2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
37 * SLAB caches for signal bits.
40 static struct kmem_cache *sigqueue_cachep;
43 * In POSIX a signal is sent either to a specific thread (Linux task)
44 * or to the process as a whole (Linux thread group). How the signal
45 * is sent determines whether it's to one thread or the whole group,
46 * which determines which signal mask(s) are involved in blocking it
47 * from being delivered until later. When the signal is delivered,
48 * either it's caught or ignored by a user handler or it has a default
49 * effect that applies to the whole thread group (POSIX process).
51 * The possible effects an unblocked signal set to SIG_DFL can have are:
52 * ignore - Nothing Happens
53 * terminate - kill the process, i.e. all threads in the group,
54 * similar to exit_group. The group leader (only) reports
55 * WIFSIGNALED status to its parent.
56 * coredump - write a core dump file describing all threads using
57 * the same mm and then kill all those threads
58 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
60 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
61 * Other signals when not blocked and set to SIG_DFL behaves as follows.
62 * The job control signals also have other special effects.
64 * +--------------------+------------------+
65 * | POSIX signal | default action |
66 * +--------------------+------------------+
67 * | SIGHUP | terminate |
68 * | SIGINT | terminate |
69 * | SIGQUIT | coredump |
70 * | SIGILL | coredump |
71 * | SIGTRAP | coredump |
72 * | SIGABRT/SIGIOT | coredump |
73 * | SIGBUS | coredump |
74 * | SIGFPE | coredump |
75 * | SIGKILL | terminate(+) |
76 * | SIGUSR1 | terminate |
77 * | SIGSEGV | coredump |
78 * | SIGUSR2 | terminate |
79 * | SIGPIPE | terminate |
80 * | SIGALRM | terminate |
81 * | SIGTERM | terminate |
82 * | SIGCHLD | ignore |
83 * | SIGCONT | ignore(*) |
84 * | SIGSTOP | stop(*)(+) |
85 * | SIGTSTP | stop(*) |
86 * | SIGTTIN | stop(*) |
87 * | SIGTTOU | stop(*) |
89 * | SIGXCPU | coredump |
90 * | SIGXFSZ | coredump |
91 * | SIGVTALRM | terminate |
92 * | SIGPROF | terminate |
93 * | SIGPOLL/SIGIO | terminate |
94 * | SIGSYS/SIGUNUSED | coredump |
95 * | SIGSTKFLT | terminate |
96 * | SIGWINCH | ignore |
97 * | SIGPWR | terminate |
98 * | SIGRTMIN-SIGRTMAX | terminate |
99 * +--------------------+------------------+
100 * | non-POSIX signal | default action |
101 * +--------------------+------------------+
102 * | SIGEMT | coredump |
103 * +--------------------+------------------+
105 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
106 * (*) Special job control effects:
107 * When SIGCONT is sent, it resumes the process (all threads in the group)
108 * from TASK_STOPPED state and also clears any pending/queued stop signals
109 * (any of those marked with "stop(*)"). This happens regardless of blocking,
110 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
111 * any pending/queued SIGCONT signals; this happens regardless of blocking,
112 * catching, or ignored the stop signal, though (except for SIGSTOP) the
113 * default action of stopping the process may happen later or never.
117 #define M_SIGEMT M(SIGEMT)
122 #if SIGRTMIN > BITS_PER_LONG
123 #define M(sig) (1ULL << ((sig)-1))
125 #define M(sig) (1UL << ((sig)-1))
127 #define T(sig, mask) (M(sig) & (mask))
129 #define SIG_KERNEL_ONLY_MASK (\
130 M(SIGKILL) | M(SIGSTOP) )
132 #define SIG_KERNEL_STOP_MASK (\
133 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
135 #define SIG_KERNEL_COREDUMP_MASK (\
136 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
137 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
138 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
140 #define SIG_KERNEL_IGNORE_MASK (\
141 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
143 #define sig_kernel_only(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
145 #define sig_kernel_coredump(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
147 #define sig_kernel_ignore(sig) \
148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
149 #define sig_kernel_stop(sig) \
150 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
152 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
154 #define sig_user_defined(t, signr) \
155 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
156 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
158 #define sig_fatal(t, signr) \
159 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
160 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
162 static int sig_ignored(struct task_struct *t, int sig)
164 void __user * handler;
167 * Tracers always want to know about signals..
169 if (t->ptrace & PT_PTRACED)
173 * Blocked signals are never ignored, since the
174 * signal handler may change by the time it is
177 if (sigismember(&t->blocked, sig))
180 /* Is it explicitly or implicitly ignored? */
181 handler = t->sighand->action[sig-1].sa.sa_handler;
182 return handler == SIG_IGN ||
183 (handler == SIG_DFL && sig_kernel_ignore(sig));
187 * Re-calculate pending state from the set of locally pending
188 * signals, globally pending signals, and blocked signals.
190 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
195 switch (_NSIG_WORDS) {
197 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
198 ready |= signal->sig[i] &~ blocked->sig[i];
201 case 4: ready = signal->sig[3] &~ blocked->sig[3];
202 ready |= signal->sig[2] &~ blocked->sig[2];
203 ready |= signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
207 case 2: ready = signal->sig[1] &~ blocked->sig[1];
208 ready |= signal->sig[0] &~ blocked->sig[0];
211 case 1: ready = signal->sig[0] &~ blocked->sig[0];
216 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
218 fastcall void recalc_sigpending_tsk(struct task_struct *t)
220 if (t->signal->group_stop_count > 0 ||
222 PENDING(&t->pending, &t->blocked) ||
223 PENDING(&t->signal->shared_pending, &t->blocked))
224 set_tsk_thread_flag(t, TIF_SIGPENDING);
226 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 void recalc_sigpending(void)
231 recalc_sigpending_tsk(current);
234 /* Given the mask, find the first available signal that should be serviced. */
237 next_signal(struct sigpending *pending, sigset_t *mask)
239 unsigned long i, *s, *m, x;
242 s = pending->signal.sig;
244 switch (_NSIG_WORDS) {
246 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
247 if ((x = *s &~ *m) != 0) {
248 sig = ffz(~x) + i*_NSIG_BPW + 1;
253 case 2: if ((x = s[0] &~ m[0]) != 0)
255 else if ((x = s[1] &~ m[1]) != 0)
262 case 1: if ((x = *s &~ *m) != 0)
270 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
273 struct sigqueue *q = NULL;
274 struct user_struct *user;
277 * In order to avoid problems with "switch_user()", we want to make
278 * sure that the compiler doesn't re-load "t->user"
282 atomic_inc(&user->sigpending);
283 if (override_rlimit ||
284 atomic_read(&user->sigpending) <=
285 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
286 q = kmem_cache_alloc(sigqueue_cachep, flags);
287 if (unlikely(q == NULL)) {
288 atomic_dec(&user->sigpending);
290 INIT_LIST_HEAD(&q->list);
292 q->user = get_uid(user);
297 static void __sigqueue_free(struct sigqueue *q)
299 if (q->flags & SIGQUEUE_PREALLOC)
301 atomic_dec(&q->user->sigpending);
303 kmem_cache_free(sigqueue_cachep, q);
306 void flush_sigqueue(struct sigpending *queue)
310 sigemptyset(&queue->signal);
311 while (!list_empty(&queue->list)) {
312 q = list_entry(queue->list.next, struct sigqueue , list);
313 list_del_init(&q->list);
319 * Flush all pending signals for a task.
321 void flush_signals(struct task_struct *t)
325 spin_lock_irqsave(&t->sighand->siglock, flags);
326 clear_tsk_thread_flag(t,TIF_SIGPENDING);
327 flush_sigqueue(&t->pending);
328 flush_sigqueue(&t->signal->shared_pending);
329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
333 * Flush all handlers for a task.
337 flush_signal_handlers(struct task_struct *t, int force_default)
340 struct k_sigaction *ka = &t->sighand->action[0];
341 for (i = _NSIG ; i != 0 ; i--) {
342 if (force_default || ka->sa.sa_handler != SIG_IGN)
343 ka->sa.sa_handler = SIG_DFL;
345 sigemptyset(&ka->sa.sa_mask);
351 /* Notify the system that a driver wants to block all signals for this
352 * process, and wants to be notified if any signals at all were to be
353 * sent/acted upon. If the notifier routine returns non-zero, then the
354 * signal will be acted upon after all. If the notifier routine returns 0,
355 * then then signal will be blocked. Only one block per process is
356 * allowed. priv is a pointer to private data that the notifier routine
357 * can use to determine if the signal should be blocked or not. */
360 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
364 spin_lock_irqsave(¤t->sighand->siglock, flags);
365 current->notifier_mask = mask;
366 current->notifier_data = priv;
367 current->notifier = notifier;
368 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
371 /* Notify the system that blocking has ended. */
374 unblock_all_signals(void)
378 spin_lock_irqsave(¤t->sighand->siglock, flags);
379 current->notifier = NULL;
380 current->notifier_data = NULL;
382 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
385 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
387 struct sigqueue *q, *first = NULL;
388 int still_pending = 0;
390 if (unlikely(!sigismember(&list->signal, sig)))
394 * Collect the siginfo appropriate to this signal. Check if
395 * there is another siginfo for the same signal.
397 list_for_each_entry(q, &list->list, list) {
398 if (q->info.si_signo == sig) {
407 list_del_init(&first->list);
408 copy_siginfo(info, &first->info);
409 __sigqueue_free(first);
411 sigdelset(&list->signal, sig);
414 /* Ok, it wasn't in the queue. This must be
415 a fast-pathed signal or we must have been
416 out of queue space. So zero out the info.
418 sigdelset(&list->signal, sig);
419 info->si_signo = sig;
428 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
431 int sig = next_signal(pending, mask);
434 if (current->notifier) {
435 if (sigismember(current->notifier_mask, sig)) {
436 if (!(current->notifier)(current->notifier_data)) {
437 clear_thread_flag(TIF_SIGPENDING);
443 if (!collect_signal(sig, pending, info))
451 * Dequeue a signal and return the element to the caller, which is
452 * expected to free it.
454 * All callers have to hold the siglock.
456 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
458 int signr = __dequeue_signal(&tsk->pending, mask, info);
460 signr = __dequeue_signal(&tsk->signal->shared_pending,
465 * itimers are process shared and we restart periodic
466 * itimers in the signal delivery path to prevent DoS
467 * attacks in the high resolution timer case. This is
468 * compliant with the old way of self restarting
469 * itimers, as the SIGALRM is a legacy signal and only
470 * queued once. Changing the restart behaviour to
471 * restart the timer in the signal dequeue path is
472 * reducing the timer noise on heavy loaded !highres
475 if (unlikely(signr == SIGALRM)) {
476 struct hrtimer *tmr = &tsk->signal->real_timer;
478 if (!hrtimer_is_queued(tmr) &&
479 tsk->signal->it_real_incr.tv64 != 0) {
480 hrtimer_forward(tmr, tmr->base->get_time(),
481 tsk->signal->it_real_incr);
482 hrtimer_restart(tmr);
486 recalc_sigpending_tsk(tsk);
487 if (signr && unlikely(sig_kernel_stop(signr))) {
489 * Set a marker that we have dequeued a stop signal. Our
490 * caller might release the siglock and then the pending
491 * stop signal it is about to process is no longer in the
492 * pending bitmasks, but must still be cleared by a SIGCONT
493 * (and overruled by a SIGKILL). So those cases clear this
494 * shared flag after we've set it. Note that this flag may
495 * remain set after the signal we return is ignored or
496 * handled. That doesn't matter because its only purpose
497 * is to alert stop-signal processing code when another
498 * processor has come along and cleared the flag.
500 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
501 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
504 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
505 info->si_sys_private){
507 * Release the siglock to ensure proper locking order
508 * of timer locks outside of siglocks. Note, we leave
509 * irqs disabled here, since the posix-timers code is
510 * about to disable them again anyway.
512 spin_unlock(&tsk->sighand->siglock);
513 do_schedule_next_timer(info);
514 spin_lock(&tsk->sighand->siglock);
520 * Tell a process that it has a new active signal..
522 * NOTE! we rely on the previous spin_lock to
523 * lock interrupts for us! We can only be called with
524 * "siglock" held, and the local interrupt must
525 * have been disabled when that got acquired!
527 * No need to set need_resched since signal event passing
528 * goes through ->blocked
530 void signal_wake_up(struct task_struct *t, int resume)
534 set_tsk_thread_flag(t, TIF_SIGPENDING);
537 * For SIGKILL, we want to wake it up in the stopped/traced case.
538 * We don't check t->state here because there is a race with it
539 * executing another processor and just now entering stopped state.
540 * By using wake_up_state, we ensure the process will wake up and
541 * handle its death signal.
543 mask = TASK_INTERRUPTIBLE;
545 mask |= TASK_STOPPED | TASK_TRACED;
546 if (!wake_up_state(t, mask))
551 * Remove signals in mask from the pending set and queue.
552 * Returns 1 if any signals were found.
554 * All callers must be holding the siglock.
556 * This version takes a sigset mask and looks at all signals,
557 * not just those in the first mask word.
559 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
561 struct sigqueue *q, *n;
564 sigandsets(&m, mask, &s->signal);
565 if (sigisemptyset(&m))
568 signandsets(&s->signal, &s->signal, mask);
569 list_for_each_entry_safe(q, n, &s->list, list) {
570 if (sigismember(mask, q->info.si_signo)) {
571 list_del_init(&q->list);
578 * Remove signals in mask from the pending set and queue.
579 * Returns 1 if any signals were found.
581 * All callers must be holding the siglock.
583 static int rm_from_queue(unsigned long mask, struct sigpending *s)
585 struct sigqueue *q, *n;
587 if (!sigtestsetmask(&s->signal, mask))
590 sigdelsetmask(&s->signal, mask);
591 list_for_each_entry_safe(q, n, &s->list, list) {
592 if (q->info.si_signo < SIGRTMIN &&
593 (mask & sigmask(q->info.si_signo))) {
594 list_del_init(&q->list);
602 * Bad permissions for sending the signal
604 static int check_kill_permission(int sig, struct siginfo *info,
605 struct task_struct *t)
608 if (!valid_signal(sig))
611 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
612 && ((sig != SIGCONT) ||
613 (process_session(current) != process_session(t)))
614 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
615 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
616 && !capable(CAP_KILL))
619 error = security_task_kill(t, info, sig, 0);
621 audit_signal_info(sig, t); /* Let audit system see the signal */
626 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
629 * Handle magic process-wide effects of stop/continue signals.
630 * Unlike the signal actions, these happen immediately at signal-generation
631 * time regardless of blocking, ignoring, or handling. This does the
632 * actual continuing for SIGCONT, but not the actual stopping for stop
633 * signals. The process stop is done as a signal action for SIG_DFL.
635 static void handle_stop_signal(int sig, struct task_struct *p)
637 struct task_struct *t;
639 if (p->signal->flags & SIGNAL_GROUP_EXIT)
641 * The process is in the middle of dying already.
645 if (sig_kernel_stop(sig)) {
647 * This is a stop signal. Remove SIGCONT from all queues.
649 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
652 rm_from_queue(sigmask(SIGCONT), &t->pending);
655 } else if (sig == SIGCONT) {
657 * Remove all stop signals from all queues,
658 * and wake all threads.
660 if (unlikely(p->signal->group_stop_count > 0)) {
662 * There was a group stop in progress. We'll
663 * pretend it finished before we got here. We are
664 * obliged to report it to the parent: if the
665 * SIGSTOP happened "after" this SIGCONT, then it
666 * would have cleared this pending SIGCONT. If it
667 * happened "before" this SIGCONT, then the parent
668 * got the SIGCHLD about the stop finishing before
669 * the continue happened. We do the notification
670 * now, and it's as if the stop had finished and
671 * the SIGCHLD was pending on entry to this kill.
673 p->signal->group_stop_count = 0;
674 p->signal->flags = SIGNAL_STOP_CONTINUED;
675 spin_unlock(&p->sighand->siglock);
676 do_notify_parent_cldstop(p, CLD_STOPPED);
677 spin_lock(&p->sighand->siglock);
679 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
683 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
686 * If there is a handler for SIGCONT, we must make
687 * sure that no thread returns to user mode before
688 * we post the signal, in case it was the only
689 * thread eligible to run the signal handler--then
690 * it must not do anything between resuming and
691 * running the handler. With the TIF_SIGPENDING
692 * flag set, the thread will pause and acquire the
693 * siglock that we hold now and until we've queued
694 * the pending signal.
696 * Wake up the stopped thread _after_ setting
699 state = TASK_STOPPED;
700 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
701 set_tsk_thread_flag(t, TIF_SIGPENDING);
702 state |= TASK_INTERRUPTIBLE;
704 wake_up_state(t, state);
709 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
711 * We were in fact stopped, and are now continued.
712 * Notify the parent with CLD_CONTINUED.
714 p->signal->flags = SIGNAL_STOP_CONTINUED;
715 p->signal->group_exit_code = 0;
716 spin_unlock(&p->sighand->siglock);
717 do_notify_parent_cldstop(p, CLD_CONTINUED);
718 spin_lock(&p->sighand->siglock);
721 * We are not stopped, but there could be a stop
722 * signal in the middle of being processed after
723 * being removed from the queue. Clear that too.
725 p->signal->flags = 0;
727 } else if (sig == SIGKILL) {
729 * Make sure that any pending stop signal already dequeued
730 * is undone by the wakeup for SIGKILL.
732 p->signal->flags = 0;
736 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
737 struct sigpending *signals)
739 struct sigqueue * q = NULL;
743 * fast-pathed signals for kernel-internal things like SIGSTOP
746 if (info == SEND_SIG_FORCED)
749 /* Real-time signals must be queued if sent by sigqueue, or
750 some other real-time mechanism. It is implementation
751 defined whether kill() does so. We attempt to do so, on
752 the principle of least surprise, but since kill is not
753 allowed to fail with EAGAIN when low on memory we just
754 make sure at least one signal gets delivered and don't
755 pass on the info struct. */
757 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
758 (is_si_special(info) ||
759 info->si_code >= 0)));
761 list_add_tail(&q->list, &signals->list);
762 switch ((unsigned long) info) {
763 case (unsigned long) SEND_SIG_NOINFO:
764 q->info.si_signo = sig;
765 q->info.si_errno = 0;
766 q->info.si_code = SI_USER;
767 q->info.si_pid = current->pid;
768 q->info.si_uid = current->uid;
770 case (unsigned long) SEND_SIG_PRIV:
771 q->info.si_signo = sig;
772 q->info.si_errno = 0;
773 q->info.si_code = SI_KERNEL;
778 copy_siginfo(&q->info, info);
781 } else if (!is_si_special(info)) {
782 if (sig >= SIGRTMIN && info->si_code != SI_USER)
784 * Queue overflow, abort. We may abort if the signal was rt
785 * and sent by user using something other than kill().
791 sigaddset(&signals->signal, sig);
795 #define LEGACY_QUEUE(sigptr, sig) \
796 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
800 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
804 BUG_ON(!irqs_disabled());
805 assert_spin_locked(&t->sighand->siglock);
807 /* Short-circuit ignored signals. */
808 if (sig_ignored(t, sig))
811 /* Support queueing exactly one non-rt signal, so that we
812 can get more detailed information about the cause of
814 if (LEGACY_QUEUE(&t->pending, sig))
817 ret = send_signal(sig, info, t, &t->pending);
818 if (!ret && !sigismember(&t->blocked, sig))
819 signal_wake_up(t, sig == SIGKILL);
825 * Force a signal that the process can't ignore: if necessary
826 * we unblock the signal and change any SIG_IGN to SIG_DFL.
828 * Note: If we unblock the signal, we always reset it to SIG_DFL,
829 * since we do not want to have a signal handler that was blocked
830 * be invoked when user space had explicitly blocked it.
832 * We don't want to have recursive SIGSEGV's etc, for example.
835 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
837 unsigned long int flags;
838 int ret, blocked, ignored;
839 struct k_sigaction *action;
841 spin_lock_irqsave(&t->sighand->siglock, flags);
842 action = &t->sighand->action[sig-1];
843 ignored = action->sa.sa_handler == SIG_IGN;
844 blocked = sigismember(&t->blocked, sig);
845 if (blocked || ignored) {
846 action->sa.sa_handler = SIG_DFL;
848 sigdelset(&t->blocked, sig);
849 recalc_sigpending_tsk(t);
852 ret = specific_send_sig_info(sig, info, t);
853 spin_unlock_irqrestore(&t->sighand->siglock, flags);
859 force_sig_specific(int sig, struct task_struct *t)
861 force_sig_info(sig, SEND_SIG_FORCED, t);
865 * Test if P wants to take SIG. After we've checked all threads with this,
866 * it's equivalent to finding no threads not blocking SIG. Any threads not
867 * blocking SIG were ruled out because they are not running and already
868 * have pending signals. Such threads will dequeue from the shared queue
869 * as soon as they're available, so putting the signal on the shared queue
870 * will be equivalent to sending it to one such thread.
872 static inline int wants_signal(int sig, struct task_struct *p)
874 if (sigismember(&p->blocked, sig))
876 if (p->flags & PF_EXITING)
880 if (p->state & (TASK_STOPPED | TASK_TRACED))
882 return task_curr(p) || !signal_pending(p);
886 __group_complete_signal(int sig, struct task_struct *p)
888 struct task_struct *t;
891 * Now find a thread we can wake up to take the signal off the queue.
893 * If the main thread wants the signal, it gets first crack.
894 * Probably the least surprising to the average bear.
896 if (wants_signal(sig, p))
898 else if (thread_group_empty(p))
900 * There is just one thread and it does not need to be woken.
901 * It will dequeue unblocked signals before it runs again.
906 * Otherwise try to find a suitable thread.
908 t = p->signal->curr_target;
910 /* restart balancing at this thread */
911 t = p->signal->curr_target = p;
913 while (!wants_signal(sig, t)) {
915 if (t == p->signal->curr_target)
917 * No thread needs to be woken.
918 * Any eligible threads will see
919 * the signal in the queue soon.
923 p->signal->curr_target = t;
927 * Found a killable thread. If the signal will be fatal,
928 * then start taking the whole group down immediately.
930 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
931 !sigismember(&t->real_blocked, sig) &&
932 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
934 * This signal will be fatal to the whole group.
936 if (!sig_kernel_coredump(sig)) {
938 * Start a group exit and wake everybody up.
939 * This way we don't have other threads
940 * running and doing things after a slower
941 * thread has the fatal signal pending.
943 p->signal->flags = SIGNAL_GROUP_EXIT;
944 p->signal->group_exit_code = sig;
945 p->signal->group_stop_count = 0;
948 sigaddset(&t->pending.signal, SIGKILL);
949 signal_wake_up(t, 1);
956 * There will be a core dump. We make all threads other
957 * than the chosen one go into a group stop so that nothing
958 * happens until it gets scheduled, takes the signal off
959 * the shared queue, and does the core dump. This is a
960 * little more complicated than strictly necessary, but it
961 * keeps the signal state that winds up in the core dump
962 * unchanged from the death state, e.g. which thread had
963 * the core-dump signal unblocked.
965 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
966 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
967 p->signal->group_stop_count = 0;
968 p->signal->group_exit_task = t;
971 p->signal->group_stop_count++;
972 signal_wake_up(t, 0);
975 wake_up_process(p->signal->group_exit_task);
980 * The signal is already in the shared-pending queue.
981 * Tell the chosen thread to wake up and dequeue it.
983 signal_wake_up(t, sig == SIGKILL);
988 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
992 assert_spin_locked(&p->sighand->siglock);
993 handle_stop_signal(sig, p);
995 /* Short-circuit ignored signals. */
996 if (sig_ignored(p, sig))
999 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1000 /* This is a non-RT signal and we already have one queued. */
1004 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1005 * We always use the shared queue for process-wide signals,
1006 * to avoid several races.
1008 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1012 __group_complete_signal(sig, p);
1017 * Nuke all other threads in the group.
1019 void zap_other_threads(struct task_struct *p)
1021 struct task_struct *t;
1023 p->signal->flags = SIGNAL_GROUP_EXIT;
1024 p->signal->group_stop_count = 0;
1026 if (thread_group_empty(p))
1029 for (t = next_thread(p); t != p; t = next_thread(t)) {
1031 * Don't bother with already dead threads
1037 * We don't want to notify the parent, since we are
1038 * killed as part of a thread group due to another
1039 * thread doing an execve() or similar. So set the
1040 * exit signal to -1 to allow immediate reaping of
1041 * the process. But don't detach the thread group
1044 if (t != p->group_leader)
1045 t->exit_signal = -1;
1047 /* SIGKILL will be handled before any pending SIGSTOP */
1048 sigaddset(&t->pending.signal, SIGKILL);
1049 signal_wake_up(t, 1);
1054 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1056 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1058 struct sighand_struct *sighand;
1061 sighand = rcu_dereference(tsk->sighand);
1062 if (unlikely(sighand == NULL))
1065 spin_lock_irqsave(&sighand->siglock, *flags);
1066 if (likely(sighand == tsk->sighand))
1068 spin_unlock_irqrestore(&sighand->siglock, *flags);
1074 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1076 unsigned long flags;
1079 ret = check_kill_permission(sig, info, p);
1083 if (lock_task_sighand(p, &flags)) {
1084 ret = __group_send_sig_info(sig, info, p);
1085 unlock_task_sighand(p, &flags);
1093 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1094 * control characters do (^C, ^Z etc)
1097 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1099 struct task_struct *p = NULL;
1100 int retval, success;
1104 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1105 int err = group_send_sig_info(sig, info, p);
1108 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1109 return success ? 0 : retval;
1112 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1116 read_lock(&tasklist_lock);
1117 retval = __kill_pgrp_info(sig, info, pgrp);
1118 read_unlock(&tasklist_lock);
1123 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1126 struct task_struct *p;
1129 if (unlikely(sig_needs_tasklist(sig)))
1130 read_lock(&tasklist_lock);
1132 p = pid_task(pid, PIDTYPE_PID);
1135 error = group_send_sig_info(sig, info, p);
1137 if (unlikely(sig_needs_tasklist(sig)))
1138 read_unlock(&tasklist_lock);
1144 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1148 error = kill_pid_info(sig, info, find_pid(pid));
1153 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1154 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1155 uid_t uid, uid_t euid, u32 secid)
1158 struct task_struct *p;
1160 if (!valid_signal(sig))
1163 read_lock(&tasklist_lock);
1164 p = pid_task(pid, PIDTYPE_PID);
1169 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1170 && (euid != p->suid) && (euid != p->uid)
1171 && (uid != p->suid) && (uid != p->uid)) {
1175 ret = security_task_kill(p, info, sig, secid);
1178 if (sig && p->sighand) {
1179 unsigned long flags;
1180 spin_lock_irqsave(&p->sighand->siglock, flags);
1181 ret = __group_send_sig_info(sig, info, p);
1182 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1185 read_unlock(&tasklist_lock);
1188 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1191 * kill_something_info() interprets pid in interesting ways just like kill(2).
1193 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1194 * is probably wrong. Should make it like BSD or SYSV.
1197 static int kill_something_info(int sig, struct siginfo *info, int pid)
1202 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1203 } else if (pid == -1) {
1204 int retval = 0, count = 0;
1205 struct task_struct * p;
1207 read_lock(&tasklist_lock);
1208 for_each_process(p) {
1209 if (p->pid > 1 && p->tgid != current->tgid) {
1210 int err = group_send_sig_info(sig, info, p);
1216 read_unlock(&tasklist_lock);
1217 ret = count ? retval : -ESRCH;
1218 } else if (pid < 0) {
1219 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1221 ret = kill_pid_info(sig, info, find_pid(pid));
1228 * These are for backward compatibility with the rest of the kernel source.
1232 * These two are the most common entry points. They send a signal
1233 * just to the specific thread.
1236 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1239 unsigned long flags;
1242 * Make sure legacy kernel users don't send in bad values
1243 * (normal paths check this in check_kill_permission).
1245 if (!valid_signal(sig))
1249 * We need the tasklist lock even for the specific
1250 * thread case (when we don't need to follow the group
1251 * lists) in order to avoid races with "p->sighand"
1252 * going away or changing from under us.
1254 read_lock(&tasklist_lock);
1255 spin_lock_irqsave(&p->sighand->siglock, flags);
1256 ret = specific_send_sig_info(sig, info, p);
1257 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1258 read_unlock(&tasklist_lock);
1262 #define __si_special(priv) \
1263 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1266 send_sig(int sig, struct task_struct *p, int priv)
1268 return send_sig_info(sig, __si_special(priv), p);
1272 * This is the entry point for "process-wide" signals.
1273 * They will go to an appropriate thread in the thread group.
1276 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1279 read_lock(&tasklist_lock);
1280 ret = group_send_sig_info(sig, info, p);
1281 read_unlock(&tasklist_lock);
1286 force_sig(int sig, struct task_struct *p)
1288 force_sig_info(sig, SEND_SIG_PRIV, p);
1292 * When things go south during signal handling, we
1293 * will force a SIGSEGV. And if the signal that caused
1294 * the problem was already a SIGSEGV, we'll want to
1295 * make sure we don't even try to deliver the signal..
1298 force_sigsegv(int sig, struct task_struct *p)
1300 if (sig == SIGSEGV) {
1301 unsigned long flags;
1302 spin_lock_irqsave(&p->sighand->siglock, flags);
1303 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1304 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1306 force_sig(SIGSEGV, p);
1310 int kill_pgrp(struct pid *pid, int sig, int priv)
1312 return kill_pgrp_info(sig, __si_special(priv), pid);
1314 EXPORT_SYMBOL(kill_pgrp);
1316 int kill_pid(struct pid *pid, int sig, int priv)
1318 return kill_pid_info(sig, __si_special(priv), pid);
1320 EXPORT_SYMBOL(kill_pid);
1323 kill_proc(pid_t pid, int sig, int priv)
1325 return kill_proc_info(sig, __si_special(priv), pid);
1329 * These functions support sending signals using preallocated sigqueue
1330 * structures. This is needed "because realtime applications cannot
1331 * afford to lose notifications of asynchronous events, like timer
1332 * expirations or I/O completions". In the case of Posix Timers
1333 * we allocate the sigqueue structure from the timer_create. If this
1334 * allocation fails we are able to report the failure to the application
1335 * with an EAGAIN error.
1338 struct sigqueue *sigqueue_alloc(void)
1342 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1343 q->flags |= SIGQUEUE_PREALLOC;
1347 void sigqueue_free(struct sigqueue *q)
1349 unsigned long flags;
1350 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1352 * If the signal is still pending remove it from the
1355 if (unlikely(!list_empty(&q->list))) {
1356 spinlock_t *lock = ¤t->sighand->siglock;
1357 read_lock(&tasklist_lock);
1358 spin_lock_irqsave(lock, flags);
1359 if (!list_empty(&q->list))
1360 list_del_init(&q->list);
1361 spin_unlock_irqrestore(lock, flags);
1362 read_unlock(&tasklist_lock);
1364 q->flags &= ~SIGQUEUE_PREALLOC;
1368 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1370 unsigned long flags;
1373 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1376 * The rcu based delayed sighand destroy makes it possible to
1377 * run this without tasklist lock held. The task struct itself
1378 * cannot go away as create_timer did get_task_struct().
1380 * We return -1, when the task is marked exiting, so
1381 * posix_timer_event can redirect it to the group leader
1385 if (!likely(lock_task_sighand(p, &flags))) {
1390 if (unlikely(!list_empty(&q->list))) {
1392 * If an SI_TIMER entry is already queue just increment
1393 * the overrun count.
1395 BUG_ON(q->info.si_code != SI_TIMER);
1396 q->info.si_overrun++;
1399 /* Short-circuit ignored signals. */
1400 if (sig_ignored(p, sig)) {
1405 list_add_tail(&q->list, &p->pending.list);
1406 sigaddset(&p->pending.signal, sig);
1407 if (!sigismember(&p->blocked, sig))
1408 signal_wake_up(p, sig == SIGKILL);
1411 unlock_task_sighand(p, &flags);
1419 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1421 unsigned long flags;
1424 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1426 read_lock(&tasklist_lock);
1427 /* Since it_lock is held, p->sighand cannot be NULL. */
1428 spin_lock_irqsave(&p->sighand->siglock, flags);
1429 handle_stop_signal(sig, p);
1431 /* Short-circuit ignored signals. */
1432 if (sig_ignored(p, sig)) {
1437 if (unlikely(!list_empty(&q->list))) {
1439 * If an SI_TIMER entry is already queue just increment
1440 * the overrun count. Other uses should not try to
1441 * send the signal multiple times.
1443 BUG_ON(q->info.si_code != SI_TIMER);
1444 q->info.si_overrun++;
1449 * Put this signal on the shared-pending queue.
1450 * We always use the shared queue for process-wide signals,
1451 * to avoid several races.
1453 list_add_tail(&q->list, &p->signal->shared_pending.list);
1454 sigaddset(&p->signal->shared_pending.signal, sig);
1456 __group_complete_signal(sig, p);
1458 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1459 read_unlock(&tasklist_lock);
1464 * Wake up any threads in the parent blocked in wait* syscalls.
1466 static inline void __wake_up_parent(struct task_struct *p,
1467 struct task_struct *parent)
1469 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1473 * Let a parent know about the death of a child.
1474 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1477 void do_notify_parent(struct task_struct *tsk, int sig)
1479 struct siginfo info;
1480 unsigned long flags;
1481 struct sighand_struct *psig;
1485 /* do_notify_parent_cldstop should have been called instead. */
1486 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1488 BUG_ON(!tsk->ptrace &&
1489 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1491 info.si_signo = sig;
1493 info.si_pid = tsk->pid;
1494 info.si_uid = tsk->uid;
1496 /* FIXME: find out whether or not this is supposed to be c*time. */
1497 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1498 tsk->signal->utime));
1499 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1500 tsk->signal->stime));
1502 info.si_status = tsk->exit_code & 0x7f;
1503 if (tsk->exit_code & 0x80)
1504 info.si_code = CLD_DUMPED;
1505 else if (tsk->exit_code & 0x7f)
1506 info.si_code = CLD_KILLED;
1508 info.si_code = CLD_EXITED;
1509 info.si_status = tsk->exit_code >> 8;
1512 psig = tsk->parent->sighand;
1513 spin_lock_irqsave(&psig->siglock, flags);
1514 if (!tsk->ptrace && sig == SIGCHLD &&
1515 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1516 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1518 * We are exiting and our parent doesn't care. POSIX.1
1519 * defines special semantics for setting SIGCHLD to SIG_IGN
1520 * or setting the SA_NOCLDWAIT flag: we should be reaped
1521 * automatically and not left for our parent's wait4 call.
1522 * Rather than having the parent do it as a magic kind of
1523 * signal handler, we just set this to tell do_exit that we
1524 * can be cleaned up without becoming a zombie. Note that
1525 * we still call __wake_up_parent in this case, because a
1526 * blocked sys_wait4 might now return -ECHILD.
1528 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1529 * is implementation-defined: we do (if you don't want
1530 * it, just use SIG_IGN instead).
1532 tsk->exit_signal = -1;
1533 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1536 if (valid_signal(sig) && sig > 0)
1537 __group_send_sig_info(sig, &info, tsk->parent);
1538 __wake_up_parent(tsk, tsk->parent);
1539 spin_unlock_irqrestore(&psig->siglock, flags);
1542 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1544 struct siginfo info;
1545 unsigned long flags;
1546 struct task_struct *parent;
1547 struct sighand_struct *sighand;
1549 if (tsk->ptrace & PT_PTRACED)
1550 parent = tsk->parent;
1552 tsk = tsk->group_leader;
1553 parent = tsk->real_parent;
1556 info.si_signo = SIGCHLD;
1558 info.si_pid = tsk->pid;
1559 info.si_uid = tsk->uid;
1561 /* FIXME: find out whether or not this is supposed to be c*time. */
1562 info.si_utime = cputime_to_jiffies(tsk->utime);
1563 info.si_stime = cputime_to_jiffies(tsk->stime);
1568 info.si_status = SIGCONT;
1571 info.si_status = tsk->signal->group_exit_code & 0x7f;
1574 info.si_status = tsk->exit_code & 0x7f;
1580 sighand = parent->sighand;
1581 spin_lock_irqsave(&sighand->siglock, flags);
1582 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1583 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1584 __group_send_sig_info(SIGCHLD, &info, parent);
1586 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1588 __wake_up_parent(tsk, parent);
1589 spin_unlock_irqrestore(&sighand->siglock, flags);
1592 static inline int may_ptrace_stop(void)
1594 if (!likely(current->ptrace & PT_PTRACED))
1597 if (unlikely(current->parent == current->real_parent &&
1598 (current->ptrace & PT_ATTACHED)))
1601 if (unlikely(current->signal == current->parent->signal) &&
1602 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1606 * Are we in the middle of do_coredump?
1607 * If so and our tracer is also part of the coredump stopping
1608 * is a deadlock situation, and pointless because our tracer
1609 * is dead so don't allow us to stop.
1610 * If SIGKILL was already sent before the caller unlocked
1611 * ->siglock we must see ->core_waiters != 0. Otherwise it
1612 * is safe to enter schedule().
1614 if (unlikely(current->mm->core_waiters) &&
1615 unlikely(current->mm == current->parent->mm))
1622 * This must be called with current->sighand->siglock held.
1624 * This should be the path for all ptrace stops.
1625 * We always set current->last_siginfo while stopped here.
1626 * That makes it a way to test a stopped process for
1627 * being ptrace-stopped vs being job-control-stopped.
1629 * If we actually decide not to stop at all because the tracer is gone,
1630 * we leave nostop_code in current->exit_code.
1632 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1635 * If there is a group stop in progress,
1636 * we must participate in the bookkeeping.
1638 if (current->signal->group_stop_count > 0)
1639 --current->signal->group_stop_count;
1641 current->last_siginfo = info;
1642 current->exit_code = exit_code;
1644 /* Let the debugger run. */
1645 set_current_state(TASK_TRACED);
1646 spin_unlock_irq(¤t->sighand->siglock);
1648 read_lock(&tasklist_lock);
1649 if (may_ptrace_stop()) {
1650 do_notify_parent_cldstop(current, CLD_TRAPPED);
1651 read_unlock(&tasklist_lock);
1655 * By the time we got the lock, our tracer went away.
1658 read_unlock(&tasklist_lock);
1659 set_current_state(TASK_RUNNING);
1660 current->exit_code = nostop_code;
1664 * We are back. Now reacquire the siglock before touching
1665 * last_siginfo, so that we are sure to have synchronized with
1666 * any signal-sending on another CPU that wants to examine it.
1668 spin_lock_irq(¤t->sighand->siglock);
1669 current->last_siginfo = NULL;
1672 * Queued signals ignored us while we were stopped for tracing.
1673 * So check for any that we should take before resuming user mode.
1675 recalc_sigpending();
1678 void ptrace_notify(int exit_code)
1682 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1684 memset(&info, 0, sizeof info);
1685 info.si_signo = SIGTRAP;
1686 info.si_code = exit_code;
1687 info.si_pid = current->pid;
1688 info.si_uid = current->uid;
1690 /* Let the debugger run. */
1691 spin_lock_irq(¤t->sighand->siglock);
1692 ptrace_stop(exit_code, 0, &info);
1693 spin_unlock_irq(¤t->sighand->siglock);
1697 finish_stop(int stop_count)
1700 * If there are no other threads in the group, or if there is
1701 * a group stop in progress and we are the last to stop,
1702 * report to the parent. When ptraced, every thread reports itself.
1704 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1705 read_lock(&tasklist_lock);
1706 do_notify_parent_cldstop(current, CLD_STOPPED);
1707 read_unlock(&tasklist_lock);
1712 } while (try_to_freeze());
1714 * Now we don't run again until continued.
1716 current->exit_code = 0;
1720 * This performs the stopping for SIGSTOP and other stop signals.
1721 * We have to stop all threads in the thread group.
1722 * Returns nonzero if we've actually stopped and released the siglock.
1723 * Returns zero if we didn't stop and still hold the siglock.
1725 static int do_signal_stop(int signr)
1727 struct signal_struct *sig = current->signal;
1730 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1733 if (sig->group_stop_count > 0) {
1735 * There is a group stop in progress. We don't need to
1736 * start another one.
1738 stop_count = --sig->group_stop_count;
1741 * There is no group stop already in progress.
1742 * We must initiate one now.
1744 struct task_struct *t;
1746 sig->group_exit_code = signr;
1749 for (t = next_thread(current); t != current; t = next_thread(t))
1751 * Setting state to TASK_STOPPED for a group
1752 * stop is always done with the siglock held,
1753 * so this check has no races.
1755 if (!t->exit_state &&
1756 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1758 signal_wake_up(t, 0);
1760 sig->group_stop_count = stop_count;
1763 if (stop_count == 0)
1764 sig->flags = SIGNAL_STOP_STOPPED;
1765 current->exit_code = sig->group_exit_code;
1766 __set_current_state(TASK_STOPPED);
1768 spin_unlock_irq(¤t->sighand->siglock);
1769 finish_stop(stop_count);
1774 * Do appropriate magic when group_stop_count > 0.
1775 * We return nonzero if we stopped, after releasing the siglock.
1776 * We return zero if we still hold the siglock and should look
1777 * for another signal without checking group_stop_count again.
1779 static int handle_group_stop(void)
1783 if (current->signal->group_exit_task == current) {
1785 * Group stop is so we can do a core dump,
1786 * We are the initiating thread, so get on with it.
1788 current->signal->group_exit_task = NULL;
1792 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1794 * Group stop is so another thread can do a core dump,
1795 * or else we are racing against a death signal.
1796 * Just punt the stop so we can get the next signal.
1801 * There is a group stop in progress. We stop
1802 * without any associated signal being in our queue.
1804 stop_count = --current->signal->group_stop_count;
1805 if (stop_count == 0)
1806 current->signal->flags = SIGNAL_STOP_STOPPED;
1807 current->exit_code = current->signal->group_exit_code;
1808 set_current_state(TASK_STOPPED);
1809 spin_unlock_irq(¤t->sighand->siglock);
1810 finish_stop(stop_count);
1814 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1815 struct pt_regs *regs, void *cookie)
1817 sigset_t *mask = ¤t->blocked;
1823 spin_lock_irq(¤t->sighand->siglock);
1825 struct k_sigaction *ka;
1827 if (unlikely(current->signal->group_stop_count > 0) &&
1828 handle_group_stop())
1831 signr = dequeue_signal(current, mask, info);
1834 break; /* will return 0 */
1836 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1837 ptrace_signal_deliver(regs, cookie);
1839 /* Let the debugger run. */
1840 ptrace_stop(signr, signr, info);
1842 /* We're back. Did the debugger cancel the sig? */
1843 signr = current->exit_code;
1847 current->exit_code = 0;
1849 /* Update the siginfo structure if the signal has
1850 changed. If the debugger wanted something
1851 specific in the siginfo structure then it should
1852 have updated *info via PTRACE_SETSIGINFO. */
1853 if (signr != info->si_signo) {
1854 info->si_signo = signr;
1856 info->si_code = SI_USER;
1857 info->si_pid = current->parent->pid;
1858 info->si_uid = current->parent->uid;
1861 /* If the (new) signal is now blocked, requeue it. */
1862 if (sigismember(¤t->blocked, signr)) {
1863 specific_send_sig_info(signr, info, current);
1868 ka = ¤t->sighand->action[signr-1];
1869 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1871 if (ka->sa.sa_handler != SIG_DFL) {
1872 /* Run the handler. */
1875 if (ka->sa.sa_flags & SA_ONESHOT)
1876 ka->sa.sa_handler = SIG_DFL;
1878 break; /* will return non-zero "signr" value */
1882 * Now we are doing the default action for this signal.
1884 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1888 * Init of a pid space gets no signals it doesn't want from
1889 * within that pid space. It can of course get signals from
1890 * its parent pid space.
1892 if (current == child_reaper(current))
1895 if (sig_kernel_stop(signr)) {
1897 * The default action is to stop all threads in
1898 * the thread group. The job control signals
1899 * do nothing in an orphaned pgrp, but SIGSTOP
1900 * always works. Note that siglock needs to be
1901 * dropped during the call to is_orphaned_pgrp()
1902 * because of lock ordering with tasklist_lock.
1903 * This allows an intervening SIGCONT to be posted.
1904 * We need to check for that and bail out if necessary.
1906 if (signr != SIGSTOP) {
1907 spin_unlock_irq(¤t->sighand->siglock);
1909 /* signals can be posted during this window */
1911 if (is_current_pgrp_orphaned())
1914 spin_lock_irq(¤t->sighand->siglock);
1917 if (likely(do_signal_stop(signr))) {
1918 /* It released the siglock. */
1923 * We didn't actually stop, due to a race
1924 * with SIGCONT or something like that.
1929 spin_unlock_irq(¤t->sighand->siglock);
1932 * Anything else is fatal, maybe with a core dump.
1934 current->flags |= PF_SIGNALED;
1935 if (sig_kernel_coredump(signr)) {
1937 * If it was able to dump core, this kills all
1938 * other threads in the group and synchronizes with
1939 * their demise. If we lost the race with another
1940 * thread getting here, it set group_exit_code
1941 * first and our do_group_exit call below will use
1942 * that value and ignore the one we pass it.
1944 do_coredump((long)signr, signr, regs);
1948 * Death signals, no core dump.
1950 do_group_exit(signr);
1953 spin_unlock_irq(¤t->sighand->siglock);
1957 EXPORT_SYMBOL(recalc_sigpending);
1958 EXPORT_SYMBOL_GPL(dequeue_signal);
1959 EXPORT_SYMBOL(flush_signals);
1960 EXPORT_SYMBOL(force_sig);
1961 EXPORT_SYMBOL(kill_proc);
1962 EXPORT_SYMBOL(ptrace_notify);
1963 EXPORT_SYMBOL(send_sig);
1964 EXPORT_SYMBOL(send_sig_info);
1965 EXPORT_SYMBOL(sigprocmask);
1966 EXPORT_SYMBOL(block_all_signals);
1967 EXPORT_SYMBOL(unblock_all_signals);
1971 * System call entry points.
1974 asmlinkage long sys_restart_syscall(void)
1976 struct restart_block *restart = ¤t_thread_info()->restart_block;
1977 return restart->fn(restart);
1980 long do_no_restart_syscall(struct restart_block *param)
1986 * We don't need to get the kernel lock - this is all local to this
1987 * particular thread.. (and that's good, because this is _heavily_
1988 * used by various programs)
1992 * This is also useful for kernel threads that want to temporarily
1993 * (or permanently) block certain signals.
1995 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1996 * interface happily blocks "unblockable" signals like SIGKILL
1999 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2003 spin_lock_irq(¤t->sighand->siglock);
2005 *oldset = current->blocked;
2010 sigorsets(¤t->blocked, ¤t->blocked, set);
2013 signandsets(¤t->blocked, ¤t->blocked, set);
2016 current->blocked = *set;
2021 recalc_sigpending();
2022 spin_unlock_irq(¤t->sighand->siglock);
2028 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2030 int error = -EINVAL;
2031 sigset_t old_set, new_set;
2033 /* XXX: Don't preclude handling different sized sigset_t's. */
2034 if (sigsetsize != sizeof(sigset_t))
2039 if (copy_from_user(&new_set, set, sizeof(*set)))
2041 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2043 error = sigprocmask(how, &new_set, &old_set);
2049 spin_lock_irq(¤t->sighand->siglock);
2050 old_set = current->blocked;
2051 spin_unlock_irq(¤t->sighand->siglock);
2055 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2063 long do_sigpending(void __user *set, unsigned long sigsetsize)
2065 long error = -EINVAL;
2068 if (sigsetsize > sizeof(sigset_t))
2071 spin_lock_irq(¤t->sighand->siglock);
2072 sigorsets(&pending, ¤t->pending.signal,
2073 ¤t->signal->shared_pending.signal);
2074 spin_unlock_irq(¤t->sighand->siglock);
2076 /* Outside the lock because only this thread touches it. */
2077 sigandsets(&pending, ¤t->blocked, &pending);
2080 if (!copy_to_user(set, &pending, sigsetsize))
2088 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2090 return do_sigpending(set, sigsetsize);
2093 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2095 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2099 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2101 if (from->si_code < 0)
2102 return __copy_to_user(to, from, sizeof(siginfo_t))
2105 * If you change siginfo_t structure, please be sure
2106 * this code is fixed accordingly.
2107 * It should never copy any pad contained in the structure
2108 * to avoid security leaks, but must copy the generic
2109 * 3 ints plus the relevant union member.
2111 err = __put_user(from->si_signo, &to->si_signo);
2112 err |= __put_user(from->si_errno, &to->si_errno);
2113 err |= __put_user((short)from->si_code, &to->si_code);
2114 switch (from->si_code & __SI_MASK) {
2116 err |= __put_user(from->si_pid, &to->si_pid);
2117 err |= __put_user(from->si_uid, &to->si_uid);
2120 err |= __put_user(from->si_tid, &to->si_tid);
2121 err |= __put_user(from->si_overrun, &to->si_overrun);
2122 err |= __put_user(from->si_ptr, &to->si_ptr);
2125 err |= __put_user(from->si_band, &to->si_band);
2126 err |= __put_user(from->si_fd, &to->si_fd);
2129 err |= __put_user(from->si_addr, &to->si_addr);
2130 #ifdef __ARCH_SI_TRAPNO
2131 err |= __put_user(from->si_trapno, &to->si_trapno);
2135 err |= __put_user(from->si_pid, &to->si_pid);
2136 err |= __put_user(from->si_uid, &to->si_uid);
2137 err |= __put_user(from->si_status, &to->si_status);
2138 err |= __put_user(from->si_utime, &to->si_utime);
2139 err |= __put_user(from->si_stime, &to->si_stime);
2141 case __SI_RT: /* This is not generated by the kernel as of now. */
2142 case __SI_MESGQ: /* But this is */
2143 err |= __put_user(from->si_pid, &to->si_pid);
2144 err |= __put_user(from->si_uid, &to->si_uid);
2145 err |= __put_user(from->si_ptr, &to->si_ptr);
2147 default: /* this is just in case for now ... */
2148 err |= __put_user(from->si_pid, &to->si_pid);
2149 err |= __put_user(from->si_uid, &to->si_uid);
2158 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2159 siginfo_t __user *uinfo,
2160 const struct timespec __user *uts,
2169 /* XXX: Don't preclude handling different sized sigset_t's. */
2170 if (sigsetsize != sizeof(sigset_t))
2173 if (copy_from_user(&these, uthese, sizeof(these)))
2177 * Invert the set of allowed signals to get those we
2180 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2184 if (copy_from_user(&ts, uts, sizeof(ts)))
2186 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2191 spin_lock_irq(¤t->sighand->siglock);
2192 sig = dequeue_signal(current, &these, &info);
2194 timeout = MAX_SCHEDULE_TIMEOUT;
2196 timeout = (timespec_to_jiffies(&ts)
2197 + (ts.tv_sec || ts.tv_nsec));
2200 /* None ready -- temporarily unblock those we're
2201 * interested while we are sleeping in so that we'll
2202 * be awakened when they arrive. */
2203 current->real_blocked = current->blocked;
2204 sigandsets(¤t->blocked, ¤t->blocked, &these);
2205 recalc_sigpending();
2206 spin_unlock_irq(¤t->sighand->siglock);
2208 timeout = schedule_timeout_interruptible(timeout);
2210 spin_lock_irq(¤t->sighand->siglock);
2211 sig = dequeue_signal(current, &these, &info);
2212 current->blocked = current->real_blocked;
2213 siginitset(¤t->real_blocked, 0);
2214 recalc_sigpending();
2217 spin_unlock_irq(¤t->sighand->siglock);
2222 if (copy_siginfo_to_user(uinfo, &info))
2235 sys_kill(int pid, int sig)
2237 struct siginfo info;
2239 info.si_signo = sig;
2241 info.si_code = SI_USER;
2242 info.si_pid = current->tgid;
2243 info.si_uid = current->uid;
2245 return kill_something_info(sig, &info, pid);
2248 static int do_tkill(int tgid, int pid, int sig)
2251 struct siginfo info;
2252 struct task_struct *p;
2255 info.si_signo = sig;
2257 info.si_code = SI_TKILL;
2258 info.si_pid = current->tgid;
2259 info.si_uid = current->uid;
2261 read_lock(&tasklist_lock);
2262 p = find_task_by_pid(pid);
2263 if (p && (tgid <= 0 || p->tgid == tgid)) {
2264 error = check_kill_permission(sig, &info, p);
2266 * The null signal is a permissions and process existence
2267 * probe. No signal is actually delivered.
2269 if (!error && sig && p->sighand) {
2270 spin_lock_irq(&p->sighand->siglock);
2271 handle_stop_signal(sig, p);
2272 error = specific_send_sig_info(sig, &info, p);
2273 spin_unlock_irq(&p->sighand->siglock);
2276 read_unlock(&tasklist_lock);
2282 * sys_tgkill - send signal to one specific thread
2283 * @tgid: the thread group ID of the thread
2284 * @pid: the PID of the thread
2285 * @sig: signal to be sent
2287 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2288 * exists but it's not belonging to the target process anymore. This
2289 * method solves the problem of threads exiting and PIDs getting reused.
2291 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2293 /* This is only valid for single tasks */
2294 if (pid <= 0 || tgid <= 0)
2297 return do_tkill(tgid, pid, sig);
2301 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2304 sys_tkill(int pid, int sig)
2306 /* This is only valid for single tasks */
2310 return do_tkill(0, pid, sig);
2314 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2318 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2321 /* Not even root can pretend to send signals from the kernel.
2322 Nor can they impersonate a kill(), which adds source info. */
2323 if (info.si_code >= 0)
2325 info.si_signo = sig;
2327 /* POSIX.1b doesn't mention process groups. */
2328 return kill_proc_info(sig, &info, pid);
2331 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2333 struct k_sigaction *k;
2336 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2339 k = ¤t->sighand->action[sig-1];
2341 spin_lock_irq(¤t->sighand->siglock);
2342 if (signal_pending(current)) {
2344 * If there might be a fatal signal pending on multiple
2345 * threads, make sure we take it before changing the action.
2347 spin_unlock_irq(¤t->sighand->siglock);
2348 return -ERESTARTNOINTR;
2355 sigdelsetmask(&act->sa.sa_mask,
2356 sigmask(SIGKILL) | sigmask(SIGSTOP));
2360 * "Setting a signal action to SIG_IGN for a signal that is
2361 * pending shall cause the pending signal to be discarded,
2362 * whether or not it is blocked."
2364 * "Setting a signal action to SIG_DFL for a signal that is
2365 * pending and whose default action is to ignore the signal
2366 * (for example, SIGCHLD), shall cause the pending signal to
2367 * be discarded, whether or not it is blocked"
2369 if (act->sa.sa_handler == SIG_IGN ||
2370 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2371 struct task_struct *t = current;
2373 sigaddset(&mask, sig);
2374 rm_from_queue_full(&mask, &t->signal->shared_pending);
2376 rm_from_queue_full(&mask, &t->pending);
2377 recalc_sigpending_tsk(t);
2379 } while (t != current);
2383 spin_unlock_irq(¤t->sighand->siglock);
2388 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2394 oss.ss_sp = (void __user *) current->sas_ss_sp;
2395 oss.ss_size = current->sas_ss_size;
2396 oss.ss_flags = sas_ss_flags(sp);
2405 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2406 || __get_user(ss_sp, &uss->ss_sp)
2407 || __get_user(ss_flags, &uss->ss_flags)
2408 || __get_user(ss_size, &uss->ss_size))
2412 if (on_sig_stack(sp))
2418 * Note - this code used to test ss_flags incorrectly
2419 * old code may have been written using ss_flags==0
2420 * to mean ss_flags==SS_ONSTACK (as this was the only
2421 * way that worked) - this fix preserves that older
2424 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2427 if (ss_flags == SS_DISABLE) {
2432 if (ss_size < MINSIGSTKSZ)
2436 current->sas_ss_sp = (unsigned long) ss_sp;
2437 current->sas_ss_size = ss_size;
2442 if (copy_to_user(uoss, &oss, sizeof(oss)))
2451 #ifdef __ARCH_WANT_SYS_SIGPENDING
2454 sys_sigpending(old_sigset_t __user *set)
2456 return do_sigpending(set, sizeof(*set));
2461 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2462 /* Some platforms have their own version with special arguments others
2463 support only sys_rt_sigprocmask. */
2466 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2469 old_sigset_t old_set, new_set;
2473 if (copy_from_user(&new_set, set, sizeof(*set)))
2475 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2477 spin_lock_irq(¤t->sighand->siglock);
2478 old_set = current->blocked.sig[0];
2486 sigaddsetmask(¤t->blocked, new_set);
2489 sigdelsetmask(¤t->blocked, new_set);
2492 current->blocked.sig[0] = new_set;
2496 recalc_sigpending();
2497 spin_unlock_irq(¤t->sighand->siglock);
2503 old_set = current->blocked.sig[0];
2506 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2513 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2515 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2517 sys_rt_sigaction(int sig,
2518 const struct sigaction __user *act,
2519 struct sigaction __user *oact,
2522 struct k_sigaction new_sa, old_sa;
2525 /* XXX: Don't preclude handling different sized sigset_t's. */
2526 if (sigsetsize != sizeof(sigset_t))
2530 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2534 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2537 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2543 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2545 #ifdef __ARCH_WANT_SYS_SGETMASK
2548 * For backwards compatibility. Functionality superseded by sigprocmask.
2554 return current->blocked.sig[0];
2558 sys_ssetmask(int newmask)
2562 spin_lock_irq(¤t->sighand->siglock);
2563 old = current->blocked.sig[0];
2565 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2567 recalc_sigpending();
2568 spin_unlock_irq(¤t->sighand->siglock);
2572 #endif /* __ARCH_WANT_SGETMASK */
2574 #ifdef __ARCH_WANT_SYS_SIGNAL
2576 * For backwards compatibility. Functionality superseded by sigaction.
2578 asmlinkage unsigned long
2579 sys_signal(int sig, __sighandler_t handler)
2581 struct k_sigaction new_sa, old_sa;
2584 new_sa.sa.sa_handler = handler;
2585 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2586 sigemptyset(&new_sa.sa.sa_mask);
2588 ret = do_sigaction(sig, &new_sa, &old_sa);
2590 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2592 #endif /* __ARCH_WANT_SYS_SIGNAL */
2594 #ifdef __ARCH_WANT_SYS_PAUSE
2599 current->state = TASK_INTERRUPTIBLE;
2601 return -ERESTARTNOHAND;
2606 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2607 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2611 /* XXX: Don't preclude handling different sized sigset_t's. */
2612 if (sigsetsize != sizeof(sigset_t))
2615 if (copy_from_user(&newset, unewset, sizeof(newset)))
2617 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2619 spin_lock_irq(¤t->sighand->siglock);
2620 current->saved_sigmask = current->blocked;
2621 current->blocked = newset;
2622 recalc_sigpending();
2623 spin_unlock_irq(¤t->sighand->siglock);
2625 current->state = TASK_INTERRUPTIBLE;
2627 set_thread_flag(TIF_RESTORE_SIGMASK);
2628 return -ERESTARTNOHAND;
2630 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2632 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2637 void __init signals_init(void)
2640 kmem_cache_create("sigqueue",
2641 sizeof(struct sigqueue),
2642 __alignof__(struct sigqueue),
2643 SLAB_PANIC, NULL, NULL);