4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t *p)
173 if (p->static_prio < NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
176 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
181 void __put_task_struct_cb(struct rcu_head *rhp)
183 __put_task_struct(container_of(rhp, struct task_struct, rcu));
186 EXPORT_SYMBOL_GPL(__put_task_struct_cb);
189 * These are the runqueue data structures:
192 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
194 typedef struct runqueue runqueue_t;
197 unsigned int nr_active;
198 unsigned long bitmap[BITMAP_SIZE];
199 struct list_head queue[MAX_PRIO];
203 * This is the main, per-CPU runqueue data structure.
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
216 unsigned long nr_running;
218 unsigned long cpu_load[3];
220 unsigned long long nr_switches;
223 * This is part of a global counter where only the total sum
224 * over all CPUs matters. A task can increase this counter on
225 * one CPU and if it got migrated afterwards it may decrease
226 * it on another CPU. Always updated under the runqueue lock:
228 unsigned long nr_uninterruptible;
230 unsigned long expired_timestamp;
231 unsigned long long timestamp_last_tick;
233 struct mm_struct *prev_mm;
234 prio_array_t *active, *expired, arrays[2];
235 int best_expired_prio;
239 struct sched_domain *sd;
241 /* For active balancing */
245 task_t *migration_thread;
246 struct list_head migration_queue;
249 #ifdef CONFIG_SCHEDSTATS
251 struct sched_info rq_sched_info;
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
270 static DEFINE_PER_CPU(struct runqueue, runqueues);
273 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
274 * See detach_destroy_domains: synchronize_sched for details.
276 * The domain tree of any CPU may only be accessed from within
277 * preempt-disabled sections.
279 #define for_each_domain(cpu, domain) \
280 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
282 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
283 #define this_rq() (&__get_cpu_var(runqueues))
284 #define task_rq(p) cpu_rq(task_cpu(p))
285 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
287 #ifndef prepare_arch_switch
288 # define prepare_arch_switch(next) do { } while (0)
290 #ifndef finish_arch_switch
291 # define finish_arch_switch(prev) do { } while (0)
294 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
295 static inline int task_running(runqueue_t *rq, task_t *p)
297 return rq->curr == p;
300 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
304 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
306 #ifdef CONFIG_DEBUG_SPINLOCK
307 /* this is a valid case when another task releases the spinlock */
308 rq->lock.owner = current;
310 spin_unlock_irq(&rq->lock);
313 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
314 static inline int task_running(runqueue_t *rq, task_t *p)
319 return rq->curr == p;
323 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
327 * We can optimise this out completely for !SMP, because the
328 * SMP rebalancing from interrupt is the only thing that cares
333 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
334 spin_unlock_irq(&rq->lock);
336 spin_unlock(&rq->lock);
340 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
344 * After ->oncpu is cleared, the task can be moved to a different CPU.
345 * We must ensure this doesn't happen until the switch is completely
351 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
355 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
358 * task_rq_lock - lock the runqueue a given task resides on and disable
359 * interrupts. Note the ordering: we can safely lookup the task_rq without
360 * explicitly disabling preemption.
362 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
368 local_irq_save(*flags);
370 spin_lock(&rq->lock);
371 if (unlikely(rq != task_rq(p))) {
372 spin_unlock_irqrestore(&rq->lock, *flags);
373 goto repeat_lock_task;
378 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
381 spin_unlock_irqrestore(&rq->lock, *flags);
384 #ifdef CONFIG_SCHEDSTATS
386 * bump this up when changing the output format or the meaning of an existing
387 * format, so that tools can adapt (or abort)
389 #define SCHEDSTAT_VERSION 12
391 static int show_schedstat(struct seq_file *seq, void *v)
395 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
396 seq_printf(seq, "timestamp %lu\n", jiffies);
397 for_each_online_cpu(cpu) {
398 runqueue_t *rq = cpu_rq(cpu);
400 struct sched_domain *sd;
404 /* runqueue-specific stats */
406 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
407 cpu, rq->yld_both_empty,
408 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
409 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
410 rq->ttwu_cnt, rq->ttwu_local,
411 rq->rq_sched_info.cpu_time,
412 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
414 seq_printf(seq, "\n");
417 /* domain-specific stats */
419 for_each_domain(cpu, sd) {
420 enum idle_type itype;
421 char mask_str[NR_CPUS];
423 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
424 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
425 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
427 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
429 sd->lb_balanced[itype],
430 sd->lb_failed[itype],
431 sd->lb_imbalance[itype],
432 sd->lb_gained[itype],
433 sd->lb_hot_gained[itype],
434 sd->lb_nobusyq[itype],
435 sd->lb_nobusyg[itype]);
437 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
438 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
439 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
440 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
441 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
449 static int schedstat_open(struct inode *inode, struct file *file)
451 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
452 char *buf = kmalloc(size, GFP_KERNEL);
458 res = single_open(file, show_schedstat, NULL);
460 m = file->private_data;
468 struct file_operations proc_schedstat_operations = {
469 .open = schedstat_open,
472 .release = single_release,
475 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
476 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
477 #else /* !CONFIG_SCHEDSTATS */
478 # define schedstat_inc(rq, field) do { } while (0)
479 # define schedstat_add(rq, field, amt) do { } while (0)
483 * rq_lock - lock a given runqueue and disable interrupts.
485 static inline runqueue_t *this_rq_lock(void)
492 spin_lock(&rq->lock);
497 #ifdef CONFIG_SCHEDSTATS
499 * Called when a process is dequeued from the active array and given
500 * the cpu. We should note that with the exception of interactive
501 * tasks, the expired queue will become the active queue after the active
502 * queue is empty, without explicitly dequeuing and requeuing tasks in the
503 * expired queue. (Interactive tasks may be requeued directly to the
504 * active queue, thus delaying tasks in the expired queue from running;
505 * see scheduler_tick()).
507 * This function is only called from sched_info_arrive(), rather than
508 * dequeue_task(). Even though a task may be queued and dequeued multiple
509 * times as it is shuffled about, we're really interested in knowing how
510 * long it was from the *first* time it was queued to the time that it
513 static inline void sched_info_dequeued(task_t *t)
515 t->sched_info.last_queued = 0;
519 * Called when a task finally hits the cpu. We can now calculate how
520 * long it was waiting to run. We also note when it began so that we
521 * can keep stats on how long its timeslice is.
523 static void sched_info_arrive(task_t *t)
525 unsigned long now = jiffies, diff = 0;
526 struct runqueue *rq = task_rq(t);
528 if (t->sched_info.last_queued)
529 diff = now - t->sched_info.last_queued;
530 sched_info_dequeued(t);
531 t->sched_info.run_delay += diff;
532 t->sched_info.last_arrival = now;
533 t->sched_info.pcnt++;
538 rq->rq_sched_info.run_delay += diff;
539 rq->rq_sched_info.pcnt++;
543 * Called when a process is queued into either the active or expired
544 * array. The time is noted and later used to determine how long we
545 * had to wait for us to reach the cpu. Since the expired queue will
546 * become the active queue after active queue is empty, without dequeuing
547 * and requeuing any tasks, we are interested in queuing to either. It
548 * is unusual but not impossible for tasks to be dequeued and immediately
549 * requeued in the same or another array: this can happen in sched_yield(),
550 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
553 * This function is only called from enqueue_task(), but also only updates
554 * the timestamp if it is already not set. It's assumed that
555 * sched_info_dequeued() will clear that stamp when appropriate.
557 static inline void sched_info_queued(task_t *t)
559 if (!t->sched_info.last_queued)
560 t->sched_info.last_queued = jiffies;
564 * Called when a process ceases being the active-running process, either
565 * voluntarily or involuntarily. Now we can calculate how long we ran.
567 static inline void sched_info_depart(task_t *t)
569 struct runqueue *rq = task_rq(t);
570 unsigned long diff = jiffies - t->sched_info.last_arrival;
572 t->sched_info.cpu_time += diff;
575 rq->rq_sched_info.cpu_time += diff;
579 * Called when tasks are switched involuntarily due, typically, to expiring
580 * their time slice. (This may also be called when switching to or from
581 * the idle task.) We are only called when prev != next.
583 static inline void sched_info_switch(task_t *prev, task_t *next)
585 struct runqueue *rq = task_rq(prev);
588 * prev now departs the cpu. It's not interesting to record
589 * stats about how efficient we were at scheduling the idle
592 if (prev != rq->idle)
593 sched_info_depart(prev);
595 if (next != rq->idle)
596 sched_info_arrive(next);
599 #define sched_info_queued(t) do { } while (0)
600 #define sched_info_switch(t, next) do { } while (0)
601 #endif /* CONFIG_SCHEDSTATS */
604 * Adding/removing a task to/from a priority array:
606 static void dequeue_task(struct task_struct *p, prio_array_t *array)
609 list_del(&p->run_list);
610 if (list_empty(array->queue + p->prio))
611 __clear_bit(p->prio, array->bitmap);
614 static void enqueue_task(struct task_struct *p, prio_array_t *array)
616 sched_info_queued(p);
617 list_add_tail(&p->run_list, array->queue + p->prio);
618 __set_bit(p->prio, array->bitmap);
624 * Put task to the end of the run list without the overhead of dequeue
625 * followed by enqueue.
627 static void requeue_task(struct task_struct *p, prio_array_t *array)
629 list_move_tail(&p->run_list, array->queue + p->prio);
632 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
634 list_add(&p->run_list, array->queue + p->prio);
635 __set_bit(p->prio, array->bitmap);
641 * effective_prio - return the priority that is based on the static
642 * priority but is modified by bonuses/penalties.
644 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
645 * into the -5 ... 0 ... +5 bonus/penalty range.
647 * We use 25% of the full 0...39 priority range so that:
649 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
650 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
652 * Both properties are important to certain workloads.
654 static int effective_prio(task_t *p)
661 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
663 prio = p->static_prio - bonus;
664 if (prio < MAX_RT_PRIO)
666 if (prio > MAX_PRIO-1)
672 * __activate_task - move a task to the runqueue.
674 static inline void __activate_task(task_t *p, runqueue_t *rq)
676 enqueue_task(p, rq->active);
681 * __activate_idle_task - move idle task to the _front_ of runqueue.
683 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
685 enqueue_task_head(p, rq->active);
689 static int recalc_task_prio(task_t *p, unsigned long long now)
691 /* Caller must always ensure 'now >= p->timestamp' */
692 unsigned long long __sleep_time = now - p->timestamp;
693 unsigned long sleep_time;
695 if (unlikely(p->policy == SCHED_BATCH))
698 if (__sleep_time > NS_MAX_SLEEP_AVG)
699 sleep_time = NS_MAX_SLEEP_AVG;
701 sleep_time = (unsigned long)__sleep_time;
704 if (likely(sleep_time > 0)) {
706 * User tasks that sleep a long time are categorised as
707 * idle and will get just interactive status to stay active &
708 * prevent them suddenly becoming cpu hogs and starving
711 if (p->mm && p->activated != -1 &&
712 sleep_time > INTERACTIVE_SLEEP(p)) {
713 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
717 * The lower the sleep avg a task has the more
718 * rapidly it will rise with sleep time.
720 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
723 * Tasks waking from uninterruptible sleep are
724 * limited in their sleep_avg rise as they
725 * are likely to be waiting on I/O
727 if (p->activated == -1 && p->mm) {
728 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
730 else if (p->sleep_avg + sleep_time >=
731 INTERACTIVE_SLEEP(p)) {
732 p->sleep_avg = INTERACTIVE_SLEEP(p);
738 * This code gives a bonus to interactive tasks.
740 * The boost works by updating the 'average sleep time'
741 * value here, based on ->timestamp. The more time a
742 * task spends sleeping, the higher the average gets -
743 * and the higher the priority boost gets as well.
745 p->sleep_avg += sleep_time;
747 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
748 p->sleep_avg = NS_MAX_SLEEP_AVG;
752 return effective_prio(p);
756 * activate_task - move a task to the runqueue and do priority recalculation
758 * Update all the scheduling statistics stuff. (sleep average
759 * calculation, priority modifiers, etc.)
761 static void activate_task(task_t *p, runqueue_t *rq, int local)
763 unsigned long long now;
768 /* Compensate for drifting sched_clock */
769 runqueue_t *this_rq = this_rq();
770 now = (now - this_rq->timestamp_last_tick)
771 + rq->timestamp_last_tick;
776 p->prio = recalc_task_prio(p, now);
779 * This checks to make sure it's not an uninterruptible task
780 * that is now waking up.
784 * Tasks which were woken up by interrupts (ie. hw events)
785 * are most likely of interactive nature. So we give them
786 * the credit of extending their sleep time to the period
787 * of time they spend on the runqueue, waiting for execution
788 * on a CPU, first time around:
794 * Normal first-time wakeups get a credit too for
795 * on-runqueue time, but it will be weighted down:
802 __activate_task(p, rq);
806 * deactivate_task - remove a task from the runqueue.
808 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
811 dequeue_task(p, p->array);
816 * resched_task - mark a task 'to be rescheduled now'.
818 * On UP this means the setting of the need_resched flag, on SMP it
819 * might also involve a cross-CPU call to trigger the scheduler on
823 static void resched_task(task_t *p)
827 assert_spin_locked(&task_rq(p)->lock);
829 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
832 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
835 if (cpu == smp_processor_id())
838 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
840 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
841 smp_send_reschedule(cpu);
844 static inline void resched_task(task_t *p)
846 assert_spin_locked(&task_rq(p)->lock);
847 set_tsk_need_resched(p);
852 * task_curr - is this task currently executing on a CPU?
853 * @p: the task in question.
855 inline int task_curr(const task_t *p)
857 return cpu_curr(task_cpu(p)) == p;
862 struct list_head list;
867 struct completion done;
871 * The task's runqueue lock must be held.
872 * Returns true if you have to wait for migration thread.
874 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
876 runqueue_t *rq = task_rq(p);
879 * If the task is not on a runqueue (and not running), then
880 * it is sufficient to simply update the task's cpu field.
882 if (!p->array && !task_running(rq, p)) {
883 set_task_cpu(p, dest_cpu);
887 init_completion(&req->done);
889 req->dest_cpu = dest_cpu;
890 list_add(&req->list, &rq->migration_queue);
895 * wait_task_inactive - wait for a thread to unschedule.
897 * The caller must ensure that the task *will* unschedule sometime soon,
898 * else this function might spin for a *long* time. This function can't
899 * be called with interrupts off, or it may introduce deadlock with
900 * smp_call_function() if an IPI is sent by the same process we are
901 * waiting to become inactive.
903 void wait_task_inactive(task_t *p)
910 rq = task_rq_lock(p, &flags);
911 /* Must be off runqueue entirely, not preempted. */
912 if (unlikely(p->array || task_running(rq, p))) {
913 /* If it's preempted, we yield. It could be a while. */
914 preempted = !task_running(rq, p);
915 task_rq_unlock(rq, &flags);
921 task_rq_unlock(rq, &flags);
925 * kick_process - kick a running thread to enter/exit the kernel
926 * @p: the to-be-kicked thread
928 * Cause a process which is running on another CPU to enter
929 * kernel-mode, without any delay. (to get signals handled.)
931 * NOTE: this function doesnt have to take the runqueue lock,
932 * because all it wants to ensure is that the remote task enters
933 * the kernel. If the IPI races and the task has been migrated
934 * to another CPU then no harm is done and the purpose has been
937 void kick_process(task_t *p)
943 if ((cpu != smp_processor_id()) && task_curr(p))
944 smp_send_reschedule(cpu);
949 * Return a low guess at the load of a migration-source cpu.
951 * We want to under-estimate the load of migration sources, to
952 * balance conservatively.
954 static inline unsigned long source_load(int cpu, int type)
956 runqueue_t *rq = cpu_rq(cpu);
957 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
961 return min(rq->cpu_load[type-1], load_now);
965 * Return a high guess at the load of a migration-target cpu
967 static inline unsigned long target_load(int cpu, int type)
969 runqueue_t *rq = cpu_rq(cpu);
970 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
974 return max(rq->cpu_load[type-1], load_now);
978 * find_idlest_group finds and returns the least busy CPU group within the
981 static struct sched_group *
982 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
984 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
985 unsigned long min_load = ULONG_MAX, this_load = 0;
986 int load_idx = sd->forkexec_idx;
987 int imbalance = 100 + (sd->imbalance_pct-100)/2;
990 unsigned long load, avg_load;
994 /* Skip over this group if it has no CPUs allowed */
995 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
998 local_group = cpu_isset(this_cpu, group->cpumask);
1000 /* Tally up the load of all CPUs in the group */
1003 for_each_cpu_mask(i, group->cpumask) {
1004 /* Bias balancing toward cpus of our domain */
1006 load = source_load(i, load_idx);
1008 load = target_load(i, load_idx);
1013 /* Adjust by relative CPU power of the group */
1014 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1017 this_load = avg_load;
1019 } else if (avg_load < min_load) {
1020 min_load = avg_load;
1024 group = group->next;
1025 } while (group != sd->groups);
1027 if (!idlest || 100*this_load < imbalance*min_load)
1033 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1036 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1039 unsigned long load, min_load = ULONG_MAX;
1043 /* Traverse only the allowed CPUs */
1044 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1046 for_each_cpu_mask(i, tmp) {
1047 load = source_load(i, 0);
1049 if (load < min_load || (load == min_load && i == this_cpu)) {
1059 * sched_balance_self: balance the current task (running on cpu) in domains
1060 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1063 * Balance, ie. select the least loaded group.
1065 * Returns the target CPU number, or the same CPU if no balancing is needed.
1067 * preempt must be disabled.
1069 static int sched_balance_self(int cpu, int flag)
1071 struct task_struct *t = current;
1072 struct sched_domain *tmp, *sd = NULL;
1074 for_each_domain(cpu, tmp)
1075 if (tmp->flags & flag)
1080 struct sched_group *group;
1085 group = find_idlest_group(sd, t, cpu);
1089 new_cpu = find_idlest_cpu(group, t, cpu);
1090 if (new_cpu == -1 || new_cpu == cpu)
1093 /* Now try balancing at a lower domain level */
1097 weight = cpus_weight(span);
1098 for_each_domain(cpu, tmp) {
1099 if (weight <= cpus_weight(tmp->span))
1101 if (tmp->flags & flag)
1104 /* while loop will break here if sd == NULL */
1110 #endif /* CONFIG_SMP */
1113 * wake_idle() will wake a task on an idle cpu if task->cpu is
1114 * not idle and an idle cpu is available. The span of cpus to
1115 * search starts with cpus closest then further out as needed,
1116 * so we always favor a closer, idle cpu.
1118 * Returns the CPU we should wake onto.
1120 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1121 static int wake_idle(int cpu, task_t *p)
1124 struct sched_domain *sd;
1130 for_each_domain(cpu, sd) {
1131 if (sd->flags & SD_WAKE_IDLE) {
1132 cpus_and(tmp, sd->span, p->cpus_allowed);
1133 for_each_cpu_mask(i, tmp) {
1144 static inline int wake_idle(int cpu, task_t *p)
1151 * try_to_wake_up - wake up a thread
1152 * @p: the to-be-woken-up thread
1153 * @state: the mask of task states that can be woken
1154 * @sync: do a synchronous wakeup?
1156 * Put it on the run-queue if it's not already there. The "current"
1157 * thread is always on the run-queue (except when the actual
1158 * re-schedule is in progress), and as such you're allowed to do
1159 * the simpler "current->state = TASK_RUNNING" to mark yourself
1160 * runnable without the overhead of this.
1162 * returns failure only if the task is already active.
1164 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1166 int cpu, this_cpu, success = 0;
1167 unsigned long flags;
1171 unsigned long load, this_load;
1172 struct sched_domain *sd, *this_sd = NULL;
1176 rq = task_rq_lock(p, &flags);
1177 old_state = p->state;
1178 if (!(old_state & state))
1185 this_cpu = smp_processor_id();
1188 if (unlikely(task_running(rq, p)))
1193 schedstat_inc(rq, ttwu_cnt);
1194 if (cpu == this_cpu) {
1195 schedstat_inc(rq, ttwu_local);
1199 for_each_domain(this_cpu, sd) {
1200 if (cpu_isset(cpu, sd->span)) {
1201 schedstat_inc(sd, ttwu_wake_remote);
1207 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1211 * Check for affine wakeup and passive balancing possibilities.
1214 int idx = this_sd->wake_idx;
1215 unsigned int imbalance;
1217 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1219 load = source_load(cpu, idx);
1220 this_load = target_load(this_cpu, idx);
1222 new_cpu = this_cpu; /* Wake to this CPU if we can */
1224 if (this_sd->flags & SD_WAKE_AFFINE) {
1225 unsigned long tl = this_load;
1227 * If sync wakeup then subtract the (maximum possible)
1228 * effect of the currently running task from the load
1229 * of the current CPU:
1232 tl -= SCHED_LOAD_SCALE;
1235 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1236 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1238 * This domain has SD_WAKE_AFFINE and
1239 * p is cache cold in this domain, and
1240 * there is no bad imbalance.
1242 schedstat_inc(this_sd, ttwu_move_affine);
1248 * Start passive balancing when half the imbalance_pct
1251 if (this_sd->flags & SD_WAKE_BALANCE) {
1252 if (imbalance*this_load <= 100*load) {
1253 schedstat_inc(this_sd, ttwu_move_balance);
1259 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1261 new_cpu = wake_idle(new_cpu, p);
1262 if (new_cpu != cpu) {
1263 set_task_cpu(p, new_cpu);
1264 task_rq_unlock(rq, &flags);
1265 /* might preempt at this point */
1266 rq = task_rq_lock(p, &flags);
1267 old_state = p->state;
1268 if (!(old_state & state))
1273 this_cpu = smp_processor_id();
1278 #endif /* CONFIG_SMP */
1279 if (old_state == TASK_UNINTERRUPTIBLE) {
1280 rq->nr_uninterruptible--;
1282 * Tasks on involuntary sleep don't earn
1283 * sleep_avg beyond just interactive state.
1289 * Tasks that have marked their sleep as noninteractive get
1290 * woken up without updating their sleep average. (i.e. their
1291 * sleep is handled in a priority-neutral manner, no priority
1292 * boost and no penalty.)
1294 if (old_state & TASK_NONINTERACTIVE)
1295 __activate_task(p, rq);
1297 activate_task(p, rq, cpu == this_cpu);
1299 * Sync wakeups (i.e. those types of wakeups where the waker
1300 * has indicated that it will leave the CPU in short order)
1301 * don't trigger a preemption, if the woken up task will run on
1302 * this cpu. (in this case the 'I will reschedule' promise of
1303 * the waker guarantees that the freshly woken up task is going
1304 * to be considered on this CPU.)
1306 if (!sync || cpu != this_cpu) {
1307 if (TASK_PREEMPTS_CURR(p, rq))
1308 resched_task(rq->curr);
1313 p->state = TASK_RUNNING;
1315 task_rq_unlock(rq, &flags);
1320 int fastcall wake_up_process(task_t *p)
1322 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1323 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1326 EXPORT_SYMBOL(wake_up_process);
1328 int fastcall wake_up_state(task_t *p, unsigned int state)
1330 return try_to_wake_up(p, state, 0);
1334 * Perform scheduler related setup for a newly forked process p.
1335 * p is forked by current.
1337 void fastcall sched_fork(task_t *p, int clone_flags)
1339 int cpu = get_cpu();
1342 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1344 set_task_cpu(p, cpu);
1347 * We mark the process as running here, but have not actually
1348 * inserted it onto the runqueue yet. This guarantees that
1349 * nobody will actually run it, and a signal or other external
1350 * event cannot wake it up and insert it on the runqueue either.
1352 p->state = TASK_RUNNING;
1353 INIT_LIST_HEAD(&p->run_list);
1355 #ifdef CONFIG_SCHEDSTATS
1356 memset(&p->sched_info, 0, sizeof(p->sched_info));
1358 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1361 #ifdef CONFIG_PREEMPT
1362 /* Want to start with kernel preemption disabled. */
1363 task_thread_info(p)->preempt_count = 1;
1366 * Share the timeslice between parent and child, thus the
1367 * total amount of pending timeslices in the system doesn't change,
1368 * resulting in more scheduling fairness.
1370 local_irq_disable();
1371 p->time_slice = (current->time_slice + 1) >> 1;
1373 * The remainder of the first timeslice might be recovered by
1374 * the parent if the child exits early enough.
1376 p->first_time_slice = 1;
1377 current->time_slice >>= 1;
1378 p->timestamp = sched_clock();
1379 if (unlikely(!current->time_slice)) {
1381 * This case is rare, it happens when the parent has only
1382 * a single jiffy left from its timeslice. Taking the
1383 * runqueue lock is not a problem.
1385 current->time_slice = 1;
1393 * wake_up_new_task - wake up a newly created task for the first time.
1395 * This function will do some initial scheduler statistics housekeeping
1396 * that must be done for every newly created context, then puts the task
1397 * on the runqueue and wakes it.
1399 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1401 unsigned long flags;
1403 runqueue_t *rq, *this_rq;
1405 rq = task_rq_lock(p, &flags);
1406 BUG_ON(p->state != TASK_RUNNING);
1407 this_cpu = smp_processor_id();
1411 * We decrease the sleep average of forking parents
1412 * and children as well, to keep max-interactive tasks
1413 * from forking tasks that are max-interactive. The parent
1414 * (current) is done further down, under its lock.
1416 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1417 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1419 p->prio = effective_prio(p);
1421 if (likely(cpu == this_cpu)) {
1422 if (!(clone_flags & CLONE_VM)) {
1424 * The VM isn't cloned, so we're in a good position to
1425 * do child-runs-first in anticipation of an exec. This
1426 * usually avoids a lot of COW overhead.
1428 if (unlikely(!current->array))
1429 __activate_task(p, rq);
1431 p->prio = current->prio;
1432 list_add_tail(&p->run_list, ¤t->run_list);
1433 p->array = current->array;
1434 p->array->nr_active++;
1439 /* Run child last */
1440 __activate_task(p, rq);
1442 * We skip the following code due to cpu == this_cpu
1444 * task_rq_unlock(rq, &flags);
1445 * this_rq = task_rq_lock(current, &flags);
1449 this_rq = cpu_rq(this_cpu);
1452 * Not the local CPU - must adjust timestamp. This should
1453 * get optimised away in the !CONFIG_SMP case.
1455 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1456 + rq->timestamp_last_tick;
1457 __activate_task(p, rq);
1458 if (TASK_PREEMPTS_CURR(p, rq))
1459 resched_task(rq->curr);
1462 * Parent and child are on different CPUs, now get the
1463 * parent runqueue to update the parent's ->sleep_avg:
1465 task_rq_unlock(rq, &flags);
1466 this_rq = task_rq_lock(current, &flags);
1468 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1469 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1470 task_rq_unlock(this_rq, &flags);
1474 * Potentially available exiting-child timeslices are
1475 * retrieved here - this way the parent does not get
1476 * penalized for creating too many threads.
1478 * (this cannot be used to 'generate' timeslices
1479 * artificially, because any timeslice recovered here
1480 * was given away by the parent in the first place.)
1482 void fastcall sched_exit(task_t *p)
1484 unsigned long flags;
1488 * If the child was a (relative-) CPU hog then decrease
1489 * the sleep_avg of the parent as well.
1491 rq = task_rq_lock(p->parent, &flags);
1492 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1493 p->parent->time_slice += p->time_slice;
1494 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1495 p->parent->time_slice = task_timeslice(p);
1497 if (p->sleep_avg < p->parent->sleep_avg)
1498 p->parent->sleep_avg = p->parent->sleep_avg /
1499 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1501 task_rq_unlock(rq, &flags);
1505 * prepare_task_switch - prepare to switch tasks
1506 * @rq: the runqueue preparing to switch
1507 * @next: the task we are going to switch to.
1509 * This is called with the rq lock held and interrupts off. It must
1510 * be paired with a subsequent finish_task_switch after the context
1513 * prepare_task_switch sets up locking and calls architecture specific
1516 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1518 prepare_lock_switch(rq, next);
1519 prepare_arch_switch(next);
1523 * finish_task_switch - clean up after a task-switch
1524 * @rq: runqueue associated with task-switch
1525 * @prev: the thread we just switched away from.
1527 * finish_task_switch must be called after the context switch, paired
1528 * with a prepare_task_switch call before the context switch.
1529 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1530 * and do any other architecture-specific cleanup actions.
1532 * Note that we may have delayed dropping an mm in context_switch(). If
1533 * so, we finish that here outside of the runqueue lock. (Doing it
1534 * with the lock held can cause deadlocks; see schedule() for
1537 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1538 __releases(rq->lock)
1540 struct mm_struct *mm = rq->prev_mm;
1541 unsigned long prev_task_flags;
1546 * A task struct has one reference for the use as "current".
1547 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1548 * calls schedule one last time. The schedule call will never return,
1549 * and the scheduled task must drop that reference.
1550 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1551 * still held, otherwise prev could be scheduled on another cpu, die
1552 * there before we look at prev->state, and then the reference would
1554 * Manfred Spraul <manfred@colorfullife.com>
1556 prev_task_flags = prev->flags;
1557 finish_arch_switch(prev);
1558 finish_lock_switch(rq, prev);
1561 if (unlikely(prev_task_flags & PF_DEAD))
1562 put_task_struct(prev);
1566 * schedule_tail - first thing a freshly forked thread must call.
1567 * @prev: the thread we just switched away from.
1569 asmlinkage void schedule_tail(task_t *prev)
1570 __releases(rq->lock)
1572 runqueue_t *rq = this_rq();
1573 finish_task_switch(rq, prev);
1574 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1575 /* In this case, finish_task_switch does not reenable preemption */
1578 if (current->set_child_tid)
1579 put_user(current->pid, current->set_child_tid);
1583 * context_switch - switch to the new MM and the new
1584 * thread's register state.
1587 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1589 struct mm_struct *mm = next->mm;
1590 struct mm_struct *oldmm = prev->active_mm;
1592 if (unlikely(!mm)) {
1593 next->active_mm = oldmm;
1594 atomic_inc(&oldmm->mm_count);
1595 enter_lazy_tlb(oldmm, next);
1597 switch_mm(oldmm, mm, next);
1599 if (unlikely(!prev->mm)) {
1600 prev->active_mm = NULL;
1601 WARN_ON(rq->prev_mm);
1602 rq->prev_mm = oldmm;
1605 /* Here we just switch the register state and the stack. */
1606 switch_to(prev, next, prev);
1612 * nr_running, nr_uninterruptible and nr_context_switches:
1614 * externally visible scheduler statistics: current number of runnable
1615 * threads, current number of uninterruptible-sleeping threads, total
1616 * number of context switches performed since bootup.
1618 unsigned long nr_running(void)
1620 unsigned long i, sum = 0;
1622 for_each_online_cpu(i)
1623 sum += cpu_rq(i)->nr_running;
1628 unsigned long nr_uninterruptible(void)
1630 unsigned long i, sum = 0;
1633 sum += cpu_rq(i)->nr_uninterruptible;
1636 * Since we read the counters lockless, it might be slightly
1637 * inaccurate. Do not allow it to go below zero though:
1639 if (unlikely((long)sum < 0))
1645 unsigned long long nr_context_switches(void)
1647 unsigned long long i, sum = 0;
1650 sum += cpu_rq(i)->nr_switches;
1655 unsigned long nr_iowait(void)
1657 unsigned long i, sum = 0;
1660 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1668 * double_rq_lock - safely lock two runqueues
1670 * Note this does not disable interrupts like task_rq_lock,
1671 * you need to do so manually before calling.
1673 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1674 __acquires(rq1->lock)
1675 __acquires(rq2->lock)
1678 spin_lock(&rq1->lock);
1679 __acquire(rq2->lock); /* Fake it out ;) */
1682 spin_lock(&rq1->lock);
1683 spin_lock(&rq2->lock);
1685 spin_lock(&rq2->lock);
1686 spin_lock(&rq1->lock);
1692 * double_rq_unlock - safely unlock two runqueues
1694 * Note this does not restore interrupts like task_rq_unlock,
1695 * you need to do so manually after calling.
1697 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1698 __releases(rq1->lock)
1699 __releases(rq2->lock)
1701 spin_unlock(&rq1->lock);
1703 spin_unlock(&rq2->lock);
1705 __release(rq2->lock);
1709 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1711 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1712 __releases(this_rq->lock)
1713 __acquires(busiest->lock)
1714 __acquires(this_rq->lock)
1716 if (unlikely(!spin_trylock(&busiest->lock))) {
1717 if (busiest < this_rq) {
1718 spin_unlock(&this_rq->lock);
1719 spin_lock(&busiest->lock);
1720 spin_lock(&this_rq->lock);
1722 spin_lock(&busiest->lock);
1727 * If dest_cpu is allowed for this process, migrate the task to it.
1728 * This is accomplished by forcing the cpu_allowed mask to only
1729 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1730 * the cpu_allowed mask is restored.
1732 static void sched_migrate_task(task_t *p, int dest_cpu)
1734 migration_req_t req;
1736 unsigned long flags;
1738 rq = task_rq_lock(p, &flags);
1739 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1740 || unlikely(cpu_is_offline(dest_cpu)))
1743 /* force the process onto the specified CPU */
1744 if (migrate_task(p, dest_cpu, &req)) {
1745 /* Need to wait for migration thread (might exit: take ref). */
1746 struct task_struct *mt = rq->migration_thread;
1747 get_task_struct(mt);
1748 task_rq_unlock(rq, &flags);
1749 wake_up_process(mt);
1750 put_task_struct(mt);
1751 wait_for_completion(&req.done);
1755 task_rq_unlock(rq, &flags);
1759 * sched_exec - execve() is a valuable balancing opportunity, because at
1760 * this point the task has the smallest effective memory and cache footprint.
1762 void sched_exec(void)
1764 int new_cpu, this_cpu = get_cpu();
1765 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1767 if (new_cpu != this_cpu)
1768 sched_migrate_task(current, new_cpu);
1772 * pull_task - move a task from a remote runqueue to the local runqueue.
1773 * Both runqueues must be locked.
1776 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1777 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1779 dequeue_task(p, src_array);
1780 src_rq->nr_running--;
1781 set_task_cpu(p, this_cpu);
1782 this_rq->nr_running++;
1783 enqueue_task(p, this_array);
1784 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1785 + this_rq->timestamp_last_tick;
1787 * Note that idle threads have a prio of MAX_PRIO, for this test
1788 * to be always true for them.
1790 if (TASK_PREEMPTS_CURR(p, this_rq))
1791 resched_task(this_rq->curr);
1795 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1798 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1799 struct sched_domain *sd, enum idle_type idle,
1803 * We do not migrate tasks that are:
1804 * 1) running (obviously), or
1805 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1806 * 3) are cache-hot on their current CPU.
1808 if (!cpu_isset(this_cpu, p->cpus_allowed))
1812 if (task_running(rq, p))
1816 * Aggressive migration if:
1817 * 1) task is cache cold, or
1818 * 2) too many balance attempts have failed.
1821 if (sd->nr_balance_failed > sd->cache_nice_tries)
1824 if (task_hot(p, rq->timestamp_last_tick, sd))
1830 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1831 * as part of a balancing operation within "domain". Returns the number of
1834 * Called with both runqueues locked.
1836 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1837 unsigned long max_nr_move, struct sched_domain *sd,
1838 enum idle_type idle, int *all_pinned)
1840 prio_array_t *array, *dst_array;
1841 struct list_head *head, *curr;
1842 int idx, pulled = 0, pinned = 0;
1845 if (max_nr_move == 0)
1851 * We first consider expired tasks. Those will likely not be
1852 * executed in the near future, and they are most likely to
1853 * be cache-cold, thus switching CPUs has the least effect
1856 if (busiest->expired->nr_active) {
1857 array = busiest->expired;
1858 dst_array = this_rq->expired;
1860 array = busiest->active;
1861 dst_array = this_rq->active;
1865 /* Start searching at priority 0: */
1869 idx = sched_find_first_bit(array->bitmap);
1871 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1872 if (idx >= MAX_PRIO) {
1873 if (array == busiest->expired && busiest->active->nr_active) {
1874 array = busiest->active;
1875 dst_array = this_rq->active;
1881 head = array->queue + idx;
1884 tmp = list_entry(curr, task_t, run_list);
1888 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1895 #ifdef CONFIG_SCHEDSTATS
1896 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1897 schedstat_inc(sd, lb_hot_gained[idle]);
1900 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1903 /* We only want to steal up to the prescribed number of tasks. */
1904 if (pulled < max_nr_move) {
1912 * Right now, this is the only place pull_task() is called,
1913 * so we can safely collect pull_task() stats here rather than
1914 * inside pull_task().
1916 schedstat_add(sd, lb_gained[idle], pulled);
1919 *all_pinned = pinned;
1924 * find_busiest_group finds and returns the busiest CPU group within the
1925 * domain. It calculates and returns the number of tasks which should be
1926 * moved to restore balance via the imbalance parameter.
1928 static struct sched_group *
1929 find_busiest_group(struct sched_domain *sd, int this_cpu,
1930 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1932 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1933 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1934 unsigned long max_pull;
1937 max_load = this_load = total_load = total_pwr = 0;
1938 if (idle == NOT_IDLE)
1939 load_idx = sd->busy_idx;
1940 else if (idle == NEWLY_IDLE)
1941 load_idx = sd->newidle_idx;
1943 load_idx = sd->idle_idx;
1950 local_group = cpu_isset(this_cpu, group->cpumask);
1952 /* Tally up the load of all CPUs in the group */
1955 for_each_cpu_mask(i, group->cpumask) {
1956 if (*sd_idle && !idle_cpu(i))
1959 /* Bias balancing toward cpus of our domain */
1961 load = target_load(i, load_idx);
1963 load = source_load(i, load_idx);
1968 total_load += avg_load;
1969 total_pwr += group->cpu_power;
1971 /* Adjust by relative CPU power of the group */
1972 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1975 this_load = avg_load;
1977 } else if (avg_load > max_load) {
1978 max_load = avg_load;
1981 group = group->next;
1982 } while (group != sd->groups);
1984 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1987 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1989 if (this_load >= avg_load ||
1990 100*max_load <= sd->imbalance_pct*this_load)
1994 * We're trying to get all the cpus to the average_load, so we don't
1995 * want to push ourselves above the average load, nor do we wish to
1996 * reduce the max loaded cpu below the average load, as either of these
1997 * actions would just result in more rebalancing later, and ping-pong
1998 * tasks around. Thus we look for the minimum possible imbalance.
1999 * Negative imbalances (*we* are more loaded than anyone else) will
2000 * be counted as no imbalance for these purposes -- we can't fix that
2001 * by pulling tasks to us. Be careful of negative numbers as they'll
2002 * appear as very large values with unsigned longs.
2005 /* Don't want to pull so many tasks that a group would go idle */
2006 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2008 /* How much load to actually move to equalise the imbalance */
2009 *imbalance = min(max_pull * busiest->cpu_power,
2010 (avg_load - this_load) * this->cpu_power)
2013 if (*imbalance < SCHED_LOAD_SCALE) {
2014 unsigned long pwr_now = 0, pwr_move = 0;
2017 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2023 * OK, we don't have enough imbalance to justify moving tasks,
2024 * however we may be able to increase total CPU power used by
2028 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2029 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2030 pwr_now /= SCHED_LOAD_SCALE;
2032 /* Amount of load we'd subtract */
2033 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2035 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2038 /* Amount of load we'd add */
2039 if (max_load*busiest->cpu_power <
2040 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2041 tmp = max_load*busiest->cpu_power/this->cpu_power;
2043 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2044 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2045 pwr_move /= SCHED_LOAD_SCALE;
2047 /* Move if we gain throughput */
2048 if (pwr_move <= pwr_now)
2055 /* Get rid of the scaling factor, rounding down as we divide */
2056 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2066 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2068 static runqueue_t *find_busiest_queue(struct sched_group *group,
2069 enum idle_type idle)
2071 unsigned long load, max_load = 0;
2072 runqueue_t *busiest = NULL;
2075 for_each_cpu_mask(i, group->cpumask) {
2076 load = source_load(i, 0);
2078 if (load > max_load) {
2080 busiest = cpu_rq(i);
2088 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2089 * so long as it is large enough.
2091 #define MAX_PINNED_INTERVAL 512
2094 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2095 * tasks if there is an imbalance.
2097 * Called with this_rq unlocked.
2099 static int load_balance(int this_cpu, runqueue_t *this_rq,
2100 struct sched_domain *sd, enum idle_type idle)
2102 struct sched_group *group;
2103 runqueue_t *busiest;
2104 unsigned long imbalance;
2105 int nr_moved, all_pinned = 0;
2106 int active_balance = 0;
2109 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2112 schedstat_inc(sd, lb_cnt[idle]);
2114 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2116 schedstat_inc(sd, lb_nobusyg[idle]);
2120 busiest = find_busiest_queue(group, idle);
2122 schedstat_inc(sd, lb_nobusyq[idle]);
2126 BUG_ON(busiest == this_rq);
2128 schedstat_add(sd, lb_imbalance[idle], imbalance);
2131 if (busiest->nr_running > 1) {
2133 * Attempt to move tasks. If find_busiest_group has found
2134 * an imbalance but busiest->nr_running <= 1, the group is
2135 * still unbalanced. nr_moved simply stays zero, so it is
2136 * correctly treated as an imbalance.
2138 double_rq_lock(this_rq, busiest);
2139 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2140 imbalance, sd, idle, &all_pinned);
2141 double_rq_unlock(this_rq, busiest);
2143 /* All tasks on this runqueue were pinned by CPU affinity */
2144 if (unlikely(all_pinned))
2149 schedstat_inc(sd, lb_failed[idle]);
2150 sd->nr_balance_failed++;
2152 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2154 spin_lock(&busiest->lock);
2156 /* don't kick the migration_thread, if the curr
2157 * task on busiest cpu can't be moved to this_cpu
2159 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2160 spin_unlock(&busiest->lock);
2162 goto out_one_pinned;
2165 if (!busiest->active_balance) {
2166 busiest->active_balance = 1;
2167 busiest->push_cpu = this_cpu;
2170 spin_unlock(&busiest->lock);
2172 wake_up_process(busiest->migration_thread);
2175 * We've kicked active balancing, reset the failure
2178 sd->nr_balance_failed = sd->cache_nice_tries+1;
2181 sd->nr_balance_failed = 0;
2183 if (likely(!active_balance)) {
2184 /* We were unbalanced, so reset the balancing interval */
2185 sd->balance_interval = sd->min_interval;
2188 * If we've begun active balancing, start to back off. This
2189 * case may not be covered by the all_pinned logic if there
2190 * is only 1 task on the busy runqueue (because we don't call
2193 if (sd->balance_interval < sd->max_interval)
2194 sd->balance_interval *= 2;
2197 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2202 schedstat_inc(sd, lb_balanced[idle]);
2204 sd->nr_balance_failed = 0;
2207 /* tune up the balancing interval */
2208 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2209 (sd->balance_interval < sd->max_interval))
2210 sd->balance_interval *= 2;
2212 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2218 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2219 * tasks if there is an imbalance.
2221 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2222 * this_rq is locked.
2224 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2225 struct sched_domain *sd)
2227 struct sched_group *group;
2228 runqueue_t *busiest = NULL;
2229 unsigned long imbalance;
2233 if (sd->flags & SD_SHARE_CPUPOWER)
2236 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2237 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2239 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2243 busiest = find_busiest_queue(group, NEWLY_IDLE);
2245 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2249 BUG_ON(busiest == this_rq);
2251 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2254 if (busiest->nr_running > 1) {
2255 /* Attempt to move tasks */
2256 double_lock_balance(this_rq, busiest);
2257 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2258 imbalance, sd, NEWLY_IDLE, NULL);
2259 spin_unlock(&busiest->lock);
2263 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2264 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2267 sd->nr_balance_failed = 0;
2272 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2273 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2275 sd->nr_balance_failed = 0;
2280 * idle_balance is called by schedule() if this_cpu is about to become
2281 * idle. Attempts to pull tasks from other CPUs.
2283 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2285 struct sched_domain *sd;
2287 for_each_domain(this_cpu, sd) {
2288 if (sd->flags & SD_BALANCE_NEWIDLE) {
2289 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2290 /* We've pulled tasks over so stop searching */
2298 * active_load_balance is run by migration threads. It pushes running tasks
2299 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2300 * running on each physical CPU where possible, and avoids physical /
2301 * logical imbalances.
2303 * Called with busiest_rq locked.
2305 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2307 struct sched_domain *sd;
2308 runqueue_t *target_rq;
2309 int target_cpu = busiest_rq->push_cpu;
2311 if (busiest_rq->nr_running <= 1)
2312 /* no task to move */
2315 target_rq = cpu_rq(target_cpu);
2318 * This condition is "impossible", if it occurs
2319 * we need to fix it. Originally reported by
2320 * Bjorn Helgaas on a 128-cpu setup.
2322 BUG_ON(busiest_rq == target_rq);
2324 /* move a task from busiest_rq to target_rq */
2325 double_lock_balance(busiest_rq, target_rq);
2327 /* Search for an sd spanning us and the target CPU. */
2328 for_each_domain(target_cpu, sd)
2329 if ((sd->flags & SD_LOAD_BALANCE) &&
2330 cpu_isset(busiest_cpu, sd->span))
2333 if (unlikely(sd == NULL))
2336 schedstat_inc(sd, alb_cnt);
2338 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2339 schedstat_inc(sd, alb_pushed);
2341 schedstat_inc(sd, alb_failed);
2343 spin_unlock(&target_rq->lock);
2347 * rebalance_tick will get called every timer tick, on every CPU.
2349 * It checks each scheduling domain to see if it is due to be balanced,
2350 * and initiates a balancing operation if so.
2352 * Balancing parameters are set up in arch_init_sched_domains.
2355 /* Don't have all balancing operations going off at once */
2356 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2358 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2359 enum idle_type idle)
2361 unsigned long old_load, this_load;
2362 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2363 struct sched_domain *sd;
2366 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2367 /* Update our load */
2368 for (i = 0; i < 3; i++) {
2369 unsigned long new_load = this_load;
2371 old_load = this_rq->cpu_load[i];
2373 * Round up the averaging division if load is increasing. This
2374 * prevents us from getting stuck on 9 if the load is 10, for
2377 if (new_load > old_load)
2378 new_load += scale-1;
2379 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2382 for_each_domain(this_cpu, sd) {
2383 unsigned long interval;
2385 if (!(sd->flags & SD_LOAD_BALANCE))
2388 interval = sd->balance_interval;
2389 if (idle != SCHED_IDLE)
2390 interval *= sd->busy_factor;
2392 /* scale ms to jiffies */
2393 interval = msecs_to_jiffies(interval);
2394 if (unlikely(!interval))
2397 if (j - sd->last_balance >= interval) {
2398 if (load_balance(this_cpu, this_rq, sd, idle)) {
2400 * We've pulled tasks over so either we're no
2401 * longer idle, or one of our SMT siblings is
2406 sd->last_balance += interval;
2412 * on UP we do not need to balance between CPUs:
2414 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2417 static inline void idle_balance(int cpu, runqueue_t *rq)
2422 static inline int wake_priority_sleeper(runqueue_t *rq)
2425 #ifdef CONFIG_SCHED_SMT
2426 spin_lock(&rq->lock);
2428 * If an SMT sibling task has been put to sleep for priority
2429 * reasons reschedule the idle task to see if it can now run.
2431 if (rq->nr_running) {
2432 resched_task(rq->idle);
2435 spin_unlock(&rq->lock);
2440 DEFINE_PER_CPU(struct kernel_stat, kstat);
2442 EXPORT_PER_CPU_SYMBOL(kstat);
2445 * This is called on clock ticks and on context switches.
2446 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2448 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2449 unsigned long long now)
2451 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2452 p->sched_time += now - last;
2456 * Return current->sched_time plus any more ns on the sched_clock
2457 * that have not yet been banked.
2459 unsigned long long current_sched_time(const task_t *tsk)
2461 unsigned long long ns;
2462 unsigned long flags;
2463 local_irq_save(flags);
2464 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2465 ns = tsk->sched_time + (sched_clock() - ns);
2466 local_irq_restore(flags);
2471 * We place interactive tasks back into the active array, if possible.
2473 * To guarantee that this does not starve expired tasks we ignore the
2474 * interactivity of a task if the first expired task had to wait more
2475 * than a 'reasonable' amount of time. This deadline timeout is
2476 * load-dependent, as the frequency of array switched decreases with
2477 * increasing number of running tasks. We also ignore the interactivity
2478 * if a better static_prio task has expired:
2480 #define EXPIRED_STARVING(rq) \
2481 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2482 (jiffies - (rq)->expired_timestamp >= \
2483 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2484 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2487 * Account user cpu time to a process.
2488 * @p: the process that the cpu time gets accounted to
2489 * @hardirq_offset: the offset to subtract from hardirq_count()
2490 * @cputime: the cpu time spent in user space since the last update
2492 void account_user_time(struct task_struct *p, cputime_t cputime)
2494 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2497 p->utime = cputime_add(p->utime, cputime);
2499 /* Add user time to cpustat. */
2500 tmp = cputime_to_cputime64(cputime);
2501 if (TASK_NICE(p) > 0)
2502 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2504 cpustat->user = cputime64_add(cpustat->user, tmp);
2508 * Account system cpu time to a process.
2509 * @p: the process that the cpu time gets accounted to
2510 * @hardirq_offset: the offset to subtract from hardirq_count()
2511 * @cputime: the cpu time spent in kernel space since the last update
2513 void account_system_time(struct task_struct *p, int hardirq_offset,
2516 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2517 runqueue_t *rq = this_rq();
2520 p->stime = cputime_add(p->stime, cputime);
2522 /* Add system time to cpustat. */
2523 tmp = cputime_to_cputime64(cputime);
2524 if (hardirq_count() - hardirq_offset)
2525 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2526 else if (softirq_count())
2527 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2528 else if (p != rq->idle)
2529 cpustat->system = cputime64_add(cpustat->system, tmp);
2530 else if (atomic_read(&rq->nr_iowait) > 0)
2531 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2533 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2534 /* Account for system time used */
2535 acct_update_integrals(p);
2539 * Account for involuntary wait time.
2540 * @p: the process from which the cpu time has been stolen
2541 * @steal: the cpu time spent in involuntary wait
2543 void account_steal_time(struct task_struct *p, cputime_t steal)
2545 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2546 cputime64_t tmp = cputime_to_cputime64(steal);
2547 runqueue_t *rq = this_rq();
2549 if (p == rq->idle) {
2550 p->stime = cputime_add(p->stime, steal);
2551 if (atomic_read(&rq->nr_iowait) > 0)
2552 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2554 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2556 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2560 * This function gets called by the timer code, with HZ frequency.
2561 * We call it with interrupts disabled.
2563 * It also gets called by the fork code, when changing the parent's
2566 void scheduler_tick(void)
2568 int cpu = smp_processor_id();
2569 runqueue_t *rq = this_rq();
2570 task_t *p = current;
2571 unsigned long long now = sched_clock();
2573 update_cpu_clock(p, rq, now);
2575 rq->timestamp_last_tick = now;
2577 if (p == rq->idle) {
2578 if (wake_priority_sleeper(rq))
2580 rebalance_tick(cpu, rq, SCHED_IDLE);
2584 /* Task might have expired already, but not scheduled off yet */
2585 if (p->array != rq->active) {
2586 set_tsk_need_resched(p);
2589 spin_lock(&rq->lock);
2591 * The task was running during this tick - update the
2592 * time slice counter. Note: we do not update a thread's
2593 * priority until it either goes to sleep or uses up its
2594 * timeslice. This makes it possible for interactive tasks
2595 * to use up their timeslices at their highest priority levels.
2599 * RR tasks need a special form of timeslice management.
2600 * FIFO tasks have no timeslices.
2602 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2603 p->time_slice = task_timeslice(p);
2604 p->first_time_slice = 0;
2605 set_tsk_need_resched(p);
2607 /* put it at the end of the queue: */
2608 requeue_task(p, rq->active);
2612 if (!--p->time_slice) {
2613 dequeue_task(p, rq->active);
2614 set_tsk_need_resched(p);
2615 p->prio = effective_prio(p);
2616 p->time_slice = task_timeslice(p);
2617 p->first_time_slice = 0;
2619 if (!rq->expired_timestamp)
2620 rq->expired_timestamp = jiffies;
2621 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2622 enqueue_task(p, rq->expired);
2623 if (p->static_prio < rq->best_expired_prio)
2624 rq->best_expired_prio = p->static_prio;
2626 enqueue_task(p, rq->active);
2629 * Prevent a too long timeslice allowing a task to monopolize
2630 * the CPU. We do this by splitting up the timeslice into
2633 * Note: this does not mean the task's timeslices expire or
2634 * get lost in any way, they just might be preempted by
2635 * another task of equal priority. (one with higher
2636 * priority would have preempted this task already.) We
2637 * requeue this task to the end of the list on this priority
2638 * level, which is in essence a round-robin of tasks with
2641 * This only applies to tasks in the interactive
2642 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2644 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2645 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2646 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2647 (p->array == rq->active)) {
2649 requeue_task(p, rq->active);
2650 set_tsk_need_resched(p);
2654 spin_unlock(&rq->lock);
2656 rebalance_tick(cpu, rq, NOT_IDLE);
2659 #ifdef CONFIG_SCHED_SMT
2660 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2662 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2663 if (rq->curr == rq->idle && rq->nr_running)
2664 resched_task(rq->idle);
2667 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2669 struct sched_domain *tmp, *sd = NULL;
2670 cpumask_t sibling_map;
2673 for_each_domain(this_cpu, tmp)
2674 if (tmp->flags & SD_SHARE_CPUPOWER)
2681 * Unlock the current runqueue because we have to lock in
2682 * CPU order to avoid deadlocks. Caller knows that we might
2683 * unlock. We keep IRQs disabled.
2685 spin_unlock(&this_rq->lock);
2687 sibling_map = sd->span;
2689 for_each_cpu_mask(i, sibling_map)
2690 spin_lock(&cpu_rq(i)->lock);
2692 * We clear this CPU from the mask. This both simplifies the
2693 * inner loop and keps this_rq locked when we exit:
2695 cpu_clear(this_cpu, sibling_map);
2697 for_each_cpu_mask(i, sibling_map) {
2698 runqueue_t *smt_rq = cpu_rq(i);
2700 wakeup_busy_runqueue(smt_rq);
2703 for_each_cpu_mask(i, sibling_map)
2704 spin_unlock(&cpu_rq(i)->lock);
2706 * We exit with this_cpu's rq still held and IRQs
2712 * number of 'lost' timeslices this task wont be able to fully
2713 * utilize, if another task runs on a sibling. This models the
2714 * slowdown effect of other tasks running on siblings:
2716 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2718 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2721 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2723 struct sched_domain *tmp, *sd = NULL;
2724 cpumask_t sibling_map;
2725 prio_array_t *array;
2729 for_each_domain(this_cpu, tmp)
2730 if (tmp->flags & SD_SHARE_CPUPOWER)
2737 * The same locking rules and details apply as for
2738 * wake_sleeping_dependent():
2740 spin_unlock(&this_rq->lock);
2741 sibling_map = sd->span;
2742 for_each_cpu_mask(i, sibling_map)
2743 spin_lock(&cpu_rq(i)->lock);
2744 cpu_clear(this_cpu, sibling_map);
2747 * Establish next task to be run - it might have gone away because
2748 * we released the runqueue lock above:
2750 if (!this_rq->nr_running)
2752 array = this_rq->active;
2753 if (!array->nr_active)
2754 array = this_rq->expired;
2755 BUG_ON(!array->nr_active);
2757 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2760 for_each_cpu_mask(i, sibling_map) {
2761 runqueue_t *smt_rq = cpu_rq(i);
2762 task_t *smt_curr = smt_rq->curr;
2764 /* Kernel threads do not participate in dependent sleeping */
2765 if (!p->mm || !smt_curr->mm || rt_task(p))
2766 goto check_smt_task;
2769 * If a user task with lower static priority than the
2770 * running task on the SMT sibling is trying to schedule,
2771 * delay it till there is proportionately less timeslice
2772 * left of the sibling task to prevent a lower priority
2773 * task from using an unfair proportion of the
2774 * physical cpu's resources. -ck
2776 if (rt_task(smt_curr)) {
2778 * With real time tasks we run non-rt tasks only
2779 * per_cpu_gain% of the time.
2781 if ((jiffies % DEF_TIMESLICE) >
2782 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2785 if (smt_curr->static_prio < p->static_prio &&
2786 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2787 smt_slice(smt_curr, sd) > task_timeslice(p))
2791 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2795 wakeup_busy_runqueue(smt_rq);
2800 * Reschedule a lower priority task on the SMT sibling for
2801 * it to be put to sleep, or wake it up if it has been put to
2802 * sleep for priority reasons to see if it should run now.
2805 if ((jiffies % DEF_TIMESLICE) >
2806 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2807 resched_task(smt_curr);
2809 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2810 smt_slice(p, sd) > task_timeslice(smt_curr))
2811 resched_task(smt_curr);
2813 wakeup_busy_runqueue(smt_rq);
2817 for_each_cpu_mask(i, sibling_map)
2818 spin_unlock(&cpu_rq(i)->lock);
2822 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2826 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2832 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2834 void fastcall add_preempt_count(int val)
2839 BUG_ON((preempt_count() < 0));
2840 preempt_count() += val;
2842 * Spinlock count overflowing soon?
2844 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2846 EXPORT_SYMBOL(add_preempt_count);
2848 void fastcall sub_preempt_count(int val)
2853 BUG_ON(val > preempt_count());
2855 * Is the spinlock portion underflowing?
2857 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2858 preempt_count() -= val;
2860 EXPORT_SYMBOL(sub_preempt_count);
2865 * schedule() is the main scheduler function.
2867 asmlinkage void __sched schedule(void)
2870 task_t *prev, *next;
2872 prio_array_t *array;
2873 struct list_head *queue;
2874 unsigned long long now;
2875 unsigned long run_time;
2876 int cpu, idx, new_prio;
2879 * Test if we are atomic. Since do_exit() needs to call into
2880 * schedule() atomically, we ignore that path for now.
2881 * Otherwise, whine if we are scheduling when we should not be.
2883 if (likely(!current->exit_state)) {
2884 if (unlikely(in_atomic())) {
2885 printk(KERN_ERR "scheduling while atomic: "
2887 current->comm, preempt_count(), current->pid);
2891 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2896 release_kernel_lock(prev);
2897 need_resched_nonpreemptible:
2901 * The idle thread is not allowed to schedule!
2902 * Remove this check after it has been exercised a bit.
2904 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2905 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2909 schedstat_inc(rq, sched_cnt);
2910 now = sched_clock();
2911 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2912 run_time = now - prev->timestamp;
2913 if (unlikely((long long)(now - prev->timestamp) < 0))
2916 run_time = NS_MAX_SLEEP_AVG;
2919 * Tasks charged proportionately less run_time at high sleep_avg to
2920 * delay them losing their interactive status
2922 run_time /= (CURRENT_BONUS(prev) ? : 1);
2924 spin_lock_irq(&rq->lock);
2926 if (unlikely(prev->flags & PF_DEAD))
2927 prev->state = EXIT_DEAD;
2929 switch_count = &prev->nivcsw;
2930 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2931 switch_count = &prev->nvcsw;
2932 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2933 unlikely(signal_pending(prev))))
2934 prev->state = TASK_RUNNING;
2936 if (prev->state == TASK_UNINTERRUPTIBLE)
2937 rq->nr_uninterruptible++;
2938 deactivate_task(prev, rq);
2942 cpu = smp_processor_id();
2943 if (unlikely(!rq->nr_running)) {
2945 idle_balance(cpu, rq);
2946 if (!rq->nr_running) {
2948 rq->expired_timestamp = 0;
2949 wake_sleeping_dependent(cpu, rq);
2951 * wake_sleeping_dependent() might have released
2952 * the runqueue, so break out if we got new
2955 if (!rq->nr_running)
2959 if (dependent_sleeper(cpu, rq)) {
2964 * dependent_sleeper() releases and reacquires the runqueue
2965 * lock, hence go into the idle loop if the rq went
2968 if (unlikely(!rq->nr_running))
2973 if (unlikely(!array->nr_active)) {
2975 * Switch the active and expired arrays.
2977 schedstat_inc(rq, sched_switch);
2978 rq->active = rq->expired;
2979 rq->expired = array;
2981 rq->expired_timestamp = 0;
2982 rq->best_expired_prio = MAX_PRIO;
2985 idx = sched_find_first_bit(array->bitmap);
2986 queue = array->queue + idx;
2987 next = list_entry(queue->next, task_t, run_list);
2989 if (!rt_task(next) && next->activated > 0) {
2990 unsigned long long delta = now - next->timestamp;
2991 if (unlikely((long long)(now - next->timestamp) < 0))
2994 if (next->activated == 1)
2995 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2997 array = next->array;
2998 new_prio = recalc_task_prio(next, next->timestamp + delta);
3000 if (unlikely(next->prio != new_prio)) {
3001 dequeue_task(next, array);
3002 next->prio = new_prio;
3003 enqueue_task(next, array);
3005 requeue_task(next, array);
3007 next->activated = 0;
3009 if (next == rq->idle)
3010 schedstat_inc(rq, sched_goidle);
3012 prefetch_stack(next);
3013 clear_tsk_need_resched(prev);
3014 rcu_qsctr_inc(task_cpu(prev));
3016 update_cpu_clock(prev, rq, now);
3018 prev->sleep_avg -= run_time;
3019 if ((long)prev->sleep_avg <= 0)
3020 prev->sleep_avg = 0;
3021 prev->timestamp = prev->last_ran = now;
3023 sched_info_switch(prev, next);
3024 if (likely(prev != next)) {
3025 next->timestamp = now;
3030 prepare_task_switch(rq, next);
3031 prev = context_switch(rq, prev, next);
3034 * this_rq must be evaluated again because prev may have moved
3035 * CPUs since it called schedule(), thus the 'rq' on its stack
3036 * frame will be invalid.
3038 finish_task_switch(this_rq(), prev);
3040 spin_unlock_irq(&rq->lock);
3043 if (unlikely(reacquire_kernel_lock(prev) < 0))
3044 goto need_resched_nonpreemptible;
3045 preempt_enable_no_resched();
3046 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3050 EXPORT_SYMBOL(schedule);
3052 #ifdef CONFIG_PREEMPT
3054 * this is is the entry point to schedule() from in-kernel preemption
3055 * off of preempt_enable. Kernel preemptions off return from interrupt
3056 * occur there and call schedule directly.
3058 asmlinkage void __sched preempt_schedule(void)
3060 struct thread_info *ti = current_thread_info();
3061 #ifdef CONFIG_PREEMPT_BKL
3062 struct task_struct *task = current;
3063 int saved_lock_depth;
3066 * If there is a non-zero preempt_count or interrupts are disabled,
3067 * we do not want to preempt the current task. Just return..
3069 if (unlikely(ti->preempt_count || irqs_disabled()))
3073 add_preempt_count(PREEMPT_ACTIVE);
3075 * We keep the big kernel semaphore locked, but we
3076 * clear ->lock_depth so that schedule() doesnt
3077 * auto-release the semaphore:
3079 #ifdef CONFIG_PREEMPT_BKL
3080 saved_lock_depth = task->lock_depth;
3081 task->lock_depth = -1;
3084 #ifdef CONFIG_PREEMPT_BKL
3085 task->lock_depth = saved_lock_depth;
3087 sub_preempt_count(PREEMPT_ACTIVE);
3089 /* we could miss a preemption opportunity between schedule and now */
3091 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3095 EXPORT_SYMBOL(preempt_schedule);
3098 * this is is the entry point to schedule() from kernel preemption
3099 * off of irq context.
3100 * Note, that this is called and return with irqs disabled. This will
3101 * protect us against recursive calling from irq.
3103 asmlinkage void __sched preempt_schedule_irq(void)
3105 struct thread_info *ti = current_thread_info();
3106 #ifdef CONFIG_PREEMPT_BKL
3107 struct task_struct *task = current;
3108 int saved_lock_depth;
3110 /* Catch callers which need to be fixed*/
3111 BUG_ON(ti->preempt_count || !irqs_disabled());
3114 add_preempt_count(PREEMPT_ACTIVE);
3116 * We keep the big kernel semaphore locked, but we
3117 * clear ->lock_depth so that schedule() doesnt
3118 * auto-release the semaphore:
3120 #ifdef CONFIG_PREEMPT_BKL
3121 saved_lock_depth = task->lock_depth;
3122 task->lock_depth = -1;
3126 local_irq_disable();
3127 #ifdef CONFIG_PREEMPT_BKL
3128 task->lock_depth = saved_lock_depth;
3130 sub_preempt_count(PREEMPT_ACTIVE);
3132 /* we could miss a preemption opportunity between schedule and now */
3134 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3138 #endif /* CONFIG_PREEMPT */
3140 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3143 task_t *p = curr->private;
3144 return try_to_wake_up(p, mode, sync);
3147 EXPORT_SYMBOL(default_wake_function);
3150 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3151 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3152 * number) then we wake all the non-exclusive tasks and one exclusive task.
3154 * There are circumstances in which we can try to wake a task which has already
3155 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3156 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3158 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3159 int nr_exclusive, int sync, void *key)
3161 struct list_head *tmp, *next;
3163 list_for_each_safe(tmp, next, &q->task_list) {
3166 curr = list_entry(tmp, wait_queue_t, task_list);
3167 flags = curr->flags;
3168 if (curr->func(curr, mode, sync, key) &&
3169 (flags & WQ_FLAG_EXCLUSIVE) &&
3176 * __wake_up - wake up threads blocked on a waitqueue.
3178 * @mode: which threads
3179 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3180 * @key: is directly passed to the wakeup function
3182 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3183 int nr_exclusive, void *key)
3185 unsigned long flags;
3187 spin_lock_irqsave(&q->lock, flags);
3188 __wake_up_common(q, mode, nr_exclusive, 0, key);
3189 spin_unlock_irqrestore(&q->lock, flags);
3192 EXPORT_SYMBOL(__wake_up);
3195 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3197 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3199 __wake_up_common(q, mode, 1, 0, NULL);
3203 * __wake_up_sync - wake up threads blocked on a waitqueue.
3205 * @mode: which threads
3206 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3208 * The sync wakeup differs that the waker knows that it will schedule
3209 * away soon, so while the target thread will be woken up, it will not
3210 * be migrated to another CPU - ie. the two threads are 'synchronized'
3211 * with each other. This can prevent needless bouncing between CPUs.
3213 * On UP it can prevent extra preemption.
3216 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3218 unsigned long flags;
3224 if (unlikely(!nr_exclusive))
3227 spin_lock_irqsave(&q->lock, flags);
3228 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3229 spin_unlock_irqrestore(&q->lock, flags);
3231 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3233 void fastcall complete(struct completion *x)
3235 unsigned long flags;
3237 spin_lock_irqsave(&x->wait.lock, flags);
3239 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3241 spin_unlock_irqrestore(&x->wait.lock, flags);
3243 EXPORT_SYMBOL(complete);
3245 void fastcall complete_all(struct completion *x)
3247 unsigned long flags;
3249 spin_lock_irqsave(&x->wait.lock, flags);
3250 x->done += UINT_MAX/2;
3251 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3253 spin_unlock_irqrestore(&x->wait.lock, flags);
3255 EXPORT_SYMBOL(complete_all);
3257 void fastcall __sched wait_for_completion(struct completion *x)
3260 spin_lock_irq(&x->wait.lock);
3262 DECLARE_WAITQUEUE(wait, current);
3264 wait.flags |= WQ_FLAG_EXCLUSIVE;
3265 __add_wait_queue_tail(&x->wait, &wait);
3267 __set_current_state(TASK_UNINTERRUPTIBLE);
3268 spin_unlock_irq(&x->wait.lock);
3270 spin_lock_irq(&x->wait.lock);
3272 __remove_wait_queue(&x->wait, &wait);
3275 spin_unlock_irq(&x->wait.lock);
3277 EXPORT_SYMBOL(wait_for_completion);
3279 unsigned long fastcall __sched
3280 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3284 spin_lock_irq(&x->wait.lock);
3286 DECLARE_WAITQUEUE(wait, current);
3288 wait.flags |= WQ_FLAG_EXCLUSIVE;
3289 __add_wait_queue_tail(&x->wait, &wait);
3291 __set_current_state(TASK_UNINTERRUPTIBLE);
3292 spin_unlock_irq(&x->wait.lock);
3293 timeout = schedule_timeout(timeout);
3294 spin_lock_irq(&x->wait.lock);
3296 __remove_wait_queue(&x->wait, &wait);
3300 __remove_wait_queue(&x->wait, &wait);
3304 spin_unlock_irq(&x->wait.lock);
3307 EXPORT_SYMBOL(wait_for_completion_timeout);
3309 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3315 spin_lock_irq(&x->wait.lock);
3317 DECLARE_WAITQUEUE(wait, current);
3319 wait.flags |= WQ_FLAG_EXCLUSIVE;
3320 __add_wait_queue_tail(&x->wait, &wait);
3322 if (signal_pending(current)) {
3324 __remove_wait_queue(&x->wait, &wait);
3327 __set_current_state(TASK_INTERRUPTIBLE);
3328 spin_unlock_irq(&x->wait.lock);
3330 spin_lock_irq(&x->wait.lock);
3332 __remove_wait_queue(&x->wait, &wait);
3336 spin_unlock_irq(&x->wait.lock);
3340 EXPORT_SYMBOL(wait_for_completion_interruptible);
3342 unsigned long fastcall __sched
3343 wait_for_completion_interruptible_timeout(struct completion *x,
3344 unsigned long timeout)
3348 spin_lock_irq(&x->wait.lock);
3350 DECLARE_WAITQUEUE(wait, current);
3352 wait.flags |= WQ_FLAG_EXCLUSIVE;
3353 __add_wait_queue_tail(&x->wait, &wait);
3355 if (signal_pending(current)) {
3356 timeout = -ERESTARTSYS;
3357 __remove_wait_queue(&x->wait, &wait);
3360 __set_current_state(TASK_INTERRUPTIBLE);
3361 spin_unlock_irq(&x->wait.lock);
3362 timeout = schedule_timeout(timeout);
3363 spin_lock_irq(&x->wait.lock);
3365 __remove_wait_queue(&x->wait, &wait);
3369 __remove_wait_queue(&x->wait, &wait);
3373 spin_unlock_irq(&x->wait.lock);
3376 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3379 #define SLEEP_ON_VAR \
3380 unsigned long flags; \
3381 wait_queue_t wait; \
3382 init_waitqueue_entry(&wait, current);
3384 #define SLEEP_ON_HEAD \
3385 spin_lock_irqsave(&q->lock,flags); \
3386 __add_wait_queue(q, &wait); \
3387 spin_unlock(&q->lock);
3389 #define SLEEP_ON_TAIL \
3390 spin_lock_irq(&q->lock); \
3391 __remove_wait_queue(q, &wait); \
3392 spin_unlock_irqrestore(&q->lock, flags);
3394 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3398 current->state = TASK_INTERRUPTIBLE;
3405 EXPORT_SYMBOL(interruptible_sleep_on);
3407 long fastcall __sched
3408 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3412 current->state = TASK_INTERRUPTIBLE;
3415 timeout = schedule_timeout(timeout);
3421 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3423 void fastcall __sched sleep_on(wait_queue_head_t *q)
3427 current->state = TASK_UNINTERRUPTIBLE;
3434 EXPORT_SYMBOL(sleep_on);
3436 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3440 current->state = TASK_UNINTERRUPTIBLE;
3443 timeout = schedule_timeout(timeout);
3449 EXPORT_SYMBOL(sleep_on_timeout);
3451 void set_user_nice(task_t *p, long nice)
3453 unsigned long flags;
3454 prio_array_t *array;
3456 int old_prio, new_prio, delta;
3458 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3461 * We have to be careful, if called from sys_setpriority(),
3462 * the task might be in the middle of scheduling on another CPU.
3464 rq = task_rq_lock(p, &flags);
3466 * The RT priorities are set via sched_setscheduler(), but we still
3467 * allow the 'normal' nice value to be set - but as expected
3468 * it wont have any effect on scheduling until the task is
3469 * not SCHED_NORMAL/SCHED_BATCH:
3472 p->static_prio = NICE_TO_PRIO(nice);
3477 dequeue_task(p, array);
3480 new_prio = NICE_TO_PRIO(nice);
3481 delta = new_prio - old_prio;
3482 p->static_prio = NICE_TO_PRIO(nice);
3486 enqueue_task(p, array);
3488 * If the task increased its priority or is running and
3489 * lowered its priority, then reschedule its CPU:
3491 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3492 resched_task(rq->curr);
3495 task_rq_unlock(rq, &flags);
3498 EXPORT_SYMBOL(set_user_nice);
3501 * can_nice - check if a task can reduce its nice value
3505 int can_nice(const task_t *p, const int nice)
3507 /* convert nice value [19,-20] to rlimit style value [1,40] */
3508 int nice_rlim = 20 - nice;
3509 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3510 capable(CAP_SYS_NICE));
3513 #ifdef __ARCH_WANT_SYS_NICE
3516 * sys_nice - change the priority of the current process.
3517 * @increment: priority increment
3519 * sys_setpriority is a more generic, but much slower function that
3520 * does similar things.
3522 asmlinkage long sys_nice(int increment)
3528 * Setpriority might change our priority at the same moment.
3529 * We don't have to worry. Conceptually one call occurs first
3530 * and we have a single winner.
3532 if (increment < -40)
3537 nice = PRIO_TO_NICE(current->static_prio) + increment;
3543 if (increment < 0 && !can_nice(current, nice))
3546 retval = security_task_setnice(current, nice);
3550 set_user_nice(current, nice);
3557 * task_prio - return the priority value of a given task.
3558 * @p: the task in question.
3560 * This is the priority value as seen by users in /proc.
3561 * RT tasks are offset by -200. Normal tasks are centered
3562 * around 0, value goes from -16 to +15.
3564 int task_prio(const task_t *p)
3566 return p->prio - MAX_RT_PRIO;
3570 * task_nice - return the nice value of a given task.
3571 * @p: the task in question.
3573 int task_nice(const task_t *p)
3575 return TASK_NICE(p);
3577 EXPORT_SYMBOL_GPL(task_nice);
3580 * idle_cpu - is a given cpu idle currently?
3581 * @cpu: the processor in question.
3583 int idle_cpu(int cpu)
3585 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3589 * idle_task - return the idle task for a given cpu.
3590 * @cpu: the processor in question.
3592 task_t *idle_task(int cpu)
3594 return cpu_rq(cpu)->idle;
3598 * find_process_by_pid - find a process with a matching PID value.
3599 * @pid: the pid in question.
3601 static inline task_t *find_process_by_pid(pid_t pid)
3603 return pid ? find_task_by_pid(pid) : current;
3606 /* Actually do priority change: must hold rq lock. */
3607 static void __setscheduler(struct task_struct *p, int policy, int prio)
3611 p->rt_priority = prio;
3612 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3613 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3615 p->prio = p->static_prio;
3617 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3619 if (policy == SCHED_BATCH)
3625 * sched_setscheduler - change the scheduling policy and/or RT priority of
3627 * @p: the task in question.
3628 * @policy: new policy.
3629 * @param: structure containing the new RT priority.
3631 int sched_setscheduler(struct task_struct *p, int policy,
3632 struct sched_param *param)
3635 int oldprio, oldpolicy = -1;
3636 prio_array_t *array;
3637 unsigned long flags;
3641 /* double check policy once rq lock held */
3643 policy = oldpolicy = p->policy;
3644 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3645 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3648 * Valid priorities for SCHED_FIFO and SCHED_RR are
3649 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3652 if (param->sched_priority < 0 ||
3653 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3654 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3656 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3657 != (param->sched_priority == 0))
3661 * Allow unprivileged RT tasks to decrease priority:
3663 if (!capable(CAP_SYS_NICE)) {
3665 * can't change policy, except between SCHED_NORMAL
3668 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3669 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3670 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3672 /* can't increase priority */
3673 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3674 param->sched_priority > p->rt_priority &&
3675 param->sched_priority >
3676 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3678 /* can't change other user's priorities */
3679 if ((current->euid != p->euid) &&
3680 (current->euid != p->uid))
3684 retval = security_task_setscheduler(p, policy, param);
3688 * To be able to change p->policy safely, the apropriate
3689 * runqueue lock must be held.
3691 rq = task_rq_lock(p, &flags);
3692 /* recheck policy now with rq lock held */
3693 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3694 policy = oldpolicy = -1;
3695 task_rq_unlock(rq, &flags);
3700 deactivate_task(p, rq);
3702 __setscheduler(p, policy, param->sched_priority);
3704 __activate_task(p, rq);
3706 * Reschedule if we are currently running on this runqueue and
3707 * our priority decreased, or if we are not currently running on
3708 * this runqueue and our priority is higher than the current's
3710 if (task_running(rq, p)) {
3711 if (p->prio > oldprio)
3712 resched_task(rq->curr);
3713 } else if (TASK_PREEMPTS_CURR(p, rq))
3714 resched_task(rq->curr);
3716 task_rq_unlock(rq, &flags);
3719 EXPORT_SYMBOL_GPL(sched_setscheduler);
3722 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3725 struct sched_param lparam;
3726 struct task_struct *p;
3728 if (!param || pid < 0)
3730 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3732 read_lock_irq(&tasklist_lock);
3733 p = find_process_by_pid(pid);
3735 read_unlock_irq(&tasklist_lock);
3738 retval = sched_setscheduler(p, policy, &lparam);
3739 read_unlock_irq(&tasklist_lock);
3744 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3745 * @pid: the pid in question.
3746 * @policy: new policy.
3747 * @param: structure containing the new RT priority.
3749 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3750 struct sched_param __user *param)
3752 /* negative values for policy are not valid */
3756 return do_sched_setscheduler(pid, policy, param);
3760 * sys_sched_setparam - set/change the RT priority of a thread
3761 * @pid: the pid in question.
3762 * @param: structure containing the new RT priority.
3764 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3766 return do_sched_setscheduler(pid, -1, param);
3770 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3771 * @pid: the pid in question.
3773 asmlinkage long sys_sched_getscheduler(pid_t pid)
3775 int retval = -EINVAL;
3782 read_lock(&tasklist_lock);
3783 p = find_process_by_pid(pid);
3785 retval = security_task_getscheduler(p);
3789 read_unlock(&tasklist_lock);
3796 * sys_sched_getscheduler - get the RT priority of a thread
3797 * @pid: the pid in question.
3798 * @param: structure containing the RT priority.
3800 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3802 struct sched_param lp;
3803 int retval = -EINVAL;
3806 if (!param || pid < 0)
3809 read_lock(&tasklist_lock);
3810 p = find_process_by_pid(pid);
3815 retval = security_task_getscheduler(p);
3819 lp.sched_priority = p->rt_priority;
3820 read_unlock(&tasklist_lock);
3823 * This one might sleep, we cannot do it with a spinlock held ...
3825 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3831 read_unlock(&tasklist_lock);
3835 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3839 cpumask_t cpus_allowed;
3842 read_lock(&tasklist_lock);
3844 p = find_process_by_pid(pid);
3846 read_unlock(&tasklist_lock);
3847 unlock_cpu_hotplug();
3852 * It is not safe to call set_cpus_allowed with the
3853 * tasklist_lock held. We will bump the task_struct's
3854 * usage count and then drop tasklist_lock.
3857 read_unlock(&tasklist_lock);
3860 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3861 !capable(CAP_SYS_NICE))
3864 cpus_allowed = cpuset_cpus_allowed(p);
3865 cpus_and(new_mask, new_mask, cpus_allowed);
3866 retval = set_cpus_allowed(p, new_mask);
3870 unlock_cpu_hotplug();
3874 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3875 cpumask_t *new_mask)
3877 if (len < sizeof(cpumask_t)) {
3878 memset(new_mask, 0, sizeof(cpumask_t));
3879 } else if (len > sizeof(cpumask_t)) {
3880 len = sizeof(cpumask_t);
3882 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3886 * sys_sched_setaffinity - set the cpu affinity of a process
3887 * @pid: pid of the process
3888 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3889 * @user_mask_ptr: user-space pointer to the new cpu mask
3891 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3892 unsigned long __user *user_mask_ptr)
3897 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3901 return sched_setaffinity(pid, new_mask);
3905 * Represents all cpu's present in the system
3906 * In systems capable of hotplug, this map could dynamically grow
3907 * as new cpu's are detected in the system via any platform specific
3908 * method, such as ACPI for e.g.
3911 cpumask_t cpu_present_map __read_mostly;
3912 EXPORT_SYMBOL(cpu_present_map);
3915 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3916 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3919 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3925 read_lock(&tasklist_lock);
3928 p = find_process_by_pid(pid);
3933 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3936 read_unlock(&tasklist_lock);
3937 unlock_cpu_hotplug();
3945 * sys_sched_getaffinity - get the cpu affinity of a process
3946 * @pid: pid of the process
3947 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3948 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3950 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3951 unsigned long __user *user_mask_ptr)
3956 if (len < sizeof(cpumask_t))
3959 ret = sched_getaffinity(pid, &mask);
3963 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3966 return sizeof(cpumask_t);
3970 * sys_sched_yield - yield the current processor to other threads.
3972 * this function yields the current CPU by moving the calling thread
3973 * to the expired array. If there are no other threads running on this
3974 * CPU then this function will return.
3976 asmlinkage long sys_sched_yield(void)
3978 runqueue_t *rq = this_rq_lock();
3979 prio_array_t *array = current->array;
3980 prio_array_t *target = rq->expired;
3982 schedstat_inc(rq, yld_cnt);
3984 * We implement yielding by moving the task into the expired
3987 * (special rule: RT tasks will just roundrobin in the active
3990 if (rt_task(current))
3991 target = rq->active;
3993 if (array->nr_active == 1) {
3994 schedstat_inc(rq, yld_act_empty);
3995 if (!rq->expired->nr_active)
3996 schedstat_inc(rq, yld_both_empty);
3997 } else if (!rq->expired->nr_active)
3998 schedstat_inc(rq, yld_exp_empty);
4000 if (array != target) {
4001 dequeue_task(current, array);
4002 enqueue_task(current, target);
4005 * requeue_task is cheaper so perform that if possible.
4007 requeue_task(current, array);
4010 * Since we are going to call schedule() anyway, there's
4011 * no need to preempt or enable interrupts:
4013 __release(rq->lock);
4014 _raw_spin_unlock(&rq->lock);
4015 preempt_enable_no_resched();
4022 static inline void __cond_resched(void)
4025 * The BKS might be reacquired before we have dropped
4026 * PREEMPT_ACTIVE, which could trigger a second
4027 * cond_resched() call.
4029 if (unlikely(preempt_count()))
4031 if (unlikely(system_state != SYSTEM_RUNNING))
4034 add_preempt_count(PREEMPT_ACTIVE);
4036 sub_preempt_count(PREEMPT_ACTIVE);
4037 } while (need_resched());
4040 int __sched cond_resched(void)
4042 if (need_resched()) {
4049 EXPORT_SYMBOL(cond_resched);
4052 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4053 * call schedule, and on return reacquire the lock.
4055 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4056 * operations here to prevent schedule() from being called twice (once via
4057 * spin_unlock(), once by hand).
4059 int cond_resched_lock(spinlock_t *lock)
4063 if (need_lockbreak(lock)) {
4069 if (need_resched()) {
4070 _raw_spin_unlock(lock);
4071 preempt_enable_no_resched();
4079 EXPORT_SYMBOL(cond_resched_lock);
4081 int __sched cond_resched_softirq(void)
4083 BUG_ON(!in_softirq());
4085 if (need_resched()) {
4086 __local_bh_enable();
4094 EXPORT_SYMBOL(cond_resched_softirq);
4098 * yield - yield the current processor to other threads.
4100 * this is a shortcut for kernel-space yielding - it marks the
4101 * thread runnable and calls sys_sched_yield().
4103 void __sched yield(void)
4105 set_current_state(TASK_RUNNING);
4109 EXPORT_SYMBOL(yield);
4112 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4113 * that process accounting knows that this is a task in IO wait state.
4115 * But don't do that if it is a deliberate, throttling IO wait (this task
4116 * has set its backing_dev_info: the queue against which it should throttle)
4118 void __sched io_schedule(void)
4120 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4122 atomic_inc(&rq->nr_iowait);
4124 atomic_dec(&rq->nr_iowait);
4127 EXPORT_SYMBOL(io_schedule);
4129 long __sched io_schedule_timeout(long timeout)
4131 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4134 atomic_inc(&rq->nr_iowait);
4135 ret = schedule_timeout(timeout);
4136 atomic_dec(&rq->nr_iowait);
4141 * sys_sched_get_priority_max - return maximum RT priority.
4142 * @policy: scheduling class.
4144 * this syscall returns the maximum rt_priority that can be used
4145 * by a given scheduling class.
4147 asmlinkage long sys_sched_get_priority_max(int policy)
4154 ret = MAX_USER_RT_PRIO-1;
4165 * sys_sched_get_priority_min - return minimum RT priority.
4166 * @policy: scheduling class.
4168 * this syscall returns the minimum rt_priority that can be used
4169 * by a given scheduling class.
4171 asmlinkage long sys_sched_get_priority_min(int policy)
4188 * sys_sched_rr_get_interval - return the default timeslice of a process.
4189 * @pid: pid of the process.
4190 * @interval: userspace pointer to the timeslice value.
4192 * this syscall writes the default timeslice value of a given process
4193 * into the user-space timespec buffer. A value of '0' means infinity.
4196 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4198 int retval = -EINVAL;
4206 read_lock(&tasklist_lock);
4207 p = find_process_by_pid(pid);
4211 retval = security_task_getscheduler(p);
4215 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4216 0 : task_timeslice(p), &t);
4217 read_unlock(&tasklist_lock);
4218 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4222 read_unlock(&tasklist_lock);
4226 static inline struct task_struct *eldest_child(struct task_struct *p)
4228 if (list_empty(&p->children)) return NULL;
4229 return list_entry(p->children.next,struct task_struct,sibling);
4232 static inline struct task_struct *older_sibling(struct task_struct *p)
4234 if (p->sibling.prev==&p->parent->children) return NULL;
4235 return list_entry(p->sibling.prev,struct task_struct,sibling);
4238 static inline struct task_struct *younger_sibling(struct task_struct *p)
4240 if (p->sibling.next==&p->parent->children) return NULL;
4241 return list_entry(p->sibling.next,struct task_struct,sibling);
4244 static void show_task(task_t *p)
4248 unsigned long free = 0;
4249 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4251 printk("%-13.13s ", p->comm);
4252 state = p->state ? __ffs(p->state) + 1 : 0;
4253 if (state < ARRAY_SIZE(stat_nam))
4254 printk(stat_nam[state]);
4257 #if (BITS_PER_LONG == 32)
4258 if (state == TASK_RUNNING)
4259 printk(" running ");
4261 printk(" %08lX ", thread_saved_pc(p));
4263 if (state == TASK_RUNNING)
4264 printk(" running task ");
4266 printk(" %016lx ", thread_saved_pc(p));
4268 #ifdef CONFIG_DEBUG_STACK_USAGE
4270 unsigned long *n = end_of_stack(p);
4273 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4276 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4277 if ((relative = eldest_child(p)))
4278 printk("%5d ", relative->pid);
4281 if ((relative = younger_sibling(p)))
4282 printk("%7d", relative->pid);
4285 if ((relative = older_sibling(p)))
4286 printk(" %5d", relative->pid);
4290 printk(" (L-TLB)\n");
4292 printk(" (NOTLB)\n");
4294 if (state != TASK_RUNNING)
4295 show_stack(p, NULL);
4298 void show_state(void)
4302 #if (BITS_PER_LONG == 32)
4305 printk(" task PC pid father child younger older\n");
4309 printk(" task PC pid father child younger older\n");
4311 read_lock(&tasklist_lock);
4312 do_each_thread(g, p) {
4314 * reset the NMI-timeout, listing all files on a slow
4315 * console might take alot of time:
4317 touch_nmi_watchdog();
4319 } while_each_thread(g, p);
4321 read_unlock(&tasklist_lock);
4322 mutex_debug_show_all_locks();
4326 * init_idle - set up an idle thread for a given CPU
4327 * @idle: task in question
4328 * @cpu: cpu the idle task belongs to
4330 * NOTE: this function does not set the idle thread's NEED_RESCHED
4331 * flag, to make booting more robust.
4333 void __devinit init_idle(task_t *idle, int cpu)
4335 runqueue_t *rq = cpu_rq(cpu);
4336 unsigned long flags;
4338 idle->timestamp = sched_clock();
4339 idle->sleep_avg = 0;
4341 idle->prio = MAX_PRIO;
4342 idle->state = TASK_RUNNING;
4343 idle->cpus_allowed = cpumask_of_cpu(cpu);
4344 set_task_cpu(idle, cpu);
4346 spin_lock_irqsave(&rq->lock, flags);
4347 rq->curr = rq->idle = idle;
4348 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4351 spin_unlock_irqrestore(&rq->lock, flags);
4353 /* Set the preempt count _outside_ the spinlocks! */
4354 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4355 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4357 task_thread_info(idle)->preempt_count = 0;
4362 * In a system that switches off the HZ timer nohz_cpu_mask
4363 * indicates which cpus entered this state. This is used
4364 * in the rcu update to wait only for active cpus. For system
4365 * which do not switch off the HZ timer nohz_cpu_mask should
4366 * always be CPU_MASK_NONE.
4368 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4372 * This is how migration works:
4374 * 1) we queue a migration_req_t structure in the source CPU's
4375 * runqueue and wake up that CPU's migration thread.
4376 * 2) we down() the locked semaphore => thread blocks.
4377 * 3) migration thread wakes up (implicitly it forces the migrated
4378 * thread off the CPU)
4379 * 4) it gets the migration request and checks whether the migrated
4380 * task is still in the wrong runqueue.
4381 * 5) if it's in the wrong runqueue then the migration thread removes
4382 * it and puts it into the right queue.
4383 * 6) migration thread up()s the semaphore.
4384 * 7) we wake up and the migration is done.
4388 * Change a given task's CPU affinity. Migrate the thread to a
4389 * proper CPU and schedule it away if the CPU it's executing on
4390 * is removed from the allowed bitmask.
4392 * NOTE: the caller must have a valid reference to the task, the
4393 * task must not exit() & deallocate itself prematurely. The
4394 * call is not atomic; no spinlocks may be held.
4396 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4398 unsigned long flags;
4400 migration_req_t req;
4403 rq = task_rq_lock(p, &flags);
4404 if (!cpus_intersects(new_mask, cpu_online_map)) {
4409 p->cpus_allowed = new_mask;
4410 /* Can the task run on the task's current CPU? If so, we're done */
4411 if (cpu_isset(task_cpu(p), new_mask))
4414 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4415 /* Need help from migration thread: drop lock and wait. */
4416 task_rq_unlock(rq, &flags);
4417 wake_up_process(rq->migration_thread);
4418 wait_for_completion(&req.done);
4419 tlb_migrate_finish(p->mm);
4423 task_rq_unlock(rq, &flags);
4427 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4430 * Move (not current) task off this cpu, onto dest cpu. We're doing
4431 * this because either it can't run here any more (set_cpus_allowed()
4432 * away from this CPU, or CPU going down), or because we're
4433 * attempting to rebalance this task on exec (sched_exec).
4435 * So we race with normal scheduler movements, but that's OK, as long
4436 * as the task is no longer on this CPU.
4438 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4440 runqueue_t *rq_dest, *rq_src;
4442 if (unlikely(cpu_is_offline(dest_cpu)))
4445 rq_src = cpu_rq(src_cpu);
4446 rq_dest = cpu_rq(dest_cpu);
4448 double_rq_lock(rq_src, rq_dest);
4449 /* Already moved. */
4450 if (task_cpu(p) != src_cpu)
4452 /* Affinity changed (again). */
4453 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4456 set_task_cpu(p, dest_cpu);
4459 * Sync timestamp with rq_dest's before activating.
4460 * The same thing could be achieved by doing this step
4461 * afterwards, and pretending it was a local activate.
4462 * This way is cleaner and logically correct.
4464 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4465 + rq_dest->timestamp_last_tick;
4466 deactivate_task(p, rq_src);
4467 activate_task(p, rq_dest, 0);
4468 if (TASK_PREEMPTS_CURR(p, rq_dest))
4469 resched_task(rq_dest->curr);
4473 double_rq_unlock(rq_src, rq_dest);
4477 * migration_thread - this is a highprio system thread that performs
4478 * thread migration by bumping thread off CPU then 'pushing' onto
4481 static int migration_thread(void *data)
4484 int cpu = (long)data;
4487 BUG_ON(rq->migration_thread != current);
4489 set_current_state(TASK_INTERRUPTIBLE);
4490 while (!kthread_should_stop()) {
4491 struct list_head *head;
4492 migration_req_t *req;
4496 spin_lock_irq(&rq->lock);
4498 if (cpu_is_offline(cpu)) {
4499 spin_unlock_irq(&rq->lock);
4503 if (rq->active_balance) {
4504 active_load_balance(rq, cpu);
4505 rq->active_balance = 0;
4508 head = &rq->migration_queue;
4510 if (list_empty(head)) {
4511 spin_unlock_irq(&rq->lock);
4513 set_current_state(TASK_INTERRUPTIBLE);
4516 req = list_entry(head->next, migration_req_t, list);
4517 list_del_init(head->next);
4519 spin_unlock(&rq->lock);
4520 __migrate_task(req->task, cpu, req->dest_cpu);
4523 complete(&req->done);
4525 __set_current_state(TASK_RUNNING);
4529 /* Wait for kthread_stop */
4530 set_current_state(TASK_INTERRUPTIBLE);
4531 while (!kthread_should_stop()) {
4533 set_current_state(TASK_INTERRUPTIBLE);
4535 __set_current_state(TASK_RUNNING);
4539 #ifdef CONFIG_HOTPLUG_CPU
4540 /* Figure out where task on dead CPU should go, use force if neccessary. */
4541 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4547 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4548 cpus_and(mask, mask, tsk->cpus_allowed);
4549 dest_cpu = any_online_cpu(mask);
4551 /* On any allowed CPU? */
4552 if (dest_cpu == NR_CPUS)
4553 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4555 /* No more Mr. Nice Guy. */
4556 if (dest_cpu == NR_CPUS) {
4557 cpus_setall(tsk->cpus_allowed);
4558 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4561 * Don't tell them about moving exiting tasks or
4562 * kernel threads (both mm NULL), since they never
4565 if (tsk->mm && printk_ratelimit())
4566 printk(KERN_INFO "process %d (%s) no "
4567 "longer affine to cpu%d\n",
4568 tsk->pid, tsk->comm, dead_cpu);
4570 __migrate_task(tsk, dead_cpu, dest_cpu);
4574 * While a dead CPU has no uninterruptible tasks queued at this point,
4575 * it might still have a nonzero ->nr_uninterruptible counter, because
4576 * for performance reasons the counter is not stricly tracking tasks to
4577 * their home CPUs. So we just add the counter to another CPU's counter,
4578 * to keep the global sum constant after CPU-down:
4580 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4582 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4583 unsigned long flags;
4585 local_irq_save(flags);
4586 double_rq_lock(rq_src, rq_dest);
4587 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4588 rq_src->nr_uninterruptible = 0;
4589 double_rq_unlock(rq_src, rq_dest);
4590 local_irq_restore(flags);
4593 /* Run through task list and migrate tasks from the dead cpu. */
4594 static void migrate_live_tasks(int src_cpu)
4596 struct task_struct *tsk, *t;
4598 write_lock_irq(&tasklist_lock);
4600 do_each_thread(t, tsk) {
4604 if (task_cpu(tsk) == src_cpu)
4605 move_task_off_dead_cpu(src_cpu, tsk);
4606 } while_each_thread(t, tsk);
4608 write_unlock_irq(&tasklist_lock);
4611 /* Schedules idle task to be the next runnable task on current CPU.
4612 * It does so by boosting its priority to highest possible and adding it to
4613 * the _front_ of runqueue. Used by CPU offline code.
4615 void sched_idle_next(void)
4617 int cpu = smp_processor_id();
4618 runqueue_t *rq = this_rq();
4619 struct task_struct *p = rq->idle;
4620 unsigned long flags;
4622 /* cpu has to be offline */
4623 BUG_ON(cpu_online(cpu));
4625 /* Strictly not necessary since rest of the CPUs are stopped by now
4626 * and interrupts disabled on current cpu.
4628 spin_lock_irqsave(&rq->lock, flags);
4630 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4631 /* Add idle task to _front_ of it's priority queue */
4632 __activate_idle_task(p, rq);
4634 spin_unlock_irqrestore(&rq->lock, flags);
4637 /* Ensures that the idle task is using init_mm right before its cpu goes
4640 void idle_task_exit(void)
4642 struct mm_struct *mm = current->active_mm;
4644 BUG_ON(cpu_online(smp_processor_id()));
4647 switch_mm(mm, &init_mm, current);
4651 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4653 struct runqueue *rq = cpu_rq(dead_cpu);
4655 /* Must be exiting, otherwise would be on tasklist. */
4656 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4658 /* Cannot have done final schedule yet: would have vanished. */
4659 BUG_ON(tsk->flags & PF_DEAD);
4661 get_task_struct(tsk);
4664 * Drop lock around migration; if someone else moves it,
4665 * that's OK. No task can be added to this CPU, so iteration is
4668 spin_unlock_irq(&rq->lock);
4669 move_task_off_dead_cpu(dead_cpu, tsk);
4670 spin_lock_irq(&rq->lock);
4672 put_task_struct(tsk);
4675 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4676 static void migrate_dead_tasks(unsigned int dead_cpu)
4679 struct runqueue *rq = cpu_rq(dead_cpu);
4681 for (arr = 0; arr < 2; arr++) {
4682 for (i = 0; i < MAX_PRIO; i++) {
4683 struct list_head *list = &rq->arrays[arr].queue[i];
4684 while (!list_empty(list))
4685 migrate_dead(dead_cpu,
4686 list_entry(list->next, task_t,
4691 #endif /* CONFIG_HOTPLUG_CPU */
4694 * migration_call - callback that gets triggered when a CPU is added.
4695 * Here we can start up the necessary migration thread for the new CPU.
4697 static int migration_call(struct notifier_block *nfb, unsigned long action,
4700 int cpu = (long)hcpu;
4701 struct task_struct *p;
4702 struct runqueue *rq;
4703 unsigned long flags;
4706 case CPU_UP_PREPARE:
4707 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4710 p->flags |= PF_NOFREEZE;
4711 kthread_bind(p, cpu);
4712 /* Must be high prio: stop_machine expects to yield to it. */
4713 rq = task_rq_lock(p, &flags);
4714 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4715 task_rq_unlock(rq, &flags);
4716 cpu_rq(cpu)->migration_thread = p;
4719 /* Strictly unneccessary, as first user will wake it. */
4720 wake_up_process(cpu_rq(cpu)->migration_thread);
4722 #ifdef CONFIG_HOTPLUG_CPU
4723 case CPU_UP_CANCELED:
4724 /* Unbind it from offline cpu so it can run. Fall thru. */
4725 kthread_bind(cpu_rq(cpu)->migration_thread,
4726 any_online_cpu(cpu_online_map));
4727 kthread_stop(cpu_rq(cpu)->migration_thread);
4728 cpu_rq(cpu)->migration_thread = NULL;
4731 migrate_live_tasks(cpu);
4733 kthread_stop(rq->migration_thread);
4734 rq->migration_thread = NULL;
4735 /* Idle task back to normal (off runqueue, low prio) */
4736 rq = task_rq_lock(rq->idle, &flags);
4737 deactivate_task(rq->idle, rq);
4738 rq->idle->static_prio = MAX_PRIO;
4739 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4740 migrate_dead_tasks(cpu);
4741 task_rq_unlock(rq, &flags);
4742 migrate_nr_uninterruptible(rq);
4743 BUG_ON(rq->nr_running != 0);
4745 /* No need to migrate the tasks: it was best-effort if
4746 * they didn't do lock_cpu_hotplug(). Just wake up
4747 * the requestors. */
4748 spin_lock_irq(&rq->lock);
4749 while (!list_empty(&rq->migration_queue)) {
4750 migration_req_t *req;
4751 req = list_entry(rq->migration_queue.next,
4752 migration_req_t, list);
4753 list_del_init(&req->list);
4754 complete(&req->done);
4756 spin_unlock_irq(&rq->lock);
4763 /* Register at highest priority so that task migration (migrate_all_tasks)
4764 * happens before everything else.
4766 static struct notifier_block __devinitdata migration_notifier = {
4767 .notifier_call = migration_call,
4771 int __init migration_init(void)
4773 void *cpu = (void *)(long)smp_processor_id();
4774 /* Start one for boot CPU. */
4775 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4776 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4777 register_cpu_notifier(&migration_notifier);
4783 #undef SCHED_DOMAIN_DEBUG
4784 #ifdef SCHED_DOMAIN_DEBUG
4785 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4790 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4794 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4799 struct sched_group *group = sd->groups;
4800 cpumask_t groupmask;
4802 cpumask_scnprintf(str, NR_CPUS, sd->span);
4803 cpus_clear(groupmask);
4806 for (i = 0; i < level + 1; i++)
4808 printk("domain %d: ", level);
4810 if (!(sd->flags & SD_LOAD_BALANCE)) {
4811 printk("does not load-balance\n");
4813 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4817 printk("span %s\n", str);
4819 if (!cpu_isset(cpu, sd->span))
4820 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4821 if (!cpu_isset(cpu, group->cpumask))
4822 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4825 for (i = 0; i < level + 2; i++)
4831 printk(KERN_ERR "ERROR: group is NULL\n");
4835 if (!group->cpu_power) {
4837 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4840 if (!cpus_weight(group->cpumask)) {
4842 printk(KERN_ERR "ERROR: empty group\n");
4845 if (cpus_intersects(groupmask, group->cpumask)) {
4847 printk(KERN_ERR "ERROR: repeated CPUs\n");
4850 cpus_or(groupmask, groupmask, group->cpumask);
4852 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4855 group = group->next;
4856 } while (group != sd->groups);
4859 if (!cpus_equal(sd->span, groupmask))
4860 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4866 if (!cpus_subset(groupmask, sd->span))
4867 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4873 #define sched_domain_debug(sd, cpu) {}
4876 static int sd_degenerate(struct sched_domain *sd)
4878 if (cpus_weight(sd->span) == 1)
4881 /* Following flags need at least 2 groups */
4882 if (sd->flags & (SD_LOAD_BALANCE |
4883 SD_BALANCE_NEWIDLE |
4886 if (sd->groups != sd->groups->next)
4890 /* Following flags don't use groups */
4891 if (sd->flags & (SD_WAKE_IDLE |
4899 static int sd_parent_degenerate(struct sched_domain *sd,
4900 struct sched_domain *parent)
4902 unsigned long cflags = sd->flags, pflags = parent->flags;
4904 if (sd_degenerate(parent))
4907 if (!cpus_equal(sd->span, parent->span))
4910 /* Does parent contain flags not in child? */
4911 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4912 if (cflags & SD_WAKE_AFFINE)
4913 pflags &= ~SD_WAKE_BALANCE;
4914 /* Flags needing groups don't count if only 1 group in parent */
4915 if (parent->groups == parent->groups->next) {
4916 pflags &= ~(SD_LOAD_BALANCE |
4917 SD_BALANCE_NEWIDLE |
4921 if (~cflags & pflags)
4928 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4929 * hold the hotplug lock.
4931 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4933 runqueue_t *rq = cpu_rq(cpu);
4934 struct sched_domain *tmp;
4936 /* Remove the sched domains which do not contribute to scheduling. */
4937 for (tmp = sd; tmp; tmp = tmp->parent) {
4938 struct sched_domain *parent = tmp->parent;
4941 if (sd_parent_degenerate(tmp, parent))
4942 tmp->parent = parent->parent;
4945 if (sd && sd_degenerate(sd))
4948 sched_domain_debug(sd, cpu);
4950 rcu_assign_pointer(rq->sd, sd);
4953 /* cpus with isolated domains */
4954 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4956 /* Setup the mask of cpus configured for isolated domains */
4957 static int __init isolated_cpu_setup(char *str)
4959 int ints[NR_CPUS], i;
4961 str = get_options(str, ARRAY_SIZE(ints), ints);
4962 cpus_clear(cpu_isolated_map);
4963 for (i = 1; i <= ints[0]; i++)
4964 if (ints[i] < NR_CPUS)
4965 cpu_set(ints[i], cpu_isolated_map);
4969 __setup ("isolcpus=", isolated_cpu_setup);
4972 * init_sched_build_groups takes an array of groups, the cpumask we wish
4973 * to span, and a pointer to a function which identifies what group a CPU
4974 * belongs to. The return value of group_fn must be a valid index into the
4975 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4976 * keep track of groups covered with a cpumask_t).
4978 * init_sched_build_groups will build a circular linked list of the groups
4979 * covered by the given span, and will set each group's ->cpumask correctly,
4980 * and ->cpu_power to 0.
4982 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4983 int (*group_fn)(int cpu))
4985 struct sched_group *first = NULL, *last = NULL;
4986 cpumask_t covered = CPU_MASK_NONE;
4989 for_each_cpu_mask(i, span) {
4990 int group = group_fn(i);
4991 struct sched_group *sg = &groups[group];
4994 if (cpu_isset(i, covered))
4997 sg->cpumask = CPU_MASK_NONE;
5000 for_each_cpu_mask(j, span) {
5001 if (group_fn(j) != group)
5004 cpu_set(j, covered);
5005 cpu_set(j, sg->cpumask);
5016 #define SD_NODES_PER_DOMAIN 16
5019 * Self-tuning task migration cost measurement between source and target CPUs.
5021 * This is done by measuring the cost of manipulating buffers of varying
5022 * sizes. For a given buffer-size here are the steps that are taken:
5024 * 1) the source CPU reads+dirties a shared buffer
5025 * 2) the target CPU reads+dirties the same shared buffer
5027 * We measure how long they take, in the following 4 scenarios:
5029 * - source: CPU1, target: CPU2 | cost1
5030 * - source: CPU2, target: CPU1 | cost2
5031 * - source: CPU1, target: CPU1 | cost3
5032 * - source: CPU2, target: CPU2 | cost4
5034 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5035 * the cost of migration.
5037 * We then start off from a small buffer-size and iterate up to larger
5038 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5039 * doing a maximum search for the cost. (The maximum cost for a migration
5040 * normally occurs when the working set size is around the effective cache
5043 #define SEARCH_SCOPE 2
5044 #define MIN_CACHE_SIZE (64*1024U)
5045 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5046 #define ITERATIONS 1
5047 #define SIZE_THRESH 130
5048 #define COST_THRESH 130
5051 * The migration cost is a function of 'domain distance'. Domain
5052 * distance is the number of steps a CPU has to iterate down its
5053 * domain tree to share a domain with the other CPU. The farther
5054 * two CPUs are from each other, the larger the distance gets.
5056 * Note that we use the distance only to cache measurement results,
5057 * the distance value is not used numerically otherwise. When two
5058 * CPUs have the same distance it is assumed that the migration
5059 * cost is the same. (this is a simplification but quite practical)
5061 #define MAX_DOMAIN_DISTANCE 32
5063 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5064 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5066 * Architectures may override the migration cost and thus avoid
5067 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5068 * virtualized hardware:
5070 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5071 CONFIG_DEFAULT_MIGRATION_COST
5078 * Allow override of migration cost - in units of microseconds.
5079 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5080 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5082 static int __init migration_cost_setup(char *str)
5084 int ints[MAX_DOMAIN_DISTANCE+1], i;
5086 str = get_options(str, ARRAY_SIZE(ints), ints);
5088 printk("#ints: %d\n", ints[0]);
5089 for (i = 1; i <= ints[0]; i++) {
5090 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5091 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5096 __setup ("migration_cost=", migration_cost_setup);
5099 * Global multiplier (divisor) for migration-cutoff values,
5100 * in percentiles. E.g. use a value of 150 to get 1.5 times
5101 * longer cache-hot cutoff times.
5103 * (We scale it from 100 to 128 to long long handling easier.)
5106 #define MIGRATION_FACTOR_SCALE 128
5108 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5110 static int __init setup_migration_factor(char *str)
5112 get_option(&str, &migration_factor);
5113 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5117 __setup("migration_factor=", setup_migration_factor);
5120 * Estimated distance of two CPUs, measured via the number of domains
5121 * we have to pass for the two CPUs to be in the same span:
5123 static unsigned long domain_distance(int cpu1, int cpu2)
5125 unsigned long distance = 0;
5126 struct sched_domain *sd;
5128 for_each_domain(cpu1, sd) {
5129 WARN_ON(!cpu_isset(cpu1, sd->span));
5130 if (cpu_isset(cpu2, sd->span))
5134 if (distance >= MAX_DOMAIN_DISTANCE) {
5136 distance = MAX_DOMAIN_DISTANCE-1;
5142 static unsigned int migration_debug;
5144 static int __init setup_migration_debug(char *str)
5146 get_option(&str, &migration_debug);
5150 __setup("migration_debug=", setup_migration_debug);
5153 * Maximum cache-size that the scheduler should try to measure.
5154 * Architectures with larger caches should tune this up during
5155 * bootup. Gets used in the domain-setup code (i.e. during SMP
5158 unsigned int max_cache_size;
5160 static int __init setup_max_cache_size(char *str)
5162 get_option(&str, &max_cache_size);
5166 __setup("max_cache_size=", setup_max_cache_size);
5169 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5170 * is the operation that is timed, so we try to generate unpredictable
5171 * cachemisses that still end up filling the L2 cache:
5173 static void touch_cache(void *__cache, unsigned long __size)
5175 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5177 unsigned long *cache = __cache;
5180 for (i = 0; i < size/6; i += 8) {
5183 case 1: cache[size-1-i]++;
5184 case 2: cache[chunk1-i]++;
5185 case 3: cache[chunk1+i]++;
5186 case 4: cache[chunk2-i]++;
5187 case 5: cache[chunk2+i]++;
5193 * Measure the cache-cost of one task migration. Returns in units of nsec.
5195 static unsigned long long measure_one(void *cache, unsigned long size,
5196 int source, int target)
5198 cpumask_t mask, saved_mask;
5199 unsigned long long t0, t1, t2, t3, cost;
5201 saved_mask = current->cpus_allowed;
5204 * Flush source caches to RAM and invalidate them:
5209 * Migrate to the source CPU:
5211 mask = cpumask_of_cpu(source);
5212 set_cpus_allowed(current, mask);
5213 WARN_ON(smp_processor_id() != source);
5216 * Dirty the working set:
5219 touch_cache(cache, size);
5223 * Migrate to the target CPU, dirty the L2 cache and access
5224 * the shared buffer. (which represents the working set
5225 * of a migrated task.)
5227 mask = cpumask_of_cpu(target);
5228 set_cpus_allowed(current, mask);
5229 WARN_ON(smp_processor_id() != target);
5232 touch_cache(cache, size);
5235 cost = t1-t0 + t3-t2;
5237 if (migration_debug >= 2)
5238 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5239 source, target, t1-t0, t1-t0, t3-t2, cost);
5241 * Flush target caches to RAM and invalidate them:
5245 set_cpus_allowed(current, saved_mask);
5251 * Measure a series of task migrations and return the average
5252 * result. Since this code runs early during bootup the system
5253 * is 'undisturbed' and the average latency makes sense.
5255 * The algorithm in essence auto-detects the relevant cache-size,
5256 * so it will properly detect different cachesizes for different
5257 * cache-hierarchies, depending on how the CPUs are connected.
5259 * Architectures can prime the upper limit of the search range via
5260 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5262 static unsigned long long
5263 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5265 unsigned long long cost1, cost2;
5269 * Measure the migration cost of 'size' bytes, over an
5270 * average of 10 runs:
5272 * (We perturb the cache size by a small (0..4k)
5273 * value to compensate size/alignment related artifacts.
5274 * We also subtract the cost of the operation done on
5280 * dry run, to make sure we start off cache-cold on cpu1,
5281 * and to get any vmalloc pagefaults in advance:
5283 measure_one(cache, size, cpu1, cpu2);
5284 for (i = 0; i < ITERATIONS; i++)
5285 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5287 measure_one(cache, size, cpu2, cpu1);
5288 for (i = 0; i < ITERATIONS; i++)
5289 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5292 * (We measure the non-migrating [cached] cost on both
5293 * cpu1 and cpu2, to handle CPUs with different speeds)
5297 measure_one(cache, size, cpu1, cpu1);
5298 for (i = 0; i < ITERATIONS; i++)
5299 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5301 measure_one(cache, size, cpu2, cpu2);
5302 for (i = 0; i < ITERATIONS; i++)
5303 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5306 * Get the per-iteration migration cost:
5308 do_div(cost1, 2*ITERATIONS);
5309 do_div(cost2, 2*ITERATIONS);
5311 return cost1 - cost2;
5314 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5316 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5317 unsigned int max_size, size, size_found = 0;
5318 long long cost = 0, prev_cost;
5322 * Search from max_cache_size*5 down to 64K - the real relevant
5323 * cachesize has to lie somewhere inbetween.
5325 if (max_cache_size) {
5326 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5327 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5330 * Since we have no estimation about the relevant
5333 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5334 size = MIN_CACHE_SIZE;
5337 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5338 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5343 * Allocate the working set:
5345 cache = vmalloc(max_size);
5347 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5348 return 1000000; // return 1 msec on very small boxen
5351 while (size <= max_size) {
5353 cost = measure_cost(cpu1, cpu2, cache, size);
5359 if (max_cost < cost) {
5365 * Calculate average fluctuation, we use this to prevent
5366 * noise from triggering an early break out of the loop:
5368 fluct = abs(cost - prev_cost);
5369 avg_fluct = (avg_fluct + fluct)/2;
5371 if (migration_debug)
5372 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5374 (long)cost / 1000000,
5375 ((long)cost / 100000) % 10,
5376 (long)max_cost / 1000000,
5377 ((long)max_cost / 100000) % 10,
5378 domain_distance(cpu1, cpu2),
5382 * If we iterated at least 20% past the previous maximum,
5383 * and the cost has dropped by more than 20% already,
5384 * (taking fluctuations into account) then we assume to
5385 * have found the maximum and break out of the loop early:
5387 if (size_found && (size*100 > size_found*SIZE_THRESH))
5388 if (cost+avg_fluct <= 0 ||
5389 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5391 if (migration_debug)
5392 printk("-> found max.\n");
5396 * Increase the cachesize in 10% steps:
5398 size = size * 10 / 9;
5401 if (migration_debug)
5402 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5403 cpu1, cpu2, size_found, max_cost);
5408 * A task is considered 'cache cold' if at least 2 times
5409 * the worst-case cost of migration has passed.
5411 * (this limit is only listened to if the load-balancing
5412 * situation is 'nice' - if there is a large imbalance we
5413 * ignore it for the sake of CPU utilization and
5414 * processing fairness.)
5416 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5419 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5421 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5422 unsigned long j0, j1, distance, max_distance = 0;
5423 struct sched_domain *sd;
5428 * First pass - calculate the cacheflush times:
5430 for_each_cpu_mask(cpu1, *cpu_map) {
5431 for_each_cpu_mask(cpu2, *cpu_map) {
5434 distance = domain_distance(cpu1, cpu2);
5435 max_distance = max(max_distance, distance);
5437 * No result cached yet?
5439 if (migration_cost[distance] == -1LL)
5440 migration_cost[distance] =
5441 measure_migration_cost(cpu1, cpu2);
5445 * Second pass - update the sched domain hierarchy with
5446 * the new cache-hot-time estimations:
5448 for_each_cpu_mask(cpu, *cpu_map) {
5450 for_each_domain(cpu, sd) {
5451 sd->cache_hot_time = migration_cost[distance];
5458 if (migration_debug)
5459 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5467 if (system_state == SYSTEM_BOOTING) {
5468 printk("migration_cost=");
5469 for (distance = 0; distance <= max_distance; distance++) {
5472 printk("%ld", (long)migration_cost[distance] / 1000);
5477 if (migration_debug)
5478 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5481 * Move back to the original CPU. NUMA-Q gets confused
5482 * if we migrate to another quad during bootup.
5484 if (raw_smp_processor_id() != orig_cpu) {
5485 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5486 saved_mask = current->cpus_allowed;
5488 set_cpus_allowed(current, mask);
5489 set_cpus_allowed(current, saved_mask);
5496 * find_next_best_node - find the next node to include in a sched_domain
5497 * @node: node whose sched_domain we're building
5498 * @used_nodes: nodes already in the sched_domain
5500 * Find the next node to include in a given scheduling domain. Simply
5501 * finds the closest node not already in the @used_nodes map.
5503 * Should use nodemask_t.
5505 static int find_next_best_node(int node, unsigned long *used_nodes)
5507 int i, n, val, min_val, best_node = 0;
5511 for (i = 0; i < MAX_NUMNODES; i++) {
5512 /* Start at @node */
5513 n = (node + i) % MAX_NUMNODES;
5515 if (!nr_cpus_node(n))
5518 /* Skip already used nodes */
5519 if (test_bit(n, used_nodes))
5522 /* Simple min distance search */
5523 val = node_distance(node, n);
5525 if (val < min_val) {
5531 set_bit(best_node, used_nodes);
5536 * sched_domain_node_span - get a cpumask for a node's sched_domain
5537 * @node: node whose cpumask we're constructing
5538 * @size: number of nodes to include in this span
5540 * Given a node, construct a good cpumask for its sched_domain to span. It
5541 * should be one that prevents unnecessary balancing, but also spreads tasks
5544 static cpumask_t sched_domain_node_span(int node)
5547 cpumask_t span, nodemask;
5548 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5551 bitmap_zero(used_nodes, MAX_NUMNODES);
5553 nodemask = node_to_cpumask(node);
5554 cpus_or(span, span, nodemask);
5555 set_bit(node, used_nodes);
5557 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5558 int next_node = find_next_best_node(node, used_nodes);
5559 nodemask = node_to_cpumask(next_node);
5560 cpus_or(span, span, nodemask);
5568 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5569 * can switch it on easily if needed.
5571 #ifdef CONFIG_SCHED_SMT
5572 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5573 static struct sched_group sched_group_cpus[NR_CPUS];
5574 static int cpu_to_cpu_group(int cpu)
5580 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5581 static struct sched_group sched_group_phys[NR_CPUS];
5582 static int cpu_to_phys_group(int cpu)
5584 #ifdef CONFIG_SCHED_SMT
5585 return first_cpu(cpu_sibling_map[cpu]);
5593 * The init_sched_build_groups can't handle what we want to do with node
5594 * groups, so roll our own. Now each node has its own list of groups which
5595 * gets dynamically allocated.
5597 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5598 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5600 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5601 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5603 static int cpu_to_allnodes_group(int cpu)
5605 return cpu_to_node(cpu);
5610 * Build sched domains for a given set of cpus and attach the sched domains
5611 * to the individual cpus
5613 void build_sched_domains(const cpumask_t *cpu_map)
5617 struct sched_group **sched_group_nodes = NULL;
5618 struct sched_group *sched_group_allnodes = NULL;
5621 * Allocate the per-node list of sched groups
5623 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5625 if (!sched_group_nodes) {
5626 printk(KERN_WARNING "Can not alloc sched group node list\n");
5629 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5633 * Set up domains for cpus specified by the cpu_map.
5635 for_each_cpu_mask(i, *cpu_map) {
5637 struct sched_domain *sd = NULL, *p;
5638 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5640 cpus_and(nodemask, nodemask, *cpu_map);
5643 if (cpus_weight(*cpu_map)
5644 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5645 if (!sched_group_allnodes) {
5646 sched_group_allnodes
5647 = kmalloc(sizeof(struct sched_group)
5650 if (!sched_group_allnodes) {
5652 "Can not alloc allnodes sched group\n");
5655 sched_group_allnodes_bycpu[i]
5656 = sched_group_allnodes;
5658 sd = &per_cpu(allnodes_domains, i);
5659 *sd = SD_ALLNODES_INIT;
5660 sd->span = *cpu_map;
5661 group = cpu_to_allnodes_group(i);
5662 sd->groups = &sched_group_allnodes[group];
5667 sd = &per_cpu(node_domains, i);
5669 sd->span = sched_domain_node_span(cpu_to_node(i));
5671 cpus_and(sd->span, sd->span, *cpu_map);
5675 sd = &per_cpu(phys_domains, i);
5676 group = cpu_to_phys_group(i);
5678 sd->span = nodemask;
5680 sd->groups = &sched_group_phys[group];
5682 #ifdef CONFIG_SCHED_SMT
5684 sd = &per_cpu(cpu_domains, i);
5685 group = cpu_to_cpu_group(i);
5686 *sd = SD_SIBLING_INIT;
5687 sd->span = cpu_sibling_map[i];
5688 cpus_and(sd->span, sd->span, *cpu_map);
5690 sd->groups = &sched_group_cpus[group];
5694 #ifdef CONFIG_SCHED_SMT
5695 /* Set up CPU (sibling) groups */
5696 for_each_cpu_mask(i, *cpu_map) {
5697 cpumask_t this_sibling_map = cpu_sibling_map[i];
5698 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5699 if (i != first_cpu(this_sibling_map))
5702 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5707 /* Set up physical groups */
5708 for (i = 0; i < MAX_NUMNODES; i++) {
5709 cpumask_t nodemask = node_to_cpumask(i);
5711 cpus_and(nodemask, nodemask, *cpu_map);
5712 if (cpus_empty(nodemask))
5715 init_sched_build_groups(sched_group_phys, nodemask,
5716 &cpu_to_phys_group);
5720 /* Set up node groups */
5721 if (sched_group_allnodes)
5722 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5723 &cpu_to_allnodes_group);
5725 for (i = 0; i < MAX_NUMNODES; i++) {
5726 /* Set up node groups */
5727 struct sched_group *sg, *prev;
5728 cpumask_t nodemask = node_to_cpumask(i);
5729 cpumask_t domainspan;
5730 cpumask_t covered = CPU_MASK_NONE;
5733 cpus_and(nodemask, nodemask, *cpu_map);
5734 if (cpus_empty(nodemask)) {
5735 sched_group_nodes[i] = NULL;
5739 domainspan = sched_domain_node_span(i);
5740 cpus_and(domainspan, domainspan, *cpu_map);
5742 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5743 sched_group_nodes[i] = sg;
5744 for_each_cpu_mask(j, nodemask) {
5745 struct sched_domain *sd;
5746 sd = &per_cpu(node_domains, j);
5748 if (sd->groups == NULL) {
5749 /* Turn off balancing if we have no groups */
5755 "Can not alloc domain group for node %d\n", i);
5759 sg->cpumask = nodemask;
5760 cpus_or(covered, covered, nodemask);
5763 for (j = 0; j < MAX_NUMNODES; j++) {
5764 cpumask_t tmp, notcovered;
5765 int n = (i + j) % MAX_NUMNODES;
5767 cpus_complement(notcovered, covered);
5768 cpus_and(tmp, notcovered, *cpu_map);
5769 cpus_and(tmp, tmp, domainspan);
5770 if (cpus_empty(tmp))
5773 nodemask = node_to_cpumask(n);
5774 cpus_and(tmp, tmp, nodemask);
5775 if (cpus_empty(tmp))
5778 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5781 "Can not alloc domain group for node %d\n", j);
5786 cpus_or(covered, covered, tmp);
5790 prev->next = sched_group_nodes[i];
5794 /* Calculate CPU power for physical packages and nodes */
5795 for_each_cpu_mask(i, *cpu_map) {
5797 struct sched_domain *sd;
5798 #ifdef CONFIG_SCHED_SMT
5799 sd = &per_cpu(cpu_domains, i);
5800 power = SCHED_LOAD_SCALE;
5801 sd->groups->cpu_power = power;
5804 sd = &per_cpu(phys_domains, i);
5805 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5806 (cpus_weight(sd->groups->cpumask)-1) / 10;
5807 sd->groups->cpu_power = power;
5810 sd = &per_cpu(allnodes_domains, i);
5812 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5813 (cpus_weight(sd->groups->cpumask)-1) / 10;
5814 sd->groups->cpu_power = power;
5820 for (i = 0; i < MAX_NUMNODES; i++) {
5821 struct sched_group *sg = sched_group_nodes[i];
5827 for_each_cpu_mask(j, sg->cpumask) {
5828 struct sched_domain *sd;
5831 sd = &per_cpu(phys_domains, j);
5832 if (j != first_cpu(sd->groups->cpumask)) {
5834 * Only add "power" once for each
5839 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5840 (cpus_weight(sd->groups->cpumask)-1) / 10;
5842 sg->cpu_power += power;
5845 if (sg != sched_group_nodes[i])
5850 /* Attach the domains */
5851 for_each_cpu_mask(i, *cpu_map) {
5852 struct sched_domain *sd;
5853 #ifdef CONFIG_SCHED_SMT
5854 sd = &per_cpu(cpu_domains, i);
5856 sd = &per_cpu(phys_domains, i);
5858 cpu_attach_domain(sd, i);
5861 * Tune cache-hot values:
5863 calibrate_migration_costs(cpu_map);
5866 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5868 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5870 cpumask_t cpu_default_map;
5873 * Setup mask for cpus without special case scheduling requirements.
5874 * For now this just excludes isolated cpus, but could be used to
5875 * exclude other special cases in the future.
5877 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5879 build_sched_domains(&cpu_default_map);
5882 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5888 for_each_cpu_mask(cpu, *cpu_map) {
5889 struct sched_group *sched_group_allnodes
5890 = sched_group_allnodes_bycpu[cpu];
5891 struct sched_group **sched_group_nodes
5892 = sched_group_nodes_bycpu[cpu];
5894 if (sched_group_allnodes) {
5895 kfree(sched_group_allnodes);
5896 sched_group_allnodes_bycpu[cpu] = NULL;
5899 if (!sched_group_nodes)
5902 for (i = 0; i < MAX_NUMNODES; i++) {
5903 cpumask_t nodemask = node_to_cpumask(i);
5904 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5906 cpus_and(nodemask, nodemask, *cpu_map);
5907 if (cpus_empty(nodemask))
5917 if (oldsg != sched_group_nodes[i])
5920 kfree(sched_group_nodes);
5921 sched_group_nodes_bycpu[cpu] = NULL;
5927 * Detach sched domains from a group of cpus specified in cpu_map
5928 * These cpus will now be attached to the NULL domain
5930 static void detach_destroy_domains(const cpumask_t *cpu_map)
5934 for_each_cpu_mask(i, *cpu_map)
5935 cpu_attach_domain(NULL, i);
5936 synchronize_sched();
5937 arch_destroy_sched_domains(cpu_map);
5941 * Partition sched domains as specified by the cpumasks below.
5942 * This attaches all cpus from the cpumasks to the NULL domain,
5943 * waits for a RCU quiescent period, recalculates sched
5944 * domain information and then attaches them back to the
5945 * correct sched domains
5946 * Call with hotplug lock held
5948 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5950 cpumask_t change_map;
5952 cpus_and(*partition1, *partition1, cpu_online_map);
5953 cpus_and(*partition2, *partition2, cpu_online_map);
5954 cpus_or(change_map, *partition1, *partition2);
5956 /* Detach sched domains from all of the affected cpus */
5957 detach_destroy_domains(&change_map);
5958 if (!cpus_empty(*partition1))
5959 build_sched_domains(partition1);
5960 if (!cpus_empty(*partition2))
5961 build_sched_domains(partition2);
5964 #ifdef CONFIG_HOTPLUG_CPU
5966 * Force a reinitialization of the sched domains hierarchy. The domains
5967 * and groups cannot be updated in place without racing with the balancing
5968 * code, so we temporarily attach all running cpus to the NULL domain
5969 * which will prevent rebalancing while the sched domains are recalculated.
5971 static int update_sched_domains(struct notifier_block *nfb,
5972 unsigned long action, void *hcpu)
5975 case CPU_UP_PREPARE:
5976 case CPU_DOWN_PREPARE:
5977 detach_destroy_domains(&cpu_online_map);
5980 case CPU_UP_CANCELED:
5981 case CPU_DOWN_FAILED:
5985 * Fall through and re-initialise the domains.
5992 /* The hotplug lock is already held by cpu_up/cpu_down */
5993 arch_init_sched_domains(&cpu_online_map);
5999 void __init sched_init_smp(void)
6002 arch_init_sched_domains(&cpu_online_map);
6003 unlock_cpu_hotplug();
6004 /* XXX: Theoretical race here - CPU may be hotplugged now */
6005 hotcpu_notifier(update_sched_domains, 0);
6008 void __init sched_init_smp(void)
6011 #endif /* CONFIG_SMP */
6013 int in_sched_functions(unsigned long addr)
6015 /* Linker adds these: start and end of __sched functions */
6016 extern char __sched_text_start[], __sched_text_end[];
6017 return in_lock_functions(addr) ||
6018 (addr >= (unsigned long)__sched_text_start
6019 && addr < (unsigned long)__sched_text_end);
6022 void __init sched_init(void)
6028 prio_array_t *array;
6031 spin_lock_init(&rq->lock);
6033 rq->active = rq->arrays;
6034 rq->expired = rq->arrays + 1;
6035 rq->best_expired_prio = MAX_PRIO;
6039 for (j = 1; j < 3; j++)
6040 rq->cpu_load[j] = 0;
6041 rq->active_balance = 0;
6043 rq->migration_thread = NULL;
6044 INIT_LIST_HEAD(&rq->migration_queue);
6046 atomic_set(&rq->nr_iowait, 0);
6048 for (j = 0; j < 2; j++) {
6049 array = rq->arrays + j;
6050 for (k = 0; k < MAX_PRIO; k++) {
6051 INIT_LIST_HEAD(array->queue + k);
6052 __clear_bit(k, array->bitmap);
6054 // delimiter for bitsearch
6055 __set_bit(MAX_PRIO, array->bitmap);
6060 * The boot idle thread does lazy MMU switching as well:
6062 atomic_inc(&init_mm.mm_count);
6063 enter_lazy_tlb(&init_mm, current);
6066 * Make us the idle thread. Technically, schedule() should not be
6067 * called from this thread, however somewhere below it might be,
6068 * but because we are the idle thread, we just pick up running again
6069 * when this runqueue becomes "idle".
6071 init_idle(current, smp_processor_id());
6074 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6075 void __might_sleep(char *file, int line)
6077 #if defined(in_atomic)
6078 static unsigned long prev_jiffy; /* ratelimiting */
6080 if ((in_atomic() || irqs_disabled()) &&
6081 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6082 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6084 prev_jiffy = jiffies;
6085 printk(KERN_ERR "Debug: sleeping function called from invalid"
6086 " context at %s:%d\n", file, line);
6087 printk("in_atomic():%d, irqs_disabled():%d\n",
6088 in_atomic(), irqs_disabled());
6093 EXPORT_SYMBOL(__might_sleep);
6096 #ifdef CONFIG_MAGIC_SYSRQ
6097 void normalize_rt_tasks(void)
6099 struct task_struct *p;
6100 prio_array_t *array;
6101 unsigned long flags;
6104 read_lock_irq(&tasklist_lock);
6105 for_each_process (p) {
6109 rq = task_rq_lock(p, &flags);
6113 deactivate_task(p, task_rq(p));
6114 __setscheduler(p, SCHED_NORMAL, 0);
6116 __activate_task(p, task_rq(p));
6117 resched_task(rq->curr);
6120 task_rq_unlock(rq, &flags);
6122 read_unlock_irq(&tasklist_lock);
6125 #endif /* CONFIG_MAGIC_SYSRQ */
6129 * These functions are only useful for the IA64 MCA handling.
6131 * They can only be called when the whole system has been
6132 * stopped - every CPU needs to be quiescent, and no scheduling
6133 * activity can take place. Using them for anything else would
6134 * be a serious bug, and as a result, they aren't even visible
6135 * under any other configuration.
6139 * curr_task - return the current task for a given cpu.
6140 * @cpu: the processor in question.
6142 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6144 task_t *curr_task(int cpu)
6146 return cpu_curr(cpu);
6150 * set_curr_task - set the current task for a given cpu.
6151 * @cpu: the processor in question.
6152 * @p: the task pointer to set.
6154 * Description: This function must only be used when non-maskable interrupts
6155 * are serviced on a separate stack. It allows the architecture to switch the
6156 * notion of the current task on a cpu in a non-blocking manner. This function
6157 * must be called with all CPU's synchronized, and interrupts disabled, the
6158 * and caller must save the original value of the current task (see
6159 * curr_task() above) and restore that value before reenabling interrupts and
6160 * re-starting the system.
6162 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6164 void set_curr_task(int cpu, task_t *p)