2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
48 #include <linux/nfs_fs.h>
49 #include <linux/nfs_page.h>
50 #include <linux/sunrpc/clnt.h>
52 #include <asm/system.h>
53 #include <asm/uaccess.h>
54 #include <asm/atomic.h>
59 #define NFSDBG_FACILITY NFSDBG_VFS
61 static struct kmem_cache *nfs_direct_cachep;
64 * This represents a set of asynchronous requests that we're waiting on
66 struct nfs_direct_req {
67 struct kref kref; /* release manager */
70 struct nfs_open_context *ctx; /* file open context info */
71 struct kiocb * iocb; /* controlling i/o request */
72 struct inode * inode; /* target file of i/o */
74 /* completion state */
75 atomic_t io_count; /* i/os we're waiting for */
76 spinlock_t lock; /* protect completion state */
77 ssize_t count, /* bytes actually processed */
78 error; /* any reported error */
79 struct completion completion; /* wait for i/o completion */
82 struct list_head rewrite_list; /* saved nfs_write_data structs */
83 struct nfs_write_data * commit_data; /* special write_data for commits */
85 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
86 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
87 struct nfs_writeverf verf; /* unstable write verifier */
90 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
91 static const struct rpc_call_ops nfs_write_direct_ops;
93 static inline void get_dreq(struct nfs_direct_req *dreq)
95 atomic_inc(&dreq->io_count);
98 static inline int put_dreq(struct nfs_direct_req *dreq)
100 return atomic_dec_and_test(&dreq->io_count);
104 * nfs_direct_IO - NFS address space operation for direct I/O
105 * @rw: direction (read or write)
106 * @iocb: target I/O control block
107 * @iov: array of vectors that define I/O buffer
108 * @pos: offset in file to begin the operation
109 * @nr_segs: size of iovec array
111 * The presence of this routine in the address space ops vector means
112 * the NFS client supports direct I/O. However, we shunt off direct
113 * read and write requests before the VFS gets them, so this method
114 * should never be called.
116 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
118 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
119 iocb->ki_filp->f_path.dentry->d_name.name,
120 (long long) pos, nr_segs);
125 static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
132 pages += (pgbase >> PAGE_SHIFT);
133 npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
134 for (i = 0; i < npages; i++) {
135 struct page *page = pages[i];
136 if (!PageCompound(page))
137 set_page_dirty(page);
141 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
144 for (i = 0; i < npages; i++)
145 page_cache_release(pages[i]);
148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
150 struct nfs_direct_req *dreq;
152 dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
156 kref_init(&dreq->kref);
157 kref_get(&dreq->kref);
158 init_completion(&dreq->completion);
159 INIT_LIST_HEAD(&dreq->rewrite_list);
162 spin_lock_init(&dreq->lock);
163 atomic_set(&dreq->io_count, 0);
171 static void nfs_direct_req_free(struct kref *kref)
173 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
175 if (dreq->ctx != NULL)
176 put_nfs_open_context(dreq->ctx);
177 kmem_cache_free(nfs_direct_cachep, dreq);
180 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
182 kref_put(&dreq->kref, nfs_direct_req_free);
186 * Collects and returns the final error value/byte-count.
188 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
190 ssize_t result = -EIOCBQUEUED;
192 /* Async requests don't wait here */
196 result = wait_for_completion_interruptible(&dreq->completion);
199 result = dreq->error;
201 result = dreq->count;
204 return (ssize_t) result;
208 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
209 * the iocb is still valid here if this is a synchronous request.
211 static void nfs_direct_complete(struct nfs_direct_req *dreq)
214 long res = (long) dreq->error;
216 res = (long) dreq->count;
217 aio_complete(dreq->iocb, res, 0);
219 complete_all(&dreq->completion);
221 nfs_direct_req_release(dreq);
225 * We must hold a reference to all the pages in this direct read request
226 * until the RPCs complete. This could be long *after* we are woken up in
227 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
229 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
231 struct nfs_read_data *data = calldata;
232 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
234 if (nfs_readpage_result(task, data) != 0)
237 spin_lock(&dreq->lock);
238 if (unlikely(task->tk_status < 0)) {
239 dreq->error = task->tk_status;
240 spin_unlock(&dreq->lock);
242 dreq->count += data->res.count;
243 spin_unlock(&dreq->lock);
244 nfs_direct_dirty_pages(data->pagevec,
248 nfs_direct_release_pages(data->pagevec, data->npages);
251 nfs_direct_complete(dreq);
254 static const struct rpc_call_ops nfs_read_direct_ops = {
255 .rpc_call_done = nfs_direct_read_result,
256 .rpc_release = nfs_readdata_release,
260 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
261 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
262 * bail and stop sending more reads. Read length accounting is
263 * handled automatically by nfs_direct_read_result(). Otherwise, if
264 * no requests have been sent, just return an error.
266 static ssize_t nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos)
268 struct nfs_open_context *ctx = dreq->ctx;
269 struct inode *inode = ctx->dentry->d_inode;
270 size_t rsize = NFS_SERVER(inode)->rsize;
278 struct nfs_read_data *data;
281 pgbase = user_addr & ~PAGE_MASK;
282 bytes = min(rsize,count);
285 data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
289 down_read(¤t->mm->mmap_sem);
290 result = get_user_pages(current, current->mm, user_addr,
291 data->npages, 1, 0, data->pagevec, NULL);
292 up_read(¤t->mm->mmap_sem);
294 nfs_readdata_release(data);
297 if ((unsigned)result < data->npages) {
298 nfs_direct_release_pages(data->pagevec, result);
299 nfs_readdata_release(data);
305 data->req = (struct nfs_page *) dreq;
307 data->cred = ctx->cred;
308 data->args.fh = NFS_FH(inode);
309 data->args.context = ctx;
310 data->args.offset = pos;
311 data->args.pgbase = pgbase;
312 data->args.pages = data->pagevec;
313 data->args.count = bytes;
314 data->res.fattr = &data->fattr;
316 data->res.count = bytes;
318 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
319 &nfs_read_direct_ops, data);
320 NFS_PROTO(inode)->read_setup(data);
322 data->task.tk_cookie = (unsigned long) inode;
324 rpc_execute(&data->task);
326 dprintk("NFS: %5u initiated direct read call "
327 "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
330 (long long)NFS_FILEID(inode),
332 (unsigned long long)data->args.offset);
337 /* FIXME: Remove this unnecessary math from final patch */
339 pgbase &= ~PAGE_MASK;
340 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
343 } while (count != 0);
346 nfs_direct_complete(dreq);
350 return result < 0 ? (ssize_t) result : -EFAULT;
353 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos)
357 struct inode *inode = iocb->ki_filp->f_mapping->host;
358 struct rpc_clnt *clnt = NFS_CLIENT(inode);
359 struct nfs_direct_req *dreq;
361 dreq = nfs_direct_req_alloc();
366 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
367 if (!is_sync_kiocb(iocb))
370 nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
371 rpc_clnt_sigmask(clnt, &oldset);
372 result = nfs_direct_read_schedule(dreq, user_addr, count, pos);
374 result = nfs_direct_wait(dreq);
375 rpc_clnt_sigunmask(clnt, &oldset);
376 nfs_direct_req_release(dreq);
381 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
383 while (!list_empty(&dreq->rewrite_list)) {
384 struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
385 list_del(&data->pages);
386 nfs_direct_release_pages(data->pagevec, data->npages);
387 nfs_writedata_release(data);
391 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
392 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
394 struct inode *inode = dreq->inode;
396 struct nfs_write_data *data;
401 list_for_each(p, &dreq->rewrite_list) {
402 data = list_entry(p, struct nfs_write_data, pages);
409 nfs_fattr_init(&data->fattr);
410 data->res.count = data->args.count;
411 memset(&data->verf, 0, sizeof(data->verf));
414 * Reuse data->task; data->args should not have changed
415 * since the original request was sent.
417 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
418 &nfs_write_direct_ops, data);
419 NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
421 data->task.tk_priority = RPC_PRIORITY_NORMAL;
422 data->task.tk_cookie = (unsigned long) inode;
425 * We're called via an RPC callback, so BKL is already held.
427 rpc_execute(&data->task);
429 dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
432 (long long)NFS_FILEID(inode),
434 (unsigned long long)data->args.offset);
438 nfs_direct_write_complete(dreq, inode);
441 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
443 struct nfs_write_data *data = calldata;
444 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
446 /* Call the NFS version-specific code */
447 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
449 if (unlikely(task->tk_status < 0)) {
450 dprintk("NFS: %5u commit failed with error %d.\n",
451 task->tk_pid, task->tk_status);
452 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
453 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
454 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
455 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
458 dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
459 nfs_direct_write_complete(dreq, data->inode);
462 static const struct rpc_call_ops nfs_commit_direct_ops = {
463 .rpc_call_done = nfs_direct_commit_result,
464 .rpc_release = nfs_commit_release,
467 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
469 struct nfs_write_data *data = dreq->commit_data;
471 data->inode = dreq->inode;
472 data->cred = dreq->ctx->cred;
474 data->args.fh = NFS_FH(data->inode);
475 data->args.offset = 0;
476 data->args.count = 0;
478 data->res.fattr = &data->fattr;
479 data->res.verf = &data->verf;
481 rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
482 &nfs_commit_direct_ops, data);
483 NFS_PROTO(data->inode)->commit_setup(data, 0);
485 data->task.tk_priority = RPC_PRIORITY_NORMAL;
486 data->task.tk_cookie = (unsigned long)data->inode;
487 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
488 dreq->commit_data = NULL;
490 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
492 rpc_execute(&data->task);
495 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
497 int flags = dreq->flags;
501 case NFS_ODIRECT_DO_COMMIT:
502 nfs_direct_commit_schedule(dreq);
504 case NFS_ODIRECT_RESCHED_WRITES:
505 nfs_direct_write_reschedule(dreq);
508 nfs_end_data_update(inode);
509 if (dreq->commit_data != NULL)
510 nfs_commit_free(dreq->commit_data);
511 nfs_direct_free_writedata(dreq);
512 nfs_zap_mapping(inode, inode->i_mapping);
513 nfs_direct_complete(dreq);
517 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
519 dreq->commit_data = nfs_commit_alloc();
520 if (dreq->commit_data != NULL)
521 dreq->commit_data->req = (struct nfs_page *) dreq;
524 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
526 dreq->commit_data = NULL;
529 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
531 nfs_end_data_update(inode);
532 nfs_direct_free_writedata(dreq);
533 nfs_zap_mapping(inode, inode->i_mapping);
534 nfs_direct_complete(dreq);
538 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
540 struct nfs_write_data *data = calldata;
541 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
542 int status = task->tk_status;
544 if (nfs_writeback_done(task, data) != 0)
547 spin_lock(&dreq->lock);
549 if (unlikely(dreq->error != 0))
551 if (unlikely(status < 0)) {
552 /* An error has occured, so we should not commit */
554 dreq->error = status;
557 dreq->count += data->res.count;
559 if (data->res.verf->committed != NFS_FILE_SYNC) {
560 switch (dreq->flags) {
562 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
563 dreq->flags = NFS_ODIRECT_DO_COMMIT;
565 case NFS_ODIRECT_DO_COMMIT:
566 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
567 dprintk("NFS: %5u write verify failed\n", task->tk_pid);
568 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
573 spin_unlock(&dreq->lock);
577 * NB: Return the value of the first error return code. Subsequent
578 * errors after the first one are ignored.
580 static void nfs_direct_write_release(void *calldata)
582 struct nfs_write_data *data = calldata;
583 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
586 nfs_direct_write_complete(dreq, data->inode);
589 static const struct rpc_call_ops nfs_write_direct_ops = {
590 .rpc_call_done = nfs_direct_write_result,
591 .rpc_release = nfs_direct_write_release,
595 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
596 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
597 * bail and stop sending more writes. Write length accounting is
598 * handled automatically by nfs_direct_write_result(). Otherwise, if
599 * no requests have been sent, just return an error.
601 static ssize_t nfs_direct_write_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t pos, int sync)
603 struct nfs_open_context *ctx = dreq->ctx;
604 struct inode *inode = ctx->dentry->d_inode;
605 size_t wsize = NFS_SERVER(inode)->wsize;
613 struct nfs_write_data *data;
616 pgbase = user_addr & ~PAGE_MASK;
617 bytes = min(wsize,count);
620 data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
624 down_read(¤t->mm->mmap_sem);
625 result = get_user_pages(current, current->mm, user_addr,
626 data->npages, 0, 0, data->pagevec, NULL);
627 up_read(¤t->mm->mmap_sem);
629 nfs_writedata_release(data);
632 if ((unsigned)result < data->npages) {
633 nfs_direct_release_pages(data->pagevec, result);
634 nfs_writedata_release(data);
640 list_move_tail(&data->pages, &dreq->rewrite_list);
642 data->req = (struct nfs_page *) dreq;
644 data->cred = ctx->cred;
645 data->args.fh = NFS_FH(inode);
646 data->args.context = ctx;
647 data->args.offset = pos;
648 data->args.pgbase = pgbase;
649 data->args.pages = data->pagevec;
650 data->args.count = bytes;
651 data->res.fattr = &data->fattr;
652 data->res.count = bytes;
653 data->res.verf = &data->verf;
655 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
656 &nfs_write_direct_ops, data);
657 NFS_PROTO(inode)->write_setup(data, sync);
659 data->task.tk_priority = RPC_PRIORITY_NORMAL;
660 data->task.tk_cookie = (unsigned long) inode;
662 rpc_execute(&data->task);
664 dprintk("NFS: %5u initiated direct write call "
665 "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
668 (long long)NFS_FILEID(inode),
670 (unsigned long long)data->args.offset);
676 /* FIXME: Remove this useless math from the final patch */
678 pgbase &= ~PAGE_MASK;
679 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
682 } while (count != 0);
685 nfs_direct_write_complete(dreq, inode);
689 return result < 0 ? (ssize_t) result : -EFAULT;
692 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos)
696 struct inode *inode = iocb->ki_filp->f_mapping->host;
697 struct rpc_clnt *clnt = NFS_CLIENT(inode);
698 struct nfs_direct_req *dreq;
699 size_t wsize = NFS_SERVER(inode)->wsize;
702 dreq = nfs_direct_req_alloc();
705 nfs_alloc_commit_data(dreq);
707 if (dreq->commit_data == NULL || count < wsize)
711 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
712 if (!is_sync_kiocb(iocb))
715 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
717 nfs_begin_data_update(inode);
719 rpc_clnt_sigmask(clnt, &oldset);
720 result = nfs_direct_write_schedule(dreq, user_addr, count, pos, sync);
722 result = nfs_direct_wait(dreq);
723 rpc_clnt_sigunmask(clnt, &oldset);
724 nfs_direct_req_release(dreq);
730 * nfs_file_direct_read - file direct read operation for NFS files
731 * @iocb: target I/O control block
732 * @iov: vector of user buffers into which to read data
733 * @nr_segs: size of iov vector
734 * @pos: byte offset in file where reading starts
736 * We use this function for direct reads instead of calling
737 * generic_file_aio_read() in order to avoid gfar's check to see if
738 * the request starts before the end of the file. For that check
739 * to work, we must generate a GETATTR before each direct read, and
740 * even then there is a window between the GETATTR and the subsequent
741 * READ where the file size could change. Our preference is simply
742 * to do all reads the application wants, and the server will take
743 * care of managing the end of file boundary.
745 * This function also eliminates unnecessarily updating the file's
746 * atime locally, as the NFS server sets the file's atime, and this
747 * client must read the updated atime from the server back into its
750 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
751 unsigned long nr_segs, loff_t pos)
753 ssize_t retval = -EINVAL;
754 struct file *file = iocb->ki_filp;
755 struct address_space *mapping = file->f_mapping;
757 const char __user *buf = iov[0].iov_base;
758 size_t count = iov[0].iov_len;
760 dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
761 file->f_path.dentry->d_parent->d_name.name,
762 file->f_path.dentry->d_name.name,
763 (unsigned long) count, (long long) pos);
771 if (!access_ok(VERIFY_WRITE, buf, count))
777 retval = nfs_sync_mapping(mapping);
781 retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos);
783 iocb->ki_pos = pos + retval;
790 * nfs_file_direct_write - file direct write operation for NFS files
791 * @iocb: target I/O control block
792 * @iov: vector of user buffers from which to write data
793 * @nr_segs: size of iov vector
794 * @pos: byte offset in file where writing starts
796 * We use this function for direct writes instead of calling
797 * generic_file_aio_write() in order to avoid taking the inode
798 * semaphore and updating the i_size. The NFS server will set
799 * the new i_size and this client must read the updated size
800 * back into its cache. We let the server do generic write
801 * parameter checking and report problems.
803 * We also avoid an unnecessary invocation of generic_osync_inode(),
804 * as it is fairly meaningless to sync the metadata of an NFS file.
806 * We eliminate local atime updates, see direct read above.
808 * We avoid unnecessary page cache invalidations for normal cached
809 * readers of this file.
811 * Note that O_APPEND is not supported for NFS direct writes, as there
812 * is no atomic O_APPEND write facility in the NFS protocol.
814 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
815 unsigned long nr_segs, loff_t pos)
818 struct file *file = iocb->ki_filp;
819 struct address_space *mapping = file->f_mapping;
821 const char __user *buf = iov[0].iov_base;
822 size_t count = iov[0].iov_len;
824 dprintk("nfs: direct write(%s/%s, %lu@%Ld)\n",
825 file->f_path.dentry->d_parent->d_name.name,
826 file->f_path.dentry->d_name.name,
827 (unsigned long) count, (long long) pos);
832 retval = generic_write_checks(file, &pos, &count, 0);
837 if ((ssize_t) count < 0)
844 if (!access_ok(VERIFY_READ, buf, count))
847 retval = nfs_sync_mapping(mapping);
851 retval = nfs_direct_write(iocb, (unsigned long) buf, count, pos);
854 iocb->ki_pos = pos + retval;
861 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
864 int __init nfs_init_directcache(void)
866 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
867 sizeof(struct nfs_direct_req),
868 0, (SLAB_RECLAIM_ACCOUNT|
871 if (nfs_direct_cachep == NULL)
878 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
881 void nfs_destroy_directcache(void)
883 kmem_cache_destroy(nfs_direct_cachep);