key;
955 path = btrfs_alloc_path();
957 trans = btrfs_join_transaction(root, 1);
963 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
966 if (ret > 0 && path->slots[0] > 0 && check_prev) {
967 leaf = path->nodes[0];
968 btrfs_item_key_to_cpu(leaf, &found_key,
970 if (found_key.objectid == inode->i_ino &&
971 found_key.type == BTRFS_EXTENT_DATA_KEY)
976 leaf = path->nodes[0];
977 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
978 ret = btrfs_next_leaf(root, path);
983 leaf = path->nodes[0];
989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
991 if (found_key.objectid > inode->i_ino ||
992 found_key.type > BTRFS_EXTENT_DATA_KEY ||
993 found_key.offset > end)
996 if (found_key.offset > cur_offset) {
997 extent_end = found_key.offset;
1001 fi = btrfs_item_ptr(leaf, path->slots[0],
1002 struct btrfs_file_extent_item);
1003 extent_type = btrfs_file_extent_type(leaf, fi);
1005 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1006 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1007 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1008 extent_end = found_key.offset +
1009 btrfs_file_extent_num_bytes(leaf, fi);
1010 if (extent_end <= start) {
1014 if (disk_bytenr == 0)
1016 if (btrfs_file_extent_compression(leaf, fi) ||
1017 btrfs_file_extent_encryption(leaf, fi) ||
1018 btrfs_file_extent_other_encoding(leaf, fi))
1020 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022 if (btrfs_extent_readonly(root, disk_bytenr))
1024 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1027 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1028 disk_bytenr += cur_offset - found_key.offset;
1029 num_bytes = min(end + 1, extent_end) - cur_offset;
1031 * force cow if csum exists in the range.
1032 * this ensure that csum for a given extent are
1033 * either valid or do not exist.
1035 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1038 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1039 extent_end = found_key.offset +
1040 btrfs_file_extent_inline_len(leaf, fi);
1041 extent_end = ALIGN(extent_end, root->sectorsize);
1046 if (extent_end <= start) {
1051 if (cow_start == (u64)-1)
1052 cow_start = cur_offset;
1053 cur_offset = extent_end;
1054 if (cur_offset > end)
1060 btrfs_release_path(root, path);
1061 if (cow_start != (u64)-1) {
1062 ret = cow_file_range(inode, locked_page, cow_start,
1063 found_key.offset - 1, page_started,
1066 cow_start = (u64)-1;
1069 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1070 struct extent_map *em;
1071 struct extent_map_tree *em_tree;
1072 em_tree = &BTRFS_I(inode)->extent_tree;
1073 em = alloc_extent_map(GFP_NOFS);
1074 em->start = cur_offset;
1075 em->orig_start = em->start;
1076 em->len = num_bytes;
1077 em->block_len = num_bytes;
1078 em->block_start = disk_bytenr;
1079 em->bdev = root->fs_info->fs_devices->latest_bdev;
1080 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1082 spin_lock(&em_tree->lock);
1083 ret = add_extent_mapping(em_tree, em);
1084 spin_unlock(&em_tree->lock);
1085 if (ret != -EEXIST) {
1086 free_extent_map(em);
1089 btrfs_drop_extent_cache(inode, em->start,
1090 em->start + em->len - 1, 0);
1092 type = BTRFS_ORDERED_PREALLOC;
1094 type = BTRFS_ORDERED_NOCOW;
1097 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1098 num_bytes, num_bytes, type);
1101 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1102 cur_offset, cur_offset + num_bytes - 1,
1103 locked_page, 1, 1, 1, 0, 0, 0);
1104 cur_offset = extent_end;
1105 if (cur_offset > end)
1108 btrfs_release_path(root, path);
1110 if (cur_offset <= end && cow_start == (u64)-1)
1111 cow_start = cur_offset;
1112 if (cow_start != (u64)-1) {
1113 ret = cow_file_range(inode, locked_page, cow_start, end,
1114 page_started, nr_written, 1);
1118 ret = btrfs_end_transaction(trans, root);
1120 btrfs_free_path(path);
1125 * extent_io.c call back to do delayed allocation processing
1127 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1134 if (btrfs_test_flag(inode, NODATACOW))
1135 ret = run_delalloc_nocow(inode, locked_page, start, end,
1136 page_started, 1, nr_written);
1137 else if (btrfs_test_flag(inode, PREALLOC))
1138 ret = run_delalloc_nocow(inode, locked_page, start, end,
1139 page_started, 0, nr_written);
1140 else if (!btrfs_test_opt(root, COMPRESS))
1141 ret = cow_file_range(inode, locked_page, start, end,
1142 page_started, nr_written, 1);
1144 ret = cow_file_range_async(inode, locked_page, start, end,
1145 page_started, nr_written);
1150 * extent_io.c set_bit_hook, used to track delayed allocation
1151 * bytes in this file, and to maintain the list of inodes that
1152 * have pending delalloc work to be done.
1154 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1155 unsigned long old, unsigned long bits)
1158 * set_bit and clear bit hooks normally require _irqsave/restore
1159 * but in this case, we are only testeing for the DELALLOC
1160 * bit, which is only set or cleared with irqs on
1162 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1163 struct btrfs_root *root = BTRFS_I(inode)->root;
1164 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1165 spin_lock(&root->fs_info->delalloc_lock);
1166 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1167 root->fs_info->delalloc_bytes += end - start + 1;
1168 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1169 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1170 &root->fs_info->delalloc_inodes);
1172 spin_unlock(&root->fs_info->delalloc_lock);
1178 * extent_io.c clear_bit_hook, see set_bit_hook for why
1180 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1181 unsigned long old, unsigned long bits)
1184 * set_bit and clear bit hooks normally require _irqsave/restore
1185 * but in this case, we are only testeing for the DELALLOC
1186 * bit, which is only set or cleared with irqs on
1188 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1189 struct btrfs_root *root = BTRFS_I(inode)->root;
1191 spin_lock(&root->fs_info->delalloc_lock);
1192 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1193 printk(KERN_INFO "btrfs warning: delalloc account "
1195 (unsigned long long)end - start + 1,
1196 (unsigned long long)
1197 root->fs_info->delalloc_bytes);
1198 btrfs_delalloc_free_space(root, inode, (u64)-1);
1199 root->fs_info->delalloc_bytes = 0;
1200 BTRFS_I(inode)->delalloc_bytes = 0;
1202 btrfs_delalloc_free_space(root, inode,
1204 root->fs_info->delalloc_bytes -= end - start + 1;
1205 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1208 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1209 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 spin_unlock(&root->fs_info->delalloc_lock);
1217 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1218 * we don't create bios that span stripes or chunks
1220 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1221 size_t size, struct bio *bio,
1222 unsigned long bio_flags)
1224 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1225 struct btrfs_mapping_tree *map_tree;
1226 u64 logical = (u64)bio->bi_sector << 9;
1231 if (bio_flags & EXTENT_BIO_COMPRESSED)
1234 length = bio->bi_size;
1235 map_tree = &root->fs_info->mapping_tree;
1236 map_length = length;
1237 ret = btrfs_map_block(map_tree, READ, logical,
1238 &map_length, NULL, 0);
1240 if (map_length < length + size)
1246 * in order to insert checksums into the metadata in large chunks,
1247 * we wait until bio submission time. All the pages in the bio are
1248 * checksummed and sums are attached onto the ordered extent record.
1250 * At IO completion time the cums attached on the ordered extent record
1251 * are inserted into the btree
1253 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1254 struct bio *bio, int mirror_num,
1255 unsigned long bio_flags)
1257 struct btrfs_root *root = BTRFS_I(inode)->root;
1260 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1266 * in order to insert checksums into the metadata in large chunks,
1267 * we wait until bio submission time. All the pages in the bio are
1268 * checksummed and sums are attached onto the ordered extent record.
1270 * At IO completion time the cums attached on the ordered extent record
1271 * are inserted into the btree
1273 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1274 int mirror_num, unsigned long bio_flags)
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1281 * extent_io.c submission hook. This does the right thing for csum calculation
1282 * on write, or reading the csums from the tree before a read
1284 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1285 int mirror_num, unsigned long bio_flags)
1287 struct btrfs_root *root = BTRFS_I(inode)->root;
1291 skip_sum = btrfs_test_flag(inode, NODATASUM);
1293 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1296 if (!(rw & (1 << BIO_RW))) {
1297 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1298 return btrfs_submit_compressed_read(inode, bio,
1299 mirror_num, bio_flags);
1300 } else if (!skip_sum)
1301 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1303 } else if (!skip_sum) {
1304 /* csum items have already been cloned */
1305 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1307 /* we're doing a write, do the async checksumming */
1308 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1309 inode, rw, bio, mirror_num,
1310 bio_flags, __btrfs_submit_bio_start,
1311 __btrfs_submit_bio_done);
1315 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1319 * given a list of ordered sums record them in the inode. This happens
1320 * at IO completion time based on sums calculated at bio submission time.
1322 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1323 struct inode *inode, u64 file_offset,
1324 struct list_head *list)
1326 struct btrfs_ordered_sum *sum;
1328 btrfs_set_trans_block_group(trans, inode);
1330 list_for_each_entry(sum, list, list) {
1331 btrfs_csum_file_blocks(trans,
1332 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1337 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1339 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1345 /* see btrfs_writepage_start_hook for details on why this is required */
1346 struct btrfs_writepage_fixup {
1348 struct btrfs_work work;
1351 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1353 struct btrfs_writepage_fixup *fixup;
1354 struct btrfs_ordered_extent *ordered;
1356 struct inode *inode;
1360 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1364 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1365 ClearPageChecked(page);
1369 inode = page->mapping->host;
1370 page_start = page_offset(page);
1371 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1373 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1375 /* already ordered? We're done */
1376 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1377 EXTENT_ORDERED, 0)) {
1381 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1384 page_end, GFP_NOFS);
1386 btrfs_start_ordered_extent(inode, ordered, 1);
1390 btrfs_set_extent_delalloc(inode, page_start, page_end);
1391 ClearPageChecked(page);
1393 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1396 page_cache_release(page);
1400 * There are a few paths in the higher layers of the kernel that directly
1401 * set the page dirty bit without asking the filesystem if it is a
1402 * good idea. This causes problems because we want to make sure COW
1403 * properly happens and the data=ordered rules are followed.
1405 * In our case any range that doesn't have the ORDERED bit set
1406 * hasn't been properly setup for IO. We kick off an async process
1407 * to fix it up. The async helper will wait for ordered extents, set
1408 * the delalloc bit and make it safe to write the page.
1410 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1412 struct inode *inode = page->mapping->host;
1413 struct btrfs_writepage_fixup *fixup;
1414 struct btrfs_root *root = BTRFS_I(inode)->root;
1417 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1422 if (PageChecked(page))
1425 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1429 SetPageChecked(page);
1430 page_cache_get(page);
1431 fixup->work.func = btrfs_writepage_fixup_worker;
1433 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1437 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1438 struct inode *inode, u64 file_pos,
1439 u64 disk_bytenr, u64 disk_num_bytes,
1440 u64 num_bytes, u64 ram_bytes,
1442 u8 compression, u8 encryption,
1443 u16 other_encoding, int extent_type)
1445 struct btrfs_root *root = BTRFS_I(inode)->root;
1446 struct btrfs_file_extent_item *fi;
1447 struct btrfs_path *path;
1448 struct extent_buffer *leaf;
1449 struct btrfs_key ins;
1453 path = btrfs_alloc_path();
1456 path->leave_spinning = 1;
1457 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1458 file_pos + num_bytes, locked_end,
1462 ins.objectid = inode->i_ino;
1463 ins.offset = file_pos;
1464 ins.type = BTRFS_EXTENT_DATA_KEY;
1465 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1467 leaf = path->nodes[0];
1468 fi = btrfs_item_ptr(leaf, path->slots[0],
1469 struct btrfs_file_extent_item);
1470 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1471 btrfs_set_file_extent_type(leaf, fi, extent_type);
1472 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1473 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1474 btrfs_set_file_extent_offset(leaf, fi, 0);
1475 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1476 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1477 btrfs_set_file_extent_compression(leaf, fi, compression);
1478 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1479 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1481 btrfs_unlock_up_safe(path, 1);
1482 btrfs_set_lock_blocking(leaf);
1484 btrfs_mark_buffer_dirty(leaf);
1486 inode_add_bytes(inode, num_bytes);
1487 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1489 ins.objectid = disk_bytenr;
1490 ins.offset = disk_num_bytes;
1491 ins.type = BTRFS_EXTENT_ITEM_KEY;
1492 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1493 root->root_key.objectid,
1494 trans->transid, inode->i_ino, &ins);
1496 btrfs_free_path(path);
1502 * helper function for btrfs_finish_ordered_io, this
1503 * just reads in some of the csum leaves to prime them into ram
1504 * before we start the transaction. It limits the amount of btree
1505 * reads required while inside the transaction.
1507 static noinline void reada_csum(struct btrfs_root *root,
1508 struct btrfs_path *path,
1509 struct btrfs_ordered_extent *ordered_extent)
1511 struct btrfs_ordered_sum *sum;
1514 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1516 bytenr = sum->sums[0].bytenr;
1519 * we don't care about the results, the point of this search is
1520 * just to get the btree leaves into ram
1522 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1525 /* as ordered data IO finishes, this gets called so we can finish
1526 * an ordered extent if the range of bytes in the file it covers are
1529 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1531 struct btrfs_root *root = BTRFS_I(inode)->root;
1532 struct btrfs_trans_handle *trans;
1533 struct btrfs_ordered_extent *ordered_extent = NULL;
1534 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1535 struct btrfs_path *path;
1539 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1544 * before we join the transaction, try to do some of our IO.
1545 * This will limit the amount of IO that we have to do with
1546 * the transaction running. We're unlikely to need to do any
1547 * IO if the file extents are new, the disk_i_size checks
1548 * covers the most common case.
1550 if (start < BTRFS_I(inode)->disk_i_size) {
1551 path = btrfs_alloc_path();
1553 ret = btrfs_lookup_file_extent(NULL, root, path,
1556 ordered_extent = btrfs_lookup_ordered_extent(inode,
1558 if (!list_empty(&ordered_extent->list)) {
1559 btrfs_release_path(root, path);
1560 reada_csum(root, path, ordered_extent);
1562 btrfs_free_path(path);
1566 trans = btrfs_join_transaction(root, 1);
1568 if (!ordered_extent)
1569 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1570 BUG_ON(!ordered_extent);
1571 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1574 lock_extent(io_tree, ordered_extent->file_offset,
1575 ordered_extent->file_offset + ordered_extent->len - 1,
1578 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1580 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1582 ret = btrfs_mark_extent_written(trans, root, inode,
1583 ordered_extent->file_offset,
1584 ordered_extent->file_offset +
1585 ordered_extent->len);
1588 ret = insert_reserved_file_extent(trans, inode,
1589 ordered_extent->file_offset,
1590 ordered_extent->start,
1591 ordered_extent->disk_len,
1592 ordered_extent->len,
1593 ordered_extent->len,
1594 ordered_extent->file_offset +
1595 ordered_extent->len,
1597 BTRFS_FILE_EXTENT_REG);
1600 unlock_extent(io_tree, ordered_extent->file_offset,
1601 ordered_extent->file_offset + ordered_extent->len - 1,
1604 add_pending_csums(trans, inode, ordered_extent->file_offset,
1605 &ordered_extent->list);
1607 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1608 btrfs_ordered_update_i_size(inode, ordered_extent);
1609 btrfs_update_inode(trans, root, inode);
1610 btrfs_remove_ordered_extent(inode, ordered_extent);
1611 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1614 btrfs_put_ordered_extent(ordered_extent);
1615 /* once for the tree */
1616 btrfs_put_ordered_extent(ordered_extent);
1618 btrfs_end_transaction(trans, root);
1622 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1623 struct extent_state *state, int uptodate)
1625 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1629 * When IO fails, either with EIO or csum verification fails, we
1630 * try other mirrors that might have a good copy of the data. This
1631 * io_failure_record is used to record state as we go through all the
1632 * mirrors. If another mirror has good data, the page is set up to date
1633 * and things continue. If a good mirror can't be found, the original
1634 * bio end_io callback is called to indicate things have failed.
1636 struct io_failure_record {
1641 unsigned long bio_flags;
1645 static int btrfs_io_failed_hook(struct bio *failed_bio,
1646 struct page *page, u64 start, u64 end,
1647 struct extent_state *state)
1649 struct io_failure_record *failrec = NULL;
1651 struct extent_map *em;
1652 struct inode *inode = page->mapping->host;
1653 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1654 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1661 ret = get_state_private(failure_tree, start, &private);
1663 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1666 failrec->start = start;
1667 failrec->len = end - start + 1;
1668 failrec->last_mirror = 0;
1669 failrec->bio_flags = 0;
1671 spin_lock(&em_tree->lock);
1672 em = lookup_extent_mapping(em_tree, start, failrec->len);
1673 if (em->start > start || em->start + em->len < start) {
1674 free_extent_map(em);
1677 spin_unlock(&em_tree->lock);
1679 if (!em || IS_ERR(em)) {
1683 logical = start - em->start;
1684 logical = em->block_start + logical;
1685 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1686 logical = em->block_start;
1687 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1689 failrec->logical = logical;
1690 free_extent_map(em);
1691 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1692 EXTENT_DIRTY, GFP_NOFS);
1693 set_state_private(failure_tree, start,
1694 (u64)(unsigned long)failrec);
1696 failrec = (struct io_failure_record *)(unsigned long)private;
1698 num_copies = btrfs_num_copies(
1699 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1700 failrec->logical, failrec->len);
1701 failrec->last_mirror++;
1703 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1704 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1707 if (state && state->start != failrec->start)
1709 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1711 if (!state || failrec->last_mirror > num_copies) {
1712 set_state_private(failure_tree, failrec->start, 0);
1713 clear_extent_bits(failure_tree, failrec->start,
1714 failrec->start + failrec->len - 1,
1715 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1719 bio = bio_alloc(GFP_NOFS, 1);
1720 bio->bi_private = state;
1721 bio->bi_end_io = failed_bio->bi_end_io;
1722 bio->bi_sector = failrec->logical >> 9;
1723 bio->bi_bdev = failed_bio->bi_bdev;
1726 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1727 if (failed_bio->bi_rw & (1 << BIO_RW))
1732 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1733 failrec->last_mirror,
1734 failrec->bio_flags);
1739 * each time an IO finishes, we do a fast check in the IO failure tree
1740 * to see if we need to process or clean up an io_failure_record
1742 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1745 u64 private_failure;
1746 struct io_failure_record *failure;
1750 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1751 (u64)-1, 1, EXTENT_DIRTY)) {
1752 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1753 start, &private_failure);
1755 failure = (struct io_failure_record *)(unsigned long)
1757 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1759 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1761 failure->start + failure->len - 1,
1762 EXTENT_DIRTY | EXTENT_LOCKED,
1771 * when reads are done, we need to check csums to verify the data is correct
1772 * if there's a match, we allow the bio to finish. If not, we go through
1773 * the io_failure_record routines to find good copies
1775 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1776 struct extent_state *state)
1778 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1779 struct inode *inode = page->mapping->host;
1780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1782 u64 private = ~(u32)0;
1784 struct btrfs_root *root = BTRFS_I(inode)->root;
1787 if (PageChecked(page)) {
1788 ClearPageChecked(page);
1791 if (btrfs_test_flag(inode, NODATASUM))
1794 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1795 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1796 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1801 if (state && state->start == start) {
1802 private = state->private;
1805 ret = get_state_private(io_tree, start, &private);
1807 kaddr = kmap_atomic(page, KM_USER0);
1811 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1812 btrfs_csum_final(csum, (char *)&csum);
1813 if (csum != private)
1816 kunmap_atomic(kaddr, KM_USER0);
1818 /* if the io failure tree for this inode is non-empty,
1819 * check to see if we've recovered from a failed IO
1821 btrfs_clean_io_failures(inode, start);
1825 if (printk_ratelimit()) {
1826 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1827 "private %llu\n", page->mapping->host->i_ino,
1828 (unsigned long long)start, csum,
1829 (unsigned long long)private);
1831 memset(kaddr + offset, 1, end - start + 1);
1832 flush_dcache_page(page);
1833 kunmap_atomic(kaddr, KM_USER0);
1840 * This creates an orphan entry for the given inode in case something goes
1841 * wrong in the middle of an unlink/truncate.
1843 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1845 struct btrfs_root *root = BTRFS_I(inode)->root;
1848 spin_lock(&root->list_lock);
1850 /* already on the orphan list, we're good */
1851 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1852 spin_unlock(&root->list_lock);
1856 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1858 spin_unlock(&root->list_lock);
1861 * insert an orphan item to track this unlinked/truncated file
1863 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1869 * We have done the truncate/delete so we can go ahead and remove the orphan
1870 * item for this particular inode.
1872 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1874 struct btrfs_root *root = BTRFS_I(inode)->root;
1877 spin_lock(&root->list_lock);
1879 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1880 spin_unlock(&root->list_lock);
1884 list_del_init(&BTRFS_I(inode)->i_orphan);
1886 spin_unlock(&root->list_lock);
1890 spin_unlock(&root->list_lock);
1892 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1898 * this cleans up any orphans that may be left on the list from the last use
1901 void btrfs_orphan_cleanup(struct btrfs_root *root)
1903 struct btrfs_path *path;
1904 struct extent_buffer *leaf;
1905 struct btrfs_item *item;
1906 struct btrfs_key key, found_key;
1907 struct btrfs_trans_handle *trans;
1908 struct inode *inode;
1909 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1911 path = btrfs_alloc_path();
1916 key.objectid = BTRFS_ORPHAN_OBJECTID;
1917 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1918 key.offset = (u64)-1;
1922 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1924 printk(KERN_ERR "Error searching slot for orphan: %d"
1930 * if ret == 0 means we found what we were searching for, which
1931 * is weird, but possible, so only screw with path if we didnt
1932 * find the key and see if we have stuff that matches
1935 if (path->slots[0] == 0)
1940 /* pull out the item */
1941 leaf = path->nodes[0];
1942 item = btrfs_item_nr(leaf, path->slots[0]);
1943 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1945 /* make sure the item matches what we want */
1946 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1948 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1951 /* release the path since we're done with it */
1952 btrfs_release_path(root, path);
1955 * this is where we are basically btrfs_lookup, without the
1956 * crossing root thing. we store the inode number in the
1957 * offset of the orphan item.
1959 inode = btrfs_iget_locked(root->fs_info->sb,
1960 found_key.offset, root);
1964 if (inode->i_state & I_NEW) {
1965 BTRFS_I(inode)->root = root;
1967 /* have to set the location manually */
1968 BTRFS_I(inode)->location.objectid = inode->i_ino;
1969 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1970 BTRFS_I(inode)->location.offset = 0;
1972 btrfs_read_locked_inode(inode);
1973 unlock_new_inode(inode);
1977 * add this inode to the orphan list so btrfs_orphan_del does
1978 * the proper thing when we hit it
1980 spin_lock(&root->list_lock);
1981 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1982 spin_unlock(&root->list_lock);
1985 * if this is a bad inode, means we actually succeeded in
1986 * removing the inode, but not the orphan record, which means
1987 * we need to manually delete the orphan since iput will just
1988 * do a destroy_inode
1990 if (is_bad_inode(inode)) {
1991 trans = btrfs_start_transaction(root, 1);
1992 btrfs_orphan_del(trans, inode);
1993 btrfs_end_transaction(trans, root);
1998 /* if we have links, this was a truncate, lets do that */
1999 if (inode->i_nlink) {
2001 btrfs_truncate(inode);
2006 /* this will do delete_inode and everything for us */
2011 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2013 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2015 btrfs_free_path(path);
2019 * very simple check to peek ahead in the leaf looking for xattrs. If we
2020 * don't find any xattrs, we know there can't be any acls.
2022 * slot is the slot the inode is in, objectid is the objectid of the inode
2024 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2025 int slot, u64 objectid)
2027 u32 nritems = btrfs_header_nritems(leaf);
2028 struct btrfs_key found_key;
2032 while (slot < nritems) {
2033 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2035 /* we found a different objectid, there must not be acls */
2036 if (found_key.objectid != objectid)
2039 /* we found an xattr, assume we've got an acl */
2040 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2044 * we found a key greater than an xattr key, there can't
2045 * be any acls later on
2047 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2054 * it goes inode, inode backrefs, xattrs, extents,
2055 * so if there are a ton of hard links to an inode there can
2056 * be a lot of backrefs. Don't waste time searching too hard,
2057 * this is just an optimization
2062 /* we hit the end of the leaf before we found an xattr or
2063 * something larger than an xattr. We have to assume the inode
2070 * read an inode from the btree into the in-memory inode
2072 void btrfs_read_locked_inode(struct inode *inode)
2074 struct btrfs_path *path;
2075 struct extent_buffer *leaf;
2076 struct btrfs_inode_item *inode_item;
2077 struct btrfs_timespec *tspec;
2078 struct btrfs_root *root = BTRFS_I(inode)->root;
2079 struct btrfs_key location;
2081 u64 alloc_group_block;
2085 path = btrfs_alloc_path();
2087 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2089 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2093 leaf = path->nodes[0];
2094 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2095 struct btrfs_inode_item);
2097 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2098 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2099 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2100 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2101 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2103 tspec = btrfs_inode_atime(inode_item);
2104 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2105 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2107 tspec = btrfs_inode_mtime(inode_item);
2108 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2109 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2111 tspec = btrfs_inode_ctime(inode_item);
2112 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2113 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2115 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2116 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2117 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2118 inode->i_generation = BTRFS_I(inode)->generation;
2120 rdev = btrfs_inode_rdev(leaf, inode_item);
2122 BTRFS_I(inode)->index_cnt = (u64)-1;
2123 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2125 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2128 * try to precache a NULL acl entry for files that don't have
2129 * any xattrs or acls
2131 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2133 BTRFS_I(inode)->i_acl = NULL;
2134 BTRFS_I(inode)->i_default_acl = NULL;
2137 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2138 alloc_group_block, 0);
2139 btrfs_free_path(path);
2142 switch (inode->i_mode & S_IFMT) {
2144 inode->i_mapping->a_ops = &btrfs_aops;
2145 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2146 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2147 inode->i_fop = &btrfs_file_operations;
2148 inode->i_op = &btrfs_file_inode_operations;
2151 inode->i_fop = &btrfs_dir_file_operations;
2152 if (root == root->fs_info->tree_root)
2153 inode->i_op = &btrfs_dir_ro_inode_operations;
2155 inode->i_op = &btrfs_dir_inode_operations;
2158 inode->i_op = &btrfs_symlink_inode_operations;
2159 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2160 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2163 inode->i_op = &btrfs_special_inode_operations;
2164 init_special_inode(inode, inode->i_mode, rdev);
2170 btrfs_free_path(path);
2171 make_bad_inode(inode);
2175 * given a leaf and an inode, copy the inode fields into the leaf
2177 static void fill_inode_item(struct btrfs_trans_handle *trans,
2178 struct extent_buffer *leaf,
2179 struct btrfs_inode_item *item,
2180 struct inode *inode)
2182 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2183 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2184 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2185 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2186 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2188 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2189 inode->i_atime.tv_sec);
2190 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2191 inode->i_atime.tv_nsec);
2193 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2194 inode->i_mtime.tv_sec);
2195 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2196 inode->i_mtime.tv_nsec);
2198 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2199 inode->i_ctime.tv_sec);
2200 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2201 inode->i_ctime.tv_nsec);
2203 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2204 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2205 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2206 btrfs_set_inode_transid(leaf, item, trans->transid);
2207 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2208 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2209 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2213 * copy everything in the in-memory inode into the btree.
2215 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2216 struct btrfs_root *root, struct inode *inode)
2218 struct btrfs_inode_item *inode_item;
2219 struct btrfs_path *path;
2220 struct extent_buffer *leaf;
2223 path = btrfs_alloc_path();
2225 path->leave_spinning = 1;
2226 ret = btrfs_lookup_inode(trans, root, path,
2227 &BTRFS_I(inode)->location, 1);
2234 btrfs_unlock_up_safe(path, 1);
2235 leaf = path->nodes[0];
2236 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2237 struct btrfs_inode_item);
2239 fill_inode_item(trans, leaf, inode_item, inode);
2240 btrfs_mark_buffer_dirty(leaf);
2241 btrfs_set_inode_last_trans(trans, inode);
2244 btrfs_free_path(path);
2250 * unlink helper that gets used here in inode.c and in the tree logging
2251 * recovery code. It remove a link in a directory with a given name, and
2252 * also drops the back refs in the inode to the directory
2254 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2255 struct btrfs_root *root,
2256 struct inode *dir, struct inode *inode,
2257 const char *name, int name_len)
2259 struct btrfs_path *path;
2261 struct extent_buffer *leaf;
2262 struct btrfs_dir_item *di;
2263 struct btrfs_key key;
2266 path = btrfs_alloc_path();
2272 path->leave_spinning = 1;
2273 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2274 name, name_len, -1);
2283 leaf = path->nodes[0];
2284 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2285 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2288 btrfs_release_path(root, path);
2290 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2292 dir->i_ino, &index);
2294 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2295 "inode %lu parent %lu\n", name_len, name,
2296 inode->i_ino, dir->i_ino);
2300 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2301 index, name, name_len, -1);
2310 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2311 btrfs_release_path(root, path);
2313 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2315 BUG_ON(ret != 0 && ret != -ENOENT);
2317 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2321 btrfs_free_path(path);
2325 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2326 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2327 btrfs_update_inode(trans, root, dir);
2328 btrfs_drop_nlink(inode);
2329 ret = btrfs_update_inode(trans, root, inode);
2330 dir->i_sb->s_dirt = 1;
2335 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2337 struct btrfs_root *root;
2338 struct btrfs_trans_handle *trans;
2339 struct inode *inode = dentry->d_inode;
2341 unsigned long nr = 0;
2343 root = BTRFS_I(dir)->root;
2345 trans = btrfs_start_transaction(root, 1);
2347 btrfs_set_trans_block_group(trans, dir);
2349 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2351 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2352 dentry->d_name.name, dentry->d_name.len);
2354 if (inode->i_nlink == 0)
2355 ret = btrfs_orphan_add(trans, inode);
2357 nr = trans->blocks_used;
2359 btrfs_end_transaction_throttle(trans, root);
2360 btrfs_btree_balance_dirty(root, nr);
2364 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2366 struct inode *inode = dentry->d_inode;
2369 struct btrfs_root *root = BTRFS_I(dir)->root;
2370 struct btrfs_trans_handle *trans;
2371 unsigned long nr = 0;
2374 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2375 * the root of a subvolume or snapshot
2377 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2378 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2382 trans = btrfs_start_transaction(root, 1);
2383 btrfs_set_trans_block_group(trans, dir);
2385 err = btrfs_orphan_add(trans, inode);
2389 /* now the directory is empty */
2390 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2391 dentry->d_name.name, dentry->d_name.len);
2393 btrfs_i_size_write(inode, 0);
2396 nr = trans->blocks_used;
2397 ret = btrfs_end_transaction_throttle(trans, root);
2398 btrfs_btree_balance_dirty(root, nr);
2407 * when truncating bytes in a file, it is possible to avoid reading
2408 * the leaves that contain only checksum items. This can be the
2409 * majority of the IO required to delete a large file, but it must
2410 * be done carefully.
2412 * The keys in the level just above the leaves are checked to make sure
2413 * the lowest key in a given leaf is a csum key, and starts at an offset
2414 * after the new size.
2416 * Then the key for the next leaf is checked to make sure it also has
2417 * a checksum item for the same file. If it does, we know our target leaf
2418 * contains only checksum items, and it can be safely freed without reading
2421 * This is just an optimization targeted at large files. It may do
2422 * nothing. It will return 0 unless things went badly.
2424 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2425 struct btrfs_root *root,
2426 struct btrfs_path *path,
2427 struct inode *inode, u64 new_size)
2429 struct btrfs_key key;
2432 struct btrfs_key found_key;
2433 struct btrfs_key other_key;
2434 struct btrfs_leaf_ref *ref;
2438 path->lowest_level = 1;
2439 key.objectid = inode->i_ino;
2440 key.type = BTRFS_CSUM_ITEM_KEY;
2441 key.offset = new_size;
2443 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2447 if (path->nodes[1] == NULL) {
2452 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2453 nritems = btrfs_header_nritems(path->nodes[1]);
2458 if (path->slots[1] >= nritems)
2461 /* did we find a key greater than anything we want to delete? */
2462 if (found_key.objectid > inode->i_ino ||
2463 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2466 /* we check the next key in the node to make sure the leave contains
2467 * only checksum items. This comparison doesn't work if our
2468 * leaf is the last one in the node
2470 if (path->slots[1] + 1 >= nritems) {
2472 /* search forward from the last key in the node, this
2473 * will bring us into the next node in the tree
2475 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2477 /* unlikely, but we inc below, so check to be safe */
2478 if (found_key.offset == (u64)-1)
2481 /* search_forward needs a path with locks held, do the
2482 * search again for the original key. It is possible
2483 * this will race with a balance and return a path that
2484 * we could modify, but this drop is just an optimization
2485 * and is allowed to miss some leaves.
2487 btrfs_release_path(root, path);
2490 /* setup a max key for search_forward */
2491 other_key.offset = (u64)-1;
2492 other_key.type = key.type;
2493 other_key.objectid = key.objectid;
2495 path->keep_locks = 1;
2496 ret = btrfs_search_forward(root, &found_key, &other_key,
2498 path->keep_locks = 0;
2499 if (ret || found_key.objectid != key.objectid ||
2500 found_key.type != key.type) {
2505 key.offset = found_key.offset;
2506 btrfs_release_path(root, path);
2511 /* we know there's one more slot after us in the tree,
2512 * read that key so we can verify it is also a checksum item
2514 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2516 if (found_key.objectid < inode->i_ino)
2519 if (found_key.type != key.type || found_key.offset < new_size)
2523 * if the key for the next leaf isn't a csum key from this objectid,
2524 * we can't be sure there aren't good items inside this leaf.
2527 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2530 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2531 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2533 * it is safe to delete this leaf, it contains only
2534 * csum items from this inode at an offset >= new_size
2536 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2539 if (root->ref_cows && leaf_gen < trans->transid) {
2540 ref = btrfs_alloc_leaf_ref(root, 0);
2542 ref->root_gen = root->root_key.offset;
2543 ref->bytenr = leaf_start;
2545 ref->generation = leaf_gen;
2548 btrfs_sort_leaf_ref(ref);
2550 ret = btrfs_add_leaf_ref(root, ref, 0);
2552 btrfs_free_leaf_ref(root, ref);
2558 btrfs_release_path(root, path);
2560 if (other_key.objectid == inode->i_ino &&
2561 other_key.type == key.type && other_key.offset > key.offset) {
2562 key.offset = other_key.offset;
2568 /* fixup any changes we've made to the path */
2569 path->lowest_level = 0;
2570 path->keep_locks = 0;
2571 btrfs_release_path(root, path);
2578 * this can truncate away extent items, csum items and directory items.
2579 * It starts at a high offset and removes keys until it can't find
2580 * any higher than new_size
2582 * csum items that cross the new i_size are truncated to the new size
2585 * min_type is the minimum key type to truncate down to. If set to 0, this
2586 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2588 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2589 struct btrfs_root *root,
2590 struct inode *inode,
2591 u64 new_size, u32 min_type)
2594 struct btrfs_path *path;
2595 struct btrfs_key key;
2596 struct btrfs_key found_key;
2597 u32 found_type = (u8)-1;
2598 struct extent_buffer *leaf;
2599 struct btrfs_file_extent_item *fi;
2600 u64 extent_start = 0;
2601 u64 extent_num_bytes = 0;
2607 int pending_del_nr = 0;
2608 int pending_del_slot = 0;
2609 int extent_type = -1;
2611 u64 mask = root->sectorsize - 1;
2614 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2615 path = btrfs_alloc_path();
2619 /* FIXME, add redo link to tree so we don't leak on crash */
2620 key.objectid = inode->i_ino;
2621 key.offset = (u64)-1;
2625 path->leave_spinning = 1;
2626 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2631 /* there are no items in the tree for us to truncate, we're
2634 if (path->slots[0] == 0) {
2643 leaf = path->nodes[0];
2644 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2645 found_type = btrfs_key_type(&found_key);
2648 if (found_key.objectid != inode->i_ino)
2651 if (found_type < min_type)
2654 item_end = found_key.offset;
2655 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2656 fi = btrfs_item_ptr(leaf, path->slots[0],
2657 struct btrfs_file_extent_item);
2658 extent_type = btrfs_file_extent_type(leaf, fi);
2659 encoding = btrfs_file_extent_compression(leaf, fi);
2660 encoding |= btrfs_file_extent_encryption(leaf, fi);
2661 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2663 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2665 btrfs_file_extent_num_bytes(leaf, fi);
2666 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2667 item_end += btrfs_file_extent_inline_len(leaf,
2672 if (item_end < new_size) {
2673 if (found_type == BTRFS_DIR_ITEM_KEY)
2674 found_type = BTRFS_INODE_ITEM_KEY;
2675 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2676 found_type = BTRFS_EXTENT_DATA_KEY;
2677 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2678 found_type = BTRFS_XATTR_ITEM_KEY;
2679 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2680 found_type = BTRFS_INODE_REF_KEY;
2681 else if (found_type)
2685 btrfs_set_key_type(&key, found_type);
2688 if (found_key.offset >= new_size)
2694 /* FIXME, shrink the extent if the ref count is only 1 */
2695 if (found_type != BTRFS_EXTENT_DATA_KEY)
2698 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2700 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2701 if (!del_item && !encoding) {
2702 u64 orig_num_bytes =
2703 btrfs_file_extent_num_bytes(leaf, fi);
2704 extent_num_bytes = new_size -
2705 found_key.offset + root->sectorsize - 1;
2706 extent_num_bytes = extent_num_bytes &
2707 ~((u64)root->sectorsize - 1);
2708 btrfs_set_file_extent_num_bytes(leaf, fi,
2710 num_dec = (orig_num_bytes -
2712 if (root->ref_cows && extent_start != 0)
2713 inode_sub_bytes(inode, num_dec);
2714 btrfs_mark_buffer_dirty(leaf);
2717 btrfs_file_extent_disk_num_bytes(leaf,
2719 /* FIXME blocksize != 4096 */
2720 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2721 if (extent_start != 0) {
2724 inode_sub_bytes(inode, num_dec);
2726 root_gen = btrfs_header_generation(leaf);
2727 root_owner = btrfs_header_owner(leaf);
2729 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2731 * we can't truncate inline items that have had
2735 btrfs_file_extent_compression(leaf, fi) == 0 &&
2736 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2737 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2738 u32 size = new_size - found_key.offset;
2740 if (root->ref_cows) {
2741 inode_sub_bytes(inode, item_end + 1 -
2745 btrfs_file_extent_calc_inline_size(size);
2746 ret = btrfs_truncate_item(trans, root, path,
2749 } else if (root->ref_cows) {
2750 inode_sub_bytes(inode, item_end + 1 -
2756 if (!pending_del_nr) {
2757 /* no pending yet, add ourselves */
2758 pending_del_slot = path->slots[0];
2760 } else if (pending_del_nr &&
2761 path->slots[0] + 1 == pending_del_slot) {
2762 /* hop on the pending chunk */
2764 pending_del_slot = path->slots[0];
2772 btrfs_set_path_blocking(path);
2773 ret = btrfs_free_extent(trans, root, extent_start,
2775 leaf->start, root_owner,
2776 root_gen, inode->i_ino, 0);
2780 if (path->slots[0] == 0) {
2783 btrfs_release_path(root, path);
2784 if (found_type == BTRFS_INODE_ITEM_KEY)
2790 if (pending_del_nr &&
2791 path->slots[0] + 1 != pending_del_slot) {
2792 struct btrfs_key debug;
2794 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2796 ret = btrfs_del_items(trans, root, path,
2801 btrfs_release_path(root, path);
2802 if (found_type == BTRFS_INODE_ITEM_KEY)
2809 if (pending_del_nr) {
2810 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2813 btrfs_free_path(path);
2814 inode->i_sb->s_dirt = 1;
2819 * taken from block_truncate_page, but does cow as it zeros out
2820 * any bytes left in the last page in the file.
2822 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2824 struct inode *inode = mapping->host;
2825 struct btrfs_root *root = BTRFS_I(inode)->root;
2826 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2827 struct btrfs_ordered_extent *ordered;
2829 u32 blocksize = root->sectorsize;
2830 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2831 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2837 if ((offset & (blocksize - 1)) == 0)
2842 page = grab_cache_page(mapping, index);
2846 page_start = page_offset(page);
2847 page_end = page_start + PAGE_CACHE_SIZE - 1;
2849 if (!PageUptodate(page)) {
2850 ret = btrfs_readpage(NULL, page);
2852 if (page->mapping != mapping) {
2854 page_cache_release(page);
2857 if (!PageUptodate(page)) {
2862 wait_on_page_writeback(page);
2864 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2865 set_page_extent_mapped(page);
2867 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2869 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2871 page_cache_release(page);
2872 btrfs_start_ordered_extent(inode, ordered, 1);
2873 btrfs_put_ordered_extent(ordered);
2877 btrfs_set_extent_delalloc(inode, page_start, page_end);
2879 if (offset != PAGE_CACHE_SIZE) {
2881 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2882 flush_dcache_page(page);
2885 ClearPageChecked(page);
2886 set_page_dirty(page);
2887 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2891 page_cache_release(page);
2896 int btrfs_cont_expand(struct inode *inode, loff_t size)
2898 struct btrfs_trans_handle *trans;
2899 struct btrfs_root *root = BTRFS_I(inode)->root;
2900 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2901 struct extent_map *em;
2902 u64 mask = root->sectorsize - 1;
2903 u64 hole_start = (inode->i_size + mask) & ~mask;
2904 u64 block_end = (size + mask) & ~mask;
2910 if (size <= hole_start)
2913 err = btrfs_check_metadata_free_space(root);
2917 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2920 struct btrfs_ordered_extent *ordered;
2921 btrfs_wait_ordered_range(inode, hole_start,
2922 block_end - hole_start);
2923 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2924 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2927 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2928 btrfs_put_ordered_extent(ordered);
2931 trans = btrfs_start_transaction(root, 1);
2932 btrfs_set_trans_block_group(trans, inode);
2934 cur_offset = hole_start;
2936 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2937 block_end - cur_offset, 0);
2938 BUG_ON(IS_ERR(em) || !em);
2939 last_byte = min(extent_map_end(em), block_end);
2940 last_byte = (last_byte + mask) & ~mask;
2941 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2943 hole_size = last_byte - cur_offset;
2944 err = btrfs_drop_extents(trans, root, inode,
2946 cur_offset + hole_size,
2948 cur_offset, &hint_byte);
2951 err = btrfs_insert_file_extent(trans, root,
2952 inode->i_ino, cur_offset, 0,
2953 0, hole_size, 0, hole_size,
2955 btrfs_drop_extent_cache(inode, hole_start,
2958 free_extent_map(em);
2959 cur_offset = last_byte;
2960 if (err || cur_offset >= block_end)
2964 btrfs_end_transaction(trans, root);
2965 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2969 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2971 struct inode *inode = dentry->d_inode;
2974 err = inode_change_ok(inode, attr);
2978 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2979 if (attr->ia_size > inode->i_size) {
2980 err = btrfs_cont_expand(inode, attr->ia_size);
2983 } else if (inode->i_size > 0 &&
2984 attr->ia_size == 0) {
2986 /* we're truncating a file that used to have good
2987 * data down to zero. Make sure it gets into
2988 * the ordered flush list so that any new writes
2989 * get down to disk quickly.
2991 BTRFS_I(inode)->ordered_data_close = 1;
2995 err = inode_setattr(inode, attr);
2997 if (!err && ((attr->ia_valid & ATTR_MODE)))
2998 err = btrfs_acl_chmod(inode);
3002 void btrfs_delete_inode(struct inode *inode)
3004 struct btrfs_trans_handle *trans;
3005 struct btrfs_root *root = BTRFS_I(inode)->root;
3009 truncate_inode_pages(&inode->i_data, 0);
3010 if (is_bad_inode(inode)) {
3011 btrfs_orphan_del(NULL, inode);
3014 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3016 btrfs_i_size_write(inode, 0);
3017 trans = btrfs_join_transaction(root, 1);
3019 btrfs_set_trans_block_group(trans, inode);
3020 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3022 btrfs_orphan_del(NULL, inode);
3023 goto no_delete_lock;
3026 btrfs_orphan_del(trans, inode);
3028 nr = trans->blocks_used;
3031 btrfs_end_transaction(trans, root);
3032 btrfs_btree_balance_dirty(root, nr);
3036 nr = trans->blocks_used;
3037 btrfs_end_transaction(trans, root);
3038 btrfs_btree_balance_dirty(root, nr);
3044 * this returns the key found in the dir entry in the location pointer.
3045 * If no dir entries were found, location->objectid is 0.
3047 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3048 struct btrfs_key *location)
3050 const char *name = dentry->d_name.name;
3051 int namelen = dentry->d_name.len;
3052 struct btrfs_dir_item *di;
3053 struct btrfs_path *path;
3054 struct btrfs_root *root = BTRFS_I(dir)->root;
3057 path = btrfs_alloc_path();
3060 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3065 if (!di || IS_ERR(di))
3068 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3070 btrfs_free_path(path);
3073 location->objectid = 0;
3078 * when we hit a tree root in a directory, the btrfs part of the inode
3079 * needs to be changed to reflect the root directory of the tree root. This
3080 * is kind of like crossing a mount point.
3082 static int fixup_tree_root_location(struct btrfs_root *root,
3083 struct btrfs_key *location,
3084 struct btrfs_root **sub_root,
3085 struct dentry *dentry)
3087 struct btrfs_root_item *ri;
3089 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3091 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3094 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3095 dentry->d_name.name,
3096 dentry->d_name.len);
3097 if (IS_ERR(*sub_root))
3098 return PTR_ERR(*sub_root);
3100 ri = &(*sub_root)->root_item;
3101 location->objectid = btrfs_root_dirid(ri);
3102 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3103 location->offset = 0;
3108 static noinline void init_btrfs_i(struct inode *inode)
3110 struct btrfs_inode *bi = BTRFS_I(inode);
3112 bi->i_acl = BTRFS_ACL_NOT_CACHED;
3113 bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
3118 bi->logged_trans = 0;
3119 bi->delalloc_bytes = 0;
3120 bi->reserved_bytes = 0;
3121 bi->disk_i_size = 0;
3123 bi->index_cnt = (u64)-1;
3124 bi->last_unlink_trans = 0;
3125 bi->ordered_data_close = 0;
3126 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3127 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3128 inode->i_mapping, GFP_NOFS);
3129 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3130 inode->i_mapping, GFP_NOFS);
3131 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3132 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3133 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3134 mutex_init(&BTRFS_I(inode)->extent_mutex);
3135 mutex_init(&BTRFS_I(inode)->log_mutex);
3138 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3140 struct btrfs_iget_args *args = p;
3141 inode->i_ino = args->ino;
3142 init_btrfs_i(inode);
3143 BTRFS_I(inode)->root = args->root;
3144 btrfs_set_inode_space_info(args->root, inode);
3148 static int btrfs_find_actor(struct inode *inode, void *opaque)
3150 struct btrfs_iget_args *args = opaque;
3151 return args->ino == inode->i_ino &&
3152 args->root == BTRFS_I(inode)->root;
3155 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3156 struct btrfs_root *root, int wait)
3158 struct inode *inode;
3159 struct btrfs_iget_args args;
3160 args.ino = objectid;
3164 inode = ilookup5(s, objectid, btrfs_find_actor,
3167 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3173 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3174 struct btrfs_root *root)
3176 struct inode *inode;
3177 struct btrfs_iget_args args;
3178 args.ino = objectid;
3181 inode = iget5_locked(s, objectid, btrfs_find_actor,
3182 btrfs_init_locked_inode,
3187 /* Get an inode object given its location and corresponding root.
3188 * Returns in *is_new if the inode was read from disk
3190 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3191 struct btrfs_root *root, int *is_new)
3193 struct inode *inode;
3195 inode = btrfs_iget_locked(s, location->objectid, root);
3197 return ERR_PTR(-EACCES);
3199 if (inode->i_state & I_NEW) {
3200 BTRFS_I(inode)->root = root;
3201 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3202 btrfs_read_locked_inode(inode);
3203 unlock_new_inode(inode);
3214 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3216 struct inode *inode;
3217 struct btrfs_inode *bi = BTRFS_I(dir);
3218 struct btrfs_root *root = bi->root;
3219 struct btrfs_root *sub_root = root;
3220 struct btrfs_key location;
3223 if (dentry->d_name.len > BTRFS_NAME_LEN)
3224 return ERR_PTR(-ENAMETOOLONG);
3226 ret = btrfs_inode_by_name(dir, dentry, &location);
3229 return ERR_PTR(ret);
3232 if (location.objectid) {
3233 ret = fixup_tree_root_location(root, &location, &sub_root,
3236 return ERR_PTR(ret);
3238 return ERR_PTR(-ENOENT);
3239 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3241 return ERR_CAST(inode);
3246 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3247 struct nameidata *nd)
3249 struct inode *inode;
3251 if (dentry->d_name.len > BTRFS_NAME_LEN)
3252 return ERR_PTR(-ENAMETOOLONG);
3254 inode = btrfs_lookup_dentry(dir, dentry);
3256 return ERR_CAST(inode);
3258 return d_splice_alias(inode, dentry);
3261 static unsigned char btrfs_filetype_table[] = {
3262 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3265 static int btrfs_real_readdir(struct file *filp, void *dirent,
3268 struct inode *inode = filp->f_dentry->d_inode;
3269 struct btrfs_root *root = BTRFS_I(inode)->root;
3270 struct btrfs_item *item;
3271 struct btrfs_dir_item *di;
3272 struct btrfs_key key;
3273 struct btrfs_key found_key;
3274 struct btrfs_path *path;
3277 struct extent_buffer *leaf;
3280 unsigned char d_type;
3285 int key_type = BTRFS_DIR_INDEX_KEY;
3290 /* FIXME, use a real flag for deciding about the key type */
3291 if (root->fs_info->tree_root == root)
3292 key_type = BTRFS_DIR_ITEM_KEY;
3294 /* special case for "." */
3295 if (filp->f_pos == 0) {
3296 over = filldir(dirent, ".", 1,
3303 /* special case for .., just use the back ref */
3304 if (filp->f_pos == 1) {
3305 u64 pino = parent_ino(filp->f_path.dentry);
3306 over = filldir(dirent, "..", 2,
3312 path = btrfs_alloc_path();
3315 btrfs_set_key_type(&key, key_type);
3316 key.offset = filp->f_pos;
3317 key.objectid = inode->i_ino;
3319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3325 leaf = path->nodes[0];
3326 nritems = btrfs_header_nritems(leaf);
3327 slot = path->slots[0];
3328 if (advance || slot >= nritems) {
3329 if (slot >= nritems - 1) {
3330 ret = btrfs_next_leaf(root, path);
3333 leaf = path->nodes[0];
3334 nritems = btrfs_header_nritems(leaf);
3335 slot = path->slots[0];
3343 item = btrfs_item_nr(leaf, slot);
3344 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3346 if (found_key.objectid != key.objectid)
3348 if (btrfs_key_type(&found_key) != key_type)
3350 if (found_key.offset < filp->f_pos)
3353 filp->f_pos = found_key.offset;
3355 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3357 di_total = btrfs_item_size(leaf, item);
3359 while (di_cur < di_total) {
3360 struct btrfs_key location;
3362 name_len = btrfs_dir_name_len(leaf, di);
3363 if (name_len <= sizeof(tmp_name)) {
3364 name_ptr = tmp_name;
3366 name_ptr = kmalloc(name_len, GFP_NOFS);
3372 read_extent_buffer(leaf, name_ptr,
3373 (unsigned long)(di + 1), name_len);
3375 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3376 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3378 /* is this a reference to our own snapshot? If so
3381 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3382 location.objectid == root->root_key.objectid) {
3386 over = filldir(dirent, name_ptr, name_len,
3387 found_key.offset, location.objectid,
3391 if (name_ptr != tmp_name)
3396 di_len = btrfs_dir_name_len(leaf, di) +
3397 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3399 di = (struct btrfs_dir_item *)((char *)di + di_len);
3403 /* Reached end of directory/root. Bump pos past the last item. */
3404 if (key_type == BTRFS_DIR_INDEX_KEY)
3405 filp->f_pos = INT_LIMIT(off_t);
3411 btrfs_free_path(path);
3415 int btrfs_write_inode(struct inode *inode, int wait)
3417 struct btrfs_root *root = BTRFS_I(inode)->root;
3418 struct btrfs_trans_handle *trans;
3421 if (root->fs_info->btree_inode == inode)
3425 trans = btrfs_join_transaction(root, 1);
3426 btrfs_set_trans_block_group(trans, inode);
3427 ret = btrfs_commit_transaction(trans, root);
3433 * This is somewhat expensive, updating the tree every time the
3434 * inode changes. But, it is most likely to find the inode in cache.
3435 * FIXME, needs more benchmarking...there are no reasons other than performance
3436 * to keep or drop this code.
3438 void btrfs_dirty_inode(struct inode *inode)
3440 struct btrfs_root *root = BTRFS_I(inode)->root;
3441 struct btrfs_trans_handle *trans;
3443 trans = btrfs_join_transaction(root, 1);
3444 btrfs_set_trans_block_group(trans, inode);
3445 btrfs_update_inode(trans, root, inode);
3446 btrfs_end_transaction(trans, root);
3450 * find the highest existing sequence number in a directory
3451 * and then set the in-memory index_cnt variable to reflect
3452 * free sequence numbers
3454 static int btrfs_set_inode_index_count(struct inode *inode)
3456 struct btrfs_root *root = BTRFS_I(inode)->root;
3457 struct btrfs_key key, found_key;
3458 struct btrfs_path *path;
3459 struct extent_buffer *leaf;
3462 key.objectid = inode->i_ino;
3463 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3464 key.offset = (u64)-1;
3466 path = btrfs_alloc_path();
3470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3473 /* FIXME: we should be able to handle this */
3479 * MAGIC NUMBER EXPLANATION:
3480 * since we search a directory based on f_pos we have to start at 2
3481 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3482 * else has to start at 2
3484 if (path->slots[0] == 0) {
3485 BTRFS_I(inode)->index_cnt = 2;
3491 leaf = path->nodes[0];
3492 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3494 if (found_key.objectid != inode->i_ino ||
3495 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3496 BTRFS_I(inode)->index_cnt = 2;
3500 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3502 btrfs_free_path(path);
3507 * helper to find a free sequence number in a given directory. This current
3508 * code is very simple, later versions will do smarter things in the btree
3510 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3514 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3515 ret = btrfs_set_inode_index_count(dir);
3520 *index = BTRFS_I(dir)->index_cnt;
3521 BTRFS_I(dir)->index_cnt++;
3526 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3527 struct btrfs_root *root,
3529 const char *name, int name_len,
3530 u64 ref_objectid, u64 objectid,
3531 u64 alloc_hint, int mode, u64 *index)
3533 struct inode *inode;
3534 struct btrfs_inode_item *inode_item;
3535 struct btrfs_key *location;
3536 struct btrfs_path *path;
3537 struct btrfs_inode_ref *ref;
3538 struct btrfs_key key[2];
3544 path = btrfs_alloc_path();
3547 inode = new_inode(root->fs_info->sb);
3549 return ERR_PTR(-ENOMEM);
3552 ret = btrfs_set_inode_index(dir, index);
3555 return ERR_PTR(ret);
3559 * index_cnt is ignored for everything but a dir,
3560 * btrfs_get_inode_index_count has an explanation for the magic
3563 init_btrfs_i(inode);
3564 BTRFS_I(inode)->index_cnt = 2;
3565 BTRFS_I(inode)->root = root;
3566 BTRFS_I(inode)->generation = trans->transid;
3567 btrfs_set_inode_space_info(root, inode);
3573 BTRFS_I(inode)->block_group =
3574 btrfs_find_block_group(root, 0, alloc_hint, owner);
3575 if ((mode & S_IFREG)) {
3576 if (btrfs_test_opt(root, NODATASUM))
3577 btrfs_set_flag(inode, NODATASUM);
3578 if (btrfs_test_opt(root, NODATACOW))
3579 btrfs_set_flag(inode, NODATACOW);
3582 key[0].objectid = objectid;
3583 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3586 key[1].objectid = objectid;
3587 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3588 key[1].offset = ref_objectid;
3590 sizes[0] = sizeof(struct btrfs_inode_item);
3591 sizes[1] = name_len + sizeof(*ref);
3593 path->leave_spinning = 1;
3594 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3598 if (objectid > root->highest_inode)
3599 root->highest_inode = objectid;
3601 inode->i_uid = current_fsuid();
3603 if (dir && (dir->i_mode & S_ISGID)) {
3604 inode->i_gid = dir->i_gid;
3608 inode->i_gid = current_fsgid();
3610 inode->i_mode = mode;
3611 inode->i_ino = objectid;
3612 inode_set_bytes(inode, 0);
3613 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3614 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3615 struct btrfs_inode_item);
3616 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3618 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3619 struct btrfs_inode_ref);
3620 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3621 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3622 ptr = (unsigned long)(ref + 1);
3623 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3625 btrfs_mark_buffer_dirty(path->nodes[0]);
3626 btrfs_free_path(path);
3628 location = &BTRFS_I(inode)->location;
3629 location->objectid = objectid;
3630 location->offset = 0;
3631 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3633 insert_inode_hash(inode);
3637 BTRFS_I(dir)->index_cnt--;
3638 btrfs_free_path(path);
3640 return ERR_PTR(ret);
3643 static inline u8 btrfs_inode_type(struct inode *inode)
3645 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3649 * utility function to add 'inode' into 'parent_inode' with
3650 * a give name and a given sequence number.
3651 * if 'add_backref' is true, also insert a backref from the
3652 * inode to the parent directory.
3654 int btrfs_add_link(struct btrfs_trans_handle *trans,
3655 struct inode *parent_inode, struct inode *inode,
3656 const char *name, int name_len, int add_backref, u64 index)
3659 struct btrfs_key key;
3660 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3662 key.objectid = inode->i_ino;
3663 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3666 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3667 parent_inode->i_ino,
3668 &key, btrfs_inode_type(inode),
3672 ret = btrfs_insert_inode_ref(trans, root,
3675 parent_inode->i_ino,
3678 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3680 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3681 ret = btrfs_update_inode(trans, root, parent_inode);
3686 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3687 struct dentry *dentry, struct inode *inode,
3688 int backref, u64 index)
3690 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3691 inode, dentry->d_name.name,
3692 dentry->d_name.len, backref, index);
3694 d_instantiate(dentry, inode);
3702 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3703 int mode, dev_t rdev)
3705 struct btrfs_trans_handle *trans;
3706 struct btrfs_root *root = BTRFS_I(dir)->root;
3707 struct inode *inode = NULL;
3711 unsigned long nr = 0;
3714 if (!new_valid_dev(rdev))
3717 err = btrfs_check_metadata_free_space(root);
3721 trans = btrfs_start_transaction(root, 1);
3722 btrfs_set_trans_block_group(trans, dir);
3724 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3730 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3732 dentry->d_parent->d_inode->i_ino, objectid,
3733 BTRFS_I(dir)->block_group, mode, &index);
3734 err = PTR_ERR(inode);
3738 err = btrfs_init_inode_security(inode, dir);
3744 btrfs_set_trans_block_group(trans, inode);
3745 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3749 inode->i_op = &btrfs_special_inode_operations;
3750 init_special_inode(inode, inode->i_mode, rdev);
3751 btrfs_update_inode(trans, root, inode);
3753 dir->i_sb->s_dirt = 1;
3754 btrfs_update_inode_block_group(trans, inode);
3755 btrfs_update_inode_block_group(trans, dir);
3757 nr = trans->blocks_used;
3758 btrfs_end_transaction_throttle(trans, root);
3761 inode_dec_link_count(inode);
3764 btrfs_btree_balance_dirty(root, nr);
3768 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3769 int mode, struct nameidata *nd)
3771 struct btrfs_trans_handle *trans;
3772 struct btrfs_root *root = BTRFS_I(dir)->root;
3773 struct inode *inode = NULL;
3776 unsigned long nr = 0;
3780 err = btrfs_check_metadata_free_space(root);
3783 trans = btrfs_start_transaction(root, 1);
3784 btrfs_set_trans_block_group(trans, dir);
3786 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3792 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3794 dentry->d_parent->d_inode->i_ino,
3795 objectid, BTRFS_I(dir)->block_group, mode,
3797 err = PTR_ERR(inode);
3801 err = btrfs_init_inode_security(inode, dir);
3807 btrfs_set_trans_block_group(trans, inode);
3808 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3812 inode->i_mapping->a_ops = &btrfs_aops;
3813 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3814 inode->i_fop = &btrfs_file_operations;
3815 inode->i_op = &btrfs_file_inode_operations;
3816 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3818 dir->i_sb->s_dirt = 1;
3819 btrfs_update_inode_block_group(trans, inode);
3820 btrfs_update_inode_block_group(trans, dir);
3822 nr = trans->blocks_used;
3823 btrfs_end_transaction_throttle(trans, root);
3826 inode_dec_link_count(inode);
3829 btrfs_btree_balance_dirty(root, nr);
3833 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3834 struct dentry *dentry)
3836 struct btrfs_trans_handle *trans;
3837 struct btrfs_root *root = BTRFS_I(dir)->root;
3838 struct inode *inode = old_dentry->d_inode;
3840 unsigned long nr = 0;
3844 if (inode->i_nlink == 0)
3847 btrfs_inc_nlink(inode);
3848 err = btrfs_check_metadata_free_space(root);
3851 err = btrfs_set_inode_index(dir, &index);
3855 trans = btrfs_start_transaction(root, 1);
3857 btrfs_set_trans_block_group(trans, dir);
3858 atomic_inc(&inode->i_count);
3860 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3865 dir->i_sb->s_dirt = 1;
3866 btrfs_update_inode_block_group(trans, dir);
3867 err = btrfs_update_inode(trans, root, inode);
3872 nr = trans->blocks_used;
3874 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3875 btrfs_end_transaction_throttle(trans, root);
3878 inode_dec_link_count(inode);
3881 btrfs_btree_balance_dirty(root, nr);
3885 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3887 struct inode *inode = NULL;
3888 struct btrfs_trans_handle *trans;
3889 struct btrfs_root *root = BTRFS_I(dir)->root;
3891 int drop_on_err = 0;
3894 unsigned long nr = 1;
3896 err = btrfs_check_metadata_free_space(root);
3900 trans = btrfs_start_transaction(root, 1);
3901 btrfs_set_trans_block_group(trans, dir);
3903 if (IS_ERR(trans)) {
3904 err = PTR_ERR(trans);
3908 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3914 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3916 dentry->d_parent->d_inode->i_ino, objectid,
3917 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3919 if (IS_ERR(inode)) {
3920 err = PTR_ERR(inode);
3926 err = btrfs_init_inode_security(inode, dir);
3930 inode->i_op = &btrfs_dir_inode_operations;
3931 inode->i_fop = &btrfs_dir_file_operations;
3932 btrfs_set_trans_block_group(trans, inode);
3934 btrfs_i_size_write(inode, 0);
3935 err = btrfs_update_inode(trans, root, inode);
3939 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3940 inode, dentry->d_name.name,
3941 dentry->d_name.len, 0, index);
3945 d_instantiate(dentry, inode);
3947 dir->i_sb->s_dirt = 1;
3948 btrfs_update_inode_block_group(trans, inode);
3949 btrfs_update_inode_block_group(trans, dir);
3952 nr = trans->blocks_used;
3953 btrfs_end_transaction_throttle(trans, root);
3958 btrfs_btree_balance_dirty(root, nr);
3962 /* helper for btfs_get_extent. Given an existing extent in the tree,
3963 * and an extent that you want to insert, deal with overlap and insert
3964 * the new extent into the tree.
3966 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3967 struct extent_map *existing,
3968 struct extent_map *em,
3969 u64 map_start, u64 map_len)
3973 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3974 start_diff = map_start - em->start;
3975 em->start = map_start;
3977 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3978 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3979 em->block_start += start_diff;
3980 em->block_len -= start_diff;
3982 return add_extent_mapping(em_tree, em);
3985 static noinline int uncompress_inline(struct btrfs_path *path,
3986 struct inode *inode, struct page *page,
3987 size_t pg_offset, u64 extent_offset,
3988 struct btrfs_file_extent_item *item)
3991 struct extent_buffer *leaf = path->nodes[0];
3994 unsigned long inline_size;
3997 WARN_ON(pg_offset != 0);
3998 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3999 inline_size = btrfs_file_extent_inline_item_len(leaf,
4000 btrfs_item_nr(leaf, path->slots[0]));
4001 tmp = kmalloc(inline_size, GFP_NOFS);
4002 ptr = btrfs_file_extent_inline_start(item);
4004 read_extent_buffer(leaf, tmp, ptr, inline_size);
4006 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4007 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4008 inline_size, max_size);
4010 char *kaddr = kmap_atomic(page, KM_USER0);
4011 unsigned long copy_size = min_t(u64,
4012 PAGE_CACHE_SIZE - pg_offset,
4013 max_size - extent_offset);
4014 memset(kaddr + pg_offset, 0, copy_size);
4015 kunmap_atomic(kaddr, KM_USER0);
4022 * a bit scary, this does extent mapping from logical file offset to the disk.
4023 * the ugly parts come from merging extents from the disk with the in-ram
4024 * representation. This gets more complex because of the data=ordered code,
4025 * where the in-ram extents might be locked pending data=ordered completion.
4027 * This also copies inline extents directly into the page.
4030 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4031 size_t pg_offset, u64 start, u64 len,
4037 u64 extent_start = 0;
4039 u64 objectid = inode->i_ino;
4041 struct btrfs_path *path = NULL;
4042 struct btrfs_root *root = BTRFS_I(inode)->root;
4043 struct btrfs_file_extent_item *item;
4044 struct extent_buffer *leaf;
4045 struct btrfs_key found_key;
4046 struct extent_map *em = NULL;
4047 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4048 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4049 struct btrfs_trans_handle *trans = NULL;
4053 spin_lock(&em_tree->lock);
4054 em = lookup_extent_mapping(em_tree, start, len);
4056 em->bdev = root->fs_info->fs_devices->latest_bdev;
4057 spin_unlock(&em_tree->lock);
4060 if (em->start > start || em->start + em->len <= start)
4061 free_extent_map(em);
4062 else if (em->block_start == EXTENT_MAP_INLINE && page)
4063 free_extent_map(em);
4067 em = alloc_extent_map(GFP_NOFS);
4072 em->bdev = root->fs_info->fs_devices->latest_bdev;
4073 em->start = EXTENT_MAP_HOLE;
4074 em->orig_start = EXTENT_MAP_HOLE;
4076 em->block_len = (u64)-1;
4079 path = btrfs_alloc_path();
4083 ret = btrfs_lookup_file_extent(trans, root, path,
4084 objectid, start, trans != NULL);
4091 if (path->slots[0] == 0)
4096 leaf = path->nodes[0];
4097 item = btrfs_item_ptr(leaf, path->slots[0],
4098 struct btrfs_file_extent_item);
4099 /* are we inside the extent that was found? */
4100 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4101 found_type = btrfs_key_type(&found_key);
4102 if (found_key.objectid != objectid ||
4103 found_type != BTRFS_EXTENT_DATA_KEY) {
4107 found_type = btrfs_file_extent_type(leaf, item);
4108 extent_start = found_key.offset;
4109 compressed = btrfs_file_extent_compression(leaf, item);
4110 if (found_type == BTRFS_FILE_EXTENT_REG ||
4111 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4112 extent_end = extent_start +
4113 btrfs_file_extent_num_bytes(leaf, item);
4114 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4116 size = btrfs_file_extent_inline_len(leaf, item);
4117 extent_end = (extent_start + size + root->sectorsize - 1) &
4118 ~((u64)root->sectorsize - 1);
4121 if (start >= extent_end) {
4123 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4124 ret = btrfs_next_leaf(root, path);
4131 leaf = path->nodes[0];
4133 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4134 if (found_key.objectid != objectid ||
4135 found_key.type != BTRFS_EXTENT_DATA_KEY)
4137 if (start + len <= found_key.offset)
4140 em->len = found_key.offset - start;
4144 if (found_type == BTRFS_FILE_EXTENT_REG ||
4145 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4146 em->start = extent_start;
4147 em->len = extent_end - extent_start;
4148 em->orig_start = extent_start -
4149 btrfs_file_extent_offset(leaf, item);
4150 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4152 em->block_start = EXTENT_MAP_HOLE;
4156 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4157 em->block_start = bytenr;
4158 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4161 bytenr += btrfs_file_extent_offset(leaf, item);
4162 em->block_start = bytenr;
4163 em->block_len = em->len;
4164 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4165 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4168 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4172 size_t extent_offset;
4175 em->block_start = EXTENT_MAP_INLINE;
4176 if (!page || create) {
4177 em->start = extent_start;
4178 em->len = extent_end - extent_start;
4182 size = btrfs_file_extent_inline_len(leaf, item);
4183 extent_offset = page_offset(page) + pg_offset - extent_start;
4184 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4185 size - extent_offset);
4186 em->start = extent_start + extent_offset;
4187 em->len = (copy_size + root->sectorsize - 1) &
4188 ~((u64)root->sectorsize - 1);
4189 em->orig_start = EXTENT_MAP_INLINE;
4191 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4192 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4193 if (create == 0 && !PageUptodate(page)) {
4194 if (btrfs_file_extent_compression(leaf, item) ==
4195 BTRFS_COMPRESS_ZLIB) {
4196 ret = uncompress_inline(path, inode, page,
4198 extent_offset, item);
4202 read_extent_buffer(leaf, map + pg_offset, ptr,
4206 flush_dcache_page(page);
4207 } else if (create && PageUptodate(page)) {
4210 free_extent_map(em);
4212 btrfs_release_path(root, path);
4213 trans = btrfs_join_transaction(root, 1);
4217 write_extent_buffer(leaf, map + pg_offset, ptr,
4220 btrfs_mark_buffer_dirty(leaf);
4222 set_extent_uptodate(io_tree, em->start,
4223 extent_map_end(em) - 1, GFP_NOFS);
4226 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4233 em->block_start = EXTENT_MAP_HOLE;
4234 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4236 btrfs_release_path(root, path);
4237 if (em->start > start || extent_map_end(em) <= start) {
4238 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4239 "[%llu %llu]\n", (unsigned long long)em->start,
4240 (unsigned long long)em->len,
4241 (unsigned long long)start,
4242 (unsigned long long)len);
4248 spin_lock(&em_tree->lock);
4249 ret = add_extent_mapping(em_tree, em);
4250 /* it is possible that someone inserted the extent into the tree
4251 * while we had the lock dropped. It is also possible that
4252 * an overlapping map exists in the tree
4254 if (ret == -EEXIST) {
4255 struct extent_map *existing;
4259 existing = lookup_extent_mapping(em_tree, start, len);
4260 if (existing && (existing->start > start ||
4261 existing->start + existing->len <= start)) {
4262 free_extent_map(existing);
4266 existing = lookup_extent_mapping(em_tree, em->start,
4269 err = merge_extent_mapping(em_tree, existing,
4272 free_extent_map(existing);
4274 free_extent_map(em);
4279 free_extent_map(em);
4283 free_extent_map(em);
4288 spin_unlock(&em_tree->lock);
4291 btrfs_free_path(path);
4293 ret = btrfs_end_transaction(trans, root);
4298 free_extent_map(em);
4299 return ERR_PTR(err);
4304 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4305 const struct iovec *iov, loff_t offset,
4306 unsigned long nr_segs)
4311 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4312 __u64 start, __u64 len)
4314 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4317 int btrfs_readpage(struct file *file, struct page *page)
4319 struct extent_io_tree *tree;
4320 tree = &BTRFS_I(page->mapping->host)->io_tree;
4321 return extent_read_full_page(tree, page, btrfs_get_extent);
4324 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4326 struct extent_io_tree *tree;
4329 if (current->flags & PF_MEMALLOC) {
4330 redirty_page_for_writepage(wbc, page);
4334 tree = &BTRFS_I(page->mapping->host)->io_tree;
4335 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4338 int btrfs_writepages(struct address_space *mapping,
4339 struct writeback_control *wbc)
4341 struct extent_io_tree *tree;
4343 tree = &BTRFS_I(mapping->host)->io_tree;
4344 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4348 btrfs_readpages(struct file *file, struct address_space *mapping,
4349 struct list_head *pages, unsigned nr_pages)
4351 struct extent_io_tree *tree;
4352 tree = &BTRFS_I(mapping->host)->io_tree;
4353 return extent_readpages(tree, mapping, pages, nr_pages,
4356 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4358 struct extent_io_tree *tree;
4359 struct extent_map_tree *map;
4362 tree = &BTRFS_I(page->mapping->host)->io_tree;
4363 map = &BTRFS_I(page->mapping->host)->extent_tree;
4364 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4366 ClearPagePrivate(page);
4367 set_page_private(page, 0);
4368 page_cache_release(page);
4373 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4375 if (PageWriteback(page) || PageDirty(page))
4377 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4380 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4382 struct extent_io_tree *tree;
4383 struct btrfs_ordered_extent *ordered;
4384 u64 page_start = page_offset(page);
4385 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4387 wait_on_page_writeback(page);
4388 tree = &BTRFS_I(page->mapping->host)->io_tree;
4390 btrfs_releasepage(page, GFP_NOFS);
4394 lock_extent(tree, page_start, page_end, GFP_NOFS);
4395 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4399 * IO on this page will never be started, so we need
4400 * to account for any ordered extents now
4402 clear_extent_bit(tree, page_start, page_end,
4403 EXTENT_DIRTY | EXTENT_DELALLOC |
4404 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4405 btrfs_finish_ordered_io(page->mapping->host,
4406 page_start, page_end);
4407 btrfs_put_ordered_extent(ordered);
4408 lock_extent(tree, page_start, page_end, GFP_NOFS);
4410 clear_extent_bit(tree, page_start, page_end,
4411 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4414 __btrfs_releasepage(page, GFP_NOFS);
4416 ClearPageChecked(page);
4417 if (PagePrivate(page)) {
4418 ClearPagePrivate(page);
4419 set_page_private(page, 0);
4420 page_cache_release(page);
4425 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4426 * called from a page fault handler when a page is first dirtied. Hence we must
4427 * be careful to check for EOF conditions here. We set the page up correctly
4428 * for a written page which means we get ENOSPC checking when writing into
4429 * holes and correct delalloc and unwritten extent mapping on filesystems that
4430 * support these features.
4432 * We are not allowed to take the i_mutex here so we have to play games to
4433 * protect against truncate races as the page could now be beyond EOF. Because
4434 * vmtruncate() writes the inode size before removing pages, once we have the
4435 * page lock we can determine safely if the page is beyond EOF. If it is not
4436 * beyond EOF, then the page is guaranteed safe against truncation until we
4439 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4441 struct page *page = vmf->page;
4442 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4443 struct btrfs_root *root = BTRFS_I(inode)->root;
4444 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4445 struct btrfs_ordered_extent *ordered;
4447 unsigned long zero_start;
4453 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4457 else /* -ENOSPC, -EIO, etc */
4458 ret = VM_FAULT_SIGBUS;
4462 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4465 size = i_size_read(inode);
4466 page_start = page_offset(page);
4467 page_end = page_start + PAGE_CACHE_SIZE - 1;
4469 if ((page->mapping != inode->i_mapping) ||
4470 (page_start >= size)) {
4471 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4472 /* page got truncated out from underneath us */
4475 wait_on_page_writeback(page);
4477 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4478 set_page_extent_mapped(page);
4481 * we can't set the delalloc bits if there are pending ordered
4482 * extents. Drop our locks and wait for them to finish
4484 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4486 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4488 btrfs_start_ordered_extent(inode, ordered, 1);
4489 btrfs_put_ordered_extent(ordered);
4493 btrfs_set_extent_delalloc(inode, page_start, page_end);
4496 /* page is wholly or partially inside EOF */
4497 if (page_start + PAGE_CACHE_SIZE > size)
4498 zero_start = size & ~PAGE_CACHE_MASK;
4500 zero_start = PAGE_CACHE_SIZE;
4502 if (zero_start != PAGE_CACHE_SIZE) {
4504 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4505 flush_dcache_page(page);
4508 ClearPageChecked(page);
4509 set_page_dirty(page);
4511 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4512 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4520 static void btrfs_truncate(struct inode *inode)
4522 struct btrfs_root *root = BTRFS_I(inode)->root;
4524 struct btrfs_trans_handle *trans;
4526 u64 mask = root->sectorsize - 1;
4528 if (!S_ISREG(inode->i_mode))
4530 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4533 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4534 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4536 trans = btrfs_start_transaction(root, 1);
4539 * setattr is responsible for setting the ordered_data_close flag,
4540 * but that is only tested during the last file release. That
4541 * could happen well after the next commit, leaving a great big
4542 * window where new writes may get lost if someone chooses to write
4543 * to this file after truncating to zero
4545 * The inode doesn't have any dirty data here, and so if we commit
4546 * this is a noop. If someone immediately starts writing to the inode
4547 * it is very likely we'll catch some of their writes in this
4548 * transaction, and the commit will find this file on the ordered
4549 * data list with good things to send down.
4551 * This is a best effort solution, there is still a window where
4552 * using truncate to replace the contents of the file will
4553 * end up with a zero length file after a crash.
4555 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4556 btrfs_add_ordered_operation(trans, root, inode);
4558 btrfs_set_trans_block_group(trans, inode);
4559 btrfs_i_size_write(inode, inode->i_size);
4561 ret = btrfs_orphan_add(trans, inode);
4564 /* FIXME, add redo link to tree so we don't leak on crash */
4565 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4566 BTRFS_EXTENT_DATA_KEY);
4567 btrfs_update_inode(trans, root, inode);
4569 ret = btrfs_orphan_del(trans, inode);
4573 nr = trans->blocks_used;
4574 ret = btrfs_end_transaction_throttle(trans, root);
4576 btrfs_btree_balance_dirty(root, nr);
4580 * create a new subvolume directory/inode (helper for the ioctl).
4582 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4583 struct btrfs_root *new_root, struct dentry *dentry,
4584 u64 new_dirid, u64 alloc_hint)
4586 struct inode *inode;
4590 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4591 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4593 return PTR_ERR(inode);
4594 inode->i_op = &btrfs_dir_inode_operations;
4595 inode->i_fop = &btrfs_dir_file_operations;
4598 btrfs_i_size_write(inode, 0);
4600 error = btrfs_update_inode(trans, new_root, inode);
4604 d_instantiate(dentry, inode);
4608 /* helper function for file defrag and space balancing. This
4609 * forces readahead on a given range of bytes in an inode
4611 unsigned long btrfs_force_ra(struct address_space *mapping,
4612 struct file_ra_state *ra, struct file *file,
4613 pgoff_t offset, pgoff_t last_index)
4615 pgoff_t req_size = last_index - offset + 1;
4617 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4618 return offset + req_size;
4621 struct inode *btrfs_alloc_inode(struct super_block *sb)
4623 struct btrfs_inode *ei;
4625 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4629 ei->logged_trans = 0;
4630 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4631 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4632 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4633 INIT_LIST_HEAD(&ei->i_orphan);
4634 INIT_LIST_HEAD(&ei->ordered_operations);
4635 return &ei->vfs_inode;
4638 void btrfs_destroy_inode(struct inode *inode)
4640 struct btrfs_ordered_extent *ordered;
4641 struct btrfs_root *root = BTRFS_I(inode)->root;
4643 WARN_ON(!list_empty(&inode->i_dentry));
4644 WARN_ON(inode->i_data.nrpages);
4646 if (BTRFS_I(inode)->i_acl &&
4647 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4648 posix_acl_release(BTRFS_I(inode)->i_acl);
4649 if (BTRFS_I(inode)->i_default_acl &&
4650 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4651 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4654 * Make sure we're properly removed from the ordered operation
4658 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4659 spin_lock(&root->fs_info->ordered_extent_lock);
4660 list_del_init(&BTRFS_I(inode)->ordered_operations);
4661 spin_unlock(&root->fs_info->ordered_extent_lock);
4664 spin_lock(&root->list_lock);
4665 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4666 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4667 " list\n", inode->i_ino);
4670 spin_unlock(&root->list_lock);
4673 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4677 printk(KERN_ERR "btrfs found ordered "
4678 "extent %llu %llu on inode cleanup\n",
4679 (unsigned long long)ordered->file_offset,
4680 (unsigned long long)ordered->len);
4681 btrfs_remove_ordered_extent(inode, ordered);
4682 btrfs_put_ordered_extent(ordered);
4683 btrfs_put_ordered_extent(ordered);
4686 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4687 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4690 static void init_once(void *foo)
4692 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4694 inode_init_once(&ei->vfs_inode);
4697 void btrfs_destroy_cachep(void)
4699 if (btrfs_inode_cachep)
4700 kmem_cache_destroy(btrfs_inode_cachep);
4701 if (btrfs_trans_handle_cachep)
4702 kmem_cache_destroy(btrfs_trans_handle_cachep);
4703 if (btrfs_transaction_cachep)
4704 kmem_cache_destroy(btrfs_transaction_cachep);
4705 if (btrfs_path_cachep)
4706 kmem_cache_destroy(btrfs_path_cachep);
4709 int btrfs_init_cachep(void)
4711 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4712 sizeof(struct btrfs_inode), 0,
4713 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4714 if (!btrfs_inode_cachep)
4717 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4718 sizeof(struct btrfs_trans_handle), 0,
4719 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4720 if (!btrfs_trans_handle_cachep)
4723 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4724 sizeof(struct btrfs_transaction), 0,
4725 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4726 if (!btrfs_transaction_cachep)
4729 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4730 sizeof(struct btrfs_path), 0,
4731 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4732 if (!btrfs_path_cachep)
4737 btrfs_destroy_cachep();
4741 static int btrfs_getattr(struct vfsmount *mnt,
4742 struct dentry *dentry, struct kstat *stat)
4744 struct inode *inode = dentry->d_inode;
4745 generic_fillattr(inode, stat);
4746 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4747 stat->blksize = PAGE_CACHE_SIZE;
4748 stat->blocks = (inode_get_bytes(inode) +
4749 BTRFS_I(inode)->delalloc_bytes) >> 9;
4753 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4754 struct inode *new_dir, struct dentry *new_dentry)
4756 struct btrfs_trans_handle *trans;
4757 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4758 struct inode *new_inode = new_dentry->d_inode;
4759 struct inode *old_inode = old_dentry->d_inode;
4760 struct timespec ctime = CURRENT_TIME;
4764 /* we're not allowed to rename between subvolumes */
4765 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4766 BTRFS_I(new_dir)->root->root_key.objectid)
4769 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4770 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4774 /* to rename a snapshot or subvolume, we need to juggle the
4775 * backrefs. This isn't coded yet
4777 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4780 ret = btrfs_check_metadata_free_space(root);
4785 * we're using rename to replace one file with another.
4786 * and the replacement file is large. Start IO on it now so
4787 * we don't add too much work to the end of the transaction
4789 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
4790 new_inode->i_size &&
4791 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4792 filemap_flush(old_inode->i_mapping);
4794 trans = btrfs_start_transaction(root, 1);
4797 * make sure the inode gets flushed if it is replacing
4800 if (new_inode && new_inode->i_size &&
4801 old_inode && S_ISREG(old_inode->i_mode)) {
4802 btrfs_add_ordered_operation(trans, root, old_inode);
4806 * this is an ugly little race, but the rename is required to make
4807 * sure that if we crash, the inode is either at the old name
4808 * or the new one. pinning the log transaction lets us make sure
4809 * we don't allow a log commit to come in after we unlink the
4810 * name but before we add the new name back in.
4812 btrfs_pin_log_trans(root);
4814 btrfs_set_trans_block_group(trans, new_dir);
4816 btrfs_inc_nlink(old_dentry->d_inode);
4817 old_dir->i_ctime = old_dir->i_mtime = ctime;
4818 new_dir->i_ctime = new_dir->i_mtime = ctime;
4819 old_inode->i_ctime = ctime;
4821 if (old_dentry->d_parent != new_dentry->d_parent)
4822 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4824 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4825 old_dentry->d_name.name,
4826 old_dentry->d_name.len);
4831 new_inode->i_ctime = CURRENT_TIME;
4832 ret = btrfs_unlink_inode(trans, root, new_dir,
4833 new_dentry->d_inode,
4834 new_dentry->d_name.name,
4835 new_dentry->d_name.len);
4838 if (new_inode->i_nlink == 0) {
4839 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4845 ret = btrfs_set_inode_index(new_dir, &index);
4849 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4850 old_inode, new_dentry->d_name.name,
4851 new_dentry->d_name.len, 1, index);
4855 btrfs_log_new_name(trans, old_inode, old_dir,
4856 new_dentry->d_parent);
4859 /* this btrfs_end_log_trans just allows the current
4860 * log-sub transaction to complete
4862 btrfs_end_log_trans(root);
4863 btrfs_end_transaction_throttle(trans, root);
4869 * some fairly slow code that needs optimization. This walks the list
4870 * of all the inodes with pending delalloc and forces them to disk.
4872 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4874 struct list_head *head = &root->fs_info->delalloc_inodes;
4875 struct btrfs_inode *binode;
4876 struct inode *inode;
4878 if (root->fs_info->sb->s_flags & MS_RDONLY)
4881 spin_lock(&root->fs_info->delalloc_lock);
4882 while (!list_empty(head)) {
4883 binode = list_entry(head->next, struct btrfs_inode,
4885 inode = igrab(&binode->vfs_inode);
4887 list_del_init(&binode->delalloc_inodes);
4888 spin_unlock(&root->fs_info->delalloc_lock);
4890 filemap_flush(inode->i_mapping);
4894 spin_lock(&root->fs_info->delalloc_lock);
4896 spin_unlock(&root->fs_info->delalloc_lock);
4898 /* the filemap_flush will queue IO into the worker threads, but
4899 * we have to make sure the IO is actually started and that
4900 * ordered extents get created before we return
4902 atomic_inc(&root->fs_info->async_submit_draining);
4903 while (atomic_read(&root->fs_info->nr_async_submits) ||
4904 atomic_read(&root->fs_info->async_delalloc_pages)) {
4905 wait_event(root->fs_info->async_submit_wait,
4906 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4907 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4909 atomic_dec(&root->fs_info->async_submit_draining);
4913 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4914 const char *symname)
4916 struct btrfs_trans_handle *trans;
4917 struct btrfs_root *root = BTRFS_I(dir)->root;
4918 struct btrfs_path *path;
4919 struct btrfs_key key;
4920 struct inode *inode = NULL;
4928 struct btrfs_file_extent_item *ei;
4929 struct extent_buffer *leaf;
4930 unsigned long nr = 0;
4932 name_len = strlen(symname) + 1;
4933 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4934 return -ENAMETOOLONG;
4936 err = btrfs_check_metadata_free_space(root);
4940 trans = btrfs_start_transaction(root, 1);
4941 btrfs_set_trans_block_group(trans, dir);
4943 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4949 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4951 dentry->d_parent->d_inode->i_ino, objectid,
4952 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4954 err = PTR_ERR(inode);
4958 err = btrfs_init_inode_security(inode, dir);
4964 btrfs_set_trans_block_group(trans, inode);
4965 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4969 inode->i_mapping->a_ops = &btrfs_aops;
4970 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4971 inode->i_fop = &btrfs_file_operations;
4972 inode->i_op = &btrfs_file_inode_operations;
4973 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4975 dir->i_sb->s_dirt = 1;
4976 btrfs_update_inode_block_group(trans, inode);
4977 btrfs_update_inode_block_group(trans, dir);
4981 path = btrfs_alloc_path();
4983 key.objectid = inode->i_ino;
4985 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4986 datasize = btrfs_file_extent_calc_inline_size(name_len);
4987 err = btrfs_insert_empty_item(trans, root, path, &key,
4993 leaf = path->nodes[0];
4994 ei = btrfs_item_ptr(leaf, path->slots[0],
4995 struct btrfs_file_extent_item);
4996 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4997 btrfs_set_file_extent_type(leaf, ei,
4998 BTRFS_FILE_EXTENT_INLINE);
4999 btrfs_set_file_extent_encryption(leaf, ei, 0);
5000 btrfs_set_file_extent_compression(leaf, ei, 0);
5001 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5002 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5004 ptr = btrfs_file_extent_inline_start(ei);
5005 write_extent_buffer(leaf, symname, ptr, name_len);
5006 btrfs_mark_buffer_dirty(leaf);
5007 btrfs_free_path(path);
5009 inode->i_op = &btrfs_symlink_inode_operations;
5010 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5011 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5012 inode_set_bytes(inode, name_len);
5013 btrfs_i_size_write(inode, name_len - 1);
5014 err = btrfs_update_inode(trans, root, inode);
5019 nr = trans->blocks_used;
5020 btrfs_end_transaction_throttle(trans, root);
5023 inode_dec_link_count(inode);
5026 btrfs_btree_balance_dirty(root, nr);
5030 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5031 struct inode *inode, u64 start, u64 end,
5032 u64 locked_end, u64 alloc_hint, int mode)
5034 struct btrfs_root *root = BTRFS_I(inode)->root;
5035 struct btrfs_key ins;
5037 u64 cur_offset = start;
5038 u64 num_bytes = end - start;
5041 while (num_bytes > 0) {
5042 alloc_size = min(num_bytes, root->fs_info->max_extent);
5043 ret = btrfs_reserve_extent(trans, root, alloc_size,
5044 root->sectorsize, 0, alloc_hint,
5050 ret = insert_reserved_file_extent(trans, inode,
5051 cur_offset, ins.objectid,
5052 ins.offset, ins.offset,
5053 ins.offset, locked_end,
5055 BTRFS_FILE_EXTENT_PREALLOC);
5057 num_bytes -= ins.offset;
5058 cur_offset += ins.offset;
5059 alloc_hint = ins.objectid + ins.offset;
5062 if (cur_offset > start) {
5063 inode->i_ctime = CURRENT_TIME;
5064 btrfs_set_flag(inode, PREALLOC);
5065 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5066 cur_offset > i_size_read(inode))
5067 btrfs_i_size_write(inode, cur_offset);
5068 ret = btrfs_update_inode(trans, root, inode);
5075 static long btrfs_fallocate(struct inode *inode, int mode,
5076 loff_t offset, loff_t len)
5084 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5085 struct extent_map *em;
5086 struct btrfs_trans_handle *trans;
5089 alloc_start = offset & ~mask;
5090 alloc_end = (offset + len + mask) & ~mask;
5093 * wait for ordered IO before we have any locks. We'll loop again
5094 * below with the locks held.
5096 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5098 mutex_lock(&inode->i_mutex);
5099 if (alloc_start > inode->i_size) {
5100 ret = btrfs_cont_expand(inode, alloc_start);
5105 locked_end = alloc_end - 1;
5107 struct btrfs_ordered_extent *ordered;
5109 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5115 /* the extent lock is ordered inside the running
5118 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5120 ordered = btrfs_lookup_first_ordered_extent(inode,
5123 ordered->file_offset + ordered->len > alloc_start &&
5124 ordered->file_offset < alloc_end) {
5125 btrfs_put_ordered_extent(ordered);
5126 unlock_extent(&BTRFS_I(inode)->io_tree,
5127 alloc_start, locked_end, GFP_NOFS);
5128 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5131 * we can't wait on the range with the transaction
5132 * running or with the extent lock held
5134 btrfs_wait_ordered_range(inode, alloc_start,
5135 alloc_end - alloc_start);
5138 btrfs_put_ordered_extent(ordered);
5143 cur_offset = alloc_start;
5145 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5146 alloc_end - cur_offset, 0);
5147 BUG_ON(IS_ERR(em) || !em);
5148 last_byte = min(extent_map_end(em), alloc_end);
5149 last_byte = (last_byte + mask) & ~mask;
5150 if (em->block_start == EXTENT_MAP_HOLE) {
5151 ret = prealloc_file_range(trans, inode, cur_offset,
5152 last_byte, locked_end + 1,
5155 free_extent_map(em);
5159 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5160 alloc_hint = em->block_start;
5161 free_extent_map(em);
5163 cur_offset = last_byte;
5164 if (cur_offset >= alloc_end) {
5169 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5172 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5174 mutex_unlock(&inode->i_mutex);
5178 static int btrfs_set_page_dirty(struct page *page)
5180 return __set_page_dirty_nobuffers(page);
5183 static int btrfs_permission(struct inode *inode, int mask)
5185 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
5187 return generic_permission(inode, mask, btrfs_check_acl);
5190 static struct inode_operations btrfs_dir_inode_operations = {
5191 .getattr = btrfs_getattr,
5192 .lookup = btrfs_lookup,
5193 .create = btrfs_create,
5194 .unlink = btrfs_unlink,
5196 .mkdir = btrfs_mkdir,
5197 .rmdir = btrfs_rmdir,
5198 .rename = btrfs_rename,
5199 .symlink = btrfs_symlink,
5200 .setattr = btrfs_setattr,
5201 .mknod = btrfs_mknod,
5202 .setxattr = btrfs_setxattr,
5203 .getxattr = btrfs_getxattr,
5204 .listxattr = btrfs_listxattr,
5205 .removexattr = btrfs_removexattr,
5206 .permission = btrfs_permission,
5208 static struct inode_operations btrfs_dir_ro_inode_operations = {
5209 .lookup = btrfs_lookup,
5210 .permission = btrfs_permission,
5212 static struct file_operations btrfs_dir_file_operations = {
5213 .llseek = generic_file_llseek,
5214 .read = generic_read_dir,
5215 .readdir = btrfs_real_readdir,
5216 .unlocked_ioctl = btrfs_ioctl,
5217 #ifdef CONFIG_COMPAT
5218 .compat_ioctl = btrfs_ioctl,
5220 .release = btrfs_release_file,
5221 .fsync = btrfs_sync_file,
5224 static struct extent_io_ops btrfs_extent_io_ops = {
5225 .fill_delalloc = run_delalloc_range,
5226 .submit_bio_hook = btrfs_submit_bio_hook,
5227 .merge_bio_hook = btrfs_merge_bio_hook,
5228 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5229 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5230 .writepage_start_hook = btrfs_writepage_start_hook,
5231 .readpage_io_failed_hook = btrfs_io_failed_hook,
5232 .set_bit_hook = btrfs_set_bit_hook,
5233 .clear_bit_hook = btrfs_clear_bit_hook,
5237 * btrfs doesn't support the bmap operation because swapfiles
5238 * use bmap to make a mapping of extents in the file. They assume
5239 * these extents won't change over the life of the file and they
5240 * use the bmap result to do IO directly to the drive.
5242 * the btrfs bmap call would return logical addresses that aren't
5243 * suitable for IO and they also will change frequently as COW
5244 * operations happen. So, swapfile + btrfs == corruption.
5246 * For now we're avoiding this by dropping bmap.
5248 static struct address_space_operations btrfs_aops = {
5249 .readpage = btrfs_readpage,
5250 .writepage = btrfs_writepage,
5251 .writepages = btrfs_writepages,
5252 .readpages = btrfs_readpages,
5253 .sync_page = block_sync_page,
5254 .direct_IO = btrfs_direct_IO,
5255 .invalidatepage = btrfs_invalidatepage,
5256 .releasepage = btrfs_releasepage,
5257 .set_page_dirty = btrfs_set_page_dirty,
5260 static struct address_space_operations btrfs_symlink_aops = {
5261 .readpage = btrfs_readpage,
5262 .writepage = btrfs_writepage,
5263 .invalidatepage = btrfs_invalidatepage,
5264 .releasepage = btrfs_releasepage,
5267 static struct inode_operations btrfs_file_inode_operations = {
5268 .truncate = btrfs_truncate,
5269 .getattr = btrfs_getattr,
5270 .setattr = btrfs_setattr,
5271 .setxattr = btrfs_setxattr,
5272 .getxattr = btrfs_getxattr,
5273 .listxattr = btrfs_listxattr,
5274 .removexattr = btrfs_removexattr,
5275 .permission = btrfs_permission,
5276 .fallocate = btrfs_fallocate,
5277 .fiemap = btrfs_fiemap,
5279 static struct inode_operations btrfs_special_inode_operations = {
5280 .getattr = btrfs_getattr,
5281 .setattr = btrfs_setattr,
5282 .permission = btrfs_permission,
5283 .setxattr = btrfs_setxattr,
5284 .getxattr = btrfs_getxattr,
5285 .listxattr = btrfs_listxattr,
5286 .removexattr = btrfs_removexattr,
5288 static struct inode_operations btrfs_symlink_inode_operations = {
5289 .readlink = generic_readlink,
5290 .follow_link = page_follow_link_light,
5291 .put_link = page_put_link,
5292 .permission = btrfs_permission,
5293 .setxattr = btrfs_setxattr,
5294 .getxattr = btrfs_getxattr,
5295 .listxattr = btrfs_listxattr,
5296 .removexattr = btrfs_removexattr,