2 * linux/arch/arm/kernel/setup.c
4 * Copyright (C) 1995-2001 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/init.h>
22 #include <linux/root_dev.h>
23 #include <linux/cpu.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
29 #include <asm/cputype.h>
31 #include <asm/procinfo.h>
32 #include <asm/sections.h>
33 #include <asm/setup.h>
34 #include <asm/mach-types.h>
35 #include <asm/cacheflush.h>
36 #include <asm/cachetype.h>
37 #include <asm/tlbflush.h>
39 #include <asm/mach/arch.h>
40 #include <asm/mach/irq.h>
41 #include <asm/mach/time.h>
42 #include <asm/traps.h>
48 #define MEM_SIZE (16*1024*1024)
51 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
54 static int __init fpe_setup(char *line)
56 memcpy(fpe_type, line, 8);
60 __setup("fpe=", fpe_setup);
63 extern void paging_init(struct machine_desc *desc);
64 extern void reboot_setup(char *str);
66 unsigned int processor_id;
67 EXPORT_SYMBOL(processor_id);
68 unsigned int __machine_arch_type;
69 EXPORT_SYMBOL(__machine_arch_type);
71 EXPORT_SYMBOL(cacheid);
73 unsigned int __atags_pointer __initdata;
75 unsigned int system_rev;
76 EXPORT_SYMBOL(system_rev);
78 unsigned int system_serial_low;
79 EXPORT_SYMBOL(system_serial_low);
81 unsigned int system_serial_high;
82 EXPORT_SYMBOL(system_serial_high);
84 unsigned int elf_hwcap;
85 EXPORT_SYMBOL(elf_hwcap);
89 struct processor processor;
92 struct cpu_tlb_fns cpu_tlb;
95 struct cpu_user_fns cpu_user;
98 struct cpu_cache_fns cpu_cache;
100 #ifdef CONFIG_OUTER_CACHE
101 struct outer_cache_fns outer_cache;
108 } ____cacheline_aligned;
110 static struct stack stacks[NR_CPUS];
112 char elf_platform[ELF_PLATFORM_SIZE];
113 EXPORT_SYMBOL(elf_platform);
115 static const char *cpu_name;
116 static const char *machine_name;
117 static char __initdata command_line[COMMAND_LINE_SIZE];
119 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
120 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
121 #define ENDIANNESS ((char)endian_test.l)
123 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
126 * Standard memory resources
128 static struct resource mem_res[] = {
133 .flags = IORESOURCE_MEM
136 .name = "Kernel text",
139 .flags = IORESOURCE_MEM
142 .name = "Kernel data",
145 .flags = IORESOURCE_MEM
149 #define video_ram mem_res[0]
150 #define kernel_code mem_res[1]
151 #define kernel_data mem_res[2]
153 static struct resource io_res[] = {
158 .flags = IORESOURCE_IO | IORESOURCE_BUSY
164 .flags = IORESOURCE_IO | IORESOURCE_BUSY
170 .flags = IORESOURCE_IO | IORESOURCE_BUSY
174 #define lp0 io_res[0]
175 #define lp1 io_res[1]
176 #define lp2 io_res[2]
178 static const char *proc_arch[] = {
198 int cpu_architecture(void)
202 if ((read_cpuid_id() & 0x0008f000) == 0) {
203 cpu_arch = CPU_ARCH_UNKNOWN;
204 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
205 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
206 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
207 cpu_arch = (read_cpuid_id() >> 16) & 7;
209 cpu_arch += CPU_ARCH_ARMv3;
210 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
213 /* Revised CPUID format. Read the Memory Model Feature
214 * Register 0 and check for VMSAv7 or PMSAv7 */
215 asm("mrc p15, 0, %0, c0, c1, 4"
217 if ((mmfr0 & 0x0000000f) == 0x00000003 ||
218 (mmfr0 & 0x000000f0) == 0x00000030)
219 cpu_arch = CPU_ARCH_ARMv7;
220 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
221 (mmfr0 & 0x000000f0) == 0x00000020)
222 cpu_arch = CPU_ARCH_ARMv6;
224 cpu_arch = CPU_ARCH_UNKNOWN;
226 cpu_arch = CPU_ARCH_UNKNOWN;
231 static void __init cacheid_init(void)
233 unsigned int cachetype = read_cpuid_cachetype();
234 unsigned int arch = cpu_architecture();
236 if (arch >= CPU_ARCH_ARMv6) {
237 if ((cachetype & (7 << 29)) == 4 << 29) {
238 /* ARMv7 register format */
239 cacheid = CACHEID_VIPT_NONALIASING;
240 if ((cachetype & (3 << 14)) == 1 << 14)
241 cacheid |= CACHEID_ASID_TAGGED;
242 } else if (cachetype & (1 << 23))
243 cacheid = CACHEID_VIPT_ALIASING;
245 cacheid = CACHEID_VIPT_NONALIASING;
247 cacheid = CACHEID_VIVT;
250 printk("CPU: %s data cache, %s instruction cache\n",
251 cache_is_vivt() ? "VIVT" :
252 cache_is_vipt_aliasing() ? "VIPT aliasing" :
253 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
254 cache_is_vivt() ? "VIVT" :
255 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
256 cache_is_vipt_aliasing() ? "VIPT aliasing" :
257 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
261 * These functions re-use the assembly code in head.S, which
262 * already provide the required functionality.
264 extern struct proc_info_list *lookup_processor_type(unsigned int);
265 extern struct machine_desc *lookup_machine_type(unsigned int);
267 static void __init setup_processor(void)
269 struct proc_info_list *list;
272 * locate processor in the list of supported processor
273 * types. The linker builds this table for us from the
274 * entries in arch/arm/mm/proc-*.S
276 list = lookup_processor_type(read_cpuid_id());
278 printk("CPU configuration botched (ID %08x), unable "
279 "to continue.\n", read_cpuid_id());
283 cpu_name = list->cpu_name;
286 processor = *list->proc;
289 cpu_tlb = *list->tlb;
292 cpu_user = *list->user;
295 cpu_cache = *list->cache;
298 printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
299 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
300 proc_arch[cpu_architecture()], cr_alignment);
302 sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
303 sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
304 elf_hwcap = list->elf_hwcap;
305 #ifndef CONFIG_ARM_THUMB
306 elf_hwcap &= ~HWCAP_THUMB;
314 * cpu_init - initialise one CPU.
316 * cpu_init sets up the per-CPU stacks.
320 unsigned int cpu = smp_processor_id();
321 struct stack *stk = &stacks[cpu];
323 if (cpu >= NR_CPUS) {
324 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
329 * setup stacks for re-entrant exception handlers
341 "I" (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
342 "I" (offsetof(struct stack, irq[0])),
343 "I" (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
344 "I" (offsetof(struct stack, abt[0])),
345 "I" (PSR_F_BIT | PSR_I_BIT | UND_MODE),
346 "I" (offsetof(struct stack, und[0])),
347 "I" (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
351 static struct machine_desc * __init setup_machine(unsigned int nr)
353 struct machine_desc *list;
356 * locate machine in the list of supported machines.
358 list = lookup_machine_type(nr);
360 printk("Machine configuration botched (nr %d), unable "
361 "to continue.\n", nr);
365 printk("Machine: %s\n", list->name);
370 static int __init arm_add_memory(unsigned long start, unsigned long size)
372 struct membank *bank = &meminfo.bank[meminfo.nr_banks];
374 if (meminfo.nr_banks >= NR_BANKS) {
375 printk(KERN_CRIT "NR_BANKS too low, "
376 "ignoring memory at %#lx\n", start);
381 * Ensure that start/size are aligned to a page boundary.
382 * Size is appropriately rounded down, start is rounded up.
384 size -= start & ~PAGE_MASK;
385 bank->start = PAGE_ALIGN(start);
386 bank->size = size & PAGE_MASK;
387 bank->node = PHYS_TO_NID(start);
390 * Check whether this memory region has non-zero size or
391 * invalid node number.
393 if (bank->size == 0 || bank->node >= MAX_NUMNODES)
401 * Pick out the memory size. We look for mem=size@start,
402 * where start and size are "size[KkMm]"
404 static void __init early_mem(char **p)
406 static int usermem __initdata = 0;
407 unsigned long size, start;
410 * If the user specifies memory size, we
411 * blow away any automatically generated
416 meminfo.nr_banks = 0;
420 size = memparse(*p, p);
422 start = memparse(*p + 1, p);
424 arm_add_memory(start, size);
426 __early_param("mem=", early_mem);
429 * Initial parsing of the command line.
431 static void __init parse_cmdline(char **cmdline_p, char *from)
433 char c = ' ', *to = command_line;
438 extern struct early_params __early_begin, __early_end;
439 struct early_params *p;
441 for (p = &__early_begin; p < &__early_end; p++) {
442 int arglen = strlen(p->arg);
444 if (memcmp(from, p->arg, arglen) == 0) {
445 if (to != command_line)
450 while (*from != ' ' && *from != '\0')
459 if (COMMAND_LINE_SIZE <= ++len)
464 *cmdline_p = command_line;
468 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
470 #ifdef CONFIG_BLK_DEV_RAM
471 extern int rd_size, rd_image_start, rd_prompt, rd_doload;
473 rd_image_start = image_start;
483 request_standard_resources(struct meminfo *mi, struct machine_desc *mdesc)
485 struct resource *res;
488 kernel_code.start = virt_to_phys(_text);
489 kernel_code.end = virt_to_phys(_etext - 1);
490 kernel_data.start = virt_to_phys(_data);
491 kernel_data.end = virt_to_phys(_end - 1);
493 for (i = 0; i < mi->nr_banks; i++) {
494 if (mi->bank[i].size == 0)
497 res = alloc_bootmem_low(sizeof(*res));
498 res->name = "System RAM";
499 res->start = mi->bank[i].start;
500 res->end = mi->bank[i].start + mi->bank[i].size - 1;
501 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
503 request_resource(&iomem_resource, res);
505 if (kernel_code.start >= res->start &&
506 kernel_code.end <= res->end)
507 request_resource(res, &kernel_code);
508 if (kernel_data.start >= res->start &&
509 kernel_data.end <= res->end)
510 request_resource(res, &kernel_data);
513 if (mdesc->video_start) {
514 video_ram.start = mdesc->video_start;
515 video_ram.end = mdesc->video_end;
516 request_resource(&iomem_resource, &video_ram);
520 * Some machines don't have the possibility of ever
521 * possessing lp0, lp1 or lp2
523 if (mdesc->reserve_lp0)
524 request_resource(&ioport_resource, &lp0);
525 if (mdesc->reserve_lp1)
526 request_resource(&ioport_resource, &lp1);
527 if (mdesc->reserve_lp2)
528 request_resource(&ioport_resource, &lp2);
534 * This is the new way of passing data to the kernel at boot time. Rather
535 * than passing a fixed inflexible structure to the kernel, we pass a list
536 * of variable-sized tags to the kernel. The first tag must be a ATAG_CORE
537 * tag for the list to be recognised (to distinguish the tagged list from
538 * a param_struct). The list is terminated with a zero-length tag (this tag
539 * is not parsed in any way).
541 static int __init parse_tag_core(const struct tag *tag)
543 if (tag->hdr.size > 2) {
544 if ((tag->u.core.flags & 1) == 0)
545 root_mountflags &= ~MS_RDONLY;
546 ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
551 __tagtable(ATAG_CORE, parse_tag_core);
553 static int __init parse_tag_mem32(const struct tag *tag)
555 return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
558 __tagtable(ATAG_MEM, parse_tag_mem32);
560 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
561 struct screen_info screen_info = {
562 .orig_video_lines = 30,
563 .orig_video_cols = 80,
564 .orig_video_mode = 0,
565 .orig_video_ega_bx = 0,
566 .orig_video_isVGA = 1,
567 .orig_video_points = 8
570 static int __init parse_tag_videotext(const struct tag *tag)
572 screen_info.orig_x = tag->u.videotext.x;
573 screen_info.orig_y = tag->u.videotext.y;
574 screen_info.orig_video_page = tag->u.videotext.video_page;
575 screen_info.orig_video_mode = tag->u.videotext.video_mode;
576 screen_info.orig_video_cols = tag->u.videotext.video_cols;
577 screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
578 screen_info.orig_video_lines = tag->u.videotext.video_lines;
579 screen_info.orig_video_isVGA = tag->u.videotext.video_isvga;
580 screen_info.orig_video_points = tag->u.videotext.video_points;
584 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
587 static int __init parse_tag_ramdisk(const struct tag *tag)
589 setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
590 (tag->u.ramdisk.flags & 2) == 0,
591 tag->u.ramdisk.start, tag->u.ramdisk.size);
595 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
597 static int __init parse_tag_serialnr(const struct tag *tag)
599 system_serial_low = tag->u.serialnr.low;
600 system_serial_high = tag->u.serialnr.high;
604 __tagtable(ATAG_SERIAL, parse_tag_serialnr);
606 static int __init parse_tag_revision(const struct tag *tag)
608 system_rev = tag->u.revision.rev;
612 __tagtable(ATAG_REVISION, parse_tag_revision);
614 static int __init parse_tag_cmdline(const struct tag *tag)
616 strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
620 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
623 * Scan the tag table for this tag, and call its parse function.
624 * The tag table is built by the linker from all the __tagtable
627 static int __init parse_tag(const struct tag *tag)
629 extern struct tagtable __tagtable_begin, __tagtable_end;
632 for (t = &__tagtable_begin; t < &__tagtable_end; t++)
633 if (tag->hdr.tag == t->tag) {
638 return t < &__tagtable_end;
642 * Parse all tags in the list, checking both the global and architecture
643 * specific tag tables.
645 static void __init parse_tags(const struct tag *t)
647 for (; t->hdr.size; t = tag_next(t))
650 "Ignoring unrecognised tag 0x%08x\n",
655 * This holds our defaults.
657 static struct init_tags {
658 struct tag_header hdr1;
659 struct tag_core core;
660 struct tag_header hdr2;
661 struct tag_mem32 mem;
662 struct tag_header hdr3;
663 } init_tags __initdata = {
664 { tag_size(tag_core), ATAG_CORE },
665 { 1, PAGE_SIZE, 0xff },
666 { tag_size(tag_mem32), ATAG_MEM },
667 { MEM_SIZE, PHYS_OFFSET },
671 static void (*init_machine)(void) __initdata;
673 static int __init customize_machine(void)
675 /* customizes platform devices, or adds new ones */
680 arch_initcall(customize_machine);
682 void __init setup_arch(char **cmdline_p)
684 struct tag *tags = (struct tag *)&init_tags;
685 struct machine_desc *mdesc;
686 char *from = default_command_line;
689 mdesc = setup_machine(machine_arch_type);
690 machine_name = mdesc->name;
692 if (mdesc->soft_reboot)
696 tags = phys_to_virt(__atags_pointer);
697 else if (mdesc->boot_params)
698 tags = phys_to_virt(mdesc->boot_params);
701 * If we have the old style parameters, convert them to
704 if (tags->hdr.tag != ATAG_CORE)
705 convert_to_tag_list(tags);
706 if (tags->hdr.tag != ATAG_CORE)
707 tags = (struct tag *)&init_tags;
710 mdesc->fixup(mdesc, tags, &from, &meminfo);
712 if (tags->hdr.tag == ATAG_CORE) {
713 if (meminfo.nr_banks != 0)
714 squash_mem_tags(tags);
719 init_mm.start_code = (unsigned long) _text;
720 init_mm.end_code = (unsigned long) _etext;
721 init_mm.end_data = (unsigned long) _edata;
722 init_mm.brk = (unsigned long) _end;
724 memcpy(boot_command_line, from, COMMAND_LINE_SIZE);
725 boot_command_line[COMMAND_LINE_SIZE-1] = '\0';
726 parse_cmdline(cmdline_p, from);
728 request_standard_resources(&meminfo, mdesc);
737 * Set up various architecture-specific pointers
739 init_arch_irq = mdesc->init_irq;
740 system_timer = mdesc->timer;
741 init_machine = mdesc->init_machine;
744 #if defined(CONFIG_VGA_CONSOLE)
745 conswitchp = &vga_con;
746 #elif defined(CONFIG_DUMMY_CONSOLE)
747 conswitchp = &dummy_con;
754 static int __init topology_init(void)
758 for_each_possible_cpu(cpu) {
759 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
760 cpuinfo->cpu.hotpluggable = 1;
761 register_cpu(&cpuinfo->cpu, cpu);
767 subsys_initcall(topology_init);
769 static const char *hwcap_str[] = {
786 static int c_show(struct seq_file *m, void *v)
790 seq_printf(m, "Processor\t: %s rev %d (%s)\n",
791 cpu_name, read_cpuid_id() & 15, elf_platform);
793 #if defined(CONFIG_SMP)
794 for_each_online_cpu(i) {
796 * glibc reads /proc/cpuinfo to determine the number of
797 * online processors, looking for lines beginning with
798 * "processor". Give glibc what it expects.
800 seq_printf(m, "processor\t: %d\n", i);
801 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
802 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
803 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
805 #else /* CONFIG_SMP */
806 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
807 loops_per_jiffy / (500000/HZ),
808 (loops_per_jiffy / (5000/HZ)) % 100);
811 /* dump out the processor features */
812 seq_puts(m, "Features\t: ");
814 for (i = 0; hwcap_str[i]; i++)
815 if (elf_hwcap & (1 << i))
816 seq_printf(m, "%s ", hwcap_str[i]);
818 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
819 seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
821 if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
823 seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
825 if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
827 seq_printf(m, "CPU variant\t: 0x%02x\n",
828 (read_cpuid_id() >> 16) & 127);
831 seq_printf(m, "CPU variant\t: 0x%x\n",
832 (read_cpuid_id() >> 20) & 15);
834 seq_printf(m, "CPU part\t: 0x%03x\n",
835 (read_cpuid_id() >> 4) & 0xfff);
837 seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
841 seq_printf(m, "Hardware\t: %s\n", machine_name);
842 seq_printf(m, "Revision\t: %04x\n", system_rev);
843 seq_printf(m, "Serial\t\t: %08x%08x\n",
844 system_serial_high, system_serial_low);
849 static void *c_start(struct seq_file *m, loff_t *pos)
851 return *pos < 1 ? (void *)1 : NULL;
854 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
860 static void c_stop(struct seq_file *m, void *v)
864 const struct seq_operations cpuinfo_op = {