2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
27 #include <linux/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79 /* required last entry */
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85 /* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 unsigned int wait_count = 30;
131 if (!ql_sem_trylock(qdev, sem_mask))
134 } while (--wait_count);
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
144 /* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
152 int count = UDELAY_COUNT;
155 temp = ql_read32(qdev, reg);
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
163 } else if (temp & bit)
165 udelay(UDELAY_DELAY);
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
173 /* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 int count = UDELAY_COUNT;
182 temp = ql_read32(qdev, CFG);
187 udelay(UDELAY_DELAY);
194 /* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
216 status = ql_wait_cfg(qdev, bit);
218 QPRINTK(qdev, IFUP, ERR,
219 "Timed out waiting for CFG to come ready.\n");
223 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
226 ql_write32(qdev, ICB_L, (u32) map);
227 ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
235 * Wait for the bit to clear after signaling hw.
237 status = ql_wait_cfg(qdev, bit);
239 pci_unmap_single(qdev->pdev, map, size, direction);
243 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
250 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
254 case MAC_ADDR_TYPE_MULTI_MAC:
255 case MAC_ADDR_TYPE_CAM_MAC:
258 ql_wait_reg_rdy(qdev,
259 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
262 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263 (index << MAC_ADDR_IDX_SHIFT) | /* index */
264 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
266 ql_wait_reg_rdy(qdev,
267 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
270 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
272 ql_wait_reg_rdy(qdev,
273 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 ql_wait_reg_rdy(qdev,
281 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 if (type == MAC_ADDR_TYPE_CAM_MAC) {
287 ql_wait_reg_rdy(qdev,
288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
303 case MAC_ADDR_TYPE_VLAN:
304 case MAC_ADDR_TYPE_MULTI_FLTR:
306 QPRINTK(qdev, IFUP, CRIT,
307 "Address type %d not yet supported.\n", type);
311 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
315 /* Set up a MAC, multicast or VLAN address for the
316 * inbound frame matching.
318 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
324 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
328 case MAC_ADDR_TYPE_MULTI_MAC:
329 case MAC_ADDR_TYPE_CAM_MAC:
332 u32 upper = (addr[0] << 8) | addr[1];
334 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
337 QPRINTK(qdev, IFUP, INFO,
338 "Adding %s address %pM"
339 " at index %d in the CAM.\n",
341 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
342 "UNICAST"), addr, index);
345 ql_wait_reg_rdy(qdev,
346 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350 (index << MAC_ADDR_IDX_SHIFT) | /* index */
352 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 ql_wait_reg_rdy(qdev,
355 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359 (index << MAC_ADDR_IDX_SHIFT) | /* index */
361 ql_write32(qdev, MAC_ADDR_DATA, upper);
363 ql_wait_reg_rdy(qdev,
364 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
368 (index << MAC_ADDR_IDX_SHIFT) | /* index */
370 /* This field should also include the queue id
371 and possibly the function id. Right now we hardcode
372 the route field to NIC core.
374 if (type == MAC_ADDR_TYPE_CAM_MAC) {
375 cam_output = (CAM_OUT_ROUTE_NIC |
377 func << CAM_OUT_FUNC_SHIFT) |
379 rss_ring_first_cq_id <<
380 CAM_OUT_CQ_ID_SHIFT));
382 cam_output |= CAM_OUT_RV;
383 /* route to NIC core */
384 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
388 case MAC_ADDR_TYPE_VLAN:
390 u32 enable_bit = *((u32 *) &addr[0]);
391 /* For VLAN, the addr actually holds a bit that
392 * either enables or disables the vlan id we are
393 * addressing. It's either MAC_ADDR_E on or off.
394 * That's bit-27 we're talking about.
396 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397 (enable_bit ? "Adding" : "Removing"),
398 index, (enable_bit ? "to" : "from"));
401 ql_wait_reg_rdy(qdev,
402 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
405 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406 (index << MAC_ADDR_IDX_SHIFT) | /* index */
408 enable_bit); /* enable/disable */
411 case MAC_ADDR_TYPE_MULTI_FLTR:
413 QPRINTK(qdev, IFUP, CRIT,
414 "Address type %d not yet supported.\n", type);
418 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
422 /* Get a specific frame routing value from the CAM.
423 * Used for debug and reg dump.
425 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
429 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
433 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
437 ql_write32(qdev, RT_IDX,
438 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
439 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
442 *value = ql_read32(qdev, RT_DATA);
444 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
448 /* The NIC function for this chip has 16 routing indexes. Each one can be used
449 * to route different frame types to various inbound queues. We send broadcast/
450 * multicast/error frames to the default queue for slow handling,
451 * and CAM hit/RSS frames to the fast handling queues.
453 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
459 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
463 QPRINTK(qdev, IFUP, DEBUG,
464 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465 (enable ? "Adding" : "Removing"),
466 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
469 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483 (enable ? "to" : "from"));
488 value = RT_IDX_DST_CAM_Q | /* dest */
489 RT_IDX_TYPE_NICQ | /* type */
490 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
493 case RT_IDX_VALID: /* Promiscuous Mode frames. */
495 value = RT_IDX_DST_DFLT_Q | /* dest */
496 RT_IDX_TYPE_NICQ | /* type */
497 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
500 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
502 value = RT_IDX_DST_DFLT_Q | /* dest */
503 RT_IDX_TYPE_NICQ | /* type */
504 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
507 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
509 value = RT_IDX_DST_DFLT_Q | /* dest */
510 RT_IDX_TYPE_NICQ | /* type */
511 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
514 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
516 value = RT_IDX_DST_CAM_Q | /* dest */
517 RT_IDX_TYPE_NICQ | /* type */
518 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
521 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
523 value = RT_IDX_DST_CAM_Q | /* dest */
524 RT_IDX_TYPE_NICQ | /* type */
525 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
528 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
530 value = RT_IDX_DST_RSS | /* dest */
531 RT_IDX_TYPE_NICQ | /* type */
532 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
535 case 0: /* Clear the E-bit on an entry. */
537 value = RT_IDX_DST_DFLT_Q | /* dest */
538 RT_IDX_TYPE_NICQ | /* type */
539 (index << RT_IDX_IDX_SHIFT);/* index */
543 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
550 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
553 value |= (enable ? RT_IDX_E : 0);
554 ql_write32(qdev, RT_IDX, value);
555 ql_write32(qdev, RT_DATA, enable ? mask : 0);
558 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
562 static void ql_enable_interrupts(struct ql_adapter *qdev)
564 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
567 static void ql_disable_interrupts(struct ql_adapter *qdev)
569 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
572 /* If we're running with multiple MSI-X vectors then we enable on the fly.
573 * Otherwise, we may have multiple outstanding workers and don't want to
574 * enable until the last one finishes. In this case, the irq_cnt gets
575 * incremented everytime we queue a worker and decremented everytime
576 * a worker finishes. Once it hits zero we enable the interrupt.
578 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
581 unsigned long hw_flags = 0;
582 struct intr_context *ctx = qdev->intr_context + intr;
584 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585 /* Always enable if we're MSIX multi interrupts and
586 * it's not the default (zeroeth) interrupt.
588 ql_write32(qdev, INTR_EN,
590 var = ql_read32(qdev, STS);
594 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595 if (atomic_dec_and_test(&ctx->irq_cnt)) {
596 ql_write32(qdev, INTR_EN,
598 var = ql_read32(qdev, STS);
600 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
604 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
607 unsigned long hw_flags;
608 struct intr_context *ctx;
610 /* HW disables for us if we're MSIX multi interrupts and
611 * it's not the default (zeroeth) interrupt.
613 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
616 ctx = qdev->intr_context + intr;
617 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618 if (!atomic_read(&ctx->irq_cnt)) {
619 ql_write32(qdev, INTR_EN,
621 var = ql_read32(qdev, STS);
623 atomic_inc(&ctx->irq_cnt);
624 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
628 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
631 for (i = 0; i < qdev->intr_count; i++) {
632 /* The enable call does a atomic_dec_and_test
633 * and enables only if the result is zero.
634 * So we precharge it here.
636 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
638 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
639 ql_enable_completion_interrupt(qdev, i);
644 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
647 /* wait for reg to come ready */
648 status = ql_wait_reg_rdy(qdev,
649 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
652 /* set up for reg read */
653 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654 /* wait for reg to come ready */
655 status = ql_wait_reg_rdy(qdev,
656 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
659 /* This data is stored on flash as an array of
660 * __le32. Since ql_read32() returns cpu endian
661 * we need to swap it back.
663 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
668 static int ql_get_flash_params(struct ql_adapter *qdev)
672 __le32 *p = (__le32 *)&qdev->flash;
675 /* Second function's parameters follow the first
679 offset = sizeof(qdev->flash) / sizeof(u32);
681 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
684 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
685 status = ql_read_flash_word(qdev, i+offset, p);
687 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
693 ql_sem_unlock(qdev, SEM_FLASH_MASK);
697 /* xgmac register are located behind the xgmac_addr and xgmac_data
698 * register pair. Each read/write requires us to wait for the ready
699 * bit before reading/writing the data.
701 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
704 /* wait for reg to come ready */
705 status = ql_wait_reg_rdy(qdev,
706 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
709 /* write the data to the data reg */
710 ql_write32(qdev, XGMAC_DATA, data);
711 /* trigger the write */
712 ql_write32(qdev, XGMAC_ADDR, reg);
716 /* xgmac register are located behind the xgmac_addr and xgmac_data
717 * register pair. Each read/write requires us to wait for the ready
718 * bit before reading/writing the data.
720 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
723 /* wait for reg to come ready */
724 status = ql_wait_reg_rdy(qdev,
725 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
728 /* set up for reg read */
729 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
730 /* wait for reg to come ready */
731 status = ql_wait_reg_rdy(qdev,
732 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
736 *data = ql_read32(qdev, XGMAC_DATA);
741 /* This is used for reading the 64-bit statistics regs. */
742 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
748 status = ql_read_xgmac_reg(qdev, reg, &lo);
752 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
756 *data = (u64) lo | ((u64) hi << 32);
762 /* Take the MAC Core out of reset.
763 * Enable statistics counting.
764 * Take the transmitter/receiver out of reset.
765 * This functionality may be done in the MPI firmware at a
768 static int ql_port_initialize(struct ql_adapter *qdev)
773 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
774 /* Another function has the semaphore, so
775 * wait for the port init bit to come ready.
777 QPRINTK(qdev, LINK, INFO,
778 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
779 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
781 QPRINTK(qdev, LINK, CRIT,
782 "Port initialize timed out.\n");
787 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
788 /* Set the core reset. */
789 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
792 data |= GLOBAL_CFG_RESET;
793 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
797 /* Clear the core reset and turn on jumbo for receiver. */
798 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
799 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
800 data |= GLOBAL_CFG_TX_STAT_EN;
801 data |= GLOBAL_CFG_RX_STAT_EN;
802 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
806 /* Enable transmitter, and clear it's reset. */
807 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
810 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
811 data |= TX_CFG_EN; /* Enable the transmitter. */
812 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
816 /* Enable receiver and clear it's reset. */
817 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
820 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
821 data |= RX_CFG_EN; /* Enable the receiver. */
822 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
828 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
832 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
836 /* Signal to the world that the port is enabled. */
837 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
839 ql_sem_unlock(qdev, qdev->xg_sem_mask);
843 /* Get the next large buffer. */
844 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
846 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
847 rx_ring->lbq_curr_idx++;
848 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
849 rx_ring->lbq_curr_idx = 0;
850 rx_ring->lbq_free_cnt++;
854 /* Get the next small buffer. */
855 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
857 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
858 rx_ring->sbq_curr_idx++;
859 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
860 rx_ring->sbq_curr_idx = 0;
861 rx_ring->sbq_free_cnt++;
865 /* Update an rx ring index. */
866 static void ql_update_cq(struct rx_ring *rx_ring)
868 rx_ring->cnsmr_idx++;
869 rx_ring->curr_entry++;
870 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
871 rx_ring->cnsmr_idx = 0;
872 rx_ring->curr_entry = rx_ring->cq_base;
876 static void ql_write_cq_idx(struct rx_ring *rx_ring)
878 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
881 /* Process (refill) a large buffer queue. */
882 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
884 int clean_idx = rx_ring->lbq_clean_idx;
885 struct bq_desc *lbq_desc;
889 while (rx_ring->lbq_free_cnt > 16) {
890 for (i = 0; i < 16; i++) {
891 QPRINTK(qdev, RX_STATUS, DEBUG,
892 "lbq: try cleaning clean_idx = %d.\n",
894 lbq_desc = &rx_ring->lbq[clean_idx];
895 if (lbq_desc->p.lbq_page == NULL) {
896 QPRINTK(qdev, RX_STATUS, DEBUG,
897 "lbq: getting new page for index %d.\n",
899 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
900 if (lbq_desc->p.lbq_page == NULL) {
901 QPRINTK(qdev, RX_STATUS, ERR,
902 "Couldn't get a page.\n");
905 map = pci_map_page(qdev->pdev,
906 lbq_desc->p.lbq_page,
909 if (pci_dma_mapping_error(qdev->pdev, map)) {
910 QPRINTK(qdev, RX_STATUS, ERR,
911 "PCI mapping failed.\n");
914 pci_unmap_addr_set(lbq_desc, mapaddr, map);
915 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
916 *lbq_desc->addr = cpu_to_le64(map);
919 if (clean_idx == rx_ring->lbq_len)
923 rx_ring->lbq_clean_idx = clean_idx;
924 rx_ring->lbq_prod_idx += 16;
925 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
926 rx_ring->lbq_prod_idx = 0;
927 QPRINTK(qdev, RX_STATUS, DEBUG,
928 "lbq: updating prod idx = %d.\n",
929 rx_ring->lbq_prod_idx);
930 ql_write_db_reg(rx_ring->lbq_prod_idx,
931 rx_ring->lbq_prod_idx_db_reg);
932 rx_ring->lbq_free_cnt -= 16;
936 /* Process (refill) a small buffer queue. */
937 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
939 int clean_idx = rx_ring->sbq_clean_idx;
940 struct bq_desc *sbq_desc;
944 while (rx_ring->sbq_free_cnt > 16) {
945 for (i = 0; i < 16; i++) {
946 sbq_desc = &rx_ring->sbq[clean_idx];
947 QPRINTK(qdev, RX_STATUS, DEBUG,
948 "sbq: try cleaning clean_idx = %d.\n",
950 if (sbq_desc->p.skb == NULL) {
951 QPRINTK(qdev, RX_STATUS, DEBUG,
952 "sbq: getting new skb for index %d.\n",
955 netdev_alloc_skb(qdev->ndev,
956 rx_ring->sbq_buf_size);
957 if (sbq_desc->p.skb == NULL) {
958 QPRINTK(qdev, PROBE, ERR,
959 "Couldn't get an skb.\n");
960 rx_ring->sbq_clean_idx = clean_idx;
963 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
964 map = pci_map_single(qdev->pdev,
965 sbq_desc->p.skb->data,
966 rx_ring->sbq_buf_size /
967 2, PCI_DMA_FROMDEVICE);
968 if (pci_dma_mapping_error(qdev->pdev, map)) {
969 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
970 rx_ring->sbq_clean_idx = clean_idx;
973 pci_unmap_addr_set(sbq_desc, mapaddr, map);
974 pci_unmap_len_set(sbq_desc, maplen,
975 rx_ring->sbq_buf_size / 2);
976 *sbq_desc->addr = cpu_to_le64(map);
980 if (clean_idx == rx_ring->sbq_len)
983 rx_ring->sbq_clean_idx = clean_idx;
984 rx_ring->sbq_prod_idx += 16;
985 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
986 rx_ring->sbq_prod_idx = 0;
987 QPRINTK(qdev, RX_STATUS, DEBUG,
988 "sbq: updating prod idx = %d.\n",
989 rx_ring->sbq_prod_idx);
990 ql_write_db_reg(rx_ring->sbq_prod_idx,
991 rx_ring->sbq_prod_idx_db_reg);
993 rx_ring->sbq_free_cnt -= 16;
997 static void ql_update_buffer_queues(struct ql_adapter *qdev,
998 struct rx_ring *rx_ring)
1000 ql_update_sbq(qdev, rx_ring);
1001 ql_update_lbq(qdev, rx_ring);
1004 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1005 * fails at some stage, or from the interrupt when a tx completes.
1007 static void ql_unmap_send(struct ql_adapter *qdev,
1008 struct tx_ring_desc *tx_ring_desc, int mapped)
1011 for (i = 0; i < mapped; i++) {
1012 if (i == 0 || (i == 7 && mapped > 7)) {
1014 * Unmap the skb->data area, or the
1015 * external sglist (AKA the Outbound
1016 * Address List (OAL)).
1017 * If its the zeroeth element, then it's
1018 * the skb->data area. If it's the 7th
1019 * element and there is more than 6 frags,
1023 QPRINTK(qdev, TX_DONE, DEBUG,
1024 "unmapping OAL area.\n");
1026 pci_unmap_single(qdev->pdev,
1027 pci_unmap_addr(&tx_ring_desc->map[i],
1029 pci_unmap_len(&tx_ring_desc->map[i],
1033 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1035 pci_unmap_page(qdev->pdev,
1036 pci_unmap_addr(&tx_ring_desc->map[i],
1038 pci_unmap_len(&tx_ring_desc->map[i],
1039 maplen), PCI_DMA_TODEVICE);
1045 /* Map the buffers for this transmit. This will return
1046 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1048 static int ql_map_send(struct ql_adapter *qdev,
1049 struct ob_mac_iocb_req *mac_iocb_ptr,
1050 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1052 int len = skb_headlen(skb);
1054 int frag_idx, err, map_idx = 0;
1055 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1056 int frag_cnt = skb_shinfo(skb)->nr_frags;
1059 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1062 * Map the skb buffer first.
1064 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1066 err = pci_dma_mapping_error(qdev->pdev, map);
1068 QPRINTK(qdev, TX_QUEUED, ERR,
1069 "PCI mapping failed with error: %d\n", err);
1071 return NETDEV_TX_BUSY;
1074 tbd->len = cpu_to_le32(len);
1075 tbd->addr = cpu_to_le64(map);
1076 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1077 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1081 * This loop fills the remainder of the 8 address descriptors
1082 * in the IOCB. If there are more than 7 fragments, then the
1083 * eighth address desc will point to an external list (OAL).
1084 * When this happens, the remainder of the frags will be stored
1087 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1088 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1090 if (frag_idx == 6 && frag_cnt > 7) {
1091 /* Let's tack on an sglist.
1092 * Our control block will now
1094 * iocb->seg[0] = skb->data
1095 * iocb->seg[1] = frag[0]
1096 * iocb->seg[2] = frag[1]
1097 * iocb->seg[3] = frag[2]
1098 * iocb->seg[4] = frag[3]
1099 * iocb->seg[5] = frag[4]
1100 * iocb->seg[6] = frag[5]
1101 * iocb->seg[7] = ptr to OAL (external sglist)
1102 * oal->seg[0] = frag[6]
1103 * oal->seg[1] = frag[7]
1104 * oal->seg[2] = frag[8]
1105 * oal->seg[3] = frag[9]
1106 * oal->seg[4] = frag[10]
1109 /* Tack on the OAL in the eighth segment of IOCB. */
1110 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1113 err = pci_dma_mapping_error(qdev->pdev, map);
1115 QPRINTK(qdev, TX_QUEUED, ERR,
1116 "PCI mapping outbound address list with error: %d\n",
1121 tbd->addr = cpu_to_le64(map);
1123 * The length is the number of fragments
1124 * that remain to be mapped times the length
1125 * of our sglist (OAL).
1128 cpu_to_le32((sizeof(struct tx_buf_desc) *
1129 (frag_cnt - frag_idx)) | TX_DESC_C);
1130 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1132 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1133 sizeof(struct oal));
1134 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1139 pci_map_page(qdev->pdev, frag->page,
1140 frag->page_offset, frag->size,
1143 err = pci_dma_mapping_error(qdev->pdev, map);
1145 QPRINTK(qdev, TX_QUEUED, ERR,
1146 "PCI mapping frags failed with error: %d.\n",
1151 tbd->addr = cpu_to_le64(map);
1152 tbd->len = cpu_to_le32(frag->size);
1153 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1154 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1158 /* Save the number of segments we've mapped. */
1159 tx_ring_desc->map_cnt = map_idx;
1160 /* Terminate the last segment. */
1161 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1162 return NETDEV_TX_OK;
1166 * If the first frag mapping failed, then i will be zero.
1167 * This causes the unmap of the skb->data area. Otherwise
1168 * we pass in the number of frags that mapped successfully
1169 * so they can be umapped.
1171 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1172 return NETDEV_TX_BUSY;
1175 static void ql_realign_skb(struct sk_buff *skb, int len)
1177 void *temp_addr = skb->data;
1179 /* Undo the skb_reserve(skb,32) we did before
1180 * giving to hardware, and realign data on
1181 * a 2-byte boundary.
1183 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1184 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1185 skb_copy_to_linear_data(skb, temp_addr,
1190 * This function builds an skb for the given inbound
1191 * completion. It will be rewritten for readability in the near
1192 * future, but for not it works well.
1194 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1195 struct rx_ring *rx_ring,
1196 struct ib_mac_iocb_rsp *ib_mac_rsp)
1198 struct bq_desc *lbq_desc;
1199 struct bq_desc *sbq_desc;
1200 struct sk_buff *skb = NULL;
1201 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1202 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1205 * Handle the header buffer if present.
1207 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1208 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1209 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1211 * Headers fit nicely into a small buffer.
1213 sbq_desc = ql_get_curr_sbuf(rx_ring);
1214 pci_unmap_single(qdev->pdev,
1215 pci_unmap_addr(sbq_desc, mapaddr),
1216 pci_unmap_len(sbq_desc, maplen),
1217 PCI_DMA_FROMDEVICE);
1218 skb = sbq_desc->p.skb;
1219 ql_realign_skb(skb, hdr_len);
1220 skb_put(skb, hdr_len);
1221 sbq_desc->p.skb = NULL;
1225 * Handle the data buffer(s).
1227 if (unlikely(!length)) { /* Is there data too? */
1228 QPRINTK(qdev, RX_STATUS, DEBUG,
1229 "No Data buffer in this packet.\n");
1233 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1234 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1235 QPRINTK(qdev, RX_STATUS, DEBUG,
1236 "Headers in small, data of %d bytes in small, combine them.\n", length);
1238 * Data is less than small buffer size so it's
1239 * stuffed in a small buffer.
1240 * For this case we append the data
1241 * from the "data" small buffer to the "header" small
1244 sbq_desc = ql_get_curr_sbuf(rx_ring);
1245 pci_dma_sync_single_for_cpu(qdev->pdev,
1247 (sbq_desc, mapaddr),
1250 PCI_DMA_FROMDEVICE);
1251 memcpy(skb_put(skb, length),
1252 sbq_desc->p.skb->data, length);
1253 pci_dma_sync_single_for_device(qdev->pdev,
1260 PCI_DMA_FROMDEVICE);
1262 QPRINTK(qdev, RX_STATUS, DEBUG,
1263 "%d bytes in a single small buffer.\n", length);
1264 sbq_desc = ql_get_curr_sbuf(rx_ring);
1265 skb = sbq_desc->p.skb;
1266 ql_realign_skb(skb, length);
1267 skb_put(skb, length);
1268 pci_unmap_single(qdev->pdev,
1269 pci_unmap_addr(sbq_desc,
1271 pci_unmap_len(sbq_desc,
1273 PCI_DMA_FROMDEVICE);
1274 sbq_desc->p.skb = NULL;
1276 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1277 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1278 QPRINTK(qdev, RX_STATUS, DEBUG,
1279 "Header in small, %d bytes in large. Chain large to small!\n", length);
1281 * The data is in a single large buffer. We
1282 * chain it to the header buffer's skb and let
1285 lbq_desc = ql_get_curr_lbuf(rx_ring);
1286 pci_unmap_page(qdev->pdev,
1287 pci_unmap_addr(lbq_desc,
1289 pci_unmap_len(lbq_desc, maplen),
1290 PCI_DMA_FROMDEVICE);
1291 QPRINTK(qdev, RX_STATUS, DEBUG,
1292 "Chaining page to skb.\n");
1293 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1296 skb->data_len += length;
1297 skb->truesize += length;
1298 lbq_desc->p.lbq_page = NULL;
1301 * The headers and data are in a single large buffer. We
1302 * copy it to a new skb and let it go. This can happen with
1303 * jumbo mtu on a non-TCP/UDP frame.
1305 lbq_desc = ql_get_curr_lbuf(rx_ring);
1306 skb = netdev_alloc_skb(qdev->ndev, length);
1308 QPRINTK(qdev, PROBE, DEBUG,
1309 "No skb available, drop the packet.\n");
1312 pci_unmap_page(qdev->pdev,
1313 pci_unmap_addr(lbq_desc,
1315 pci_unmap_len(lbq_desc, maplen),
1316 PCI_DMA_FROMDEVICE);
1317 skb_reserve(skb, NET_IP_ALIGN);
1318 QPRINTK(qdev, RX_STATUS, DEBUG,
1319 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1320 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1323 skb->data_len += length;
1324 skb->truesize += length;
1326 lbq_desc->p.lbq_page = NULL;
1327 __pskb_pull_tail(skb,
1328 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1329 VLAN_ETH_HLEN : ETH_HLEN);
1333 * The data is in a chain of large buffers
1334 * pointed to by a small buffer. We loop
1335 * thru and chain them to the our small header
1337 * frags: There are 18 max frags and our small
1338 * buffer will hold 32 of them. The thing is,
1339 * we'll use 3 max for our 9000 byte jumbo
1340 * frames. If the MTU goes up we could
1341 * eventually be in trouble.
1343 int size, offset, i = 0;
1344 __le64 *bq, bq_array[8];
1345 sbq_desc = ql_get_curr_sbuf(rx_ring);
1346 pci_unmap_single(qdev->pdev,
1347 pci_unmap_addr(sbq_desc, mapaddr),
1348 pci_unmap_len(sbq_desc, maplen),
1349 PCI_DMA_FROMDEVICE);
1350 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1352 * This is an non TCP/UDP IP frame, so
1353 * the headers aren't split into a small
1354 * buffer. We have to use the small buffer
1355 * that contains our sg list as our skb to
1356 * send upstairs. Copy the sg list here to
1357 * a local buffer and use it to find the
1360 QPRINTK(qdev, RX_STATUS, DEBUG,
1361 "%d bytes of headers & data in chain of large.\n", length);
1362 skb = sbq_desc->p.skb;
1364 memcpy(bq, skb->data, sizeof(bq_array));
1365 sbq_desc->p.skb = NULL;
1366 skb_reserve(skb, NET_IP_ALIGN);
1368 QPRINTK(qdev, RX_STATUS, DEBUG,
1369 "Headers in small, %d bytes of data in chain of large.\n", length);
1370 bq = (__le64 *)sbq_desc->p.skb->data;
1372 while (length > 0) {
1373 lbq_desc = ql_get_curr_lbuf(rx_ring);
1374 pci_unmap_page(qdev->pdev,
1375 pci_unmap_addr(lbq_desc,
1377 pci_unmap_len(lbq_desc,
1379 PCI_DMA_FROMDEVICE);
1380 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1383 QPRINTK(qdev, RX_STATUS, DEBUG,
1384 "Adding page %d to skb for %d bytes.\n",
1386 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1389 skb->data_len += size;
1390 skb->truesize += size;
1392 lbq_desc->p.lbq_page = NULL;
1396 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1397 VLAN_ETH_HLEN : ETH_HLEN);
1402 /* Process an inbound completion from an rx ring. */
1403 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1404 struct rx_ring *rx_ring,
1405 struct ib_mac_iocb_rsp *ib_mac_rsp)
1407 struct net_device *ndev = qdev->ndev;
1408 struct sk_buff *skb = NULL;
1410 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1412 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1413 if (unlikely(!skb)) {
1414 QPRINTK(qdev, RX_STATUS, DEBUG,
1415 "No skb available, drop packet.\n");
1419 prefetch(skb->data);
1421 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1422 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1423 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1424 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1425 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1426 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1427 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1428 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1430 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1431 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1433 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1434 QPRINTK(qdev, RX_STATUS, ERR,
1435 "Bad checksum for this %s packet.\n",
1437 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1438 skb->ip_summed = CHECKSUM_NONE;
1439 } else if (qdev->rx_csum &&
1440 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1441 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1442 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1443 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1444 skb->ip_summed = CHECKSUM_UNNECESSARY;
1446 qdev->stats.rx_packets++;
1447 qdev->stats.rx_bytes += skb->len;
1448 skb->protocol = eth_type_trans(skb, ndev);
1449 skb_record_rx_queue(skb, rx_ring - &qdev->rx_ring[0]);
1450 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1451 QPRINTK(qdev, RX_STATUS, DEBUG,
1452 "Passing a VLAN packet upstream.\n");
1453 vlan_hwaccel_rx(skb, qdev->vlgrp,
1454 le16_to_cpu(ib_mac_rsp->vlan_id));
1456 QPRINTK(qdev, RX_STATUS, DEBUG,
1457 "Passing a normal packet upstream.\n");
1462 /* Process an outbound completion from an rx ring. */
1463 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1464 struct ob_mac_iocb_rsp *mac_rsp)
1466 struct tx_ring *tx_ring;
1467 struct tx_ring_desc *tx_ring_desc;
1469 QL_DUMP_OB_MAC_RSP(mac_rsp);
1470 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1471 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1472 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1473 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1474 qdev->stats.tx_packets++;
1475 dev_kfree_skb(tx_ring_desc->skb);
1476 tx_ring_desc->skb = NULL;
1478 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1481 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1482 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1483 QPRINTK(qdev, TX_DONE, WARNING,
1484 "Total descriptor length did not match transfer length.\n");
1486 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1487 QPRINTK(qdev, TX_DONE, WARNING,
1488 "Frame too short to be legal, not sent.\n");
1490 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1491 QPRINTK(qdev, TX_DONE, WARNING,
1492 "Frame too long, but sent anyway.\n");
1494 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1495 QPRINTK(qdev, TX_DONE, WARNING,
1496 "PCI backplane error. Frame not sent.\n");
1499 atomic_inc(&tx_ring->tx_count);
1502 /* Fire up a handler to reset the MPI processor. */
1503 void ql_queue_fw_error(struct ql_adapter *qdev)
1505 netif_stop_queue(qdev->ndev);
1506 netif_carrier_off(qdev->ndev);
1507 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1510 void ql_queue_asic_error(struct ql_adapter *qdev)
1512 netif_stop_queue(qdev->ndev);
1513 netif_carrier_off(qdev->ndev);
1514 ql_disable_interrupts(qdev);
1515 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1518 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1519 struct ib_ae_iocb_rsp *ib_ae_rsp)
1521 switch (ib_ae_rsp->event) {
1522 case MGMT_ERR_EVENT:
1523 QPRINTK(qdev, RX_ERR, ERR,
1524 "Management Processor Fatal Error.\n");
1525 ql_queue_fw_error(qdev);
1528 case CAM_LOOKUP_ERR_EVENT:
1529 QPRINTK(qdev, LINK, ERR,
1530 "Multiple CAM hits lookup occurred.\n");
1531 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1532 ql_queue_asic_error(qdev);
1535 case SOFT_ECC_ERROR_EVENT:
1536 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1537 ql_queue_asic_error(qdev);
1540 case PCI_ERR_ANON_BUF_RD:
1541 QPRINTK(qdev, RX_ERR, ERR,
1542 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1544 ql_queue_asic_error(qdev);
1548 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1550 ql_queue_asic_error(qdev);
1555 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1557 struct ql_adapter *qdev = rx_ring->qdev;
1558 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1559 struct ob_mac_iocb_rsp *net_rsp = NULL;
1562 /* While there are entries in the completion queue. */
1563 while (prod != rx_ring->cnsmr_idx) {
1565 QPRINTK(qdev, RX_STATUS, DEBUG,
1566 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1567 prod, rx_ring->cnsmr_idx);
1569 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1571 switch (net_rsp->opcode) {
1573 case OPCODE_OB_MAC_TSO_IOCB:
1574 case OPCODE_OB_MAC_IOCB:
1575 ql_process_mac_tx_intr(qdev, net_rsp);
1578 QPRINTK(qdev, RX_STATUS, DEBUG,
1579 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1583 ql_update_cq(rx_ring);
1584 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1586 ql_write_cq_idx(rx_ring);
1587 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1588 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1589 if (atomic_read(&tx_ring->queue_stopped) &&
1590 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1592 * The queue got stopped because the tx_ring was full.
1593 * Wake it up, because it's now at least 25% empty.
1595 netif_wake_queue(qdev->ndev);
1601 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1603 struct ql_adapter *qdev = rx_ring->qdev;
1604 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1605 struct ql_net_rsp_iocb *net_rsp;
1608 /* While there are entries in the completion queue. */
1609 while (prod != rx_ring->cnsmr_idx) {
1611 QPRINTK(qdev, RX_STATUS, DEBUG,
1612 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1613 prod, rx_ring->cnsmr_idx);
1615 net_rsp = rx_ring->curr_entry;
1617 switch (net_rsp->opcode) {
1618 case OPCODE_IB_MAC_IOCB:
1619 ql_process_mac_rx_intr(qdev, rx_ring,
1620 (struct ib_mac_iocb_rsp *)
1624 case OPCODE_IB_AE_IOCB:
1625 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1630 QPRINTK(qdev, RX_STATUS, DEBUG,
1631 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1636 ql_update_cq(rx_ring);
1637 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1638 if (count == budget)
1641 ql_update_buffer_queues(qdev, rx_ring);
1642 ql_write_cq_idx(rx_ring);
1646 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1648 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1649 struct ql_adapter *qdev = rx_ring->qdev;
1650 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1652 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1655 if (work_done < budget) {
1656 __napi_complete(napi);
1657 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1662 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1664 struct ql_adapter *qdev = netdev_priv(ndev);
1668 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1669 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1670 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1672 QPRINTK(qdev, IFUP, DEBUG,
1673 "Turning off VLAN in NIC_RCV_CFG.\n");
1674 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1678 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1680 struct ql_adapter *qdev = netdev_priv(ndev);
1681 u32 enable_bit = MAC_ADDR_E;
1683 spin_lock(&qdev->hw_lock);
1684 if (ql_set_mac_addr_reg
1685 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1686 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1688 spin_unlock(&qdev->hw_lock);
1691 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1693 struct ql_adapter *qdev = netdev_priv(ndev);
1696 spin_lock(&qdev->hw_lock);
1697 if (ql_set_mac_addr_reg
1698 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1699 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1701 spin_unlock(&qdev->hw_lock);
1705 /* Worker thread to process a given rx_ring that is dedicated
1706 * to outbound completions.
1708 static void ql_tx_clean(struct work_struct *work)
1710 struct rx_ring *rx_ring =
1711 container_of(work, struct rx_ring, rx_work.work);
1712 ql_clean_outbound_rx_ring(rx_ring);
1713 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1717 /* Worker thread to process a given rx_ring that is dedicated
1718 * to inbound completions.
1720 static void ql_rx_clean(struct work_struct *work)
1722 struct rx_ring *rx_ring =
1723 container_of(work, struct rx_ring, rx_work.work);
1724 ql_clean_inbound_rx_ring(rx_ring, 64);
1725 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1728 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1729 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1731 struct rx_ring *rx_ring = dev_id;
1732 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1733 &rx_ring->rx_work, 0);
1737 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1738 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1740 struct rx_ring *rx_ring = dev_id;
1741 napi_schedule(&rx_ring->napi);
1745 /* This handles a fatal error, MPI activity, and the default
1746 * rx_ring in an MSI-X multiple vector environment.
1747 * In MSI/Legacy environment it also process the rest of
1750 static irqreturn_t qlge_isr(int irq, void *dev_id)
1752 struct rx_ring *rx_ring = dev_id;
1753 struct ql_adapter *qdev = rx_ring->qdev;
1754 struct intr_context *intr_context = &qdev->intr_context[0];
1759 spin_lock(&qdev->hw_lock);
1760 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1761 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1762 spin_unlock(&qdev->hw_lock);
1765 spin_unlock(&qdev->hw_lock);
1767 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1770 * Check for fatal error.
1773 ql_queue_asic_error(qdev);
1774 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1775 var = ql_read32(qdev, ERR_STS);
1776 QPRINTK(qdev, INTR, ERR,
1777 "Resetting chip. Error Status Register = 0x%x\n", var);
1782 * Check MPI processor activity.
1786 * We've got an async event or mailbox completion.
1787 * Handle it and clear the source of the interrupt.
1789 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1790 ql_disable_completion_interrupt(qdev, intr_context->intr);
1791 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1792 &qdev->mpi_work, 0);
1797 * Check the default queue and wake handler if active.
1799 rx_ring = &qdev->rx_ring[0];
1800 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1801 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1802 ql_disable_completion_interrupt(qdev, intr_context->intr);
1803 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1804 &rx_ring->rx_work, 0);
1808 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1810 * Start the DPC for each active queue.
1812 for (i = 1; i < qdev->rx_ring_count; i++) {
1813 rx_ring = &qdev->rx_ring[i];
1814 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1815 rx_ring->cnsmr_idx) {
1816 QPRINTK(qdev, INTR, INFO,
1817 "Waking handler for rx_ring[%d].\n", i);
1818 ql_disable_completion_interrupt(qdev,
1821 if (i < qdev->rss_ring_first_cq_id)
1822 queue_delayed_work_on(rx_ring->cpu,
1827 napi_schedule(&rx_ring->napi);
1832 ql_enable_completion_interrupt(qdev, intr_context->intr);
1833 return work_done ? IRQ_HANDLED : IRQ_NONE;
1836 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1839 if (skb_is_gso(skb)) {
1841 if (skb_header_cloned(skb)) {
1842 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1847 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1848 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1849 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1850 mac_iocb_ptr->total_hdrs_len =
1851 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1852 mac_iocb_ptr->net_trans_offset =
1853 cpu_to_le16(skb_network_offset(skb) |
1854 skb_transport_offset(skb)
1855 << OB_MAC_TRANSPORT_HDR_SHIFT);
1856 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1857 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1858 if (likely(skb->protocol == htons(ETH_P_IP))) {
1859 struct iphdr *iph = ip_hdr(skb);
1861 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1862 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1866 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1867 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1868 tcp_hdr(skb)->check =
1869 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1870 &ipv6_hdr(skb)->daddr,
1878 static void ql_hw_csum_setup(struct sk_buff *skb,
1879 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1882 struct iphdr *iph = ip_hdr(skb);
1884 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1885 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1886 mac_iocb_ptr->net_trans_offset =
1887 cpu_to_le16(skb_network_offset(skb) |
1888 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1890 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1891 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1892 if (likely(iph->protocol == IPPROTO_TCP)) {
1893 check = &(tcp_hdr(skb)->check);
1894 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1895 mac_iocb_ptr->total_hdrs_len =
1896 cpu_to_le16(skb_transport_offset(skb) +
1897 (tcp_hdr(skb)->doff << 2));
1899 check = &(udp_hdr(skb)->check);
1900 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1901 mac_iocb_ptr->total_hdrs_len =
1902 cpu_to_le16(skb_transport_offset(skb) +
1903 sizeof(struct udphdr));
1905 *check = ~csum_tcpudp_magic(iph->saddr,
1906 iph->daddr, len, iph->protocol, 0);
1909 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1911 struct tx_ring_desc *tx_ring_desc;
1912 struct ob_mac_iocb_req *mac_iocb_ptr;
1913 struct ql_adapter *qdev = netdev_priv(ndev);
1915 struct tx_ring *tx_ring;
1916 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1918 tx_ring = &qdev->tx_ring[tx_ring_idx];
1920 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1921 QPRINTK(qdev, TX_QUEUED, INFO,
1922 "%s: shutting down tx queue %d du to lack of resources.\n",
1923 __func__, tx_ring_idx);
1924 netif_stop_queue(ndev);
1925 atomic_inc(&tx_ring->queue_stopped);
1926 return NETDEV_TX_BUSY;
1928 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1929 mac_iocb_ptr = tx_ring_desc->queue_entry;
1930 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1931 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1932 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1933 return NETDEV_TX_BUSY;
1936 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1937 mac_iocb_ptr->tid = tx_ring_desc->index;
1938 /* We use the upper 32-bits to store the tx queue for this IO.
1939 * When we get the completion we can use it to establish the context.
1941 mac_iocb_ptr->txq_idx = tx_ring_idx;
1942 tx_ring_desc->skb = skb;
1944 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1946 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1947 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1948 vlan_tx_tag_get(skb));
1949 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1950 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1952 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1954 dev_kfree_skb_any(skb);
1955 return NETDEV_TX_OK;
1956 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1957 ql_hw_csum_setup(skb,
1958 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1960 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1961 tx_ring->prod_idx++;
1962 if (tx_ring->prod_idx == tx_ring->wq_len)
1963 tx_ring->prod_idx = 0;
1966 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1967 ndev->trans_start = jiffies;
1968 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1969 tx_ring->prod_idx, skb->len);
1971 atomic_dec(&tx_ring->tx_count);
1972 return NETDEV_TX_OK;
1975 static void ql_free_shadow_space(struct ql_adapter *qdev)
1977 if (qdev->rx_ring_shadow_reg_area) {
1978 pci_free_consistent(qdev->pdev,
1980 qdev->rx_ring_shadow_reg_area,
1981 qdev->rx_ring_shadow_reg_dma);
1982 qdev->rx_ring_shadow_reg_area = NULL;
1984 if (qdev->tx_ring_shadow_reg_area) {
1985 pci_free_consistent(qdev->pdev,
1987 qdev->tx_ring_shadow_reg_area,
1988 qdev->tx_ring_shadow_reg_dma);
1989 qdev->tx_ring_shadow_reg_area = NULL;
1993 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1995 qdev->rx_ring_shadow_reg_area =
1996 pci_alloc_consistent(qdev->pdev,
1997 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1998 if (qdev->rx_ring_shadow_reg_area == NULL) {
1999 QPRINTK(qdev, IFUP, ERR,
2000 "Allocation of RX shadow space failed.\n");
2003 qdev->tx_ring_shadow_reg_area =
2004 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2005 &qdev->tx_ring_shadow_reg_dma);
2006 if (qdev->tx_ring_shadow_reg_area == NULL) {
2007 QPRINTK(qdev, IFUP, ERR,
2008 "Allocation of TX shadow space failed.\n");
2009 goto err_wqp_sh_area;
2014 pci_free_consistent(qdev->pdev,
2016 qdev->rx_ring_shadow_reg_area,
2017 qdev->rx_ring_shadow_reg_dma);
2021 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2023 struct tx_ring_desc *tx_ring_desc;
2025 struct ob_mac_iocb_req *mac_iocb_ptr;
2027 mac_iocb_ptr = tx_ring->wq_base;
2028 tx_ring_desc = tx_ring->q;
2029 for (i = 0; i < tx_ring->wq_len; i++) {
2030 tx_ring_desc->index = i;
2031 tx_ring_desc->skb = NULL;
2032 tx_ring_desc->queue_entry = mac_iocb_ptr;
2036 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2037 atomic_set(&tx_ring->queue_stopped, 0);
2040 static void ql_free_tx_resources(struct ql_adapter *qdev,
2041 struct tx_ring *tx_ring)
2043 if (tx_ring->wq_base) {
2044 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2045 tx_ring->wq_base, tx_ring->wq_base_dma);
2046 tx_ring->wq_base = NULL;
2052 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2053 struct tx_ring *tx_ring)
2056 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2057 &tx_ring->wq_base_dma);
2059 if ((tx_ring->wq_base == NULL)
2060 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2061 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2065 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2066 if (tx_ring->q == NULL)
2071 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2072 tx_ring->wq_base, tx_ring->wq_base_dma);
2076 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2079 struct bq_desc *lbq_desc;
2081 for (i = 0; i < rx_ring->lbq_len; i++) {
2082 lbq_desc = &rx_ring->lbq[i];
2083 if (lbq_desc->p.lbq_page) {
2084 pci_unmap_page(qdev->pdev,
2085 pci_unmap_addr(lbq_desc, mapaddr),
2086 pci_unmap_len(lbq_desc, maplen),
2087 PCI_DMA_FROMDEVICE);
2089 put_page(lbq_desc->p.lbq_page);
2090 lbq_desc->p.lbq_page = NULL;
2096 * Allocate and map a page for each element of the lbq.
2098 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2099 struct rx_ring *rx_ring)
2102 struct bq_desc *lbq_desc;
2104 __le64 *bq = rx_ring->lbq_base;
2106 for (i = 0; i < rx_ring->lbq_len; i++) {
2107 lbq_desc = &rx_ring->lbq[i];
2108 memset(lbq_desc, 0, sizeof(lbq_desc));
2109 lbq_desc->addr = bq;
2110 lbq_desc->index = i;
2111 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2112 if (unlikely(!lbq_desc->p.lbq_page)) {
2113 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2116 map = pci_map_page(qdev->pdev,
2117 lbq_desc->p.lbq_page,
2118 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2119 if (pci_dma_mapping_error(qdev->pdev, map)) {
2120 QPRINTK(qdev, IFUP, ERR,
2121 "PCI mapping failed.\n");
2124 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2125 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2126 *lbq_desc->addr = cpu_to_le64(map);
2132 ql_free_lbq_buffers(qdev, rx_ring);
2136 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2139 struct bq_desc *sbq_desc;
2141 for (i = 0; i < rx_ring->sbq_len; i++) {
2142 sbq_desc = &rx_ring->sbq[i];
2143 if (sbq_desc == NULL) {
2144 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2147 if (sbq_desc->p.skb) {
2148 pci_unmap_single(qdev->pdev,
2149 pci_unmap_addr(sbq_desc, mapaddr),
2150 pci_unmap_len(sbq_desc, maplen),
2151 PCI_DMA_FROMDEVICE);
2152 dev_kfree_skb(sbq_desc->p.skb);
2153 sbq_desc->p.skb = NULL;
2158 /* Allocate and map an skb for each element of the sbq. */
2159 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2160 struct rx_ring *rx_ring)
2163 struct bq_desc *sbq_desc;
2164 struct sk_buff *skb;
2166 __le64 *bq = rx_ring->sbq_base;
2168 for (i = 0; i < rx_ring->sbq_len; i++) {
2169 sbq_desc = &rx_ring->sbq[i];
2170 memset(sbq_desc, 0, sizeof(sbq_desc));
2171 sbq_desc->index = i;
2172 sbq_desc->addr = bq;
2173 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2174 if (unlikely(!skb)) {
2175 /* Better luck next round */
2176 QPRINTK(qdev, IFUP, ERR,
2177 "small buff alloc failed for %d bytes at index %d.\n",
2178 rx_ring->sbq_buf_size, i);
2181 skb_reserve(skb, QLGE_SB_PAD);
2182 sbq_desc->p.skb = skb;
2184 * Map only half the buffer. Because the
2185 * other half may get some data copied to it
2186 * when the completion arrives.
2188 map = pci_map_single(qdev->pdev,
2190 rx_ring->sbq_buf_size / 2,
2191 PCI_DMA_FROMDEVICE);
2192 if (pci_dma_mapping_error(qdev->pdev, map)) {
2193 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2196 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2197 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2198 *sbq_desc->addr = cpu_to_le64(map);
2203 ql_free_sbq_buffers(qdev, rx_ring);
2207 static void ql_free_rx_resources(struct ql_adapter *qdev,
2208 struct rx_ring *rx_ring)
2210 if (rx_ring->sbq_len)
2211 ql_free_sbq_buffers(qdev, rx_ring);
2212 if (rx_ring->lbq_len)
2213 ql_free_lbq_buffers(qdev, rx_ring);
2215 /* Free the small buffer queue. */
2216 if (rx_ring->sbq_base) {
2217 pci_free_consistent(qdev->pdev,
2219 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2220 rx_ring->sbq_base = NULL;
2223 /* Free the small buffer queue control blocks. */
2224 kfree(rx_ring->sbq);
2225 rx_ring->sbq = NULL;
2227 /* Free the large buffer queue. */
2228 if (rx_ring->lbq_base) {
2229 pci_free_consistent(qdev->pdev,
2231 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2232 rx_ring->lbq_base = NULL;
2235 /* Free the large buffer queue control blocks. */
2236 kfree(rx_ring->lbq);
2237 rx_ring->lbq = NULL;
2239 /* Free the rx queue. */
2240 if (rx_ring->cq_base) {
2241 pci_free_consistent(qdev->pdev,
2243 rx_ring->cq_base, rx_ring->cq_base_dma);
2244 rx_ring->cq_base = NULL;
2248 /* Allocate queues and buffers for this completions queue based
2249 * on the values in the parameter structure. */
2250 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2251 struct rx_ring *rx_ring)
2255 * Allocate the completion queue for this rx_ring.
2258 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2259 &rx_ring->cq_base_dma);
2261 if (rx_ring->cq_base == NULL) {
2262 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2266 if (rx_ring->sbq_len) {
2268 * Allocate small buffer queue.
2271 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2272 &rx_ring->sbq_base_dma);
2274 if (rx_ring->sbq_base == NULL) {
2275 QPRINTK(qdev, IFUP, ERR,
2276 "Small buffer queue allocation failed.\n");
2281 * Allocate small buffer queue control blocks.
2284 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2286 if (rx_ring->sbq == NULL) {
2287 QPRINTK(qdev, IFUP, ERR,
2288 "Small buffer queue control block allocation failed.\n");
2292 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2293 QPRINTK(qdev, IFUP, ERR,
2294 "Small buffer allocation failed.\n");
2299 if (rx_ring->lbq_len) {
2301 * Allocate large buffer queue.
2304 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2305 &rx_ring->lbq_base_dma);
2307 if (rx_ring->lbq_base == NULL) {
2308 QPRINTK(qdev, IFUP, ERR,
2309 "Large buffer queue allocation failed.\n");
2313 * Allocate large buffer queue control blocks.
2316 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2318 if (rx_ring->lbq == NULL) {
2319 QPRINTK(qdev, IFUP, ERR,
2320 "Large buffer queue control block allocation failed.\n");
2325 * Allocate the buffers.
2327 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2328 QPRINTK(qdev, IFUP, ERR,
2329 "Large buffer allocation failed.\n");
2337 ql_free_rx_resources(qdev, rx_ring);
2341 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2343 struct tx_ring *tx_ring;
2344 struct tx_ring_desc *tx_ring_desc;
2348 * Loop through all queues and free
2351 for (j = 0; j < qdev->tx_ring_count; j++) {
2352 tx_ring = &qdev->tx_ring[j];
2353 for (i = 0; i < tx_ring->wq_len; i++) {
2354 tx_ring_desc = &tx_ring->q[i];
2355 if (tx_ring_desc && tx_ring_desc->skb) {
2356 QPRINTK(qdev, IFDOWN, ERR,
2357 "Freeing lost SKB %p, from queue %d, index %d.\n",
2358 tx_ring_desc->skb, j,
2359 tx_ring_desc->index);
2360 ql_unmap_send(qdev, tx_ring_desc,
2361 tx_ring_desc->map_cnt);
2362 dev_kfree_skb(tx_ring_desc->skb);
2363 tx_ring_desc->skb = NULL;
2369 static void ql_free_mem_resources(struct ql_adapter *qdev)
2373 for (i = 0; i < qdev->tx_ring_count; i++)
2374 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2375 for (i = 0; i < qdev->rx_ring_count; i++)
2376 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2377 ql_free_shadow_space(qdev);
2380 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2384 /* Allocate space for our shadow registers and such. */
2385 if (ql_alloc_shadow_space(qdev))
2388 for (i = 0; i < qdev->rx_ring_count; i++) {
2389 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2390 QPRINTK(qdev, IFUP, ERR,
2391 "RX resource allocation failed.\n");
2395 /* Allocate tx queue resources */
2396 for (i = 0; i < qdev->tx_ring_count; i++) {
2397 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2398 QPRINTK(qdev, IFUP, ERR,
2399 "TX resource allocation failed.\n");
2406 ql_free_mem_resources(qdev);
2410 /* Set up the rx ring control block and pass it to the chip.
2411 * The control block is defined as
2412 * "Completion Queue Initialization Control Block", or cqicb.
2414 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2416 struct cqicb *cqicb = &rx_ring->cqicb;
2417 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2418 (rx_ring->cq_id * sizeof(u64) * 4);
2419 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2420 (rx_ring->cq_id * sizeof(u64) * 4);
2421 void __iomem *doorbell_area =
2422 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2426 /* Set up the shadow registers for this ring. */
2427 rx_ring->prod_idx_sh_reg = shadow_reg;
2428 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2429 shadow_reg += sizeof(u64);
2430 shadow_reg_dma += sizeof(u64);
2431 rx_ring->lbq_base_indirect = shadow_reg;
2432 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2433 shadow_reg += sizeof(u64);
2434 shadow_reg_dma += sizeof(u64);
2435 rx_ring->sbq_base_indirect = shadow_reg;
2436 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2438 /* PCI doorbell mem area + 0x00 for consumer index register */
2439 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2440 rx_ring->cnsmr_idx = 0;
2441 rx_ring->curr_entry = rx_ring->cq_base;
2443 /* PCI doorbell mem area + 0x04 for valid register */
2444 rx_ring->valid_db_reg = doorbell_area + 0x04;
2446 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2447 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2449 /* PCI doorbell mem area + 0x1c */
2450 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2452 memset((void *)cqicb, 0, sizeof(struct cqicb));
2453 cqicb->msix_vect = rx_ring->irq;
2455 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2456 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2458 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2460 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2463 * Set up the control block load flags.
2465 cqicb->flags = FLAGS_LC | /* Load queue base address */
2466 FLAGS_LV | /* Load MSI-X vector */
2467 FLAGS_LI; /* Load irq delay values */
2468 if (rx_ring->lbq_len) {
2469 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2470 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2472 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2473 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2474 (u16) rx_ring->lbq_buf_size;
2475 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2476 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2477 (u16) rx_ring->lbq_len;
2478 cqicb->lbq_len = cpu_to_le16(bq_len);
2479 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2480 rx_ring->lbq_curr_idx = 0;
2481 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2482 rx_ring->lbq_free_cnt = 16;
2484 if (rx_ring->sbq_len) {
2485 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2486 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2488 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2489 cqicb->sbq_buf_size =
2490 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2491 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2492 (u16) rx_ring->sbq_len;
2493 cqicb->sbq_len = cpu_to_le16(bq_len);
2494 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2495 rx_ring->sbq_curr_idx = 0;
2496 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2497 rx_ring->sbq_free_cnt = 16;
2499 switch (rx_ring->type) {
2501 /* If there's only one interrupt, then we use
2502 * worker threads to process the outbound
2503 * completion handling rx_rings. We do this so
2504 * they can be run on multiple CPUs. There is
2505 * room to play with this more where we would only
2506 * run in a worker if there are more than x number
2507 * of outbound completions on the queue and more
2508 * than one queue active. Some threshold that
2509 * would indicate a benefit in spite of the cost
2510 * of a context switch.
2511 * If there's more than one interrupt, then the
2512 * outbound completions are processed in the ISR.
2514 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2515 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2517 /* With all debug warnings on we see a WARN_ON message
2518 * when we free the skb in the interrupt context.
2520 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2522 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2523 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2526 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2527 cqicb->irq_delay = 0;
2528 cqicb->pkt_delay = 0;
2531 /* Inbound completion handling rx_rings run in
2532 * separate NAPI contexts.
2534 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2536 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2537 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2540 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2543 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2544 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2545 CFG_LCQ, rx_ring->cq_id);
2547 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2550 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2552 * Advance the producer index for the buffer queues.
2555 if (rx_ring->lbq_len)
2556 ql_write_db_reg(rx_ring->lbq_prod_idx,
2557 rx_ring->lbq_prod_idx_db_reg);
2558 if (rx_ring->sbq_len)
2559 ql_write_db_reg(rx_ring->sbq_prod_idx,
2560 rx_ring->sbq_prod_idx_db_reg);
2564 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2566 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2567 void __iomem *doorbell_area =
2568 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2569 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2570 (tx_ring->wq_id * sizeof(u64));
2571 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2572 (tx_ring->wq_id * sizeof(u64));
2576 * Assign doorbell registers for this tx_ring.
2578 /* TX PCI doorbell mem area for tx producer index */
2579 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2580 tx_ring->prod_idx = 0;
2581 /* TX PCI doorbell mem area + 0x04 */
2582 tx_ring->valid_db_reg = doorbell_area + 0x04;
2585 * Assign shadow registers for this tx_ring.
2587 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2588 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2590 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2591 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2592 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2593 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2595 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2597 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2599 ql_init_tx_ring(qdev, tx_ring);
2601 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2602 (u16) tx_ring->wq_id);
2604 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2607 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2611 static void ql_disable_msix(struct ql_adapter *qdev)
2613 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2614 pci_disable_msix(qdev->pdev);
2615 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2616 kfree(qdev->msi_x_entry);
2617 qdev->msi_x_entry = NULL;
2618 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2619 pci_disable_msi(qdev->pdev);
2620 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2624 static void ql_enable_msix(struct ql_adapter *qdev)
2628 qdev->intr_count = 1;
2629 /* Get the MSIX vectors. */
2630 if (irq_type == MSIX_IRQ) {
2631 /* Try to alloc space for the msix struct,
2632 * if it fails then go to MSI/legacy.
2634 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2635 sizeof(struct msix_entry),
2637 if (!qdev->msi_x_entry) {
2642 for (i = 0; i < qdev->rx_ring_count; i++)
2643 qdev->msi_x_entry[i].entry = i;
2645 if (!pci_enable_msix
2646 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2647 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2648 qdev->intr_count = qdev->rx_ring_count;
2649 QPRINTK(qdev, IFUP, INFO,
2650 "MSI-X Enabled, got %d vectors.\n",
2654 kfree(qdev->msi_x_entry);
2655 qdev->msi_x_entry = NULL;
2656 QPRINTK(qdev, IFUP, WARNING,
2657 "MSI-X Enable failed, trying MSI.\n");
2662 if (irq_type == MSI_IRQ) {
2663 if (!pci_enable_msi(qdev->pdev)) {
2664 set_bit(QL_MSI_ENABLED, &qdev->flags);
2665 QPRINTK(qdev, IFUP, INFO,
2666 "Running with MSI interrupts.\n");
2671 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2675 * Here we build the intr_context structures based on
2676 * our rx_ring count and intr vector count.
2677 * The intr_context structure is used to hook each vector
2678 * to possibly different handlers.
2680 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2683 struct intr_context *intr_context = &qdev->intr_context[0];
2685 ql_enable_msix(qdev);
2687 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2688 /* Each rx_ring has it's
2689 * own intr_context since we have separate
2690 * vectors for each queue.
2691 * This only true when MSI-X is enabled.
2693 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2694 qdev->rx_ring[i].irq = i;
2695 intr_context->intr = i;
2696 intr_context->qdev = qdev;
2698 * We set up each vectors enable/disable/read bits so
2699 * there's no bit/mask calculations in the critical path.
2701 intr_context->intr_en_mask =
2702 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2703 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2705 intr_context->intr_dis_mask =
2706 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2707 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2709 intr_context->intr_read_mask =
2710 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2711 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2716 * Default queue handles bcast/mcast plus
2717 * async events. Needs buffers.
2719 intr_context->handler = qlge_isr;
2720 sprintf(intr_context->name, "%s-default-queue",
2722 } else if (i < qdev->rss_ring_first_cq_id) {
2724 * Outbound queue is for outbound completions only.
2726 intr_context->handler = qlge_msix_tx_isr;
2727 sprintf(intr_context->name, "%s-tx-%d",
2728 qdev->ndev->name, i);
2731 * Inbound queues handle unicast frames only.
2733 intr_context->handler = qlge_msix_rx_isr;
2734 sprintf(intr_context->name, "%s-rx-%d",
2735 qdev->ndev->name, i);
2740 * All rx_rings use the same intr_context since
2741 * there is only one vector.
2743 intr_context->intr = 0;
2744 intr_context->qdev = qdev;
2746 * We set up each vectors enable/disable/read bits so
2747 * there's no bit/mask calculations in the critical path.
2749 intr_context->intr_en_mask =
2750 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2751 intr_context->intr_dis_mask =
2752 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2753 INTR_EN_TYPE_DISABLE;
2754 intr_context->intr_read_mask =
2755 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2757 * Single interrupt means one handler for all rings.
2759 intr_context->handler = qlge_isr;
2760 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2761 for (i = 0; i < qdev->rx_ring_count; i++)
2762 qdev->rx_ring[i].irq = 0;
2766 static void ql_free_irq(struct ql_adapter *qdev)
2769 struct intr_context *intr_context = &qdev->intr_context[0];
2771 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2772 if (intr_context->hooked) {
2773 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2774 free_irq(qdev->msi_x_entry[i].vector,
2776 QPRINTK(qdev, IFDOWN, ERR,
2777 "freeing msix interrupt %d.\n", i);
2779 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2780 QPRINTK(qdev, IFDOWN, ERR,
2781 "freeing msi interrupt %d.\n", i);
2785 ql_disable_msix(qdev);
2788 static int ql_request_irq(struct ql_adapter *qdev)
2792 struct pci_dev *pdev = qdev->pdev;
2793 struct intr_context *intr_context = &qdev->intr_context[0];
2795 ql_resolve_queues_to_irqs(qdev);
2797 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2798 atomic_set(&intr_context->irq_cnt, 0);
2799 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2800 status = request_irq(qdev->msi_x_entry[i].vector,
2801 intr_context->handler,
2806 QPRINTK(qdev, IFUP, ERR,
2807 "Failed request for MSIX interrupt %d.\n",
2811 QPRINTK(qdev, IFUP, INFO,
2812 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2814 qdev->rx_ring[i].type ==
2815 DEFAULT_Q ? "DEFAULT_Q" : "",
2816 qdev->rx_ring[i].type ==
2818 qdev->rx_ring[i].type ==
2819 RX_Q ? "RX_Q" : "", intr_context->name);
2822 QPRINTK(qdev, IFUP, DEBUG,
2823 "trying msi or legacy interrupts.\n");
2824 QPRINTK(qdev, IFUP, DEBUG,
2825 "%s: irq = %d.\n", __func__, pdev->irq);
2826 QPRINTK(qdev, IFUP, DEBUG,
2827 "%s: context->name = %s.\n", __func__,
2828 intr_context->name);
2829 QPRINTK(qdev, IFUP, DEBUG,
2830 "%s: dev_id = 0x%p.\n", __func__,
2833 request_irq(pdev->irq, qlge_isr,
2834 test_bit(QL_MSI_ENABLED,
2836 flags) ? 0 : IRQF_SHARED,
2837 intr_context->name, &qdev->rx_ring[0]);
2841 QPRINTK(qdev, IFUP, ERR,
2842 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2844 qdev->rx_ring[0].type ==
2845 DEFAULT_Q ? "DEFAULT_Q" : "",
2846 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2847 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2848 intr_context->name);
2850 intr_context->hooked = 1;
2854 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2859 static int ql_start_rss(struct ql_adapter *qdev)
2861 struct ricb *ricb = &qdev->ricb;
2864 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2866 memset((void *)ricb, 0, sizeof(ricb));
2868 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2870 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2872 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2875 * Fill out the Indirection Table.
2877 for (i = 0; i < 32; i++)
2881 * Random values for the IPv6 and IPv4 Hash Keys.
2883 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2884 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2886 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2888 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2890 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2893 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2897 /* Initialize the frame-to-queue routing. */
2898 static int ql_route_initialize(struct ql_adapter *qdev)
2903 /* Clear all the entries in the routing table. */
2904 for (i = 0; i < 16; i++) {
2905 status = ql_set_routing_reg(qdev, i, 0, 0);
2907 QPRINTK(qdev, IFUP, ERR,
2908 "Failed to init routing register for CAM packets.\n");
2913 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2915 QPRINTK(qdev, IFUP, ERR,
2916 "Failed to init routing register for error packets.\n");
2919 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2921 QPRINTK(qdev, IFUP, ERR,
2922 "Failed to init routing register for broadcast packets.\n");
2925 /* If we have more than one inbound queue, then turn on RSS in the
2928 if (qdev->rss_ring_count > 1) {
2929 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2930 RT_IDX_RSS_MATCH, 1);
2932 QPRINTK(qdev, IFUP, ERR,
2933 "Failed to init routing register for MATCH RSS packets.\n");
2938 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2941 QPRINTK(qdev, IFUP, ERR,
2942 "Failed to init routing register for CAM packets.\n");
2948 static int ql_adapter_initialize(struct ql_adapter *qdev)
2955 * Set up the System register to halt on errors.
2957 value = SYS_EFE | SYS_FAE;
2959 ql_write32(qdev, SYS, mask | value);
2961 /* Set the default queue. */
2962 value = NIC_RCV_CFG_DFQ;
2963 mask = NIC_RCV_CFG_DFQ_MASK;
2964 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2966 /* Set the MPI interrupt to enabled. */
2967 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2969 /* Enable the function, set pagesize, enable error checking. */
2970 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2971 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2973 /* Set/clear header splitting. */
2974 mask = FSC_VM_PAGESIZE_MASK |
2975 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2976 ql_write32(qdev, FSC, mask | value);
2978 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2979 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2981 /* Start up the rx queues. */
2982 for (i = 0; i < qdev->rx_ring_count; i++) {
2983 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2985 QPRINTK(qdev, IFUP, ERR,
2986 "Failed to start rx ring[%d].\n", i);
2991 /* If there is more than one inbound completion queue
2992 * then download a RICB to configure RSS.
2994 if (qdev->rss_ring_count > 1) {
2995 status = ql_start_rss(qdev);
2997 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3002 /* Start up the tx queues. */
3003 for (i = 0; i < qdev->tx_ring_count; i++) {
3004 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3006 QPRINTK(qdev, IFUP, ERR,
3007 "Failed to start tx ring[%d].\n", i);
3012 status = ql_port_initialize(qdev);
3014 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3018 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3019 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3021 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3025 status = ql_route_initialize(qdev);
3027 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3031 /* Start NAPI for the RSS queues. */
3032 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3033 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3035 napi_enable(&qdev->rx_ring[i].napi);
3041 /* Issue soft reset to chip. */
3042 static int ql_adapter_reset(struct ql_adapter *qdev)
3049 #define MAX_RESET_CNT 1
3052 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3053 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3054 /* Wait for reset to complete. */
3056 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3059 value = ql_read32(qdev, RST_FO);
3060 if ((value & RST_FO_FR) == 0)
3064 } while ((--max_wait_time));
3065 if (value & RST_FO_FR) {
3066 QPRINTK(qdev, IFDOWN, ERR,
3067 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3068 if (resetCnt < MAX_RESET_CNT)
3071 if (max_wait_time == 0) {
3072 status = -ETIMEDOUT;
3073 QPRINTK(qdev, IFDOWN, ERR,
3074 "ETIMEOUT!!! errored out of resetting the chip!\n");
3080 static void ql_display_dev_info(struct net_device *ndev)
3082 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3084 QPRINTK(qdev, PROBE, INFO,
3085 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3086 "XG Roll = %d, XG Rev = %d.\n",
3088 qdev->chip_rev_id & 0x0000000f,
3089 qdev->chip_rev_id >> 4 & 0x0000000f,
3090 qdev->chip_rev_id >> 8 & 0x0000000f,
3091 qdev->chip_rev_id >> 12 & 0x0000000f);
3092 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3095 static int ql_adapter_down(struct ql_adapter *qdev)
3097 struct net_device *ndev = qdev->ndev;
3099 struct rx_ring *rx_ring;
3101 netif_stop_queue(ndev);
3102 netif_carrier_off(ndev);
3104 cancel_delayed_work_sync(&qdev->asic_reset_work);
3105 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3106 cancel_delayed_work_sync(&qdev->mpi_work);
3108 /* The default queue at index 0 is always processed in
3111 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3113 /* The rest of the rx_rings are processed in
3114 * a workqueue only if it's a single interrupt
3115 * environment (MSI/Legacy).
3117 for (i = 1; i < qdev->rx_ring_count; i++) {
3118 rx_ring = &qdev->rx_ring[i];
3119 /* Only the RSS rings use NAPI on multi irq
3120 * environment. Outbound completion processing
3121 * is done in interrupt context.
3123 if (i >= qdev->rss_ring_first_cq_id) {
3124 napi_disable(&rx_ring->napi);
3126 cancel_delayed_work_sync(&rx_ring->rx_work);
3130 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3132 ql_disable_interrupts(qdev);
3134 ql_tx_ring_clean(qdev);
3136 spin_lock(&qdev->hw_lock);
3137 status = ql_adapter_reset(qdev);
3139 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3141 spin_unlock(&qdev->hw_lock);
3145 static int ql_adapter_up(struct ql_adapter *qdev)
3149 spin_lock(&qdev->hw_lock);
3150 err = ql_adapter_initialize(qdev);
3152 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3153 spin_unlock(&qdev->hw_lock);
3156 spin_unlock(&qdev->hw_lock);
3157 set_bit(QL_ADAPTER_UP, &qdev->flags);
3158 ql_enable_interrupts(qdev);
3159 ql_enable_all_completion_interrupts(qdev);
3160 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3161 netif_carrier_on(qdev->ndev);
3162 netif_start_queue(qdev->ndev);
3167 ql_adapter_reset(qdev);
3171 static int ql_cycle_adapter(struct ql_adapter *qdev)
3175 status = ql_adapter_down(qdev);
3179 status = ql_adapter_up(qdev);
3185 QPRINTK(qdev, IFUP, ALERT,
3186 "Driver up/down cycle failed, closing device\n");
3188 dev_close(qdev->ndev);
3193 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3195 ql_free_mem_resources(qdev);
3199 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3203 if (ql_alloc_mem_resources(qdev)) {
3204 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3207 status = ql_request_irq(qdev);
3212 ql_free_mem_resources(qdev);
3216 static int qlge_close(struct net_device *ndev)
3218 struct ql_adapter *qdev = netdev_priv(ndev);
3221 * Wait for device to recover from a reset.
3222 * (Rarely happens, but possible.)
3224 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3226 ql_adapter_down(qdev);
3227 ql_release_adapter_resources(qdev);
3231 static int ql_configure_rings(struct ql_adapter *qdev)
3234 struct rx_ring *rx_ring;
3235 struct tx_ring *tx_ring;
3236 int cpu_cnt = num_online_cpus();
3239 * For each processor present we allocate one
3240 * rx_ring for outbound completions, and one
3241 * rx_ring for inbound completions. Plus there is
3242 * always the one default queue. For the CPU
3243 * counts we end up with the following rx_rings:
3245 * one default queue +
3246 * (CPU count * outbound completion rx_ring) +
3247 * (CPU count * inbound (RSS) completion rx_ring)
3248 * To keep it simple we limit the total number of
3249 * queues to < 32, so we truncate CPU to 8.
3250 * This limitation can be removed when requested.
3253 if (cpu_cnt > MAX_CPUS)
3257 * rx_ring[0] is always the default queue.
3259 /* Allocate outbound completion ring for each CPU. */
3260 qdev->tx_ring_count = cpu_cnt;
3261 /* Allocate inbound completion (RSS) ring for each CPU. */
3262 qdev->rss_ring_count = cpu_cnt;
3263 /* cq_id for the first inbound ring handler. */
3264 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3266 * qdev->rx_ring_count:
3267 * Total number of rx_rings. This includes the one
3268 * default queue, a number of outbound completion
3269 * handler rx_rings, and the number of inbound
3270 * completion handler rx_rings.
3272 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3274 for (i = 0; i < qdev->tx_ring_count; i++) {
3275 tx_ring = &qdev->tx_ring[i];
3276 memset((void *)tx_ring, 0, sizeof(tx_ring));
3277 tx_ring->qdev = qdev;
3279 tx_ring->wq_len = qdev->tx_ring_size;
3281 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3284 * The completion queue ID for the tx rings start
3285 * immediately after the default Q ID, which is zero.
3287 tx_ring->cq_id = i + 1;
3290 for (i = 0; i < qdev->rx_ring_count; i++) {
3291 rx_ring = &qdev->rx_ring[i];
3292 memset((void *)rx_ring, 0, sizeof(rx_ring));
3293 rx_ring->qdev = qdev;
3295 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3296 if (i == 0) { /* Default queue at index 0. */
3298 * Default queue handles bcast/mcast plus
3299 * async events. Needs buffers.
3301 rx_ring->cq_len = qdev->rx_ring_size;
3303 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3304 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3306 rx_ring->lbq_len * sizeof(__le64);
3307 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3308 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3310 rx_ring->sbq_len * sizeof(__le64);
3311 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3312 rx_ring->type = DEFAULT_Q;
3313 } else if (i < qdev->rss_ring_first_cq_id) {
3315 * Outbound queue handles outbound completions only.
3317 /* outbound cq is same size as tx_ring it services. */
3318 rx_ring->cq_len = qdev->tx_ring_size;
3320 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3321 rx_ring->lbq_len = 0;
3322 rx_ring->lbq_size = 0;
3323 rx_ring->lbq_buf_size = 0;
3324 rx_ring->sbq_len = 0;
3325 rx_ring->sbq_size = 0;
3326 rx_ring->sbq_buf_size = 0;
3327 rx_ring->type = TX_Q;
3328 } else { /* Inbound completions (RSS) queues */
3330 * Inbound queues handle unicast frames only.
3332 rx_ring->cq_len = qdev->rx_ring_size;
3334 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3335 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3337 rx_ring->lbq_len * sizeof(__le64);
3338 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3339 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3341 rx_ring->sbq_len * sizeof(__le64);
3342 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3343 rx_ring->type = RX_Q;
3349 static int qlge_open(struct net_device *ndev)
3352 struct ql_adapter *qdev = netdev_priv(ndev);
3354 err = ql_configure_rings(qdev);
3358 err = ql_get_adapter_resources(qdev);
3362 err = ql_adapter_up(qdev);
3369 ql_release_adapter_resources(qdev);
3373 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3375 struct ql_adapter *qdev = netdev_priv(ndev);
3377 if (ndev->mtu == 1500 && new_mtu == 9000) {
3378 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3379 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3380 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3381 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3382 (ndev->mtu == 9000 && new_mtu == 9000)) {
3386 ndev->mtu = new_mtu;
3390 static struct net_device_stats *qlge_get_stats(struct net_device
3393 struct ql_adapter *qdev = netdev_priv(ndev);
3394 return &qdev->stats;
3397 static void qlge_set_multicast_list(struct net_device *ndev)
3399 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3400 struct dev_mc_list *mc_ptr;
3403 spin_lock(&qdev->hw_lock);
3405 * Set or clear promiscuous mode if a
3406 * transition is taking place.
3408 if (ndev->flags & IFF_PROMISC) {
3409 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3410 if (ql_set_routing_reg
3411 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3412 QPRINTK(qdev, HW, ERR,
3413 "Failed to set promiscous mode.\n");
3415 set_bit(QL_PROMISCUOUS, &qdev->flags);
3419 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3420 if (ql_set_routing_reg
3421 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3422 QPRINTK(qdev, HW, ERR,
3423 "Failed to clear promiscous mode.\n");
3425 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3431 * Set or clear all multicast mode if a
3432 * transition is taking place.
3434 if ((ndev->flags & IFF_ALLMULTI) ||
3435 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3436 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3437 if (ql_set_routing_reg
3438 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3439 QPRINTK(qdev, HW, ERR,
3440 "Failed to set all-multi mode.\n");
3442 set_bit(QL_ALLMULTI, &qdev->flags);
3446 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3447 if (ql_set_routing_reg
3448 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3449 QPRINTK(qdev, HW, ERR,
3450 "Failed to clear all-multi mode.\n");
3452 clear_bit(QL_ALLMULTI, &qdev->flags);
3457 if (ndev->mc_count) {
3458 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3459 i++, mc_ptr = mc_ptr->next)
3460 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3461 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3462 QPRINTK(qdev, HW, ERR,
3463 "Failed to loadmulticast address.\n");
3466 if (ql_set_routing_reg
3467 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3468 QPRINTK(qdev, HW, ERR,
3469 "Failed to set multicast match mode.\n");
3471 set_bit(QL_ALLMULTI, &qdev->flags);
3475 spin_unlock(&qdev->hw_lock);
3478 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3480 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3481 struct sockaddr *addr = p;
3484 if (netif_running(ndev))
3487 if (!is_valid_ether_addr(addr->sa_data))
3488 return -EADDRNOTAVAIL;
3489 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3491 spin_lock(&qdev->hw_lock);
3492 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3493 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3494 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3497 spin_unlock(&qdev->hw_lock);
3502 static void qlge_tx_timeout(struct net_device *ndev)
3504 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3505 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3508 static void ql_asic_reset_work(struct work_struct *work)
3510 struct ql_adapter *qdev =
3511 container_of(work, struct ql_adapter, asic_reset_work.work);
3512 ql_cycle_adapter(qdev);
3515 static void ql_get_board_info(struct ql_adapter *qdev)
3518 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3520 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3521 qdev->port_link_up = STS_PL1;
3522 qdev->port_init = STS_PI1;
3523 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3524 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3526 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3527 qdev->port_link_up = STS_PL0;
3528 qdev->port_init = STS_PI0;
3529 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3530 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3532 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3535 static void ql_release_all(struct pci_dev *pdev)
3537 struct net_device *ndev = pci_get_drvdata(pdev);
3538 struct ql_adapter *qdev = netdev_priv(ndev);
3540 if (qdev->workqueue) {
3541 destroy_workqueue(qdev->workqueue);
3542 qdev->workqueue = NULL;
3544 if (qdev->q_workqueue) {
3545 destroy_workqueue(qdev->q_workqueue);
3546 qdev->q_workqueue = NULL;
3549 iounmap(qdev->reg_base);
3550 if (qdev->doorbell_area)
3551 iounmap(qdev->doorbell_area);
3552 pci_release_regions(pdev);
3553 pci_set_drvdata(pdev, NULL);
3556 static int __devinit ql_init_device(struct pci_dev *pdev,
3557 struct net_device *ndev, int cards_found)
3559 struct ql_adapter *qdev = netdev_priv(ndev);
3563 memset((void *)qdev, 0, sizeof(qdev));
3564 err = pci_enable_device(pdev);
3566 dev_err(&pdev->dev, "PCI device enable failed.\n");
3570 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3572 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3576 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3577 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3578 val16 |= (PCI_EXP_DEVCTL_CERE |
3579 PCI_EXP_DEVCTL_NFERE |
3580 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3581 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3584 err = pci_request_regions(pdev, DRV_NAME);
3586 dev_err(&pdev->dev, "PCI region request failed.\n");
3590 pci_set_master(pdev);
3591 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3592 set_bit(QL_DMA64, &qdev->flags);
3593 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3595 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3597 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3601 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3605 pci_set_drvdata(pdev, ndev);
3607 ioremap_nocache(pci_resource_start(pdev, 1),
3608 pci_resource_len(pdev, 1));
3609 if (!qdev->reg_base) {
3610 dev_err(&pdev->dev, "Register mapping failed.\n");
3615 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3616 qdev->doorbell_area =
3617 ioremap_nocache(pci_resource_start(pdev, 3),
3618 pci_resource_len(pdev, 3));
3619 if (!qdev->doorbell_area) {
3620 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3625 ql_get_board_info(qdev);
3628 qdev->msg_enable = netif_msg_init(debug, default_msg);
3629 spin_lock_init(&qdev->hw_lock);
3630 spin_lock_init(&qdev->stats_lock);
3632 /* make sure the EEPROM is good */
3633 err = ql_get_flash_params(qdev);
3635 dev_err(&pdev->dev, "Invalid FLASH.\n");
3639 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3642 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3643 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3645 /* Set up the default ring sizes. */
3646 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3647 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3649 /* Set up the coalescing parameters. */
3650 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3651 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3652 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3653 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3656 * Set up the operating parameters.
3660 qdev->q_workqueue = create_workqueue(ndev->name);
3661 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3662 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3663 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3664 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3667 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3668 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3669 DRV_NAME, DRV_VERSION);
3673 ql_release_all(pdev);
3674 pci_disable_device(pdev);
3679 static const struct net_device_ops qlge_netdev_ops = {
3680 .ndo_open = qlge_open,
3681 .ndo_stop = qlge_close,
3682 .ndo_start_xmit = qlge_send,
3683 .ndo_change_mtu = qlge_change_mtu,
3684 .ndo_get_stats = qlge_get_stats,
3685 .ndo_set_multicast_list = qlge_set_multicast_list,
3686 .ndo_set_mac_address = qlge_set_mac_address,
3687 .ndo_validate_addr = eth_validate_addr,
3688 .ndo_tx_timeout = qlge_tx_timeout,
3689 .ndo_vlan_rx_register = ql_vlan_rx_register,
3690 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3691 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3694 static int __devinit qlge_probe(struct pci_dev *pdev,
3695 const struct pci_device_id *pci_entry)
3697 struct net_device *ndev = NULL;
3698 struct ql_adapter *qdev = NULL;
3699 static int cards_found = 0;
3702 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3706 err = ql_init_device(pdev, ndev, cards_found);
3712 qdev = netdev_priv(ndev);
3713 SET_NETDEV_DEV(ndev, &pdev->dev);
3720 | NETIF_F_HW_VLAN_TX
3721 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3723 if (test_bit(QL_DMA64, &qdev->flags))
3724 ndev->features |= NETIF_F_HIGHDMA;
3727 * Set up net_device structure.
3729 ndev->tx_queue_len = qdev->tx_ring_size;
3730 ndev->irq = pdev->irq;
3732 ndev->netdev_ops = &qlge_netdev_ops;
3733 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3734 ndev->watchdog_timeo = 10 * HZ;
3736 err = register_netdev(ndev);
3738 dev_err(&pdev->dev, "net device registration failed.\n");
3739 ql_release_all(pdev);
3740 pci_disable_device(pdev);
3743 netif_carrier_off(ndev);
3744 netif_stop_queue(ndev);
3745 ql_display_dev_info(ndev);
3750 static void __devexit qlge_remove(struct pci_dev *pdev)
3752 struct net_device *ndev = pci_get_drvdata(pdev);
3753 unregister_netdev(ndev);
3754 ql_release_all(pdev);
3755 pci_disable_device(pdev);
3760 * This callback is called by the PCI subsystem whenever
3761 * a PCI bus error is detected.
3763 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3764 enum pci_channel_state state)
3766 struct net_device *ndev = pci_get_drvdata(pdev);
3767 struct ql_adapter *qdev = netdev_priv(ndev);
3769 if (netif_running(ndev))
3770 ql_adapter_down(qdev);
3772 pci_disable_device(pdev);
3774 /* Request a slot reset. */
3775 return PCI_ERS_RESULT_NEED_RESET;
3779 * This callback is called after the PCI buss has been reset.
3780 * Basically, this tries to restart the card from scratch.
3781 * This is a shortened version of the device probe/discovery code,
3782 * it resembles the first-half of the () routine.
3784 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3786 struct net_device *ndev = pci_get_drvdata(pdev);
3787 struct ql_adapter *qdev = netdev_priv(ndev);
3789 if (pci_enable_device(pdev)) {
3790 QPRINTK(qdev, IFUP, ERR,
3791 "Cannot re-enable PCI device after reset.\n");
3792 return PCI_ERS_RESULT_DISCONNECT;
3795 pci_set_master(pdev);
3797 netif_carrier_off(ndev);
3798 netif_stop_queue(ndev);
3799 ql_adapter_reset(qdev);
3801 /* Make sure the EEPROM is good */
3802 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3804 if (!is_valid_ether_addr(ndev->perm_addr)) {
3805 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3806 return PCI_ERS_RESULT_DISCONNECT;
3809 return PCI_ERS_RESULT_RECOVERED;
3812 static void qlge_io_resume(struct pci_dev *pdev)
3814 struct net_device *ndev = pci_get_drvdata(pdev);
3815 struct ql_adapter *qdev = netdev_priv(ndev);
3817 pci_set_master(pdev);
3819 if (netif_running(ndev)) {
3820 if (ql_adapter_up(qdev)) {
3821 QPRINTK(qdev, IFUP, ERR,
3822 "Device initialization failed after reset.\n");
3827 netif_device_attach(ndev);
3830 static struct pci_error_handlers qlge_err_handler = {
3831 .error_detected = qlge_io_error_detected,
3832 .slot_reset = qlge_io_slot_reset,
3833 .resume = qlge_io_resume,
3836 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3838 struct net_device *ndev = pci_get_drvdata(pdev);
3839 struct ql_adapter *qdev = netdev_priv(ndev);
3842 netif_device_detach(ndev);
3844 if (netif_running(ndev)) {
3845 err = ql_adapter_down(qdev);
3850 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3851 netif_napi_del(&qdev->rx_ring[i].napi);
3853 err = pci_save_state(pdev);
3857 pci_disable_device(pdev);
3859 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3865 static int qlge_resume(struct pci_dev *pdev)
3867 struct net_device *ndev = pci_get_drvdata(pdev);
3868 struct ql_adapter *qdev = netdev_priv(ndev);
3871 pci_set_power_state(pdev, PCI_D0);
3872 pci_restore_state(pdev);
3873 err = pci_enable_device(pdev);
3875 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3878 pci_set_master(pdev);
3880 pci_enable_wake(pdev, PCI_D3hot, 0);
3881 pci_enable_wake(pdev, PCI_D3cold, 0);
3883 if (netif_running(ndev)) {
3884 err = ql_adapter_up(qdev);
3889 netif_device_attach(ndev);
3893 #endif /* CONFIG_PM */
3895 static void qlge_shutdown(struct pci_dev *pdev)
3897 qlge_suspend(pdev, PMSG_SUSPEND);
3900 static struct pci_driver qlge_driver = {
3902 .id_table = qlge_pci_tbl,
3903 .probe = qlge_probe,
3904 .remove = __devexit_p(qlge_remove),
3906 .suspend = qlge_suspend,
3907 .resume = qlge_resume,
3909 .shutdown = qlge_shutdown,
3910 .err_handler = &qlge_err_handler
3913 static int __init qlge_init_module(void)
3915 return pci_register_driver(&qlge_driver);
3918 static void __exit qlge_exit(void)
3920 pci_unregister_driver(&qlge_driver);
3923 module_init(qlge_init_module);
3924 module_exit(qlge_exit);