md/raid5: reshape using largest of old and new chunk size
[linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include "md.h"
52 #include "raid5.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 /*
98  * We maintain a biased count of active stripes in the bottom 16 bits of
99  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100  */
101 static inline int raid5_bi_phys_segments(struct bio *bio)
102 {
103         return bio->bi_phys_segments & 0xffff;
104 }
105
106 static inline int raid5_bi_hw_segments(struct bio *bio)
107 {
108         return (bio->bi_phys_segments >> 16) & 0xffff;
109 }
110
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112 {
113         --bio->bi_phys_segments;
114         return raid5_bi_phys_segments(bio);
115 }
116
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118 {
119         unsigned short val = raid5_bi_hw_segments(bio);
120
121         --val;
122         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123         return val;
124 }
125
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127 {
128         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 }
130
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
133 {
134         if (sh->ddf_layout)
135                 /* ddf always start from first device */
136                 return 0;
137         /* md starts just after Q block */
138         if (sh->qd_idx == sh->disks - 1)
139                 return 0;
140         else
141                 return sh->qd_idx + 1;
142 }
143 static inline int raid6_next_disk(int disk, int raid_disks)
144 {
145         disk++;
146         return (disk < raid_disks) ? disk : 0;
147 }
148
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150  * We need to map each disk to a 'slot', where the data disks are slot
151  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152  * is raid_disks-1.  This help does that mapping.
153  */
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155                              int *count, int syndrome_disks)
156 {
157         int slot;
158
159         if (idx == sh->pd_idx)
160                 return syndrome_disks;
161         if (idx == sh->qd_idx)
162                 return syndrome_disks + 1;
163         slot = (*count)++;
164         return slot;
165 }
166
167 static void return_io(struct bio *return_bi)
168 {
169         struct bio *bi = return_bi;
170         while (bi) {
171
172                 return_bi = bi->bi_next;
173                 bi->bi_next = NULL;
174                 bi->bi_size = 0;
175                 bio_endio(bi, 0);
176                 bi = return_bi;
177         }
178 }
179
180 static void print_raid5_conf (raid5_conf_t *conf);
181
182 static int stripe_operations_active(struct stripe_head *sh)
183 {
184         return sh->check_state || sh->reconstruct_state ||
185                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187 }
188
189 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190 {
191         if (atomic_dec_and_test(&sh->count)) {
192                 BUG_ON(!list_empty(&sh->lru));
193                 BUG_ON(atomic_read(&conf->active_stripes)==0);
194                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
195                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
196                                 list_add_tail(&sh->lru, &conf->delayed_list);
197                                 blk_plug_device(conf->mddev->queue);
198                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199                                    sh->bm_seq - conf->seq_write > 0) {
200                                 list_add_tail(&sh->lru, &conf->bitmap_list);
201                                 blk_plug_device(conf->mddev->queue);
202                         } else {
203                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
204                                 list_add_tail(&sh->lru, &conf->handle_list);
205                         }
206                         md_wakeup_thread(conf->mddev->thread);
207                 } else {
208                         BUG_ON(stripe_operations_active(sh));
209                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210                                 atomic_dec(&conf->preread_active_stripes);
211                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212                                         md_wakeup_thread(conf->mddev->thread);
213                         }
214                         atomic_dec(&conf->active_stripes);
215                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216                                 list_add_tail(&sh->lru, &conf->inactive_list);
217                                 wake_up(&conf->wait_for_stripe);
218                                 if (conf->retry_read_aligned)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                 }
222         }
223 }
224
225 static void release_stripe(struct stripe_head *sh)
226 {
227         raid5_conf_t *conf = sh->raid_conf;
228         unsigned long flags;
229
230         spin_lock_irqsave(&conf->device_lock, flags);
231         __release_stripe(conf, sh);
232         spin_unlock_irqrestore(&conf->device_lock, flags);
233 }
234
235 static inline void remove_hash(struct stripe_head *sh)
236 {
237         pr_debug("remove_hash(), stripe %llu\n",
238                 (unsigned long long)sh->sector);
239
240         hlist_del_init(&sh->hash);
241 }
242
243 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244 {
245         struct hlist_head *hp = stripe_hash(conf, sh->sector);
246
247         pr_debug("insert_hash(), stripe %llu\n",
248                 (unsigned long long)sh->sector);
249
250         CHECK_DEVLOCK();
251         hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257 {
258         struct stripe_head *sh = NULL;
259         struct list_head *first;
260
261         CHECK_DEVLOCK();
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh, int num)
274 {
275         struct page *p;
276         int i;
277
278         for (i=0; i<num ; i++) {
279                 p = sh->dev[i].page;
280                 if (!p)
281                         continue;
282                 sh->dev[i].page = NULL;
283                 put_page(p);
284         }
285 }
286
287 static int grow_buffers(struct stripe_head *sh, int num)
288 {
289         int i;
290
291         for (i=0; i<num; i++) {
292                 struct page *page;
293
294                 if (!(page = alloc_page(GFP_KERNEL))) {
295                         return 1;
296                 }
297                 sh->dev[i].page = page;
298         }
299         return 0;
300 }
301
302 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304                             struct stripe_head *sh);
305
306 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307 {
308         raid5_conf_t *conf = sh->raid_conf;
309         int i;
310
311         BUG_ON(atomic_read(&sh->count) != 0);
312         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313         BUG_ON(stripe_operations_active(sh));
314
315         CHECK_DEVLOCK();
316         pr_debug("init_stripe called, stripe %llu\n",
317                 (unsigned long long)sh->sector);
318
319         remove_hash(sh);
320
321         sh->generation = conf->generation - previous;
322         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323         sh->sector = sector;
324         stripe_set_idx(sector, conf, previous, sh);
325         sh->state = 0;
326
327
328         for (i = sh->disks; i--; ) {
329                 struct r5dev *dev = &sh->dev[i];
330
331                 if (dev->toread || dev->read || dev->towrite || dev->written ||
332                     test_bit(R5_LOCKED, &dev->flags)) {
333                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334                                (unsigned long long)sh->sector, i, dev->toread,
335                                dev->read, dev->towrite, dev->written,
336                                test_bit(R5_LOCKED, &dev->flags));
337                         BUG();
338                 }
339                 dev->flags = 0;
340                 raid5_build_block(sh, i, previous);
341         }
342         insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346                                          short generation)
347 {
348         struct stripe_head *sh;
349         struct hlist_node *hn;
350
351         CHECK_DEVLOCK();
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 static void unplug_slaves(mddev_t *mddev);
361 static void raid5_unplug_device(struct request_queue *q);
362
363 static struct stripe_head *
364 get_active_stripe(raid5_conf_t *conf, sector_t sector,
365                   int previous, int noblock)
366 {
367         struct stripe_head *sh;
368
369         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370
371         spin_lock_irq(&conf->device_lock);
372
373         do {
374                 wait_event_lock_irq(conf->wait_for_stripe,
375                                     conf->quiesce == 0,
376                                     conf->device_lock, /* nothing */);
377                 sh = __find_stripe(conf, sector, conf->generation - previous);
378                 if (!sh) {
379                         if (!conf->inactive_blocked)
380                                 sh = get_free_stripe(conf);
381                         if (noblock && sh == NULL)
382                                 break;
383                         if (!sh) {
384                                 conf->inactive_blocked = 1;
385                                 wait_event_lock_irq(conf->wait_for_stripe,
386                                                     !list_empty(&conf->inactive_list) &&
387                                                     (atomic_read(&conf->active_stripes)
388                                                      < (conf->max_nr_stripes *3/4)
389                                                      || !conf->inactive_blocked),
390                                                     conf->device_lock,
391                                                     raid5_unplug_device(conf->mddev->queue)
392                                         );
393                                 conf->inactive_blocked = 0;
394                         } else
395                                 init_stripe(sh, sector, previous);
396                 } else {
397                         if (atomic_read(&sh->count)) {
398                           BUG_ON(!list_empty(&sh->lru));
399                         } else {
400                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
401                                         atomic_inc(&conf->active_stripes);
402                                 if (list_empty(&sh->lru) &&
403                                     !test_bit(STRIPE_EXPANDING, &sh->state))
404                                         BUG();
405                                 list_del_init(&sh->lru);
406                         }
407                 }
408         } while (sh == NULL);
409
410         if (sh)
411                 atomic_inc(&sh->count);
412
413         spin_unlock_irq(&conf->device_lock);
414         return sh;
415 }
416
417 static void
418 raid5_end_read_request(struct bio *bi, int error);
419 static void
420 raid5_end_write_request(struct bio *bi, int error);
421
422 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
423 {
424         raid5_conf_t *conf = sh->raid_conf;
425         int i, disks = sh->disks;
426
427         might_sleep();
428
429         for (i = disks; i--; ) {
430                 int rw;
431                 struct bio *bi;
432                 mdk_rdev_t *rdev;
433                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
434                         rw = WRITE;
435                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
436                         rw = READ;
437                 else
438                         continue;
439
440                 bi = &sh->dev[i].req;
441
442                 bi->bi_rw = rw;
443                 if (rw == WRITE)
444                         bi->bi_end_io = raid5_end_write_request;
445                 else
446                         bi->bi_end_io = raid5_end_read_request;
447
448                 rcu_read_lock();
449                 rdev = rcu_dereference(conf->disks[i].rdev);
450                 if (rdev && test_bit(Faulty, &rdev->flags))
451                         rdev = NULL;
452                 if (rdev)
453                         atomic_inc(&rdev->nr_pending);
454                 rcu_read_unlock();
455
456                 if (rdev) {
457                         if (s->syncing || s->expanding || s->expanded)
458                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
459
460                         set_bit(STRIPE_IO_STARTED, &sh->state);
461
462                         bi->bi_bdev = rdev->bdev;
463                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
464                                 __func__, (unsigned long long)sh->sector,
465                                 bi->bi_rw, i);
466                         atomic_inc(&sh->count);
467                         bi->bi_sector = sh->sector + rdev->data_offset;
468                         bi->bi_flags = 1 << BIO_UPTODATE;
469                         bi->bi_vcnt = 1;
470                         bi->bi_max_vecs = 1;
471                         bi->bi_idx = 0;
472                         bi->bi_io_vec = &sh->dev[i].vec;
473                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
474                         bi->bi_io_vec[0].bv_offset = 0;
475                         bi->bi_size = STRIPE_SIZE;
476                         bi->bi_next = NULL;
477                         if (rw == WRITE &&
478                             test_bit(R5_ReWrite, &sh->dev[i].flags))
479                                 atomic_add(STRIPE_SECTORS,
480                                         &rdev->corrected_errors);
481                         generic_make_request(bi);
482                 } else {
483                         if (rw == WRITE)
484                                 set_bit(STRIPE_DEGRADED, &sh->state);
485                         pr_debug("skip op %ld on disc %d for sector %llu\n",
486                                 bi->bi_rw, i, (unsigned long long)sh->sector);
487                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
488                         set_bit(STRIPE_HANDLE, &sh->state);
489                 }
490         }
491 }
492
493 static struct dma_async_tx_descriptor *
494 async_copy_data(int frombio, struct bio *bio, struct page *page,
495         sector_t sector, struct dma_async_tx_descriptor *tx)
496 {
497         struct bio_vec *bvl;
498         struct page *bio_page;
499         int i;
500         int page_offset;
501
502         if (bio->bi_sector >= sector)
503                 page_offset = (signed)(bio->bi_sector - sector) * 512;
504         else
505                 page_offset = (signed)(sector - bio->bi_sector) * -512;
506         bio_for_each_segment(bvl, bio, i) {
507                 int len = bio_iovec_idx(bio, i)->bv_len;
508                 int clen;
509                 int b_offset = 0;
510
511                 if (page_offset < 0) {
512                         b_offset = -page_offset;
513                         page_offset += b_offset;
514                         len -= b_offset;
515                 }
516
517                 if (len > 0 && page_offset + len > STRIPE_SIZE)
518                         clen = STRIPE_SIZE - page_offset;
519                 else
520                         clen = len;
521
522                 if (clen > 0) {
523                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
524                         bio_page = bio_iovec_idx(bio, i)->bv_page;
525                         if (frombio)
526                                 tx = async_memcpy(page, bio_page, page_offset,
527                                         b_offset, clen,
528                                         ASYNC_TX_DEP_ACK,
529                                         tx, NULL, NULL);
530                         else
531                                 tx = async_memcpy(bio_page, page, b_offset,
532                                         page_offset, clen,
533                                         ASYNC_TX_DEP_ACK,
534                                         tx, NULL, NULL);
535                 }
536                 if (clen < len) /* hit end of page */
537                         break;
538                 page_offset +=  len;
539         }
540
541         return tx;
542 }
543
544 static void ops_complete_biofill(void *stripe_head_ref)
545 {
546         struct stripe_head *sh = stripe_head_ref;
547         struct bio *return_bi = NULL;
548         raid5_conf_t *conf = sh->raid_conf;
549         int i;
550
551         pr_debug("%s: stripe %llu\n", __func__,
552                 (unsigned long long)sh->sector);
553
554         /* clear completed biofills */
555         spin_lock_irq(&conf->device_lock);
556         for (i = sh->disks; i--; ) {
557                 struct r5dev *dev = &sh->dev[i];
558
559                 /* acknowledge completion of a biofill operation */
560                 /* and check if we need to reply to a read request,
561                  * new R5_Wantfill requests are held off until
562                  * !STRIPE_BIOFILL_RUN
563                  */
564                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
565                         struct bio *rbi, *rbi2;
566
567                         BUG_ON(!dev->read);
568                         rbi = dev->read;
569                         dev->read = NULL;
570                         while (rbi && rbi->bi_sector <
571                                 dev->sector + STRIPE_SECTORS) {
572                                 rbi2 = r5_next_bio(rbi, dev->sector);
573                                 if (!raid5_dec_bi_phys_segments(rbi)) {
574                                         rbi->bi_next = return_bi;
575                                         return_bi = rbi;
576                                 }
577                                 rbi = rbi2;
578                         }
579                 }
580         }
581         spin_unlock_irq(&conf->device_lock);
582         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
583
584         return_io(return_bi);
585
586         set_bit(STRIPE_HANDLE, &sh->state);
587         release_stripe(sh);
588 }
589
590 static void ops_run_biofill(struct stripe_head *sh)
591 {
592         struct dma_async_tx_descriptor *tx = NULL;
593         raid5_conf_t *conf = sh->raid_conf;
594         int i;
595
596         pr_debug("%s: stripe %llu\n", __func__,
597                 (unsigned long long)sh->sector);
598
599         for (i = sh->disks; i--; ) {
600                 struct r5dev *dev = &sh->dev[i];
601                 if (test_bit(R5_Wantfill, &dev->flags)) {
602                         struct bio *rbi;
603                         spin_lock_irq(&conf->device_lock);
604                         dev->read = rbi = dev->toread;
605                         dev->toread = NULL;
606                         spin_unlock_irq(&conf->device_lock);
607                         while (rbi && rbi->bi_sector <
608                                 dev->sector + STRIPE_SECTORS) {
609                                 tx = async_copy_data(0, rbi, dev->page,
610                                         dev->sector, tx);
611                                 rbi = r5_next_bio(rbi, dev->sector);
612                         }
613                 }
614         }
615
616         atomic_inc(&sh->count);
617         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
618                 ops_complete_biofill, sh);
619 }
620
621 static void ops_complete_compute5(void *stripe_head_ref)
622 {
623         struct stripe_head *sh = stripe_head_ref;
624         int target = sh->ops.target;
625         struct r5dev *tgt = &sh->dev[target];
626
627         pr_debug("%s: stripe %llu\n", __func__,
628                 (unsigned long long)sh->sector);
629
630         set_bit(R5_UPTODATE, &tgt->flags);
631         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632         clear_bit(R5_Wantcompute, &tgt->flags);
633         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
634         if (sh->check_state == check_state_compute_run)
635                 sh->check_state = check_state_compute_result;
636         set_bit(STRIPE_HANDLE, &sh->state);
637         release_stripe(sh);
638 }
639
640 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
641 {
642         /* kernel stack size limits the total number of disks */
643         int disks = sh->disks;
644         struct page *xor_srcs[disks];
645         int target = sh->ops.target;
646         struct r5dev *tgt = &sh->dev[target];
647         struct page *xor_dest = tgt->page;
648         int count = 0;
649         struct dma_async_tx_descriptor *tx;
650         int i;
651
652         pr_debug("%s: stripe %llu block: %d\n",
653                 __func__, (unsigned long long)sh->sector, target);
654         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
655
656         for (i = disks; i--; )
657                 if (i != target)
658                         xor_srcs[count++] = sh->dev[i].page;
659
660         atomic_inc(&sh->count);
661
662         if (unlikely(count == 1))
663                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
664                         0, NULL, ops_complete_compute5, sh);
665         else
666                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
667                         ASYNC_TX_XOR_ZERO_DST, NULL,
668                         ops_complete_compute5, sh);
669
670         return tx;
671 }
672
673 static void ops_complete_prexor(void *stripe_head_ref)
674 {
675         struct stripe_head *sh = stripe_head_ref;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679 }
680
681 static struct dma_async_tx_descriptor *
682 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
683 {
684         /* kernel stack size limits the total number of disks */
685         int disks = sh->disks;
686         struct page *xor_srcs[disks];
687         int count = 0, pd_idx = sh->pd_idx, i;
688
689         /* existing parity data subtracted */
690         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
691
692         pr_debug("%s: stripe %llu\n", __func__,
693                 (unsigned long long)sh->sector);
694
695         for (i = disks; i--; ) {
696                 struct r5dev *dev = &sh->dev[i];
697                 /* Only process blocks that are known to be uptodate */
698                 if (test_bit(R5_Wantdrain, &dev->flags))
699                         xor_srcs[count++] = dev->page;
700         }
701
702         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
703                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
704                 ops_complete_prexor, sh);
705
706         return tx;
707 }
708
709 static struct dma_async_tx_descriptor *
710 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
711 {
712         int disks = sh->disks;
713         int i;
714
715         pr_debug("%s: stripe %llu\n", __func__,
716                 (unsigned long long)sh->sector);
717
718         for (i = disks; i--; ) {
719                 struct r5dev *dev = &sh->dev[i];
720                 struct bio *chosen;
721
722                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
723                         struct bio *wbi;
724
725                         spin_lock(&sh->lock);
726                         chosen = dev->towrite;
727                         dev->towrite = NULL;
728                         BUG_ON(dev->written);
729                         wbi = dev->written = chosen;
730                         spin_unlock(&sh->lock);
731
732                         while (wbi && wbi->bi_sector <
733                                 dev->sector + STRIPE_SECTORS) {
734                                 tx = async_copy_data(1, wbi, dev->page,
735                                         dev->sector, tx);
736                                 wbi = r5_next_bio(wbi, dev->sector);
737                         }
738                 }
739         }
740
741         return tx;
742 }
743
744 static void ops_complete_postxor(void *stripe_head_ref)
745 {
746         struct stripe_head *sh = stripe_head_ref;
747         int disks = sh->disks, i, pd_idx = sh->pd_idx;
748
749         pr_debug("%s: stripe %llu\n", __func__,
750                 (unsigned long long)sh->sector);
751
752         for (i = disks; i--; ) {
753                 struct r5dev *dev = &sh->dev[i];
754                 if (dev->written || i == pd_idx)
755                         set_bit(R5_UPTODATE, &dev->flags);
756         }
757
758         if (sh->reconstruct_state == reconstruct_state_drain_run)
759                 sh->reconstruct_state = reconstruct_state_drain_result;
760         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
761                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
762         else {
763                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
764                 sh->reconstruct_state = reconstruct_state_result;
765         }
766
767         set_bit(STRIPE_HANDLE, &sh->state);
768         release_stripe(sh);
769 }
770
771 static void
772 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
773 {
774         /* kernel stack size limits the total number of disks */
775         int disks = sh->disks;
776         struct page *xor_srcs[disks];
777
778         int count = 0, pd_idx = sh->pd_idx, i;
779         struct page *xor_dest;
780         int prexor = 0;
781         unsigned long flags;
782
783         pr_debug("%s: stripe %llu\n", __func__,
784                 (unsigned long long)sh->sector);
785
786         /* check if prexor is active which means only process blocks
787          * that are part of a read-modify-write (written)
788          */
789         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
790                 prexor = 1;
791                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
792                 for (i = disks; i--; ) {
793                         struct r5dev *dev = &sh->dev[i];
794                         if (dev->written)
795                                 xor_srcs[count++] = dev->page;
796                 }
797         } else {
798                 xor_dest = sh->dev[pd_idx].page;
799                 for (i = disks; i--; ) {
800                         struct r5dev *dev = &sh->dev[i];
801                         if (i != pd_idx)
802                                 xor_srcs[count++] = dev->page;
803                 }
804         }
805
806         /* 1/ if we prexor'd then the dest is reused as a source
807          * 2/ if we did not prexor then we are redoing the parity
808          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
809          * for the synchronous xor case
810          */
811         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
812                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
813
814         atomic_inc(&sh->count);
815
816         if (unlikely(count == 1)) {
817                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
818                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
819                         flags, tx, ops_complete_postxor, sh);
820         } else
821                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
822                         flags, tx, ops_complete_postxor, sh);
823 }
824
825 static void ops_complete_check(void *stripe_head_ref)
826 {
827         struct stripe_head *sh = stripe_head_ref;
828
829         pr_debug("%s: stripe %llu\n", __func__,
830                 (unsigned long long)sh->sector);
831
832         sh->check_state = check_state_check_result;
833         set_bit(STRIPE_HANDLE, &sh->state);
834         release_stripe(sh);
835 }
836
837 static void ops_run_check(struct stripe_head *sh)
838 {
839         /* kernel stack size limits the total number of disks */
840         int disks = sh->disks;
841         struct page *xor_srcs[disks];
842         struct dma_async_tx_descriptor *tx;
843
844         int count = 0, pd_idx = sh->pd_idx, i;
845         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
846
847         pr_debug("%s: stripe %llu\n", __func__,
848                 (unsigned long long)sh->sector);
849
850         for (i = disks; i--; ) {
851                 struct r5dev *dev = &sh->dev[i];
852                 if (i != pd_idx)
853                         xor_srcs[count++] = dev->page;
854         }
855
856         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
857                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
858
859         atomic_inc(&sh->count);
860         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
861                 ops_complete_check, sh);
862 }
863
864 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
865 {
866         int overlap_clear = 0, i, disks = sh->disks;
867         struct dma_async_tx_descriptor *tx = NULL;
868
869         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
870                 ops_run_biofill(sh);
871                 overlap_clear++;
872         }
873
874         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
875                 tx = ops_run_compute5(sh);
876                 /* terminate the chain if postxor is not set to be run */
877                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
878                         async_tx_ack(tx);
879         }
880
881         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
882                 tx = ops_run_prexor(sh, tx);
883
884         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
885                 tx = ops_run_biodrain(sh, tx);
886                 overlap_clear++;
887         }
888
889         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
890                 ops_run_postxor(sh, tx);
891
892         if (test_bit(STRIPE_OP_CHECK, &ops_request))
893                 ops_run_check(sh);
894
895         if (overlap_clear)
896                 for (i = disks; i--; ) {
897                         struct r5dev *dev = &sh->dev[i];
898                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
899                                 wake_up(&sh->raid_conf->wait_for_overlap);
900                 }
901 }
902
903 static int grow_one_stripe(raid5_conf_t *conf)
904 {
905         struct stripe_head *sh;
906         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
907         if (!sh)
908                 return 0;
909         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
910         sh->raid_conf = conf;
911         spin_lock_init(&sh->lock);
912
913         if (grow_buffers(sh, conf->raid_disks)) {
914                 shrink_buffers(sh, conf->raid_disks);
915                 kmem_cache_free(conf->slab_cache, sh);
916                 return 0;
917         }
918         sh->disks = conf->raid_disks;
919         /* we just created an active stripe so... */
920         atomic_set(&sh->count, 1);
921         atomic_inc(&conf->active_stripes);
922         INIT_LIST_HEAD(&sh->lru);
923         release_stripe(sh);
924         return 1;
925 }
926
927 static int grow_stripes(raid5_conf_t *conf, int num)
928 {
929         struct kmem_cache *sc;
930         int devs = conf->raid_disks;
931
932         sprintf(conf->cache_name[0],
933                 "raid%d-%s", conf->level, mdname(conf->mddev));
934         sprintf(conf->cache_name[1],
935                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
936         conf->active_name = 0;
937         sc = kmem_cache_create(conf->cache_name[conf->active_name],
938                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
939                                0, 0, NULL);
940         if (!sc)
941                 return 1;
942         conf->slab_cache = sc;
943         conf->pool_size = devs;
944         while (num--)
945                 if (!grow_one_stripe(conf))
946                         return 1;
947         return 0;
948 }
949
950 #ifdef CONFIG_MD_RAID5_RESHAPE
951 static int resize_stripes(raid5_conf_t *conf, int newsize)
952 {
953         /* Make all the stripes able to hold 'newsize' devices.
954          * New slots in each stripe get 'page' set to a new page.
955          *
956          * This happens in stages:
957          * 1/ create a new kmem_cache and allocate the required number of
958          *    stripe_heads.
959          * 2/ gather all the old stripe_heads and tranfer the pages across
960          *    to the new stripe_heads.  This will have the side effect of
961          *    freezing the array as once all stripe_heads have been collected,
962          *    no IO will be possible.  Old stripe heads are freed once their
963          *    pages have been transferred over, and the old kmem_cache is
964          *    freed when all stripes are done.
965          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
966          *    we simple return a failre status - no need to clean anything up.
967          * 4/ allocate new pages for the new slots in the new stripe_heads.
968          *    If this fails, we don't bother trying the shrink the
969          *    stripe_heads down again, we just leave them as they are.
970          *    As each stripe_head is processed the new one is released into
971          *    active service.
972          *
973          * Once step2 is started, we cannot afford to wait for a write,
974          * so we use GFP_NOIO allocations.
975          */
976         struct stripe_head *osh, *nsh;
977         LIST_HEAD(newstripes);
978         struct disk_info *ndisks;
979         int err;
980         struct kmem_cache *sc;
981         int i;
982
983         if (newsize <= conf->pool_size)
984                 return 0; /* never bother to shrink */
985
986         err = md_allow_write(conf->mddev);
987         if (err)
988                 return err;
989
990         /* Step 1 */
991         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993                                0, 0, NULL);
994         if (!sc)
995                 return -ENOMEM;
996
997         for (i = conf->max_nr_stripes; i; i--) {
998                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999                 if (!nsh)
1000                         break;
1001
1002                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004                 nsh->raid_conf = conf;
1005                 spin_lock_init(&nsh->lock);
1006
1007                 list_add(&nsh->lru, &newstripes);
1008         }
1009         if (i) {
1010                 /* didn't get enough, give up */
1011                 while (!list_empty(&newstripes)) {
1012                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013                         list_del(&nsh->lru);
1014                         kmem_cache_free(sc, nsh);
1015                 }
1016                 kmem_cache_destroy(sc);
1017                 return -ENOMEM;
1018         }
1019         /* Step 2 - Must use GFP_NOIO now.
1020          * OK, we have enough stripes, start collecting inactive
1021          * stripes and copying them over
1022          */
1023         list_for_each_entry(nsh, &newstripes, lru) {
1024                 spin_lock_irq(&conf->device_lock);
1025                 wait_event_lock_irq(conf->wait_for_stripe,
1026                                     !list_empty(&conf->inactive_list),
1027                                     conf->device_lock,
1028                                     unplug_slaves(conf->mddev)
1029                         );
1030                 osh = get_free_stripe(conf);
1031                 spin_unlock_irq(&conf->device_lock);
1032                 atomic_set(&nsh->count, 1);
1033                 for(i=0; i<conf->pool_size; i++)
1034                         nsh->dev[i].page = osh->dev[i].page;
1035                 for( ; i<newsize; i++)
1036                         nsh->dev[i].page = NULL;
1037                 kmem_cache_free(conf->slab_cache, osh);
1038         }
1039         kmem_cache_destroy(conf->slab_cache);
1040
1041         /* Step 3.
1042          * At this point, we are holding all the stripes so the array
1043          * is completely stalled, so now is a good time to resize
1044          * conf->disks.
1045          */
1046         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047         if (ndisks) {
1048                 for (i=0; i<conf->raid_disks; i++)
1049                         ndisks[i] = conf->disks[i];
1050                 kfree(conf->disks);
1051                 conf->disks = ndisks;
1052         } else
1053                 err = -ENOMEM;
1054
1055         /* Step 4, return new stripes to service */
1056         while(!list_empty(&newstripes)) {
1057                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058                 list_del_init(&nsh->lru);
1059                 for (i=conf->raid_disks; i < newsize; i++)
1060                         if (nsh->dev[i].page == NULL) {
1061                                 struct page *p = alloc_page(GFP_NOIO);
1062                                 nsh->dev[i].page = p;
1063                                 if (!p)
1064                                         err = -ENOMEM;
1065                         }
1066                 release_stripe(nsh);
1067         }
1068         /* critical section pass, GFP_NOIO no longer needed */
1069
1070         conf->slab_cache = sc;
1071         conf->active_name = 1-conf->active_name;
1072         conf->pool_size = newsize;
1073         return err;
1074 }
1075 #endif
1076
1077 static int drop_one_stripe(raid5_conf_t *conf)
1078 {
1079         struct stripe_head *sh;
1080
1081         spin_lock_irq(&conf->device_lock);
1082         sh = get_free_stripe(conf);
1083         spin_unlock_irq(&conf->device_lock);
1084         if (!sh)
1085                 return 0;
1086         BUG_ON(atomic_read(&sh->count));
1087         shrink_buffers(sh, conf->pool_size);
1088         kmem_cache_free(conf->slab_cache, sh);
1089         atomic_dec(&conf->active_stripes);
1090         return 1;
1091 }
1092
1093 static void shrink_stripes(raid5_conf_t *conf)
1094 {
1095         while (drop_one_stripe(conf))
1096                 ;
1097
1098         if (conf->slab_cache)
1099                 kmem_cache_destroy(conf->slab_cache);
1100         conf->slab_cache = NULL;
1101 }
1102
1103 static void raid5_end_read_request(struct bio * bi, int error)
1104 {
1105         struct stripe_head *sh = bi->bi_private;
1106         raid5_conf_t *conf = sh->raid_conf;
1107         int disks = sh->disks, i;
1108         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1109         char b[BDEVNAME_SIZE];
1110         mdk_rdev_t *rdev;
1111
1112
1113         for (i=0 ; i<disks; i++)
1114                 if (bi == &sh->dev[i].req)
1115                         break;
1116
1117         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1118                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1119                 uptodate);
1120         if (i == disks) {
1121                 BUG();
1122                 return;
1123         }
1124
1125         if (uptodate) {
1126                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1127                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1128                         rdev = conf->disks[i].rdev;
1129                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1130                                   " (%lu sectors at %llu on %s)\n",
1131                                   mdname(conf->mddev), STRIPE_SECTORS,
1132                                   (unsigned long long)(sh->sector
1133                                                        + rdev->data_offset),
1134                                   bdevname(rdev->bdev, b));
1135                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1136                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1137                 }
1138                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1139                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1140         } else {
1141                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1142                 int retry = 0;
1143                 rdev = conf->disks[i].rdev;
1144
1145                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1146                 atomic_inc(&rdev->read_errors);
1147                 if (conf->mddev->degraded)
1148                         printk_rl(KERN_WARNING
1149                                   "raid5:%s: read error not correctable "
1150                                   "(sector %llu on %s).\n",
1151                                   mdname(conf->mddev),
1152                                   (unsigned long long)(sh->sector
1153                                                        + rdev->data_offset),
1154                                   bdn);
1155                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1156                         /* Oh, no!!! */
1157                         printk_rl(KERN_WARNING
1158                                   "raid5:%s: read error NOT corrected!! "
1159                                   "(sector %llu on %s).\n",
1160                                   mdname(conf->mddev),
1161                                   (unsigned long long)(sh->sector
1162                                                        + rdev->data_offset),
1163                                   bdn);
1164                 else if (atomic_read(&rdev->read_errors)
1165                          > conf->max_nr_stripes)
1166                         printk(KERN_WARNING
1167                                "raid5:%s: Too many read errors, failing device %s.\n",
1168                                mdname(conf->mddev), bdn);
1169                 else
1170                         retry = 1;
1171                 if (retry)
1172                         set_bit(R5_ReadError, &sh->dev[i].flags);
1173                 else {
1174                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1175                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1176                         md_error(conf->mddev, rdev);
1177                 }
1178         }
1179         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1180         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1181         set_bit(STRIPE_HANDLE, &sh->state);
1182         release_stripe(sh);
1183 }
1184
1185 static void raid5_end_write_request(struct bio *bi, int error)
1186 {
1187         struct stripe_head *sh = bi->bi_private;
1188         raid5_conf_t *conf = sh->raid_conf;
1189         int disks = sh->disks, i;
1190         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1191
1192         for (i=0 ; i<disks; i++)
1193                 if (bi == &sh->dev[i].req)
1194                         break;
1195
1196         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1197                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1198                 uptodate);
1199         if (i == disks) {
1200                 BUG();
1201                 return;
1202         }
1203
1204         if (!uptodate)
1205                 md_error(conf->mddev, conf->disks[i].rdev);
1206
1207         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1208         
1209         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210         set_bit(STRIPE_HANDLE, &sh->state);
1211         release_stripe(sh);
1212 }
1213
1214
1215 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1216         
1217 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1218 {
1219         struct r5dev *dev = &sh->dev[i];
1220
1221         bio_init(&dev->req);
1222         dev->req.bi_io_vec = &dev->vec;
1223         dev->req.bi_vcnt++;
1224         dev->req.bi_max_vecs++;
1225         dev->vec.bv_page = dev->page;
1226         dev->vec.bv_len = STRIPE_SIZE;
1227         dev->vec.bv_offset = 0;
1228
1229         dev->req.bi_sector = sh->sector;
1230         dev->req.bi_private = sh;
1231
1232         dev->flags = 0;
1233         dev->sector = compute_blocknr(sh, i, previous);
1234 }
1235
1236 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1237 {
1238         char b[BDEVNAME_SIZE];
1239         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1240         pr_debug("raid5: error called\n");
1241
1242         if (!test_bit(Faulty, &rdev->flags)) {
1243                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1244                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1245                         unsigned long flags;
1246                         spin_lock_irqsave(&conf->device_lock, flags);
1247                         mddev->degraded++;
1248                         spin_unlock_irqrestore(&conf->device_lock, flags);
1249                         /*
1250                          * if recovery was running, make sure it aborts.
1251                          */
1252                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1253                 }
1254                 set_bit(Faulty, &rdev->flags);
1255                 printk(KERN_ALERT
1256                        "raid5: Disk failure on %s, disabling device.\n"
1257                        "raid5: Operation continuing on %d devices.\n",
1258                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1259         }
1260 }
1261
1262 /*
1263  * Input: a 'big' sector number,
1264  * Output: index of the data and parity disk, and the sector # in them.
1265  */
1266 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1267                                      int previous, int *dd_idx,
1268                                      struct stripe_head *sh)
1269 {
1270         long stripe;
1271         unsigned long chunk_number;
1272         unsigned int chunk_offset;
1273         int pd_idx, qd_idx;
1274         int ddf_layout = 0;
1275         sector_t new_sector;
1276         int algorithm = previous ? conf->prev_algo
1277                                  : conf->algorithm;
1278         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1279                                          : (conf->chunk_size >> 9);
1280         int raid_disks = previous ? conf->previous_raid_disks
1281                                   : conf->raid_disks;
1282         int data_disks = raid_disks - conf->max_degraded;
1283
1284         /* First compute the information on this sector */
1285
1286         /*
1287          * Compute the chunk number and the sector offset inside the chunk
1288          */
1289         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1290         chunk_number = r_sector;
1291         BUG_ON(r_sector != chunk_number);
1292
1293         /*
1294          * Compute the stripe number
1295          */
1296         stripe = chunk_number / data_disks;
1297
1298         /*
1299          * Compute the data disk and parity disk indexes inside the stripe
1300          */
1301         *dd_idx = chunk_number % data_disks;
1302
1303         /*
1304          * Select the parity disk based on the user selected algorithm.
1305          */
1306         pd_idx = qd_idx = ~0;
1307         switch(conf->level) {
1308         case 4:
1309                 pd_idx = data_disks;
1310                 break;
1311         case 5:
1312                 switch (algorithm) {
1313                 case ALGORITHM_LEFT_ASYMMETRIC:
1314                         pd_idx = data_disks - stripe % raid_disks;
1315                         if (*dd_idx >= pd_idx)
1316                                 (*dd_idx)++;
1317                         break;
1318                 case ALGORITHM_RIGHT_ASYMMETRIC:
1319                         pd_idx = stripe % raid_disks;
1320                         if (*dd_idx >= pd_idx)
1321                                 (*dd_idx)++;
1322                         break;
1323                 case ALGORITHM_LEFT_SYMMETRIC:
1324                         pd_idx = data_disks - stripe % raid_disks;
1325                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1326                         break;
1327                 case ALGORITHM_RIGHT_SYMMETRIC:
1328                         pd_idx = stripe % raid_disks;
1329                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1330                         break;
1331                 case ALGORITHM_PARITY_0:
1332                         pd_idx = 0;
1333                         (*dd_idx)++;
1334                         break;
1335                 case ALGORITHM_PARITY_N:
1336                         pd_idx = data_disks;
1337                         break;
1338                 default:
1339                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1340                                 algorithm);
1341                         BUG();
1342                 }
1343                 break;
1344         case 6:
1345
1346                 switch (algorithm) {
1347                 case ALGORITHM_LEFT_ASYMMETRIC:
1348                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1349                         qd_idx = pd_idx + 1;
1350                         if (pd_idx == raid_disks-1) {
1351                                 (*dd_idx)++;    /* Q D D D P */
1352                                 qd_idx = 0;
1353                         } else if (*dd_idx >= pd_idx)
1354                                 (*dd_idx) += 2; /* D D P Q D */
1355                         break;
1356                 case ALGORITHM_RIGHT_ASYMMETRIC:
1357                         pd_idx = stripe % raid_disks;
1358                         qd_idx = pd_idx + 1;
1359                         if (pd_idx == raid_disks-1) {
1360                                 (*dd_idx)++;    /* Q D D D P */
1361                                 qd_idx = 0;
1362                         } else if (*dd_idx >= pd_idx)
1363                                 (*dd_idx) += 2; /* D D P Q D */
1364                         break;
1365                 case ALGORITHM_LEFT_SYMMETRIC:
1366                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1367                         qd_idx = (pd_idx + 1) % raid_disks;
1368                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1369                         break;
1370                 case ALGORITHM_RIGHT_SYMMETRIC:
1371                         pd_idx = stripe % raid_disks;
1372                         qd_idx = (pd_idx + 1) % raid_disks;
1373                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1374                         break;
1375
1376                 case ALGORITHM_PARITY_0:
1377                         pd_idx = 0;
1378                         qd_idx = 1;
1379                         (*dd_idx) += 2;
1380                         break;
1381                 case ALGORITHM_PARITY_N:
1382                         pd_idx = data_disks;
1383                         qd_idx = data_disks + 1;
1384                         break;
1385
1386                 case ALGORITHM_ROTATING_ZERO_RESTART:
1387                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1388                          * of blocks for computing Q is different.
1389                          */
1390                         pd_idx = stripe % raid_disks;
1391                         qd_idx = pd_idx + 1;
1392                         if (pd_idx == raid_disks-1) {
1393                                 (*dd_idx)++;    /* Q D D D P */
1394                                 qd_idx = 0;
1395                         } else if (*dd_idx >= pd_idx)
1396                                 (*dd_idx) += 2; /* D D P Q D */
1397                         ddf_layout = 1;
1398                         break;
1399
1400                 case ALGORITHM_ROTATING_N_RESTART:
1401                         /* Same a left_asymmetric, by first stripe is
1402                          * D D D P Q  rather than
1403                          * Q D D D P
1404                          */
1405                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1406                         qd_idx = pd_idx + 1;
1407                         if (pd_idx == raid_disks-1) {
1408                                 (*dd_idx)++;    /* Q D D D P */
1409                                 qd_idx = 0;
1410                         } else if (*dd_idx >= pd_idx)
1411                                 (*dd_idx) += 2; /* D D P Q D */
1412                         ddf_layout = 1;
1413                         break;
1414
1415                 case ALGORITHM_ROTATING_N_CONTINUE:
1416                         /* Same as left_symmetric but Q is before P */
1417                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1418                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1419                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1420                         ddf_layout = 1;
1421                         break;
1422
1423                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1424                         /* RAID5 left_asymmetric, with Q on last device */
1425                         pd_idx = data_disks - stripe % (raid_disks-1);
1426                         if (*dd_idx >= pd_idx)
1427                                 (*dd_idx)++;
1428                         qd_idx = raid_disks - 1;
1429                         break;
1430
1431                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1432                         pd_idx = stripe % (raid_disks-1);
1433                         if (*dd_idx >= pd_idx)
1434                                 (*dd_idx)++;
1435                         qd_idx = raid_disks - 1;
1436                         break;
1437
1438                 case ALGORITHM_LEFT_SYMMETRIC_6:
1439                         pd_idx = data_disks - stripe % (raid_disks-1);
1440                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1441                         qd_idx = raid_disks - 1;
1442                         break;
1443
1444                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1445                         pd_idx = stripe % (raid_disks-1);
1446                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1447                         qd_idx = raid_disks - 1;
1448                         break;
1449
1450                 case ALGORITHM_PARITY_0_6:
1451                         pd_idx = 0;
1452                         (*dd_idx)++;
1453                         qd_idx = raid_disks - 1;
1454                         break;
1455
1456
1457                 default:
1458                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1459                                algorithm);
1460                         BUG();
1461                 }
1462                 break;
1463         }
1464
1465         if (sh) {
1466                 sh->pd_idx = pd_idx;
1467                 sh->qd_idx = qd_idx;
1468                 sh->ddf_layout = ddf_layout;
1469         }
1470         /*
1471          * Finally, compute the new sector number
1472          */
1473         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1474         return new_sector;
1475 }
1476
1477
1478 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1479 {
1480         raid5_conf_t *conf = sh->raid_conf;
1481         int raid_disks = sh->disks;
1482         int data_disks = raid_disks - conf->max_degraded;
1483         sector_t new_sector = sh->sector, check;
1484         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1485                                          : (conf->chunk_size >> 9);
1486         int algorithm = previous ? conf->prev_algo
1487                                  : conf->algorithm;
1488         sector_t stripe;
1489         int chunk_offset;
1490         int chunk_number, dummy1, dd_idx = i;
1491         sector_t r_sector;
1492         struct stripe_head sh2;
1493
1494
1495         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1496         stripe = new_sector;
1497         BUG_ON(new_sector != stripe);
1498
1499         if (i == sh->pd_idx)
1500                 return 0;
1501         switch(conf->level) {
1502         case 4: break;
1503         case 5:
1504                 switch (algorithm) {
1505                 case ALGORITHM_LEFT_ASYMMETRIC:
1506                 case ALGORITHM_RIGHT_ASYMMETRIC:
1507                         if (i > sh->pd_idx)
1508                                 i--;
1509                         break;
1510                 case ALGORITHM_LEFT_SYMMETRIC:
1511                 case ALGORITHM_RIGHT_SYMMETRIC:
1512                         if (i < sh->pd_idx)
1513                                 i += raid_disks;
1514                         i -= (sh->pd_idx + 1);
1515                         break;
1516                 case ALGORITHM_PARITY_0:
1517                         i -= 1;
1518                         break;
1519                 case ALGORITHM_PARITY_N:
1520                         break;
1521                 default:
1522                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1523                                algorithm);
1524                         BUG();
1525                 }
1526                 break;
1527         case 6:
1528                 if (i == sh->qd_idx)
1529                         return 0; /* It is the Q disk */
1530                 switch (algorithm) {
1531                 case ALGORITHM_LEFT_ASYMMETRIC:
1532                 case ALGORITHM_RIGHT_ASYMMETRIC:
1533                 case ALGORITHM_ROTATING_ZERO_RESTART:
1534                 case ALGORITHM_ROTATING_N_RESTART:
1535                         if (sh->pd_idx == raid_disks-1)
1536                                 i--;    /* Q D D D P */
1537                         else if (i > sh->pd_idx)
1538                                 i -= 2; /* D D P Q D */
1539                         break;
1540                 case ALGORITHM_LEFT_SYMMETRIC:
1541                 case ALGORITHM_RIGHT_SYMMETRIC:
1542                         if (sh->pd_idx == raid_disks-1)
1543                                 i--; /* Q D D D P */
1544                         else {
1545                                 /* D D P Q D */
1546                                 if (i < sh->pd_idx)
1547                                         i += raid_disks;
1548                                 i -= (sh->pd_idx + 2);
1549                         }
1550                         break;
1551                 case ALGORITHM_PARITY_0:
1552                         i -= 2;
1553                         break;
1554                 case ALGORITHM_PARITY_N:
1555                         break;
1556                 case ALGORITHM_ROTATING_N_CONTINUE:
1557                         if (sh->pd_idx == 0)
1558                                 i--;    /* P D D D Q */
1559                         else if (i > sh->pd_idx)
1560                                 i -= 2; /* D D Q P D */
1561                         break;
1562                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1563                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1564                         if (i > sh->pd_idx)
1565                                 i--;
1566                         break;
1567                 case ALGORITHM_LEFT_SYMMETRIC_6:
1568                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1569                         if (i < sh->pd_idx)
1570                                 i += data_disks + 1;
1571                         i -= (sh->pd_idx + 1);
1572                         break;
1573                 case ALGORITHM_PARITY_0_6:
1574                         i -= 1;
1575                         break;
1576                 default:
1577                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1578                                algorithm);
1579                         BUG();
1580                 }
1581                 break;
1582         }
1583
1584         chunk_number = stripe * data_disks + i;
1585         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1586
1587         check = raid5_compute_sector(conf, r_sector,
1588                                      previous, &dummy1, &sh2);
1589         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1590                 || sh2.qd_idx != sh->qd_idx) {
1591                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1592                 return 0;
1593         }
1594         return r_sector;
1595 }
1596
1597
1598
1599 /*
1600  * Copy data between a page in the stripe cache, and one or more bion
1601  * The page could align with the middle of the bio, or there could be
1602  * several bion, each with several bio_vecs, which cover part of the page
1603  * Multiple bion are linked together on bi_next.  There may be extras
1604  * at the end of this list.  We ignore them.
1605  */
1606 static void copy_data(int frombio, struct bio *bio,
1607                      struct page *page,
1608                      sector_t sector)
1609 {
1610         char *pa = page_address(page);
1611         struct bio_vec *bvl;
1612         int i;
1613         int page_offset;
1614
1615         if (bio->bi_sector >= sector)
1616                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1617         else
1618                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1619         bio_for_each_segment(bvl, bio, i) {
1620                 int len = bio_iovec_idx(bio,i)->bv_len;
1621                 int clen;
1622                 int b_offset = 0;
1623
1624                 if (page_offset < 0) {
1625                         b_offset = -page_offset;
1626                         page_offset += b_offset;
1627                         len -= b_offset;
1628                 }
1629
1630                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1631                         clen = STRIPE_SIZE - page_offset;
1632                 else clen = len;
1633
1634                 if (clen > 0) {
1635                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1636                         if (frombio)
1637                                 memcpy(pa+page_offset, ba+b_offset, clen);
1638                         else
1639                                 memcpy(ba+b_offset, pa+page_offset, clen);
1640                         __bio_kunmap_atomic(ba, KM_USER0);
1641                 }
1642                 if (clen < len) /* hit end of page */
1643                         break;
1644                 page_offset +=  len;
1645         }
1646 }
1647
1648 #define check_xor()     do {                                              \
1649                                 if (count == MAX_XOR_BLOCKS) {            \
1650                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1651                                 count = 0;                                \
1652                            }                                              \
1653                         } while(0)
1654
1655 static void compute_parity6(struct stripe_head *sh, int method)
1656 {
1657         raid5_conf_t *conf = sh->raid_conf;
1658         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1659         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1660         struct bio *chosen;
1661         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1662         void *ptrs[syndrome_disks+2];
1663
1664         pd_idx = sh->pd_idx;
1665         qd_idx = sh->qd_idx;
1666         d0_idx = raid6_d0(sh);
1667
1668         pr_debug("compute_parity, stripe %llu, method %d\n",
1669                 (unsigned long long)sh->sector, method);
1670
1671         switch(method) {
1672         case READ_MODIFY_WRITE:
1673                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1674         case RECONSTRUCT_WRITE:
1675                 for (i= disks; i-- ;)
1676                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1677                                 chosen = sh->dev[i].towrite;
1678                                 sh->dev[i].towrite = NULL;
1679
1680                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1681                                         wake_up(&conf->wait_for_overlap);
1682
1683                                 BUG_ON(sh->dev[i].written);
1684                                 sh->dev[i].written = chosen;
1685                         }
1686                 break;
1687         case CHECK_PARITY:
1688                 BUG();          /* Not implemented yet */
1689         }
1690
1691         for (i = disks; i--;)
1692                 if (sh->dev[i].written) {
1693                         sector_t sector = sh->dev[i].sector;
1694                         struct bio *wbi = sh->dev[i].written;
1695                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1696                                 copy_data(1, wbi, sh->dev[i].page, sector);
1697                                 wbi = r5_next_bio(wbi, sector);
1698                         }
1699
1700                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1701                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1702                 }
1703
1704         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1705
1706         for (i = 0; i < disks; i++)
1707                 ptrs[i] = (void *)raid6_empty_zero_page;
1708
1709         count = 0;
1710         i = d0_idx;
1711         do {
1712                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1713
1714                 ptrs[slot] = page_address(sh->dev[i].page);
1715                 if (slot < syndrome_disks &&
1716                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1717                         printk(KERN_ERR "block %d/%d not uptodate "
1718                                "on parity calc\n", i, count);
1719                         BUG();
1720                 }
1721
1722                 i = raid6_next_disk(i, disks);
1723         } while (i != d0_idx);
1724         BUG_ON(count != syndrome_disks);
1725
1726         raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1727
1728         switch(method) {
1729         case RECONSTRUCT_WRITE:
1730                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1731                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1732                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1733                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1734                 break;
1735         case UPDATE_PARITY:
1736                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1737                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1738                 break;
1739         }
1740 }
1741
1742
1743 /* Compute one missing block */
1744 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1745 {
1746         int i, count, disks = sh->disks;
1747         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1748         int qd_idx = sh->qd_idx;
1749
1750         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1751                 (unsigned long long)sh->sector, dd_idx);
1752
1753         if ( dd_idx == qd_idx ) {
1754                 /* We're actually computing the Q drive */
1755                 compute_parity6(sh, UPDATE_PARITY);
1756         } else {
1757                 dest = page_address(sh->dev[dd_idx].page);
1758                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1759                 count = 0;
1760                 for (i = disks ; i--; ) {
1761                         if (i == dd_idx || i == qd_idx)
1762                                 continue;
1763                         p = page_address(sh->dev[i].page);
1764                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1765                                 ptr[count++] = p;
1766                         else
1767                                 printk("compute_block() %d, stripe %llu, %d"
1768                                        " not present\n", dd_idx,
1769                                        (unsigned long long)sh->sector, i);
1770
1771                         check_xor();
1772                 }
1773                 if (count)
1774                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1775                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1776                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1777         }
1778 }
1779
1780 /* Compute two missing blocks */
1781 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1782 {
1783         int i, count, disks = sh->disks;
1784         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1785         int d0_idx = raid6_d0(sh);
1786         int faila = -1, failb = -1;
1787         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1788         void *ptrs[syndrome_disks+2];
1789
1790         for (i = 0; i < disks ; i++)
1791                 ptrs[i] = (void *)raid6_empty_zero_page;
1792         count = 0;
1793         i = d0_idx;
1794         do {
1795                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1796
1797                 ptrs[slot] = page_address(sh->dev[i].page);
1798
1799                 if (i == dd_idx1)
1800                         faila = slot;
1801                 if (i == dd_idx2)
1802                         failb = slot;
1803                 i = raid6_next_disk(i, disks);
1804         } while (i != d0_idx);
1805         BUG_ON(count != syndrome_disks);
1806
1807         BUG_ON(faila == failb);
1808         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1809
1810         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1811                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1812                  faila, failb);
1813
1814         if (failb == syndrome_disks+1) {
1815                 /* Q disk is one of the missing disks */
1816                 if (faila == syndrome_disks) {
1817                         /* Missing P+Q, just recompute */
1818                         compute_parity6(sh, UPDATE_PARITY);
1819                         return;
1820                 } else {
1821                         /* We're missing D+Q; recompute D from P */
1822                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1823                                              dd_idx2 : dd_idx1),
1824                                         0);
1825                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1826                         return;
1827                 }
1828         }
1829
1830         /* We're missing D+P or D+D; */
1831         if (failb == syndrome_disks) {
1832                 /* We're missing D+P. */
1833                 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1834         } else {
1835                 /* We're missing D+D. */
1836                 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1837                                   ptrs);
1838         }
1839
1840         /* Both the above update both missing blocks */
1841         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1842         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1843 }
1844
1845 static void
1846 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1847                          int rcw, int expand)
1848 {
1849         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1850
1851         if (rcw) {
1852                 /* if we are not expanding this is a proper write request, and
1853                  * there will be bios with new data to be drained into the
1854                  * stripe cache
1855                  */
1856                 if (!expand) {
1857                         sh->reconstruct_state = reconstruct_state_drain_run;
1858                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1859                 } else
1860                         sh->reconstruct_state = reconstruct_state_run;
1861
1862                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1863
1864                 for (i = disks; i--; ) {
1865                         struct r5dev *dev = &sh->dev[i];
1866
1867                         if (dev->towrite) {
1868                                 set_bit(R5_LOCKED, &dev->flags);
1869                                 set_bit(R5_Wantdrain, &dev->flags);
1870                                 if (!expand)
1871                                         clear_bit(R5_UPTODATE, &dev->flags);
1872                                 s->locked++;
1873                         }
1874                 }
1875                 if (s->locked + 1 == disks)
1876                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1877                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1878         } else {
1879                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1880                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1881
1882                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1883                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1884                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1885                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1886
1887                 for (i = disks; i--; ) {
1888                         struct r5dev *dev = &sh->dev[i];
1889                         if (i == pd_idx)
1890                                 continue;
1891
1892                         if (dev->towrite &&
1893                             (test_bit(R5_UPTODATE, &dev->flags) ||
1894                              test_bit(R5_Wantcompute, &dev->flags))) {
1895                                 set_bit(R5_Wantdrain, &dev->flags);
1896                                 set_bit(R5_LOCKED, &dev->flags);
1897                                 clear_bit(R5_UPTODATE, &dev->flags);
1898                                 s->locked++;
1899                         }
1900                 }
1901         }
1902
1903         /* keep the parity disk locked while asynchronous operations
1904          * are in flight
1905          */
1906         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1907         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1908         s->locked++;
1909
1910         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1911                 __func__, (unsigned long long)sh->sector,
1912                 s->locked, s->ops_request);
1913 }
1914
1915 /*
1916  * Each stripe/dev can have one or more bion attached.
1917  * toread/towrite point to the first in a chain.
1918  * The bi_next chain must be in order.
1919  */
1920 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1921 {
1922         struct bio **bip;
1923         raid5_conf_t *conf = sh->raid_conf;
1924         int firstwrite=0;
1925
1926         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1927                 (unsigned long long)bi->bi_sector,
1928                 (unsigned long long)sh->sector);
1929
1930
1931         spin_lock(&sh->lock);
1932         spin_lock_irq(&conf->device_lock);
1933         if (forwrite) {
1934                 bip = &sh->dev[dd_idx].towrite;
1935                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1936                         firstwrite = 1;
1937         } else
1938                 bip = &sh->dev[dd_idx].toread;
1939         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1940                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1941                         goto overlap;
1942                 bip = & (*bip)->bi_next;
1943         }
1944         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1945                 goto overlap;
1946
1947         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1948         if (*bip)
1949                 bi->bi_next = *bip;
1950         *bip = bi;
1951         bi->bi_phys_segments++;
1952         spin_unlock_irq(&conf->device_lock);
1953         spin_unlock(&sh->lock);
1954
1955         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1956                 (unsigned long long)bi->bi_sector,
1957                 (unsigned long long)sh->sector, dd_idx);
1958
1959         if (conf->mddev->bitmap && firstwrite) {
1960                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1961                                   STRIPE_SECTORS, 0);
1962                 sh->bm_seq = conf->seq_flush+1;
1963                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1964         }
1965
1966         if (forwrite) {
1967                 /* check if page is covered */
1968                 sector_t sector = sh->dev[dd_idx].sector;
1969                 for (bi=sh->dev[dd_idx].towrite;
1970                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1971                              bi && bi->bi_sector <= sector;
1972                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1973                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1974                                 sector = bi->bi_sector + (bi->bi_size>>9);
1975                 }
1976                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1977                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1978         }
1979         return 1;
1980
1981  overlap:
1982         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1983         spin_unlock_irq(&conf->device_lock);
1984         spin_unlock(&sh->lock);
1985         return 0;
1986 }
1987
1988 static void end_reshape(raid5_conf_t *conf);
1989
1990 static int page_is_zero(struct page *p)
1991 {
1992         char *a = page_address(p);
1993         return ((*(u32*)a) == 0 &&
1994                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1995 }
1996
1997 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1998                             struct stripe_head *sh)
1999 {
2000         int sectors_per_chunk =
2001                 previous ? (conf->prev_chunk >> 9)
2002                          : (conf->chunk_size >> 9);
2003         int dd_idx;
2004         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2005         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2006
2007         raid5_compute_sector(conf,
2008                              stripe * (disks - conf->max_degraded)
2009                              *sectors_per_chunk + chunk_offset,
2010                              previous,
2011                              &dd_idx, sh);
2012 }
2013
2014 static void
2015 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2016                                 struct stripe_head_state *s, int disks,
2017                                 struct bio **return_bi)
2018 {
2019         int i;
2020         for (i = disks; i--; ) {
2021                 struct bio *bi;
2022                 int bitmap_end = 0;
2023
2024                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2025                         mdk_rdev_t *rdev;
2026                         rcu_read_lock();
2027                         rdev = rcu_dereference(conf->disks[i].rdev);
2028                         if (rdev && test_bit(In_sync, &rdev->flags))
2029                                 /* multiple read failures in one stripe */
2030                                 md_error(conf->mddev, rdev);
2031                         rcu_read_unlock();
2032                 }
2033                 spin_lock_irq(&conf->device_lock);
2034                 /* fail all writes first */
2035                 bi = sh->dev[i].towrite;
2036                 sh->dev[i].towrite = NULL;
2037                 if (bi) {
2038                         s->to_write--;
2039                         bitmap_end = 1;
2040                 }
2041
2042                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2043                         wake_up(&conf->wait_for_overlap);
2044
2045                 while (bi && bi->bi_sector <
2046                         sh->dev[i].sector + STRIPE_SECTORS) {
2047                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2048                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2049                         if (!raid5_dec_bi_phys_segments(bi)) {
2050                                 md_write_end(conf->mddev);
2051                                 bi->bi_next = *return_bi;
2052                                 *return_bi = bi;
2053                         }
2054                         bi = nextbi;
2055                 }
2056                 /* and fail all 'written' */
2057                 bi = sh->dev[i].written;
2058                 sh->dev[i].written = NULL;
2059                 if (bi) bitmap_end = 1;
2060                 while (bi && bi->bi_sector <
2061                        sh->dev[i].sector + STRIPE_SECTORS) {
2062                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2063                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2064                         if (!raid5_dec_bi_phys_segments(bi)) {
2065                                 md_write_end(conf->mddev);
2066                                 bi->bi_next = *return_bi;
2067                                 *return_bi = bi;
2068                         }
2069                         bi = bi2;
2070                 }
2071
2072                 /* fail any reads if this device is non-operational and
2073                  * the data has not reached the cache yet.
2074                  */
2075                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2076                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2077                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2078                         bi = sh->dev[i].toread;
2079                         sh->dev[i].toread = NULL;
2080                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2081                                 wake_up(&conf->wait_for_overlap);
2082                         if (bi) s->to_read--;
2083                         while (bi && bi->bi_sector <
2084                                sh->dev[i].sector + STRIPE_SECTORS) {
2085                                 struct bio *nextbi =
2086                                         r5_next_bio(bi, sh->dev[i].sector);
2087                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2088                                 if (!raid5_dec_bi_phys_segments(bi)) {
2089                                         bi->bi_next = *return_bi;
2090                                         *return_bi = bi;
2091                                 }
2092                                 bi = nextbi;
2093                         }
2094                 }
2095                 spin_unlock_irq(&conf->device_lock);
2096                 if (bitmap_end)
2097                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2098                                         STRIPE_SECTORS, 0, 0);
2099         }
2100
2101         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2102                 if (atomic_dec_and_test(&conf->pending_full_writes))
2103                         md_wakeup_thread(conf->mddev->thread);
2104 }
2105
2106 /* fetch_block5 - checks the given member device to see if its data needs
2107  * to be read or computed to satisfy a request.
2108  *
2109  * Returns 1 when no more member devices need to be checked, otherwise returns
2110  * 0 to tell the loop in handle_stripe_fill5 to continue
2111  */
2112 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2113                         int disk_idx, int disks)
2114 {
2115         struct r5dev *dev = &sh->dev[disk_idx];
2116         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2117
2118         /* is the data in this block needed, and can we get it? */
2119         if (!test_bit(R5_LOCKED, &dev->flags) &&
2120             !test_bit(R5_UPTODATE, &dev->flags) &&
2121             (dev->toread ||
2122              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2123              s->syncing || s->expanding ||
2124              (s->failed &&
2125               (failed_dev->toread ||
2126                (failed_dev->towrite &&
2127                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2128                 /* We would like to get this block, possibly by computing it,
2129                  * otherwise read it if the backing disk is insync
2130                  */
2131                 if ((s->uptodate == disks - 1) &&
2132                     (s->failed && disk_idx == s->failed_num)) {
2133                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2134                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2135                         set_bit(R5_Wantcompute, &dev->flags);
2136                         sh->ops.target = disk_idx;
2137                         s->req_compute = 1;
2138                         /* Careful: from this point on 'uptodate' is in the eye
2139                          * of raid5_run_ops which services 'compute' operations
2140                          * before writes. R5_Wantcompute flags a block that will
2141                          * be R5_UPTODATE by the time it is needed for a
2142                          * subsequent operation.
2143                          */
2144                         s->uptodate++;
2145                         return 1; /* uptodate + compute == disks */
2146                 } else if (test_bit(R5_Insync, &dev->flags)) {
2147                         set_bit(R5_LOCKED, &dev->flags);
2148                         set_bit(R5_Wantread, &dev->flags);
2149                         s->locked++;
2150                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2151                                 s->syncing);
2152                 }
2153         }
2154
2155         return 0;
2156 }
2157
2158 /**
2159  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2160  */
2161 static void handle_stripe_fill5(struct stripe_head *sh,
2162                         struct stripe_head_state *s, int disks)
2163 {
2164         int i;
2165
2166         /* look for blocks to read/compute, skip this if a compute
2167          * is already in flight, or if the stripe contents are in the
2168          * midst of changing due to a write
2169          */
2170         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2171             !sh->reconstruct_state)
2172                 for (i = disks; i--; )
2173                         if (fetch_block5(sh, s, i, disks))
2174                                 break;
2175         set_bit(STRIPE_HANDLE, &sh->state);
2176 }
2177
2178 static void handle_stripe_fill6(struct stripe_head *sh,
2179                         struct stripe_head_state *s, struct r6_state *r6s,
2180                         int disks)
2181 {
2182         int i;
2183         for (i = disks; i--; ) {
2184                 struct r5dev *dev = &sh->dev[i];
2185                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2186                     !test_bit(R5_UPTODATE, &dev->flags) &&
2187                     (dev->toread || (dev->towrite &&
2188                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2189                      s->syncing || s->expanding ||
2190                      (s->failed >= 1 &&
2191                       (sh->dev[r6s->failed_num[0]].toread ||
2192                        s->to_write)) ||
2193                      (s->failed >= 2 &&
2194                       (sh->dev[r6s->failed_num[1]].toread ||
2195                        s->to_write)))) {
2196                         /* we would like to get this block, possibly
2197                          * by computing it, but we might not be able to
2198                          */
2199                         if ((s->uptodate == disks - 1) &&
2200                             (s->failed && (i == r6s->failed_num[0] ||
2201                                            i == r6s->failed_num[1]))) {
2202                                 pr_debug("Computing stripe %llu block %d\n",
2203                                        (unsigned long long)sh->sector, i);
2204                                 compute_block_1(sh, i, 0);
2205                                 s->uptodate++;
2206                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2207                                 /* Computing 2-failure is *very* expensive; only
2208                                  * do it if failed >= 2
2209                                  */
2210                                 int other;
2211                                 for (other = disks; other--; ) {
2212                                         if (other == i)
2213                                                 continue;
2214                                         if (!test_bit(R5_UPTODATE,
2215                                               &sh->dev[other].flags))
2216                                                 break;
2217                                 }
2218                                 BUG_ON(other < 0);
2219                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2220                                        (unsigned long long)sh->sector,
2221                                        i, other);
2222                                 compute_block_2(sh, i, other);
2223                                 s->uptodate += 2;
2224                         } else if (test_bit(R5_Insync, &dev->flags)) {
2225                                 set_bit(R5_LOCKED, &dev->flags);
2226                                 set_bit(R5_Wantread, &dev->flags);
2227                                 s->locked++;
2228                                 pr_debug("Reading block %d (sync=%d)\n",
2229                                         i, s->syncing);
2230                         }
2231                 }
2232         }
2233         set_bit(STRIPE_HANDLE, &sh->state);
2234 }
2235
2236
2237 /* handle_stripe_clean_event
2238  * any written block on an uptodate or failed drive can be returned.
2239  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2240  * never LOCKED, so we don't need to test 'failed' directly.
2241  */
2242 static void handle_stripe_clean_event(raid5_conf_t *conf,
2243         struct stripe_head *sh, int disks, struct bio **return_bi)
2244 {
2245         int i;
2246         struct r5dev *dev;
2247
2248         for (i = disks; i--; )
2249                 if (sh->dev[i].written) {
2250                         dev = &sh->dev[i];
2251                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2252                                 test_bit(R5_UPTODATE, &dev->flags)) {
2253                                 /* We can return any write requests */
2254                                 struct bio *wbi, *wbi2;
2255                                 int bitmap_end = 0;
2256                                 pr_debug("Return write for disc %d\n", i);
2257                                 spin_lock_irq(&conf->device_lock);
2258                                 wbi = dev->written;
2259                                 dev->written = NULL;
2260                                 while (wbi && wbi->bi_sector <
2261                                         dev->sector + STRIPE_SECTORS) {
2262                                         wbi2 = r5_next_bio(wbi, dev->sector);
2263                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2264                                                 md_write_end(conf->mddev);
2265                                                 wbi->bi_next = *return_bi;
2266                                                 *return_bi = wbi;
2267                                         }
2268                                         wbi = wbi2;
2269                                 }
2270                                 if (dev->towrite == NULL)
2271                                         bitmap_end = 1;
2272                                 spin_unlock_irq(&conf->device_lock);
2273                                 if (bitmap_end)
2274                                         bitmap_endwrite(conf->mddev->bitmap,
2275                                                         sh->sector,
2276                                                         STRIPE_SECTORS,
2277                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2278                                                         0);
2279                         }
2280                 }
2281
2282         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2283                 if (atomic_dec_and_test(&conf->pending_full_writes))
2284                         md_wakeup_thread(conf->mddev->thread);
2285 }
2286
2287 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2288                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2289 {
2290         int rmw = 0, rcw = 0, i;
2291         for (i = disks; i--; ) {
2292                 /* would I have to read this buffer for read_modify_write */
2293                 struct r5dev *dev = &sh->dev[i];
2294                 if ((dev->towrite || i == sh->pd_idx) &&
2295                     !test_bit(R5_LOCKED, &dev->flags) &&
2296                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2297                       test_bit(R5_Wantcompute, &dev->flags))) {
2298                         if (test_bit(R5_Insync, &dev->flags))
2299                                 rmw++;
2300                         else
2301                                 rmw += 2*disks;  /* cannot read it */
2302                 }
2303                 /* Would I have to read this buffer for reconstruct_write */
2304                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2305                     !test_bit(R5_LOCKED, &dev->flags) &&
2306                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2307                     test_bit(R5_Wantcompute, &dev->flags))) {
2308                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2309                         else
2310                                 rcw += 2*disks;
2311                 }
2312         }
2313         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2314                 (unsigned long long)sh->sector, rmw, rcw);
2315         set_bit(STRIPE_HANDLE, &sh->state);
2316         if (rmw < rcw && rmw > 0)
2317                 /* prefer read-modify-write, but need to get some data */
2318                 for (i = disks; i--; ) {
2319                         struct r5dev *dev = &sh->dev[i];
2320                         if ((dev->towrite || i == sh->pd_idx) &&
2321                             !test_bit(R5_LOCKED, &dev->flags) &&
2322                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2323                             test_bit(R5_Wantcompute, &dev->flags)) &&
2324                             test_bit(R5_Insync, &dev->flags)) {
2325                                 if (
2326                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2327                                         pr_debug("Read_old block "
2328                                                 "%d for r-m-w\n", i);
2329                                         set_bit(R5_LOCKED, &dev->flags);
2330                                         set_bit(R5_Wantread, &dev->flags);
2331                                         s->locked++;
2332                                 } else {
2333                                         set_bit(STRIPE_DELAYED, &sh->state);
2334                                         set_bit(STRIPE_HANDLE, &sh->state);
2335                                 }
2336                         }
2337                 }
2338         if (rcw <= rmw && rcw > 0)
2339                 /* want reconstruct write, but need to get some data */
2340                 for (i = disks; i--; ) {
2341                         struct r5dev *dev = &sh->dev[i];
2342                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2343                             i != sh->pd_idx &&
2344                             !test_bit(R5_LOCKED, &dev->flags) &&
2345                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2346                             test_bit(R5_Wantcompute, &dev->flags)) &&
2347                             test_bit(R5_Insync, &dev->flags)) {
2348                                 if (
2349                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2350                                         pr_debug("Read_old block "
2351                                                 "%d for Reconstruct\n", i);
2352                                         set_bit(R5_LOCKED, &dev->flags);
2353                                         set_bit(R5_Wantread, &dev->flags);
2354                                         s->locked++;
2355                                 } else {
2356                                         set_bit(STRIPE_DELAYED, &sh->state);
2357                                         set_bit(STRIPE_HANDLE, &sh->state);
2358                                 }
2359                         }
2360                 }
2361         /* now if nothing is locked, and if we have enough data,
2362          * we can start a write request
2363          */
2364         /* since handle_stripe can be called at any time we need to handle the
2365          * case where a compute block operation has been submitted and then a
2366          * subsequent call wants to start a write request.  raid5_run_ops only
2367          * handles the case where compute block and postxor are requested
2368          * simultaneously.  If this is not the case then new writes need to be
2369          * held off until the compute completes.
2370          */
2371         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2372             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2373             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2374                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2375 }
2376
2377 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2378                 struct stripe_head *sh, struct stripe_head_state *s,
2379                 struct r6_state *r6s, int disks)
2380 {
2381         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2382         int qd_idx = sh->qd_idx;
2383         for (i = disks; i--; ) {
2384                 struct r5dev *dev = &sh->dev[i];
2385                 /* Would I have to read this buffer for reconstruct_write */
2386                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2387                     && i != pd_idx && i != qd_idx
2388                     && (!test_bit(R5_LOCKED, &dev->flags)
2389                             ) &&
2390                     !test_bit(R5_UPTODATE, &dev->flags)) {
2391                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2392                         else {
2393                                 pr_debug("raid6: must_compute: "
2394                                         "disk %d flags=%#lx\n", i, dev->flags);
2395                                 must_compute++;
2396                         }
2397                 }
2398         }
2399         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2400                (unsigned long long)sh->sector, rcw, must_compute);
2401         set_bit(STRIPE_HANDLE, &sh->state);
2402
2403         if (rcw > 0)
2404                 /* want reconstruct write, but need to get some data */
2405                 for (i = disks; i--; ) {
2406                         struct r5dev *dev = &sh->dev[i];
2407                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2408                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2409                             && !test_bit(R5_LOCKED, &dev->flags) &&
2410                             !test_bit(R5_UPTODATE, &dev->flags) &&
2411                             test_bit(R5_Insync, &dev->flags)) {
2412                                 if (
2413                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2414                                         pr_debug("Read_old stripe %llu "
2415                                                 "block %d for Reconstruct\n",
2416                                              (unsigned long long)sh->sector, i);
2417                                         set_bit(R5_LOCKED, &dev->flags);
2418                                         set_bit(R5_Wantread, &dev->flags);
2419                                         s->locked++;
2420                                 } else {
2421                                         pr_debug("Request delayed stripe %llu "
2422                                                 "block %d for Reconstruct\n",
2423                                              (unsigned long long)sh->sector, i);
2424                                         set_bit(STRIPE_DELAYED, &sh->state);
2425                                         set_bit(STRIPE_HANDLE, &sh->state);
2426                                 }
2427                         }
2428                 }
2429         /* now if nothing is locked, and if we have enough data, we can start a
2430          * write request
2431          */
2432         if (s->locked == 0 && rcw == 0 &&
2433             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2434                 if (must_compute > 0) {
2435                         /* We have failed blocks and need to compute them */
2436                         switch (s->failed) {
2437                         case 0:
2438                                 BUG();
2439                         case 1:
2440                                 compute_block_1(sh, r6s->failed_num[0], 0);
2441                                 break;
2442                         case 2:
2443                                 compute_block_2(sh, r6s->failed_num[0],
2444                                                 r6s->failed_num[1]);
2445                                 break;
2446                         default: /* This request should have been failed? */
2447                                 BUG();
2448                         }
2449                 }
2450
2451                 pr_debug("Computing parity for stripe %llu\n",
2452                         (unsigned long long)sh->sector);
2453                 compute_parity6(sh, RECONSTRUCT_WRITE);
2454                 /* now every locked buffer is ready to be written */
2455                 for (i = disks; i--; )
2456                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2457                                 pr_debug("Writing stripe %llu block %d\n",
2458                                        (unsigned long long)sh->sector, i);
2459                                 s->locked++;
2460                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2461                         }
2462                 if (s->locked == disks)
2463                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2464                                 atomic_inc(&conf->pending_full_writes);
2465                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2466                 set_bit(STRIPE_INSYNC, &sh->state);
2467
2468                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2469                         atomic_dec(&conf->preread_active_stripes);
2470                         if (atomic_read(&conf->preread_active_stripes) <
2471                             IO_THRESHOLD)
2472                                 md_wakeup_thread(conf->mddev->thread);
2473                 }
2474         }
2475 }
2476
2477 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2478                                 struct stripe_head_state *s, int disks)
2479 {
2480         struct r5dev *dev = NULL;
2481
2482         set_bit(STRIPE_HANDLE, &sh->state);
2483
2484         switch (sh->check_state) {
2485         case check_state_idle:
2486                 /* start a new check operation if there are no failures */
2487                 if (s->failed == 0) {
2488                         BUG_ON(s->uptodate != disks);
2489                         sh->check_state = check_state_run;
2490                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2491                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2492                         s->uptodate--;
2493                         break;
2494                 }
2495                 dev = &sh->dev[s->failed_num];
2496                 /* fall through */
2497         case check_state_compute_result:
2498                 sh->check_state = check_state_idle;
2499                 if (!dev)
2500                         dev = &sh->dev[sh->pd_idx];
2501
2502                 /* check that a write has not made the stripe insync */
2503                 if (test_bit(STRIPE_INSYNC, &sh->state))
2504                         break;
2505
2506                 /* either failed parity check, or recovery is happening */
2507                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2508                 BUG_ON(s->uptodate != disks);
2509
2510                 set_bit(R5_LOCKED, &dev->flags);
2511                 s->locked++;
2512                 set_bit(R5_Wantwrite, &dev->flags);
2513
2514                 clear_bit(STRIPE_DEGRADED, &sh->state);
2515                 set_bit(STRIPE_INSYNC, &sh->state);
2516                 break;
2517         case check_state_run:
2518                 break; /* we will be called again upon completion */
2519         case check_state_check_result:
2520                 sh->check_state = check_state_idle;
2521
2522                 /* if a failure occurred during the check operation, leave
2523                  * STRIPE_INSYNC not set and let the stripe be handled again
2524                  */
2525                 if (s->failed)
2526                         break;
2527
2528                 /* handle a successful check operation, if parity is correct
2529                  * we are done.  Otherwise update the mismatch count and repair
2530                  * parity if !MD_RECOVERY_CHECK
2531                  */
2532                 if (sh->ops.zero_sum_result == 0)
2533                         /* parity is correct (on disc,
2534                          * not in buffer any more)
2535                          */
2536                         set_bit(STRIPE_INSYNC, &sh->state);
2537                 else {
2538                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2539                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2540                                 /* don't try to repair!! */
2541                                 set_bit(STRIPE_INSYNC, &sh->state);
2542                         else {
2543                                 sh->check_state = check_state_compute_run;
2544                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2545                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2546                                 set_bit(R5_Wantcompute,
2547                                         &sh->dev[sh->pd_idx].flags);
2548                                 sh->ops.target = sh->pd_idx;
2549                                 s->uptodate++;
2550                         }
2551                 }
2552                 break;
2553         case check_state_compute_run:
2554                 break;
2555         default:
2556                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2557                        __func__, sh->check_state,
2558                        (unsigned long long) sh->sector);
2559                 BUG();
2560         }
2561 }
2562
2563
2564 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2565                                 struct stripe_head_state *s,
2566                                 struct r6_state *r6s, struct page *tmp_page,
2567                                 int disks)
2568 {
2569         int update_p = 0, update_q = 0;
2570         struct r5dev *dev;
2571         int pd_idx = sh->pd_idx;
2572         int qd_idx = sh->qd_idx;
2573
2574         set_bit(STRIPE_HANDLE, &sh->state);
2575
2576         BUG_ON(s->failed > 2);
2577         BUG_ON(s->uptodate < disks);
2578         /* Want to check and possibly repair P and Q.
2579          * However there could be one 'failed' device, in which
2580          * case we can only check one of them, possibly using the
2581          * other to generate missing data
2582          */
2583
2584         /* If !tmp_page, we cannot do the calculations,
2585          * but as we have set STRIPE_HANDLE, we will soon be called
2586          * by stripe_handle with a tmp_page - just wait until then.
2587          */
2588         if (tmp_page) {
2589                 if (s->failed == r6s->q_failed) {
2590                         /* The only possible failed device holds 'Q', so it
2591                          * makes sense to check P (If anything else were failed,
2592                          * we would have used P to recreate it).
2593                          */
2594                         compute_block_1(sh, pd_idx, 1);
2595                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2596                                 compute_block_1(sh, pd_idx, 0);
2597                                 update_p = 1;
2598                         }
2599                 }
2600                 if (!r6s->q_failed && s->failed < 2) {
2601                         /* q is not failed, and we didn't use it to generate
2602                          * anything, so it makes sense to check it
2603                          */
2604                         memcpy(page_address(tmp_page),
2605                                page_address(sh->dev[qd_idx].page),
2606                                STRIPE_SIZE);
2607                         compute_parity6(sh, UPDATE_PARITY);
2608                         if (memcmp(page_address(tmp_page),
2609                                    page_address(sh->dev[qd_idx].page),
2610                                    STRIPE_SIZE) != 0) {
2611                                 clear_bit(STRIPE_INSYNC, &sh->state);
2612                                 update_q = 1;
2613                         }
2614                 }
2615                 if (update_p || update_q) {
2616                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2617                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2618                                 /* don't try to repair!! */
2619                                 update_p = update_q = 0;
2620                 }
2621
2622                 /* now write out any block on a failed drive,
2623                  * or P or Q if they need it
2624                  */
2625
2626                 if (s->failed == 2) {
2627                         dev = &sh->dev[r6s->failed_num[1]];
2628                         s->locked++;
2629                         set_bit(R5_LOCKED, &dev->flags);
2630                         set_bit(R5_Wantwrite, &dev->flags);
2631                 }
2632                 if (s->failed >= 1) {
2633                         dev = &sh->dev[r6s->failed_num[0]];
2634                         s->locked++;
2635                         set_bit(R5_LOCKED, &dev->flags);
2636                         set_bit(R5_Wantwrite, &dev->flags);
2637                 }
2638
2639                 if (update_p) {
2640                         dev = &sh->dev[pd_idx];
2641                         s->locked++;
2642                         set_bit(R5_LOCKED, &dev->flags);
2643                         set_bit(R5_Wantwrite, &dev->flags);
2644                 }
2645                 if (update_q) {
2646                         dev = &sh->dev[qd_idx];
2647                         s->locked++;
2648                         set_bit(R5_LOCKED, &dev->flags);
2649                         set_bit(R5_Wantwrite, &dev->flags);
2650                 }
2651                 clear_bit(STRIPE_DEGRADED, &sh->state);
2652
2653                 set_bit(STRIPE_INSYNC, &sh->state);
2654         }
2655 }
2656
2657 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2658                                 struct r6_state *r6s)
2659 {
2660         int i;
2661
2662         /* We have read all the blocks in this stripe and now we need to
2663          * copy some of them into a target stripe for expand.
2664          */
2665         struct dma_async_tx_descriptor *tx = NULL;
2666         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2667         for (i = 0; i < sh->disks; i++)
2668                 if (i != sh->pd_idx && i != sh->qd_idx) {
2669                         int dd_idx, j;
2670                         struct stripe_head *sh2;
2671
2672                         sector_t bn = compute_blocknr(sh, i, 1);
2673                         sector_t s = raid5_compute_sector(conf, bn, 0,
2674                                                           &dd_idx, NULL);
2675                         sh2 = get_active_stripe(conf, s, 0, 1);
2676                         if (sh2 == NULL)
2677                                 /* so far only the early blocks of this stripe
2678                                  * have been requested.  When later blocks
2679                                  * get requested, we will try again
2680                                  */
2681                                 continue;
2682                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2683                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2684                                 /* must have already done this block */
2685                                 release_stripe(sh2);
2686                                 continue;
2687                         }
2688
2689                         /* place all the copies on one channel */
2690                         tx = async_memcpy(sh2->dev[dd_idx].page,
2691                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2692                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2693
2694                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2695                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2696                         for (j = 0; j < conf->raid_disks; j++)
2697                                 if (j != sh2->pd_idx &&
2698                                     (!r6s || j != sh2->qd_idx) &&
2699                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2700                                         break;
2701                         if (j == conf->raid_disks) {
2702                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2703                                 set_bit(STRIPE_HANDLE, &sh2->state);
2704                         }
2705                         release_stripe(sh2);
2706
2707                 }
2708         /* done submitting copies, wait for them to complete */
2709         if (tx) {
2710                 async_tx_ack(tx);
2711                 dma_wait_for_async_tx(tx);
2712         }
2713 }
2714
2715
2716 /*
2717  * handle_stripe - do things to a stripe.
2718  *
2719  * We lock the stripe and then examine the state of various bits
2720  * to see what needs to be done.
2721  * Possible results:
2722  *    return some read request which now have data
2723  *    return some write requests which are safely on disc
2724  *    schedule a read on some buffers
2725  *    schedule a write of some buffers
2726  *    return confirmation of parity correctness
2727  *
2728  * buffers are taken off read_list or write_list, and bh_cache buffers
2729  * get BH_Lock set before the stripe lock is released.
2730  *
2731  */
2732
2733 static bool handle_stripe5(struct stripe_head *sh)
2734 {
2735         raid5_conf_t *conf = sh->raid_conf;
2736         int disks = sh->disks, i;
2737         struct bio *return_bi = NULL;
2738         struct stripe_head_state s;
2739         struct r5dev *dev;
2740         mdk_rdev_t *blocked_rdev = NULL;
2741         int prexor;
2742
2743         memset(&s, 0, sizeof(s));
2744         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2745                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2746                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2747                  sh->reconstruct_state);
2748
2749         spin_lock(&sh->lock);
2750         clear_bit(STRIPE_HANDLE, &sh->state);
2751         clear_bit(STRIPE_DELAYED, &sh->state);
2752
2753         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2754         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2755         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2756
2757         /* Now to look around and see what can be done */
2758         rcu_read_lock();
2759         for (i=disks; i--; ) {
2760                 mdk_rdev_t *rdev;
2761                 struct r5dev *dev = &sh->dev[i];
2762                 clear_bit(R5_Insync, &dev->flags);
2763
2764                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2765                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2766                         dev->towrite, dev->written);
2767
2768                 /* maybe we can request a biofill operation
2769                  *
2770                  * new wantfill requests are only permitted while
2771                  * ops_complete_biofill is guaranteed to be inactive
2772                  */
2773                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2774                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2775                         set_bit(R5_Wantfill, &dev->flags);
2776
2777                 /* now count some things */
2778                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2779                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2780                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2781
2782                 if (test_bit(R5_Wantfill, &dev->flags))
2783                         s.to_fill++;
2784                 else if (dev->toread)
2785                         s.to_read++;
2786                 if (dev->towrite) {
2787                         s.to_write++;
2788                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2789                                 s.non_overwrite++;
2790                 }
2791                 if (dev->written)
2792                         s.written++;
2793                 rdev = rcu_dereference(conf->disks[i].rdev);
2794                 if (blocked_rdev == NULL &&
2795                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2796                         blocked_rdev = rdev;
2797                         atomic_inc(&rdev->nr_pending);
2798                 }
2799                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2800                         /* The ReadError flag will just be confusing now */
2801                         clear_bit(R5_ReadError, &dev->flags);
2802                         clear_bit(R5_ReWrite, &dev->flags);
2803                 }
2804                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2805                     || test_bit(R5_ReadError, &dev->flags)) {
2806                         s.failed++;
2807                         s.failed_num = i;
2808                 } else
2809                         set_bit(R5_Insync, &dev->flags);
2810         }
2811         rcu_read_unlock();
2812
2813         if (unlikely(blocked_rdev)) {
2814                 if (s.syncing || s.expanding || s.expanded ||
2815                     s.to_write || s.written) {
2816                         set_bit(STRIPE_HANDLE, &sh->state);
2817                         goto unlock;
2818                 }
2819                 /* There is nothing for the blocked_rdev to block */
2820                 rdev_dec_pending(blocked_rdev, conf->mddev);
2821                 blocked_rdev = NULL;
2822         }
2823
2824         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2825                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2826                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2827         }
2828
2829         pr_debug("locked=%d uptodate=%d to_read=%d"
2830                 " to_write=%d failed=%d failed_num=%d\n",
2831                 s.locked, s.uptodate, s.to_read, s.to_write,
2832                 s.failed, s.failed_num);
2833         /* check if the array has lost two devices and, if so, some requests might
2834          * need to be failed
2835          */
2836         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2837                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2838         if (s.failed > 1 && s.syncing) {
2839                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2840                 clear_bit(STRIPE_SYNCING, &sh->state);
2841                 s.syncing = 0;
2842         }
2843
2844         /* might be able to return some write requests if the parity block
2845          * is safe, or on a failed drive
2846          */
2847         dev = &sh->dev[sh->pd_idx];
2848         if ( s.written &&
2849              ((test_bit(R5_Insync, &dev->flags) &&
2850                !test_bit(R5_LOCKED, &dev->flags) &&
2851                test_bit(R5_UPTODATE, &dev->flags)) ||
2852                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2853                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2854
2855         /* Now we might consider reading some blocks, either to check/generate
2856          * parity, or to satisfy requests
2857          * or to load a block that is being partially written.
2858          */
2859         if (s.to_read || s.non_overwrite ||
2860             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2861                 handle_stripe_fill5(sh, &s, disks);
2862
2863         /* Now we check to see if any write operations have recently
2864          * completed
2865          */
2866         prexor = 0;
2867         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2868                 prexor = 1;
2869         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2870             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2871                 sh->reconstruct_state = reconstruct_state_idle;
2872
2873                 /* All the 'written' buffers and the parity block are ready to
2874                  * be written back to disk
2875                  */
2876                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2877                 for (i = disks; i--; ) {
2878                         dev = &sh->dev[i];
2879                         if (test_bit(R5_LOCKED, &dev->flags) &&
2880                                 (i == sh->pd_idx || dev->written)) {
2881                                 pr_debug("Writing block %d\n", i);
2882                                 set_bit(R5_Wantwrite, &dev->flags);
2883                                 if (prexor)
2884                                         continue;
2885                                 if (!test_bit(R5_Insync, &dev->flags) ||
2886                                     (i == sh->pd_idx && s.failed == 0))
2887                                         set_bit(STRIPE_INSYNC, &sh->state);
2888                         }
2889                 }
2890                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2891                         atomic_dec(&conf->preread_active_stripes);
2892                         if (atomic_read(&conf->preread_active_stripes) <
2893                                 IO_THRESHOLD)
2894                                 md_wakeup_thread(conf->mddev->thread);
2895                 }
2896         }
2897
2898         /* Now to consider new write requests and what else, if anything
2899          * should be read.  We do not handle new writes when:
2900          * 1/ A 'write' operation (copy+xor) is already in flight.
2901          * 2/ A 'check' operation is in flight, as it may clobber the parity
2902          *    block.
2903          */
2904         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2905                 handle_stripe_dirtying5(conf, sh, &s, disks);
2906
2907         /* maybe we need to check and possibly fix the parity for this stripe
2908          * Any reads will already have been scheduled, so we just see if enough
2909          * data is available.  The parity check is held off while parity
2910          * dependent operations are in flight.
2911          */
2912         if (sh->check_state ||
2913             (s.syncing && s.locked == 0 &&
2914              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2915              !test_bit(STRIPE_INSYNC, &sh->state)))
2916                 handle_parity_checks5(conf, sh, &s, disks);
2917
2918         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2919                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2920                 clear_bit(STRIPE_SYNCING, &sh->state);
2921         }
2922
2923         /* If the failed drive is just a ReadError, then we might need to progress
2924          * the repair/check process
2925          */
2926         if (s.failed == 1 && !conf->mddev->ro &&
2927             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2928             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2929             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2930                 ) {
2931                 dev = &sh->dev[s.failed_num];
2932                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2933                         set_bit(R5_Wantwrite, &dev->flags);
2934                         set_bit(R5_ReWrite, &dev->flags);
2935                         set_bit(R5_LOCKED, &dev->flags);
2936                         s.locked++;
2937                 } else {
2938                         /* let's read it back */
2939                         set_bit(R5_Wantread, &dev->flags);
2940                         set_bit(R5_LOCKED, &dev->flags);
2941                         s.locked++;
2942                 }
2943         }
2944
2945         /* Finish reconstruct operations initiated by the expansion process */
2946         if (sh->reconstruct_state == reconstruct_state_result) {
2947                 sh->reconstruct_state = reconstruct_state_idle;
2948                 clear_bit(STRIPE_EXPANDING, &sh->state);
2949                 for (i = conf->raid_disks; i--; ) {
2950                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2951                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2952                         s.locked++;
2953                 }
2954         }
2955
2956         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2957             !sh->reconstruct_state) {
2958                 /* Need to write out all blocks after computing parity */
2959                 sh->disks = conf->raid_disks;
2960                 stripe_set_idx(sh->sector, conf, 0, sh);
2961                 schedule_reconstruction5(sh, &s, 1, 1);
2962         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2963                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2964                 atomic_dec(&conf->reshape_stripes);
2965                 wake_up(&conf->wait_for_overlap);
2966                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2967         }
2968
2969         if (s.expanding && s.locked == 0 &&
2970             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2971                 handle_stripe_expansion(conf, sh, NULL);
2972
2973  unlock:
2974         spin_unlock(&sh->lock);
2975
2976         /* wait for this device to become unblocked */
2977         if (unlikely(blocked_rdev))
2978                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2979
2980         if (s.ops_request)
2981                 raid5_run_ops(sh, s.ops_request);
2982
2983         ops_run_io(sh, &s);
2984
2985         return_io(return_bi);
2986
2987         return blocked_rdev == NULL;
2988 }
2989
2990 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2991 {
2992         raid5_conf_t *conf = sh->raid_conf;
2993         int disks = sh->disks;
2994         struct bio *return_bi = NULL;
2995         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
2996         struct stripe_head_state s;
2997         struct r6_state r6s;
2998         struct r5dev *dev, *pdev, *qdev;
2999         mdk_rdev_t *blocked_rdev = NULL;
3000
3001         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3002                 "pd_idx=%d, qd_idx=%d\n",
3003                (unsigned long long)sh->sector, sh->state,
3004                atomic_read(&sh->count), pd_idx, qd_idx);
3005         memset(&s, 0, sizeof(s));
3006
3007         spin_lock(&sh->lock);
3008         clear_bit(STRIPE_HANDLE, &sh->state);
3009         clear_bit(STRIPE_DELAYED, &sh->state);
3010
3011         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3012         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3013         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3014         /* Now to look around and see what can be done */
3015
3016         rcu_read_lock();
3017         for (i=disks; i--; ) {
3018                 mdk_rdev_t *rdev;
3019                 dev = &sh->dev[i];
3020                 clear_bit(R5_Insync, &dev->flags);
3021
3022                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3023                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3024                 /* maybe we can reply to a read */
3025                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3026                         struct bio *rbi, *rbi2;
3027                         pr_debug("Return read for disc %d\n", i);
3028                         spin_lock_irq(&conf->device_lock);
3029                         rbi = dev->toread;
3030                         dev->toread = NULL;
3031                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3032                                 wake_up(&conf->wait_for_overlap);
3033                         spin_unlock_irq(&conf->device_lock);
3034                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3035                                 copy_data(0, rbi, dev->page, dev->sector);
3036                                 rbi2 = r5_next_bio(rbi, dev->sector);
3037                                 spin_lock_irq(&conf->device_lock);
3038                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3039                                         rbi->bi_next = return_bi;
3040                                         return_bi = rbi;
3041                                 }
3042                                 spin_unlock_irq(&conf->device_lock);
3043                                 rbi = rbi2;
3044                         }
3045                 }
3046
3047                 /* now count some things */
3048                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3049                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3050
3051
3052                 if (dev->toread)
3053                         s.to_read++;
3054                 if (dev->towrite) {
3055                         s.to_write++;
3056                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3057                                 s.non_overwrite++;
3058                 }
3059                 if (dev->written)
3060                         s.written++;
3061                 rdev = rcu_dereference(conf->disks[i].rdev);
3062                 if (blocked_rdev == NULL &&
3063                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3064                         blocked_rdev = rdev;
3065                         atomic_inc(&rdev->nr_pending);
3066                 }
3067                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3068                         /* The ReadError flag will just be confusing now */
3069                         clear_bit(R5_ReadError, &dev->flags);
3070                         clear_bit(R5_ReWrite, &dev->flags);
3071                 }
3072                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3073                     || test_bit(R5_ReadError, &dev->flags)) {
3074                         if (s.failed < 2)
3075                                 r6s.failed_num[s.failed] = i;
3076                         s.failed++;
3077                 } else
3078                         set_bit(R5_Insync, &dev->flags);
3079         }
3080         rcu_read_unlock();
3081
3082         if (unlikely(blocked_rdev)) {
3083                 if (s.syncing || s.expanding || s.expanded ||
3084                     s.to_write || s.written) {
3085                         set_bit(STRIPE_HANDLE, &sh->state);
3086                         goto unlock;
3087                 }
3088                 /* There is nothing for the blocked_rdev to block */
3089                 rdev_dec_pending(blocked_rdev, conf->mddev);
3090                 blocked_rdev = NULL;
3091         }
3092
3093         pr_debug("locked=%d uptodate=%d to_read=%d"
3094                " to_write=%d failed=%d failed_num=%d,%d\n",
3095                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3096                r6s.failed_num[0], r6s.failed_num[1]);
3097         /* check if the array has lost >2 devices and, if so, some requests
3098          * might need to be failed
3099          */
3100         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3101                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3102         if (s.failed > 2 && s.syncing) {
3103                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3104                 clear_bit(STRIPE_SYNCING, &sh->state);
3105                 s.syncing = 0;
3106         }
3107
3108         /*
3109          * might be able to return some write requests if the parity blocks
3110          * are safe, or on a failed drive
3111          */
3112         pdev = &sh->dev[pd_idx];
3113         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3114                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3115         qdev = &sh->dev[qd_idx];
3116         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3117                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3118
3119         if ( s.written &&
3120              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3121                              && !test_bit(R5_LOCKED, &pdev->flags)
3122                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3123              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3124                              && !test_bit(R5_LOCKED, &qdev->flags)
3125                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3126                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3127
3128         /* Now we might consider reading some blocks, either to check/generate
3129          * parity, or to satisfy requests
3130          * or to load a block that is being partially written.
3131          */
3132         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3133             (s.syncing && (s.uptodate < disks)) || s.expanding)
3134                 handle_stripe_fill6(sh, &s, &r6s, disks);
3135
3136         /* now to consider writing and what else, if anything should be read */
3137         if (s.to_write)
3138                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3139
3140         /* maybe we need to check and possibly fix the parity for this stripe
3141          * Any reads will already have been scheduled, so we just see if enough
3142          * data is available
3143          */
3144         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3145                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3146
3147         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3148                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3149                 clear_bit(STRIPE_SYNCING, &sh->state);
3150         }
3151
3152         /* If the failed drives are just a ReadError, then we might need
3153          * to progress the repair/check process
3154          */
3155         if (s.failed <= 2 && !conf->mddev->ro)
3156                 for (i = 0; i < s.failed; i++) {
3157                         dev = &sh->dev[r6s.failed_num[i]];
3158                         if (test_bit(R5_ReadError, &dev->flags)
3159                             && !test_bit(R5_LOCKED, &dev->flags)
3160                             && test_bit(R5_UPTODATE, &dev->flags)
3161                                 ) {
3162                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3163                                         set_bit(R5_Wantwrite, &dev->flags);
3164                                         set_bit(R5_ReWrite, &dev->flags);
3165                                         set_bit(R5_LOCKED, &dev->flags);
3166                                 } else {
3167                                         /* let's read it back */
3168                                         set_bit(R5_Wantread, &dev->flags);
3169                                         set_bit(R5_LOCKED, &dev->flags);
3170                                 }
3171                         }
3172                 }
3173
3174         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3175                 /* Need to write out all blocks after computing P&Q */
3176                 sh->disks = conf->raid_disks;
3177                 stripe_set_idx(sh->sector, conf, 0, sh);
3178                 compute_parity6(sh, RECONSTRUCT_WRITE);
3179                 for (i = conf->raid_disks ; i-- ;  ) {
3180                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3181                         s.locked++;
3182                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3183                 }
3184                 clear_bit(STRIPE_EXPANDING, &sh->state);
3185         } else if (s.expanded) {
3186                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3187                 atomic_dec(&conf->reshape_stripes);
3188                 wake_up(&conf->wait_for_overlap);
3189                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3190         }
3191
3192         if (s.expanding && s.locked == 0 &&
3193             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3194                 handle_stripe_expansion(conf, sh, &r6s);
3195
3196  unlock:
3197         spin_unlock(&sh->lock);
3198
3199         /* wait for this device to become unblocked */
3200         if (unlikely(blocked_rdev))
3201                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3202
3203         ops_run_io(sh, &s);
3204
3205         return_io(return_bi);
3206
3207         return blocked_rdev == NULL;
3208 }
3209
3210 /* returns true if the stripe was handled */
3211 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3212 {
3213         if (sh->raid_conf->level == 6)
3214                 return handle_stripe6(sh, tmp_page);
3215         else
3216                 return handle_stripe5(sh);
3217 }
3218
3219
3220
3221 static void raid5_activate_delayed(raid5_conf_t *conf)
3222 {
3223         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3224                 while (!list_empty(&conf->delayed_list)) {
3225                         struct list_head *l = conf->delayed_list.next;
3226                         struct stripe_head *sh;
3227                         sh = list_entry(l, struct stripe_head, lru);
3228                         list_del_init(l);
3229                         clear_bit(STRIPE_DELAYED, &sh->state);
3230                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3231                                 atomic_inc(&conf->preread_active_stripes);
3232                         list_add_tail(&sh->lru, &conf->hold_list);
3233                 }
3234         } else
3235                 blk_plug_device(conf->mddev->queue);
3236 }
3237
3238 static void activate_bit_delay(raid5_conf_t *conf)
3239 {
3240         /* device_lock is held */
3241         struct list_head head;
3242         list_add(&head, &conf->bitmap_list);
3243         list_del_init(&conf->bitmap_list);
3244         while (!list_empty(&head)) {
3245                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3246                 list_del_init(&sh->lru);
3247                 atomic_inc(&sh->count);
3248                 __release_stripe(conf, sh);
3249         }
3250 }
3251
3252 static void unplug_slaves(mddev_t *mddev)
3253 {
3254         raid5_conf_t *conf = mddev_to_conf(mddev);
3255         int i;
3256
3257         rcu_read_lock();
3258         for (i=0; i<mddev->raid_disks; i++) {
3259                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3260                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3261                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3262
3263                         atomic_inc(&rdev->nr_pending);
3264                         rcu_read_unlock();
3265
3266                         blk_unplug(r_queue);
3267
3268                         rdev_dec_pending(rdev, mddev);
3269                         rcu_read_lock();
3270                 }
3271         }
3272         rcu_read_unlock();
3273 }
3274
3275 static void raid5_unplug_device(struct request_queue *q)
3276 {
3277         mddev_t *mddev = q->queuedata;
3278         raid5_conf_t *conf = mddev_to_conf(mddev);
3279         unsigned long flags;
3280
3281         spin_lock_irqsave(&conf->device_lock, flags);
3282
3283         if (blk_remove_plug(q)) {
3284                 conf->seq_flush++;
3285                 raid5_activate_delayed(conf);
3286         }
3287         md_wakeup_thread(mddev->thread);
3288
3289         spin_unlock_irqrestore(&conf->device_lock, flags);
3290
3291         unplug_slaves(mddev);
3292 }
3293
3294 static int raid5_congested(void *data, int bits)
3295 {
3296         mddev_t *mddev = data;
3297         raid5_conf_t *conf = mddev_to_conf(mddev);
3298
3299         /* No difference between reads and writes.  Just check
3300          * how busy the stripe_cache is
3301          */
3302         if (conf->inactive_blocked)
3303                 return 1;
3304         if (conf->quiesce)
3305                 return 1;
3306         if (list_empty_careful(&conf->inactive_list))
3307                 return 1;
3308
3309         return 0;
3310 }
3311
3312 /* We want read requests to align with chunks where possible,
3313  * but write requests don't need to.
3314  */
3315 static int raid5_mergeable_bvec(struct request_queue *q,
3316                                 struct bvec_merge_data *bvm,
3317                                 struct bio_vec *biovec)
3318 {
3319         mddev_t *mddev = q->queuedata;
3320         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3321         int max;
3322         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3323         unsigned int bio_sectors = bvm->bi_size >> 9;
3324
3325         if ((bvm->bi_rw & 1) == WRITE)
3326                 return biovec->bv_len; /* always allow writes to be mergeable */
3327
3328         if (mddev->new_chunk < mddev->chunk_size)
3329                 chunk_sectors = mddev->new_chunk >> 9;
3330         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3331         if (max < 0) max = 0;
3332         if (max <= biovec->bv_len && bio_sectors == 0)
3333                 return biovec->bv_len;
3334         else
3335                 return max;
3336 }
3337
3338
3339 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3340 {
3341         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3342         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3343         unsigned int bio_sectors = bio->bi_size >> 9;
3344
3345         if (mddev->new_chunk < mddev->chunk_size)
3346                 chunk_sectors = mddev->new_chunk >> 9;
3347         return  chunk_sectors >=
3348                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3349 }
3350
3351 /*
3352  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3353  *  later sampled by raid5d.
3354  */
3355 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3356 {
3357         unsigned long flags;
3358
3359         spin_lock_irqsave(&conf->device_lock, flags);
3360
3361         bi->bi_next = conf->retry_read_aligned_list;
3362         conf->retry_read_aligned_list = bi;
3363
3364         spin_unlock_irqrestore(&conf->device_lock, flags);
3365         md_wakeup_thread(conf->mddev->thread);
3366 }
3367
3368
3369 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3370 {
3371         struct bio *bi;
3372
3373         bi = conf->retry_read_aligned;
3374         if (bi) {
3375                 conf->retry_read_aligned = NULL;
3376                 return bi;
3377         }
3378         bi = conf->retry_read_aligned_list;
3379         if(bi) {
3380                 conf->retry_read_aligned_list = bi->bi_next;
3381                 bi->bi_next = NULL;
3382                 /*
3383                  * this sets the active strip count to 1 and the processed
3384                  * strip count to zero (upper 8 bits)
3385                  */
3386                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3387         }
3388
3389         return bi;
3390 }
3391
3392
3393 /*
3394  *  The "raid5_align_endio" should check if the read succeeded and if it
3395  *  did, call bio_endio on the original bio (having bio_put the new bio
3396  *  first).
3397  *  If the read failed..
3398  */
3399 static void raid5_align_endio(struct bio *bi, int error)
3400 {
3401         struct bio* raid_bi  = bi->bi_private;
3402         mddev_t *mddev;
3403         raid5_conf_t *conf;
3404         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3405         mdk_rdev_t *rdev;
3406
3407         bio_put(bi);
3408
3409         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3410         conf = mddev_to_conf(mddev);
3411         rdev = (void*)raid_bi->bi_next;
3412         raid_bi->bi_next = NULL;
3413
3414         rdev_dec_pending(rdev, conf->mddev);
3415
3416         if (!error && uptodate) {
3417                 bio_endio(raid_bi, 0);
3418                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3419                         wake_up(&conf->wait_for_stripe);
3420                 return;
3421         }
3422
3423
3424         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3425
3426         add_bio_to_retry(raid_bi, conf);
3427 }
3428
3429 static int bio_fits_rdev(struct bio *bi)
3430 {
3431         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3432
3433         if ((bi->bi_size>>9) > q->max_sectors)
3434                 return 0;
3435         blk_recount_segments(q, bi);
3436         if (bi->bi_phys_segments > q->max_phys_segments)
3437                 return 0;
3438
3439         if (q->merge_bvec_fn)
3440                 /* it's too hard to apply the merge_bvec_fn at this stage,
3441                  * just just give up
3442                  */
3443                 return 0;
3444
3445         return 1;
3446 }
3447
3448
3449 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3450 {
3451         mddev_t *mddev = q->queuedata;
3452         raid5_conf_t *conf = mddev_to_conf(mddev);
3453         unsigned int dd_idx;
3454         struct bio* align_bi;
3455         mdk_rdev_t *rdev;
3456
3457         if (!in_chunk_boundary(mddev, raid_bio)) {
3458                 pr_debug("chunk_aligned_read : non aligned\n");
3459                 return 0;
3460         }
3461         /*
3462          * use bio_clone to make a copy of the bio
3463          */
3464         align_bi = bio_clone(raid_bio, GFP_NOIO);
3465         if (!align_bi)
3466                 return 0;
3467         /*
3468          *   set bi_end_io to a new function, and set bi_private to the
3469          *     original bio.
3470          */
3471         align_bi->bi_end_io  = raid5_align_endio;
3472         align_bi->bi_private = raid_bio;
3473         /*
3474          *      compute position
3475          */
3476         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3477                                                     0,
3478                                                     &dd_idx, NULL);
3479
3480         rcu_read_lock();
3481         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3482         if (rdev && test_bit(In_sync, &rdev->flags)) {
3483                 atomic_inc(&rdev->nr_pending);
3484                 rcu_read_unlock();
3485                 raid_bio->bi_next = (void*)rdev;
3486                 align_bi->bi_bdev =  rdev->bdev;
3487                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3488                 align_bi->bi_sector += rdev->data_offset;
3489
3490                 if (!bio_fits_rdev(align_bi)) {
3491                         /* too big in some way */
3492                         bio_put(align_bi);
3493                         rdev_dec_pending(rdev, mddev);
3494                         return 0;
3495                 }
3496
3497                 spin_lock_irq(&conf->device_lock);
3498                 wait_event_lock_irq(conf->wait_for_stripe,
3499                                     conf->quiesce == 0,
3500                                     conf->device_lock, /* nothing */);
3501                 atomic_inc(&conf->active_aligned_reads);
3502                 spin_unlock_irq(&conf->device_lock);
3503
3504                 generic_make_request(align_bi);
3505                 return 1;
3506         } else {
3507                 rcu_read_unlock();
3508                 bio_put(align_bi);
3509                 return 0;
3510         }
3511 }
3512
3513 /* __get_priority_stripe - get the next stripe to process
3514  *
3515  * Full stripe writes are allowed to pass preread active stripes up until
3516  * the bypass_threshold is exceeded.  In general the bypass_count
3517  * increments when the handle_list is handled before the hold_list; however, it
3518  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3519  * stripe with in flight i/o.  The bypass_count will be reset when the
3520  * head of the hold_list has changed, i.e. the head was promoted to the
3521  * handle_list.
3522  */
3523 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3524 {
3525         struct stripe_head *sh;
3526
3527         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3528                   __func__,
3529                   list_empty(&conf->handle_list) ? "empty" : "busy",
3530                   list_empty(&conf->hold_list) ? "empty" : "busy",
3531                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3532
3533         if (!list_empty(&conf->handle_list)) {
3534                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3535
3536                 if (list_empty(&conf->hold_list))
3537                         conf->bypass_count = 0;
3538                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3539                         if (conf->hold_list.next == conf->last_hold)
3540                                 conf->bypass_count++;
3541                         else {
3542                                 conf->last_hold = conf->hold_list.next;
3543                                 conf->bypass_count -= conf->bypass_threshold;
3544                                 if (conf->bypass_count < 0)
3545                                         conf->bypass_count = 0;
3546                         }
3547                 }
3548         } else if (!list_empty(&conf->hold_list) &&
3549                    ((conf->bypass_threshold &&
3550                      conf->bypass_count > conf->bypass_threshold) ||
3551                     atomic_read(&conf->pending_full_writes) == 0)) {
3552                 sh = list_entry(conf->hold_list.next,
3553                                 typeof(*sh), lru);
3554                 conf->bypass_count -= conf->bypass_threshold;
3555                 if (conf->bypass_count < 0)
3556                         conf->bypass_count = 0;
3557         } else
3558                 return NULL;
3559
3560         list_del_init(&sh->lru);
3561         atomic_inc(&sh->count);
3562         BUG_ON(atomic_read(&sh->count) != 1);
3563         return sh;
3564 }
3565
3566 static int make_request(struct request_queue *q, struct bio * bi)
3567 {
3568         mddev_t *mddev = q->queuedata;
3569         raid5_conf_t *conf = mddev_to_conf(mddev);
3570         int dd_idx;
3571         sector_t new_sector;
3572         sector_t logical_sector, last_sector;
3573         struct stripe_head *sh;
3574         const int rw = bio_data_dir(bi);
3575         int cpu, remaining;
3576
3577         if (unlikely(bio_barrier(bi))) {
3578                 bio_endio(bi, -EOPNOTSUPP);
3579                 return 0;
3580         }
3581
3582         md_write_start(mddev, bi);
3583
3584         cpu = part_stat_lock();
3585         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3586         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3587                       bio_sectors(bi));
3588         part_stat_unlock();
3589
3590         if (rw == READ &&
3591              mddev->reshape_position == MaxSector &&
3592              chunk_aligned_read(q,bi))
3593                 return 0;
3594
3595         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3596         last_sector = bi->bi_sector + (bi->bi_size>>9);
3597         bi->bi_next = NULL;
3598         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3599
3600         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3601                 DEFINE_WAIT(w);
3602                 int disks, data_disks;
3603                 int previous;
3604
3605         retry:
3606                 previous = 0;
3607                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3608                 if (likely(conf->reshape_progress == MaxSector))
3609                         disks = conf->raid_disks;
3610                 else {
3611                         /* spinlock is needed as reshape_progress may be
3612                          * 64bit on a 32bit platform, and so it might be
3613                          * possible to see a half-updated value
3614                          * Ofcourse reshape_progress could change after
3615                          * the lock is dropped, so once we get a reference
3616                          * to the stripe that we think it is, we will have
3617                          * to check again.
3618                          */
3619                         spin_lock_irq(&conf->device_lock);
3620                         disks = conf->raid_disks;
3621                         if (mddev->delta_disks < 0
3622                             ? logical_sector < conf->reshape_progress
3623                             : logical_sector >= conf->reshape_progress) {
3624                                 disks = conf->previous_raid_disks;
3625                                 previous = 1;
3626                         } else {
3627                                 if (mddev->delta_disks < 0
3628                                     ? logical_sector < conf->reshape_safe
3629                                     : logical_sector >= conf->reshape_safe) {
3630                                         spin_unlock_irq(&conf->device_lock);
3631                                         schedule();
3632                                         goto retry;
3633                                 }
3634                         }
3635                         spin_unlock_irq(&conf->device_lock);
3636                 }
3637                 data_disks = disks - conf->max_degraded;
3638
3639                 new_sector = raid5_compute_sector(conf, logical_sector,
3640                                                   previous,
3641                                                   &dd_idx, NULL);
3642                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3643                         (unsigned long long)new_sector, 
3644                         (unsigned long long)logical_sector);
3645
3646                 sh = get_active_stripe(conf, new_sector, previous,
3647                                        (bi->bi_rw&RWA_MASK));
3648                 if (sh) {
3649                         if (unlikely(conf->reshape_progress != MaxSector)) {
3650                                 /* expansion might have moved on while waiting for a
3651                                  * stripe, so we must do the range check again.
3652                                  * Expansion could still move past after this
3653                                  * test, but as we are holding a reference to
3654                                  * 'sh', we know that if that happens,
3655                                  *  STRIPE_EXPANDING will get set and the expansion
3656                                  * won't proceed until we finish with the stripe.
3657                                  */
3658                                 int must_retry = 0;
3659                                 spin_lock_irq(&conf->device_lock);
3660                                 if ((mddev->delta_disks < 0
3661                                      ? logical_sector >= conf->reshape_progress
3662                                      : logical_sector < conf->reshape_progress)
3663                                     && previous)
3664                                         /* mismatch, need to try again */
3665                                         must_retry = 1;
3666                                 spin_unlock_irq(&conf->device_lock);
3667                                 if (must_retry) {
3668                                         release_stripe(sh);
3669                                         goto retry;
3670                                 }
3671                         }
3672                         /* FIXME what if we get a false positive because these
3673                          * are being updated.
3674                          */
3675                         if (logical_sector >= mddev->suspend_lo &&
3676                             logical_sector < mddev->suspend_hi) {
3677                                 release_stripe(sh);
3678                                 schedule();
3679                                 goto retry;
3680                         }
3681
3682                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3683                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3684                                 /* Stripe is busy expanding or
3685                                  * add failed due to overlap.  Flush everything
3686                                  * and wait a while
3687                                  */
3688                                 raid5_unplug_device(mddev->queue);
3689                                 release_stripe(sh);
3690                                 schedule();
3691                                 goto retry;
3692                         }
3693                         finish_wait(&conf->wait_for_overlap, &w);
3694                         set_bit(STRIPE_HANDLE, &sh->state);
3695                         clear_bit(STRIPE_DELAYED, &sh->state);
3696                         release_stripe(sh);
3697                 } else {
3698                         /* cannot get stripe for read-ahead, just give-up */
3699                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3700                         finish_wait(&conf->wait_for_overlap, &w);
3701                         break;
3702                 }
3703                         
3704         }
3705         spin_lock_irq(&conf->device_lock);
3706         remaining = raid5_dec_bi_phys_segments(bi);
3707         spin_unlock_irq(&conf->device_lock);
3708         if (remaining == 0) {
3709
3710                 if ( rw == WRITE )
3711                         md_write_end(mddev);
3712
3713                 bio_endio(bi, 0);
3714         }
3715         return 0;
3716 }
3717
3718 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3719
3720 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3721 {
3722         /* reshaping is quite different to recovery/resync so it is
3723          * handled quite separately ... here.
3724          *
3725          * On each call to sync_request, we gather one chunk worth of
3726          * destination stripes and flag them as expanding.
3727          * Then we find all the source stripes and request reads.
3728          * As the reads complete, handle_stripe will copy the data
3729          * into the destination stripe and release that stripe.
3730          */
3731         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3732         struct stripe_head *sh;
3733         sector_t first_sector, last_sector;
3734         int raid_disks = conf->previous_raid_disks;
3735         int data_disks = raid_disks - conf->max_degraded;
3736         int new_data_disks = conf->raid_disks - conf->max_degraded;
3737         int i;
3738         int dd_idx;
3739         sector_t writepos, safepos, gap;
3740         sector_t stripe_addr;
3741         int reshape_sectors;
3742
3743         if (sector_nr == 0) {
3744                 /* If restarting in the middle, skip the initial sectors */
3745                 if (mddev->delta_disks < 0 &&
3746                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3747                         sector_nr = raid5_size(mddev, 0, 0)
3748                                 - conf->reshape_progress;
3749                 } else if (mddev->delta_disks > 0 &&
3750                            conf->reshape_progress > 0)
3751                         sector_nr = conf->reshape_progress;
3752                 sector_div(sector_nr, new_data_disks);
3753                 if (sector_nr) {
3754                         *skipped = 1;
3755                         return sector_nr;
3756                 }
3757         }
3758
3759         /* We need to process a full chunk at a time.
3760          * If old and new chunk sizes differ, we need to process the
3761          * largest of these
3762          */
3763         if (mddev->new_chunk > mddev->chunk_size)
3764                 reshape_sectors = mddev->new_chunk / 512;
3765         else
3766                 reshape_sectors = mddev->chunk_size / 512;
3767
3768         /* we update the metadata when there is more than 3Meg
3769          * in the block range (that is rather arbitrary, should
3770          * probably be time based) or when the data about to be
3771          * copied would over-write the source of the data at
3772          * the front of the range.
3773          * i.e. one new_stripe along from reshape_progress new_maps
3774          * to after where reshape_safe old_maps to
3775          */
3776         writepos = conf->reshape_progress;
3777         sector_div(writepos, new_data_disks);
3778         safepos = conf->reshape_safe;
3779         sector_div(safepos, data_disks);
3780         if (mddev->delta_disks < 0) {
3781                 writepos -= reshape_sectors;
3782                 safepos += reshape_sectors;
3783                 gap = conf->reshape_safe - conf->reshape_progress;
3784         } else {
3785                 writepos += reshape_sectors;
3786                 safepos -= reshape_sectors;
3787                 gap = conf->reshape_progress - conf->reshape_safe;
3788         }
3789
3790         if ((mddev->delta_disks < 0
3791              ? writepos < safepos
3792              : writepos > safepos) ||
3793             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3794                 /* Cannot proceed until we've updated the superblock... */
3795                 wait_event(conf->wait_for_overlap,
3796                            atomic_read(&conf->reshape_stripes)==0);
3797                 mddev->reshape_position = conf->reshape_progress;
3798                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3799                 md_wakeup_thread(mddev->thread);
3800                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3801                            kthread_should_stop());
3802                 spin_lock_irq(&conf->device_lock);
3803                 conf->reshape_safe = mddev->reshape_position;
3804                 spin_unlock_irq(&conf->device_lock);
3805                 wake_up(&conf->wait_for_overlap);
3806         }
3807
3808         if (mddev->delta_disks < 0) {
3809                 BUG_ON(conf->reshape_progress == 0);
3810                 stripe_addr = writepos;
3811                 BUG_ON((mddev->dev_sectors &
3812                         ~((sector_t)reshape_sectors - 1))
3813                        - reshape_sectors - stripe_addr
3814                        != sector_nr);
3815         } else {
3816                 BUG_ON(writepos != sector_nr + reshape_sectors);
3817                 stripe_addr = sector_nr;
3818         }
3819         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3820                 int j;
3821                 int skipped = 0;
3822                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3823                 set_bit(STRIPE_EXPANDING, &sh->state);
3824                 atomic_inc(&conf->reshape_stripes);
3825                 /* If any of this stripe is beyond the end of the old
3826                  * array, then we need to zero those blocks
3827                  */
3828                 for (j=sh->disks; j--;) {
3829                         sector_t s;
3830                         if (j == sh->pd_idx)
3831                                 continue;
3832                         if (conf->level == 6 &&
3833                             j == sh->qd_idx)
3834                                 continue;
3835                         s = compute_blocknr(sh, j, 0);
3836                         if (s < raid5_size(mddev, 0, 0)) {
3837                                 skipped = 1;
3838                                 continue;
3839                         }
3840                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3841                         set_bit(R5_Expanded, &sh->dev[j].flags);
3842                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3843                 }
3844                 if (!skipped) {
3845                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3846                         set_bit(STRIPE_HANDLE, &sh->state);
3847                 }
3848                 release_stripe(sh);
3849         }
3850         spin_lock_irq(&conf->device_lock);
3851         if (mddev->delta_disks < 0)
3852                 conf->reshape_progress -= reshape_sectors * new_data_disks;
3853         else
3854                 conf->reshape_progress += reshape_sectors * new_data_disks;
3855         spin_unlock_irq(&conf->device_lock);
3856         /* Ok, those stripe are ready. We can start scheduling
3857          * reads on the source stripes.
3858          * The source stripes are determined by mapping the first and last
3859          * block on the destination stripes.
3860          */
3861         first_sector =
3862                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3863                                      1, &dd_idx, NULL);
3864         last_sector =
3865                 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3866                                             *(new_data_disks) - 1),
3867                                      1, &dd_idx, NULL);
3868         if (last_sector >= mddev->dev_sectors)
3869                 last_sector = mddev->dev_sectors - 1;
3870         while (first_sector <= last_sector) {
3871                 sh = get_active_stripe(conf, first_sector, 1, 0);
3872                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3873                 set_bit(STRIPE_HANDLE, &sh->state);
3874                 release_stripe(sh);
3875                 first_sector += STRIPE_SECTORS;
3876         }
3877         /* If this takes us to the resync_max point where we have to pause,
3878          * then we need to write out the superblock.
3879          */
3880         sector_nr += reshape_sectors;
3881         if (sector_nr >= mddev->resync_max) {
3882                 /* Cannot proceed until we've updated the superblock... */
3883                 wait_event(conf->wait_for_overlap,
3884                            atomic_read(&conf->reshape_stripes) == 0);
3885                 mddev->reshape_position = conf->reshape_progress;
3886                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3887                 md_wakeup_thread(mddev->thread);
3888                 wait_event(mddev->sb_wait,
3889                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3890                            || kthread_should_stop());
3891                 spin_lock_irq(&conf->device_lock);
3892                 conf->reshape_safe = mddev->reshape_position;
3893                 spin_unlock_irq(&conf->device_lock);
3894                 wake_up(&conf->wait_for_overlap);
3895         }
3896         return reshape_sectors;
3897 }
3898
3899 /* FIXME go_faster isn't used */
3900 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3901 {
3902         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3903         struct stripe_head *sh;
3904         sector_t max_sector = mddev->dev_sectors;
3905         int sync_blocks;
3906         int still_degraded = 0;
3907         int i;
3908
3909         if (sector_nr >= max_sector) {
3910                 /* just being told to finish up .. nothing much to do */
3911                 unplug_slaves(mddev);
3912
3913                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3914                         end_reshape(conf);
3915                         return 0;
3916                 }
3917
3918                 if (mddev->curr_resync < max_sector) /* aborted */
3919                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3920                                         &sync_blocks, 1);
3921                 else /* completed sync */
3922                         conf->fullsync = 0;
3923                 bitmap_close_sync(mddev->bitmap);
3924
3925                 return 0;
3926         }
3927
3928         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3929                 return reshape_request(mddev, sector_nr, skipped);
3930
3931         /* No need to check resync_max as we never do more than one
3932          * stripe, and as resync_max will always be on a chunk boundary,
3933          * if the check in md_do_sync didn't fire, there is no chance
3934          * of overstepping resync_max here
3935          */
3936
3937         /* if there is too many failed drives and we are trying
3938          * to resync, then assert that we are finished, because there is
3939          * nothing we can do.
3940          */
3941         if (mddev->degraded >= conf->max_degraded &&
3942             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3943                 sector_t rv = mddev->dev_sectors - sector_nr;
3944                 *skipped = 1;
3945                 return rv;
3946         }
3947         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3948             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3949             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3950                 /* we can skip this block, and probably more */
3951                 sync_blocks /= STRIPE_SECTORS;
3952                 *skipped = 1;
3953                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3954         }
3955
3956
3957         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3958
3959         sh = get_active_stripe(conf, sector_nr, 0, 1);
3960         if (sh == NULL) {
3961                 sh = get_active_stripe(conf, sector_nr, 0, 0);
3962                 /* make sure we don't swamp the stripe cache if someone else
3963                  * is trying to get access
3964                  */
3965                 schedule_timeout_uninterruptible(1);
3966         }
3967         /* Need to check if array will still be degraded after recovery/resync
3968          * We don't need to check the 'failed' flag as when that gets set,
3969          * recovery aborts.
3970          */
3971         for (i=0; i<mddev->raid_disks; i++)
3972                 if (conf->disks[i].rdev == NULL)
3973                         still_degraded = 1;
3974
3975         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3976
3977         spin_lock(&sh->lock);
3978         set_bit(STRIPE_SYNCING, &sh->state);
3979         clear_bit(STRIPE_INSYNC, &sh->state);
3980         spin_unlock(&sh->lock);
3981
3982         /* wait for any blocked device to be handled */
3983         while(unlikely(!handle_stripe(sh, NULL)))
3984                 ;
3985         release_stripe(sh);
3986
3987         return STRIPE_SECTORS;
3988 }
3989
3990 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3991 {
3992         /* We may not be able to submit a whole bio at once as there
3993          * may not be enough stripe_heads available.
3994          * We cannot pre-allocate enough stripe_heads as we may need
3995          * more than exist in the cache (if we allow ever large chunks).
3996          * So we do one stripe head at a time and record in
3997          * ->bi_hw_segments how many have been done.
3998          *
3999          * We *know* that this entire raid_bio is in one chunk, so
4000          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4001          */
4002         struct stripe_head *sh;
4003         int dd_idx;
4004         sector_t sector, logical_sector, last_sector;
4005         int scnt = 0;
4006         int remaining;
4007         int handled = 0;
4008
4009         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4010         sector = raid5_compute_sector(conf, logical_sector,
4011                                       0, &dd_idx, NULL);
4012         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4013
4014         for (; logical_sector < last_sector;
4015              logical_sector += STRIPE_SECTORS,
4016                      sector += STRIPE_SECTORS,
4017                      scnt++) {
4018
4019                 if (scnt < raid5_bi_hw_segments(raid_bio))
4020                         /* already done this stripe */
4021                         continue;
4022
4023                 sh = get_active_stripe(conf, sector, 0, 1);
4024
4025                 if (!sh) {
4026                         /* failed to get a stripe - must wait */
4027                         raid5_set_bi_hw_segments(raid_bio, scnt);
4028                         conf->retry_read_aligned = raid_bio;
4029                         return handled;
4030                 }
4031
4032                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4033                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4034                         release_stripe(sh);
4035                         raid5_set_bi_hw_segments(raid_bio, scnt);
4036                         conf->retry_read_aligned = raid_bio;
4037                         return handled;
4038                 }
4039
4040                 handle_stripe(sh, NULL);
4041                 release_stripe(sh);
4042                 handled++;
4043         }
4044         spin_lock_irq(&conf->device_lock);
4045         remaining = raid5_dec_bi_phys_segments(raid_bio);
4046         spin_unlock_irq(&conf->device_lock);
4047         if (remaining == 0)
4048                 bio_endio(raid_bio, 0);
4049         if (atomic_dec_and_test(&conf->active_aligned_reads))
4050                 wake_up(&conf->wait_for_stripe);
4051         return handled;
4052 }
4053
4054
4055
4056 /*
4057  * This is our raid5 kernel thread.
4058  *
4059  * We scan the hash table for stripes which can be handled now.
4060  * During the scan, completed stripes are saved for us by the interrupt
4061  * handler, so that they will not have to wait for our next wakeup.
4062  */
4063 static void raid5d(mddev_t *mddev)
4064 {
4065         struct stripe_head *sh;
4066         raid5_conf_t *conf = mddev_to_conf(mddev);
4067         int handled;
4068
4069         pr_debug("+++ raid5d active\n");
4070
4071         md_check_recovery(mddev);
4072
4073         handled = 0;
4074         spin_lock_irq(&conf->device_lock);
4075         while (1) {
4076                 struct bio *bio;
4077
4078                 if (conf->seq_flush != conf->seq_write) {
4079                         int seq = conf->seq_flush;
4080                         spin_unlock_irq(&conf->device_lock);
4081                         bitmap_unplug(mddev->bitmap);
4082                         spin_lock_irq(&conf->device_lock);
4083                         conf->seq_write = seq;
4084                         activate_bit_delay(conf);
4085                 }
4086
4087                 while ((bio = remove_bio_from_retry(conf))) {
4088                         int ok;
4089                         spin_unlock_irq(&conf->device_lock);
4090                         ok = retry_aligned_read(conf, bio);
4091                         spin_lock_irq(&conf->device_lock);
4092                         if (!ok)
4093                                 break;
4094                         handled++;
4095                 }
4096
4097                 sh = __get_priority_stripe(conf);
4098
4099                 if (!sh)
4100                         break;
4101                 spin_unlock_irq(&conf->device_lock);
4102                 
4103                 handled++;
4104                 handle_stripe(sh, conf->spare_page);
4105                 release_stripe(sh);
4106
4107                 spin_lock_irq(&conf->device_lock);
4108         }
4109         pr_debug("%d stripes handled\n", handled);
4110
4111         spin_unlock_irq(&conf->device_lock);
4112
4113         async_tx_issue_pending_all();
4114         unplug_slaves(mddev);
4115
4116         pr_debug("--- raid5d inactive\n");
4117 }
4118
4119 static ssize_t
4120 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4121 {
4122         raid5_conf_t *conf = mddev_to_conf(mddev);
4123         if (conf)
4124                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4125         else
4126                 return 0;
4127 }
4128
4129 static ssize_t
4130 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4131 {
4132         raid5_conf_t *conf = mddev_to_conf(mddev);
4133         unsigned long new;
4134         int err;
4135
4136         if (len >= PAGE_SIZE)
4137                 return -EINVAL;
4138         if (!conf)
4139                 return -ENODEV;
4140
4141         if (strict_strtoul(page, 10, &new))
4142                 return -EINVAL;
4143         if (new <= 16 || new > 32768)
4144                 return -EINVAL;
4145         while (new < conf->max_nr_stripes) {
4146                 if (drop_one_stripe(conf))
4147                         conf->max_nr_stripes--;
4148                 else
4149                         break;
4150         }
4151         err = md_allow_write(mddev);
4152         if (err)
4153                 return err;
4154         while (new > conf->max_nr_stripes) {
4155                 if (grow_one_stripe(conf))
4156                         conf->max_nr_stripes++;
4157                 else break;
4158         }
4159         return len;
4160 }
4161
4162 static struct md_sysfs_entry
4163 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4164                                 raid5_show_stripe_cache_size,
4165                                 raid5_store_stripe_cache_size);
4166
4167 static ssize_t
4168 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4169 {
4170         raid5_conf_t *conf = mddev_to_conf(mddev);
4171         if (conf)
4172                 return sprintf(page, "%d\n", conf->bypass_threshold);
4173         else
4174                 return 0;
4175 }
4176
4177 static ssize_t
4178 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4179 {
4180         raid5_conf_t *conf = mddev_to_conf(mddev);
4181         unsigned long new;
4182         if (len >= PAGE_SIZE)
4183                 return -EINVAL;
4184         if (!conf)
4185                 return -ENODEV;
4186
4187         if (strict_strtoul(page, 10, &new))
4188                 return -EINVAL;
4189         if (new > conf->max_nr_stripes)
4190                 return -EINVAL;
4191         conf->bypass_threshold = new;
4192         return len;
4193 }
4194
4195 static struct md_sysfs_entry
4196 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4197                                         S_IRUGO | S_IWUSR,
4198                                         raid5_show_preread_threshold,
4199                                         raid5_store_preread_threshold);
4200
4201 static ssize_t
4202 stripe_cache_active_show(mddev_t *mddev, char *page)
4203 {
4204         raid5_conf_t *conf = mddev_to_conf(mddev);
4205         if (conf)
4206                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4207         else
4208                 return 0;
4209 }
4210
4211 static struct md_sysfs_entry
4212 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4213
4214 static struct attribute *raid5_attrs[] =  {
4215         &raid5_stripecache_size.attr,
4216         &raid5_stripecache_active.attr,
4217         &raid5_preread_bypass_threshold.attr,
4218         NULL,
4219 };
4220 static struct attribute_group raid5_attrs_group = {
4221         .name = NULL,
4222         .attrs = raid5_attrs,
4223 };
4224
4225 static sector_t
4226 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4227 {
4228         raid5_conf_t *conf = mddev_to_conf(mddev);
4229
4230         if (!sectors)
4231                 sectors = mddev->dev_sectors;
4232         if (!raid_disks) {
4233                 /* size is defined by the smallest of previous and new size */
4234                 if (conf->raid_disks < conf->previous_raid_disks)
4235                         raid_disks = conf->raid_disks;
4236                 else
4237                         raid_disks = conf->previous_raid_disks;
4238         }
4239
4240         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4241         sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4242         return sectors * (raid_disks - conf->max_degraded);
4243 }
4244
4245 static raid5_conf_t *setup_conf(mddev_t *mddev)
4246 {
4247         raid5_conf_t *conf;
4248         int raid_disk, memory;
4249         mdk_rdev_t *rdev;
4250         struct disk_info *disk;
4251
4252         if (mddev->new_level != 5
4253             && mddev->new_level != 4
4254             && mddev->new_level != 6) {
4255                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4256                        mdname(mddev), mddev->new_level);
4257                 return ERR_PTR(-EIO);
4258         }
4259         if ((mddev->new_level == 5
4260              && !algorithm_valid_raid5(mddev->new_layout)) ||
4261             (mddev->new_level == 6
4262              && !algorithm_valid_raid6(mddev->new_layout))) {
4263                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4264                        mdname(mddev), mddev->new_layout);
4265                 return ERR_PTR(-EIO);
4266         }
4267         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4268                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4269                        mdname(mddev), mddev->raid_disks);
4270                 return ERR_PTR(-EINVAL);
4271         }
4272
4273         if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4274                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4275                         mddev->new_chunk, mdname(mddev));
4276                 return ERR_PTR(-EINVAL);
4277         }
4278
4279         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4280         if (conf == NULL)
4281                 goto abort;
4282
4283         conf->raid_disks = mddev->raid_disks;
4284         if (mddev->reshape_position == MaxSector)
4285                 conf->previous_raid_disks = mddev->raid_disks;
4286         else
4287                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4288
4289         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4290                               GFP_KERNEL);
4291         if (!conf->disks)
4292                 goto abort;
4293
4294         conf->mddev = mddev;
4295
4296         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4297                 goto abort;
4298
4299         if (mddev->new_level == 6) {
4300                 conf->spare_page = alloc_page(GFP_KERNEL);
4301                 if (!conf->spare_page)
4302                         goto abort;
4303         }
4304         spin_lock_init(&conf->device_lock);
4305         init_waitqueue_head(&conf->wait_for_stripe);
4306         init_waitqueue_head(&conf->wait_for_overlap);
4307         INIT_LIST_HEAD(&conf->handle_list);
4308         INIT_LIST_HEAD(&conf->hold_list);
4309         INIT_LIST_HEAD(&conf->delayed_list);
4310         INIT_LIST_HEAD(&conf->bitmap_list);
4311         INIT_LIST_HEAD(&conf->inactive_list);
4312         atomic_set(&conf->active_stripes, 0);
4313         atomic_set(&conf->preread_active_stripes, 0);
4314         atomic_set(&conf->active_aligned_reads, 0);
4315         conf->bypass_threshold = BYPASS_THRESHOLD;
4316
4317         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4318
4319         list_for_each_entry(rdev, &mddev->disks, same_set) {
4320                 raid_disk = rdev->raid_disk;
4321                 if (raid_disk >= conf->raid_disks
4322                     || raid_disk < 0)
4323                         continue;
4324                 disk = conf->disks + raid_disk;
4325
4326                 disk->rdev = rdev;
4327
4328                 if (test_bit(In_sync, &rdev->flags)) {
4329                         char b[BDEVNAME_SIZE];
4330                         printk(KERN_INFO "raid5: device %s operational as raid"
4331                                 " disk %d\n", bdevname(rdev->bdev,b),
4332                                 raid_disk);
4333                 } else
4334                         /* Cannot rely on bitmap to complete recovery */
4335                         conf->fullsync = 1;
4336         }
4337
4338         conf->chunk_size = mddev->new_chunk;
4339         conf->level = mddev->new_level;
4340         if (conf->level == 6)
4341                 conf->max_degraded = 2;
4342         else
4343                 conf->max_degraded = 1;
4344         conf->algorithm = mddev->new_layout;
4345         conf->max_nr_stripes = NR_STRIPES;
4346         conf->reshape_progress = mddev->reshape_position;
4347         if (conf->reshape_progress != MaxSector) {
4348                 conf->prev_chunk = mddev->chunk_size;
4349                 conf->prev_algo = mddev->layout;
4350         }
4351
4352         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4353                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4354         if (grow_stripes(conf, conf->max_nr_stripes)) {
4355                 printk(KERN_ERR
4356                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4357                 goto abort;
4358         } else
4359                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4360                         memory, mdname(mddev));
4361
4362         conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4363         if (!conf->thread) {
4364                 printk(KERN_ERR
4365                        "raid5: couldn't allocate thread for %s\n",
4366                        mdname(mddev));
4367                 goto abort;
4368         }
4369
4370         return conf;
4371
4372  abort:
4373         if (conf) {
4374                 shrink_stripes(conf);
4375                 safe_put_page(conf->spare_page);
4376                 kfree(conf->disks);
4377                 kfree(conf->stripe_hashtbl);
4378                 kfree(conf);
4379                 return ERR_PTR(-EIO);
4380         } else
4381                 return ERR_PTR(-ENOMEM);
4382 }
4383
4384 static int run(mddev_t *mddev)
4385 {
4386         raid5_conf_t *conf;
4387         int working_disks = 0;
4388         mdk_rdev_t *rdev;
4389
4390         if (mddev->reshape_position != MaxSector) {
4391                 /* Check that we can continue the reshape.
4392                  * Currently only disks can change, it must
4393                  * increase, and we must be past the point where
4394                  * a stripe over-writes itself
4395                  */
4396                 sector_t here_new, here_old;
4397                 int old_disks;
4398                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4399
4400                 if (mddev->new_level != mddev->level ||
4401                     mddev->new_layout != mddev->layout ||
4402                     mddev->new_chunk != mddev->chunk_size) {
4403                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4404                                "required - aborting.\n",
4405                                mdname(mddev));
4406                         return -EINVAL;
4407                 }
4408                 old_disks = mddev->raid_disks - mddev->delta_disks;
4409                 /* reshape_position must be on a new-stripe boundary, and one
4410                  * further up in new geometry must map after here in old
4411                  * geometry.
4412                  */
4413                 here_new = mddev->reshape_position;
4414                 if (sector_div(here_new, (mddev->new_chunk>>9)*
4415                                (mddev->raid_disks - max_degraded))) {
4416                         printk(KERN_ERR "raid5: reshape_position not "
4417                                "on a stripe boundary\n");
4418                         return -EINVAL;
4419                 }
4420                 /* here_new is the stripe we will write to */
4421                 here_old = mddev->reshape_position;
4422                 sector_div(here_old, (mddev->chunk_size>>9)*
4423                            (old_disks-max_degraded));
4424                 /* here_old is the first stripe that we might need to read
4425                  * from */
4426                 if (here_new >= here_old) {
4427                         /* Reading from the same stripe as writing to - bad */
4428                         printk(KERN_ERR "raid5: reshape_position too early for "
4429                                "auto-recovery - aborting.\n");
4430                         return -EINVAL;
4431                 }
4432                 printk(KERN_INFO "raid5: reshape will continue\n");
4433                 /* OK, we should be able to continue; */
4434         } else {
4435                 BUG_ON(mddev->level != mddev->new_level);
4436                 BUG_ON(mddev->layout != mddev->new_layout);
4437                 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4438                 BUG_ON(mddev->delta_disks != 0);
4439         }
4440
4441         if (mddev->private == NULL)
4442                 conf = setup_conf(mddev);
4443         else
4444                 conf = mddev->private;
4445
4446         if (IS_ERR(conf))
4447                 return PTR_ERR(conf);
4448
4449         mddev->thread = conf->thread;
4450         conf->thread = NULL;
4451         mddev->private = conf;
4452
4453         /*
4454          * 0 for a fully functional array, 1 or 2 for a degraded array.
4455          */
4456         list_for_each_entry(rdev, &mddev->disks, same_set)
4457                 if (rdev->raid_disk >= 0 &&
4458                     test_bit(In_sync, &rdev->flags))
4459                         working_disks++;
4460
4461         mddev->degraded = conf->raid_disks - working_disks;
4462
4463         if (mddev->degraded > conf->max_degraded) {
4464                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4465                         " (%d/%d failed)\n",
4466                         mdname(mddev), mddev->degraded, conf->raid_disks);
4467                 goto abort;
4468         }
4469
4470         /* device size must be a multiple of chunk size */
4471         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4472         mddev->resync_max_sectors = mddev->dev_sectors;
4473
4474         if (mddev->degraded > 0 &&
4475             mddev->recovery_cp != MaxSector) {
4476                 if (mddev->ok_start_degraded)
4477                         printk(KERN_WARNING
4478                                "raid5: starting dirty degraded array: %s"
4479                                "- data corruption possible.\n",
4480                                mdname(mddev));
4481                 else {
4482                         printk(KERN_ERR
4483                                "raid5: cannot start dirty degraded array for %s\n",
4484                                mdname(mddev));
4485                         goto abort;
4486                 }
4487         }
4488
4489         if (mddev->degraded == 0)
4490                 printk("raid5: raid level %d set %s active with %d out of %d"
4491                        " devices, algorithm %d\n", conf->level, mdname(mddev),
4492                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4493                        mddev->new_layout);
4494         else
4495                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4496                         " out of %d devices, algorithm %d\n", conf->level,
4497                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4498                         mddev->raid_disks, mddev->new_layout);
4499
4500         print_raid5_conf(conf);
4501
4502         if (conf->reshape_progress != MaxSector) {
4503                 printk("...ok start reshape thread\n");
4504                 conf->reshape_safe = conf->reshape_progress;
4505                 atomic_set(&conf->reshape_stripes, 0);
4506                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4507                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4508                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4509                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4510                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4511                                                         "%s_reshape");
4512         }
4513
4514         /* read-ahead size must cover two whole stripes, which is
4515          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4516          */
4517         {
4518                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4519                 int stripe = data_disks *
4520                         (mddev->chunk_size / PAGE_SIZE);
4521                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4522                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4523         }
4524
4525         /* Ok, everything is just fine now */
4526         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4527                 printk(KERN_WARNING
4528                        "raid5: failed to create sysfs attributes for %s\n",
4529                        mdname(mddev));
4530
4531         mddev->queue->queue_lock = &conf->device_lock;
4532
4533         mddev->queue->unplug_fn = raid5_unplug_device;
4534         mddev->queue->backing_dev_info.congested_data = mddev;
4535         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4536
4537         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4538
4539         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4540
4541         return 0;
4542 abort:
4543         md_unregister_thread(mddev->thread);
4544         mddev->thread = NULL;
4545         if (conf) {
4546                 shrink_stripes(conf);
4547                 print_raid5_conf(conf);
4548                 safe_put_page(conf->spare_page);
4549                 kfree(conf->disks);
4550                 kfree(conf->stripe_hashtbl);
4551                 kfree(conf);
4552         }
4553         mddev->private = NULL;
4554         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4555         return -EIO;
4556 }
4557
4558
4559
4560 static int stop(mddev_t *mddev)
4561 {
4562         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4563
4564         md_unregister_thread(mddev->thread);
4565         mddev->thread = NULL;
4566         shrink_stripes(conf);
4567         kfree(conf->stripe_hashtbl);
4568         mddev->queue->backing_dev_info.congested_fn = NULL;
4569         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4570         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4571         kfree(conf->disks);
4572         kfree(conf);
4573         mddev->private = NULL;
4574         return 0;
4575 }
4576
4577 #ifdef DEBUG
4578 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4579 {
4580         int i;
4581
4582         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4583                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4584         seq_printf(seq, "sh %llu,  count %d.\n",
4585                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4586         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4587         for (i = 0; i < sh->disks; i++) {
4588                 seq_printf(seq, "(cache%d: %p %ld) ",
4589                            i, sh->dev[i].page, sh->dev[i].flags);
4590         }
4591         seq_printf(seq, "\n");
4592 }
4593
4594 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4595 {
4596         struct stripe_head *sh;
4597         struct hlist_node *hn;
4598         int i;
4599
4600         spin_lock_irq(&conf->device_lock);
4601         for (i = 0; i < NR_HASH; i++) {
4602                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4603                         if (sh->raid_conf != conf)
4604                                 continue;
4605                         print_sh(seq, sh);
4606                 }
4607         }
4608         spin_unlock_irq(&conf->device_lock);
4609 }
4610 #endif
4611
4612 static void status(struct seq_file *seq, mddev_t *mddev)
4613 {
4614         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4615         int i;
4616
4617         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4618         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4619         for (i = 0; i < conf->raid_disks; i++)
4620                 seq_printf (seq, "%s",
4621                                conf->disks[i].rdev &&
4622                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4623         seq_printf (seq, "]");
4624 #ifdef DEBUG
4625         seq_printf (seq, "\n");
4626         printall(seq, conf);
4627 #endif
4628 }
4629
4630 static void print_raid5_conf (raid5_conf_t *conf)
4631 {
4632         int i;
4633         struct disk_info *tmp;
4634
4635         printk("RAID5 conf printout:\n");
4636         if (!conf) {
4637                 printk("(conf==NULL)\n");
4638                 return;
4639         }
4640         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4641                  conf->raid_disks - conf->mddev->degraded);
4642
4643         for (i = 0; i < conf->raid_disks; i++) {
4644                 char b[BDEVNAME_SIZE];
4645                 tmp = conf->disks + i;
4646                 if (tmp->rdev)
4647                 printk(" disk %d, o:%d, dev:%s\n",
4648                         i, !test_bit(Faulty, &tmp->rdev->flags),
4649                         bdevname(tmp->rdev->bdev,b));
4650         }
4651 }
4652
4653 static int raid5_spare_active(mddev_t *mddev)
4654 {
4655         int i;
4656         raid5_conf_t *conf = mddev->private;
4657         struct disk_info *tmp;
4658
4659         for (i = 0; i < conf->raid_disks; i++) {
4660                 tmp = conf->disks + i;
4661                 if (tmp->rdev
4662                     && !test_bit(Faulty, &tmp->rdev->flags)
4663                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4664                         unsigned long flags;
4665                         spin_lock_irqsave(&conf->device_lock, flags);
4666                         mddev->degraded--;
4667                         spin_unlock_irqrestore(&conf->device_lock, flags);
4668                 }
4669         }
4670         print_raid5_conf(conf);
4671         return 0;
4672 }
4673
4674 static int raid5_remove_disk(mddev_t *mddev, int number)
4675 {
4676         raid5_conf_t *conf = mddev->private;
4677         int err = 0;
4678         mdk_rdev_t *rdev;
4679         struct disk_info *p = conf->disks + number;
4680
4681         print_raid5_conf(conf);
4682         rdev = p->rdev;
4683         if (rdev) {
4684                 if (number >= conf->raid_disks &&
4685                     conf->reshape_progress == MaxSector)
4686                         clear_bit(In_sync, &rdev->flags);
4687
4688                 if (test_bit(In_sync, &rdev->flags) ||
4689                     atomic_read(&rdev->nr_pending)) {
4690                         err = -EBUSY;
4691                         goto abort;
4692                 }
4693                 /* Only remove non-faulty devices if recovery
4694                  * isn't possible.
4695                  */
4696                 if (!test_bit(Faulty, &rdev->flags) &&
4697                     mddev->degraded <= conf->max_degraded &&
4698                     number < conf->raid_disks) {
4699                         err = -EBUSY;
4700                         goto abort;
4701                 }
4702                 p->rdev = NULL;
4703                 synchronize_rcu();
4704                 if (atomic_read(&rdev->nr_pending)) {
4705                         /* lost the race, try later */
4706                         err = -EBUSY;
4707                         p->rdev = rdev;
4708                 }
4709         }
4710 abort:
4711
4712         print_raid5_conf(conf);
4713         return err;
4714 }
4715
4716 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4717 {
4718         raid5_conf_t *conf = mddev->private;
4719         int err = -EEXIST;
4720         int disk;
4721         struct disk_info *p;
4722         int first = 0;
4723         int last = conf->raid_disks - 1;
4724
4725         if (mddev->degraded > conf->max_degraded)
4726                 /* no point adding a device */
4727                 return -EINVAL;
4728
4729         if (rdev->raid_disk >= 0)
4730                 first = last = rdev->raid_disk;
4731
4732         /*
4733          * find the disk ... but prefer rdev->saved_raid_disk
4734          * if possible.
4735          */
4736         if (rdev->saved_raid_disk >= 0 &&
4737             rdev->saved_raid_disk >= first &&
4738             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4739                 disk = rdev->saved_raid_disk;
4740         else
4741                 disk = first;
4742         for ( ; disk <= last ; disk++)
4743                 if ((p=conf->disks + disk)->rdev == NULL) {
4744                         clear_bit(In_sync, &rdev->flags);
4745                         rdev->raid_disk = disk;
4746                         err = 0;
4747                         if (rdev->saved_raid_disk != disk)
4748                                 conf->fullsync = 1;
4749                         rcu_assign_pointer(p->rdev, rdev);
4750                         break;
4751                 }
4752         print_raid5_conf(conf);
4753         return err;
4754 }
4755
4756 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4757 {
4758         /* no resync is happening, and there is enough space
4759          * on all devices, so we can resize.
4760          * We need to make sure resync covers any new space.
4761          * If the array is shrinking we should possibly wait until
4762          * any io in the removed space completes, but it hardly seems
4763          * worth it.
4764          */
4765         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4766         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4767                                                mddev->raid_disks));
4768         if (mddev->array_sectors >
4769             raid5_size(mddev, sectors, mddev->raid_disks))
4770                 return -EINVAL;
4771         set_capacity(mddev->gendisk, mddev->array_sectors);
4772         mddev->changed = 1;
4773         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4774                 mddev->recovery_cp = mddev->dev_sectors;
4775                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4776         }
4777         mddev->dev_sectors = sectors;
4778         mddev->resync_max_sectors = sectors;
4779         return 0;
4780 }
4781
4782 #ifdef CONFIG_MD_RAID5_RESHAPE
4783 static int raid5_check_reshape(mddev_t *mddev)
4784 {
4785         raid5_conf_t *conf = mddev_to_conf(mddev);
4786
4787         if (mddev->delta_disks == 0)
4788                 return 0; /* nothing to do */
4789         if (mddev->bitmap)
4790                 /* Cannot grow a bitmap yet */
4791                 return -EBUSY;
4792         if (mddev->degraded > conf->max_degraded)
4793                 return -EINVAL;
4794         if (mddev->delta_disks < 0) {
4795                 /* We might be able to shrink, but the devices must
4796                  * be made bigger first.
4797                  * For raid6, 4 is the minimum size.
4798                  * Otherwise 2 is the minimum
4799                  */
4800                 int min = 2;
4801                 if (mddev->level == 6)
4802                         min = 4;
4803                 if (mddev->raid_disks + mddev->delta_disks < min)
4804                         return -EINVAL;
4805         }
4806
4807         /* Can only proceed if there are plenty of stripe_heads.
4808          * We need a minimum of one full stripe,, and for sensible progress
4809          * it is best to have about 4 times that.
4810          * If we require 4 times, then the default 256 4K stripe_heads will
4811          * allow for chunk sizes up to 256K, which is probably OK.
4812          * If the chunk size is greater, user-space should request more
4813          * stripe_heads first.
4814          */
4815         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4816             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4817                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4818                        (max(mddev->chunk_size, mddev->new_chunk)
4819                         / STRIPE_SIZE)*4);
4820                 return -ENOSPC;
4821         }
4822
4823         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4824 }
4825
4826 static int raid5_start_reshape(mddev_t *mddev)
4827 {
4828         raid5_conf_t *conf = mddev_to_conf(mddev);
4829         mdk_rdev_t *rdev;
4830         int spares = 0;
4831         int added_devices = 0;
4832         unsigned long flags;
4833
4834         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4835                 return -EBUSY;
4836
4837         list_for_each_entry(rdev, &mddev->disks, same_set)
4838                 if (rdev->raid_disk < 0 &&
4839                     !test_bit(Faulty, &rdev->flags))
4840                         spares++;
4841
4842         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4843                 /* Not enough devices even to make a degraded array
4844                  * of that size
4845                  */
4846                 return -EINVAL;
4847
4848         /* Refuse to reduce size of the array.  Any reductions in
4849          * array size must be through explicit setting of array_size
4850          * attribute.
4851          */
4852         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4853             < mddev->array_sectors) {
4854                 printk(KERN_ERR "md: %s: array size must be reduced "
4855                        "before number of disks\n", mdname(mddev));
4856                 return -EINVAL;
4857         }
4858
4859         atomic_set(&conf->reshape_stripes, 0);
4860         spin_lock_irq(&conf->device_lock);
4861         conf->previous_raid_disks = conf->raid_disks;
4862         conf->raid_disks += mddev->delta_disks;
4863         if (mddev->delta_disks < 0)
4864                 conf->reshape_progress = raid5_size(mddev, 0, 0);
4865         else
4866                 conf->reshape_progress = 0;
4867         conf->reshape_safe = conf->reshape_progress;
4868         conf->generation++;
4869         spin_unlock_irq(&conf->device_lock);
4870
4871         /* Add some new drives, as many as will fit.
4872          * We know there are enough to make the newly sized array work.
4873          */
4874         list_for_each_entry(rdev, &mddev->disks, same_set)
4875                 if (rdev->raid_disk < 0 &&
4876                     !test_bit(Faulty, &rdev->flags)) {
4877                         if (raid5_add_disk(mddev, rdev) == 0) {
4878                                 char nm[20];
4879                                 set_bit(In_sync, &rdev->flags);
4880                                 added_devices++;
4881                                 rdev->recovery_offset = 0;
4882                                 sprintf(nm, "rd%d", rdev->raid_disk);
4883                                 if (sysfs_create_link(&mddev->kobj,
4884                                                       &rdev->kobj, nm))
4885                                         printk(KERN_WARNING
4886                                                "raid5: failed to create "
4887                                                " link %s for %s\n",
4888                                                nm, mdname(mddev));
4889                         } else
4890                                 break;
4891                 }
4892
4893         if (mddev->delta_disks > 0) {
4894                 spin_lock_irqsave(&conf->device_lock, flags);
4895                 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4896                         - added_devices;
4897                 spin_unlock_irqrestore(&conf->device_lock, flags);
4898         }
4899         mddev->raid_disks = conf->raid_disks;
4900         mddev->reshape_position = 0;
4901         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4902
4903         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4904         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4905         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4906         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4907         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4908                                                 "%s_reshape");
4909         if (!mddev->sync_thread) {
4910                 mddev->recovery = 0;
4911                 spin_lock_irq(&conf->device_lock);
4912                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4913                 conf->reshape_progress = MaxSector;
4914                 spin_unlock_irq(&conf->device_lock);
4915                 return -EAGAIN;
4916         }
4917         md_wakeup_thread(mddev->sync_thread);
4918         md_new_event(mddev);
4919         return 0;
4920 }
4921 #endif
4922
4923 /* This is called from the reshape thread and should make any
4924  * changes needed in 'conf'
4925  */
4926 static void end_reshape(raid5_conf_t *conf)
4927 {
4928
4929         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4930
4931                 spin_lock_irq(&conf->device_lock);
4932                 conf->previous_raid_disks = conf->raid_disks;
4933                 conf->reshape_progress = MaxSector;
4934                 spin_unlock_irq(&conf->device_lock);
4935
4936                 /* read-ahead size must cover two whole stripes, which is
4937                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4938                  */
4939                 {
4940                         int data_disks = conf->raid_disks - conf->max_degraded;
4941                         int stripe = data_disks * (conf->chunk_size
4942                                                    / PAGE_SIZE);
4943                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4944                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4945                 }
4946         }
4947 }
4948
4949 /* This is called from the raid5d thread with mddev_lock held.
4950  * It makes config changes to the device.
4951  */
4952 static void raid5_finish_reshape(mddev_t *mddev)
4953 {
4954         struct block_device *bdev;
4955
4956         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4957
4958                 if (mddev->delta_disks > 0) {
4959                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4960                         set_capacity(mddev->gendisk, mddev->array_sectors);
4961                         mddev->changed = 1;
4962
4963                         bdev = bdget_disk(mddev->gendisk, 0);
4964                         if (bdev) {
4965                                 mutex_lock(&bdev->bd_inode->i_mutex);
4966                                 i_size_write(bdev->bd_inode,
4967                                              (loff_t)mddev->array_sectors << 9);
4968                                 mutex_unlock(&bdev->bd_inode->i_mutex);
4969                                 bdput(bdev);
4970                         }
4971                 } else {
4972                         int d;
4973                         raid5_conf_t *conf = mddev_to_conf(mddev);
4974                         mddev->degraded = conf->raid_disks;
4975                         for (d = 0; d < conf->raid_disks ; d++)
4976                                 if (conf->disks[d].rdev &&
4977                                     test_bit(In_sync,
4978                                              &conf->disks[d].rdev->flags))
4979                                         mddev->degraded--;
4980                         for (d = conf->raid_disks ;
4981                              d < conf->raid_disks - mddev->delta_disks;
4982                              d++)
4983                                 raid5_remove_disk(mddev, d);
4984                 }
4985                 mddev->reshape_position = MaxSector;
4986                 mddev->delta_disks = 0;
4987         }
4988 }
4989
4990 static void raid5_quiesce(mddev_t *mddev, int state)
4991 {
4992         raid5_conf_t *conf = mddev_to_conf(mddev);
4993
4994         switch(state) {
4995         case 2: /* resume for a suspend */
4996                 wake_up(&conf->wait_for_overlap);
4997                 break;
4998
4999         case 1: /* stop all writes */
5000                 spin_lock_irq(&conf->device_lock);
5001                 conf->quiesce = 1;
5002                 wait_event_lock_irq(conf->wait_for_stripe,
5003                                     atomic_read(&conf->active_stripes) == 0 &&
5004                                     atomic_read(&conf->active_aligned_reads) == 0,
5005                                     conf->device_lock, /* nothing */);
5006                 spin_unlock_irq(&conf->device_lock);
5007                 break;
5008
5009         case 0: /* re-enable writes */
5010                 spin_lock_irq(&conf->device_lock);
5011                 conf->quiesce = 0;
5012                 wake_up(&conf->wait_for_stripe);
5013                 wake_up(&conf->wait_for_overlap);
5014                 spin_unlock_irq(&conf->device_lock);
5015                 break;
5016         }
5017 }
5018
5019
5020 static void *raid5_takeover_raid1(mddev_t *mddev)
5021 {
5022         int chunksect;
5023
5024         if (mddev->raid_disks != 2 ||
5025             mddev->degraded > 1)
5026                 return ERR_PTR(-EINVAL);
5027
5028         /* Should check if there are write-behind devices? */
5029
5030         chunksect = 64*2; /* 64K by default */
5031
5032         /* The array must be an exact multiple of chunksize */
5033         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5034                 chunksect >>= 1;
5035
5036         if ((chunksect<<9) < STRIPE_SIZE)
5037                 /* array size does not allow a suitable chunk size */
5038                 return ERR_PTR(-EINVAL);
5039
5040         mddev->new_level = 5;
5041         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5042         mddev->new_chunk = chunksect << 9;
5043
5044         return setup_conf(mddev);
5045 }
5046
5047 static void *raid5_takeover_raid6(mddev_t *mddev)
5048 {
5049         int new_layout;
5050
5051         switch (mddev->layout) {
5052         case ALGORITHM_LEFT_ASYMMETRIC_6:
5053                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5054                 break;
5055         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5056                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5057                 break;
5058         case ALGORITHM_LEFT_SYMMETRIC_6:
5059                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5060                 break;
5061         case ALGORITHM_RIGHT_SYMMETRIC_6:
5062                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5063                 break;
5064         case ALGORITHM_PARITY_0_6:
5065                 new_layout = ALGORITHM_PARITY_0;
5066                 break;
5067         case ALGORITHM_PARITY_N:
5068                 new_layout = ALGORITHM_PARITY_N;
5069                 break;
5070         default:
5071                 return ERR_PTR(-EINVAL);
5072         }
5073         mddev->new_level = 5;
5074         mddev->new_layout = new_layout;
5075         mddev->delta_disks = -1;
5076         mddev->raid_disks -= 1;
5077         return setup_conf(mddev);
5078 }
5079
5080
5081 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5082 {
5083         /* Currently the layout and chunk size can only be changed
5084          * for a 2-drive raid array, as in that case no data shuffling
5085          * is required.
5086          * Later we might validate these and set new_* so a reshape
5087          * can complete the change.
5088          */
5089         raid5_conf_t *conf = mddev_to_conf(mddev);
5090
5091         if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5092                 return -EINVAL;
5093         if (new_chunk > 0) {
5094                 if (new_chunk & (new_chunk-1))
5095                         /* not a power of 2 */
5096                         return -EINVAL;
5097                 if (new_chunk < PAGE_SIZE)
5098                         return -EINVAL;
5099                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5100                         /* not factor of array size */
5101                         return -EINVAL;
5102         }
5103
5104         /* They look valid */
5105
5106         if (mddev->raid_disks != 2)
5107                 return -EINVAL;
5108
5109         if (new_layout >= 0) {
5110                 conf->algorithm = new_layout;
5111                 mddev->layout = mddev->new_layout = new_layout;
5112         }
5113         if (new_chunk > 0) {
5114                 conf->chunk_size = new_chunk;
5115                 mddev->chunk_size = mddev->new_chunk = new_chunk;
5116         }
5117         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5118         md_wakeup_thread(mddev->thread);
5119         return 0;
5120 }
5121
5122 static void *raid5_takeover(mddev_t *mddev)
5123 {
5124         /* raid5 can take over:
5125          *  raid0 - if all devices are the same - make it a raid4 layout
5126          *  raid1 - if there are two drives.  We need to know the chunk size
5127          *  raid4 - trivial - just use a raid4 layout.
5128          *  raid6 - Providing it is a *_6 layout
5129          *
5130          * For now, just do raid1
5131          */
5132
5133         if (mddev->level == 1)
5134                 return raid5_takeover_raid1(mddev);
5135         if (mddev->level == 4) {
5136                 mddev->new_layout = ALGORITHM_PARITY_N;
5137                 mddev->new_level = 5;
5138                 return setup_conf(mddev);
5139         }
5140         if (mddev->level == 6)
5141                 return raid5_takeover_raid6(mddev);
5142
5143         return ERR_PTR(-EINVAL);
5144 }
5145
5146
5147 static struct mdk_personality raid5_personality;
5148
5149 static void *raid6_takeover(mddev_t *mddev)
5150 {
5151         /* Currently can only take over a raid5.  We map the
5152          * personality to an equivalent raid6 personality
5153          * with the Q block at the end.
5154          */
5155         int new_layout;
5156
5157         if (mddev->pers != &raid5_personality)
5158                 return ERR_PTR(-EINVAL);
5159         if (mddev->degraded > 1)
5160                 return ERR_PTR(-EINVAL);
5161         if (mddev->raid_disks > 253)
5162                 return ERR_PTR(-EINVAL);
5163         if (mddev->raid_disks < 3)
5164                 return ERR_PTR(-EINVAL);
5165
5166         switch (mddev->layout) {
5167         case ALGORITHM_LEFT_ASYMMETRIC:
5168                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5169                 break;
5170         case ALGORITHM_RIGHT_ASYMMETRIC:
5171                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5172                 break;
5173         case ALGORITHM_LEFT_SYMMETRIC:
5174                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5175                 break;
5176         case ALGORITHM_RIGHT_SYMMETRIC:
5177                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5178                 break;
5179         case ALGORITHM_PARITY_0:
5180                 new_layout = ALGORITHM_PARITY_0_6;
5181                 break;
5182         case ALGORITHM_PARITY_N:
5183                 new_layout = ALGORITHM_PARITY_N;
5184                 break;
5185         default:
5186                 return ERR_PTR(-EINVAL);
5187         }
5188         mddev->new_level = 6;
5189         mddev->new_layout = new_layout;
5190         mddev->delta_disks = 1;
5191         mddev->raid_disks += 1;
5192         return setup_conf(mddev);
5193 }
5194
5195
5196 static struct mdk_personality raid6_personality =
5197 {
5198         .name           = "raid6",
5199         .level          = 6,
5200         .owner          = THIS_MODULE,
5201         .make_request   = make_request,
5202         .run            = run,
5203         .stop           = stop,
5204         .status         = status,
5205         .error_handler  = error,
5206         .hot_add_disk   = raid5_add_disk,
5207         .hot_remove_disk= raid5_remove_disk,
5208         .spare_active   = raid5_spare_active,
5209         .sync_request   = sync_request,
5210         .resize         = raid5_resize,
5211         .size           = raid5_size,
5212 #ifdef CONFIG_MD_RAID5_RESHAPE
5213         .check_reshape  = raid5_check_reshape,
5214         .start_reshape  = raid5_start_reshape,
5215         .finish_reshape = raid5_finish_reshape,
5216 #endif
5217         .quiesce        = raid5_quiesce,
5218         .takeover       = raid6_takeover,
5219 };
5220 static struct mdk_personality raid5_personality =
5221 {
5222         .name           = "raid5",
5223         .level          = 5,
5224         .owner          = THIS_MODULE,
5225         .make_request   = make_request,
5226         .run            = run,
5227         .stop           = stop,
5228         .status         = status,
5229         .error_handler  = error,
5230         .hot_add_disk   = raid5_add_disk,
5231         .hot_remove_disk= raid5_remove_disk,
5232         .spare_active   = raid5_spare_active,
5233         .sync_request   = sync_request,
5234         .resize         = raid5_resize,
5235         .size           = raid5_size,
5236 #ifdef CONFIG_MD_RAID5_RESHAPE
5237         .check_reshape  = raid5_check_reshape,
5238         .start_reshape  = raid5_start_reshape,
5239         .finish_reshape = raid5_finish_reshape,
5240 #endif
5241         .quiesce        = raid5_quiesce,
5242         .takeover       = raid5_takeover,
5243         .reconfig       = raid5_reconfig,
5244 };
5245
5246 static struct mdk_personality raid4_personality =
5247 {
5248         .name           = "raid4",
5249         .level          = 4,
5250         .owner          = THIS_MODULE,
5251         .make_request   = make_request,
5252         .run            = run,
5253         .stop           = stop,
5254         .status         = status,
5255         .error_handler  = error,
5256         .hot_add_disk   = raid5_add_disk,
5257         .hot_remove_disk= raid5_remove_disk,
5258         .spare_active   = raid5_spare_active,
5259         .sync_request   = sync_request,
5260         .resize         = raid5_resize,
5261         .size           = raid5_size,
5262 #ifdef CONFIG_MD_RAID5_RESHAPE
5263         .check_reshape  = raid5_check_reshape,
5264         .start_reshape  = raid5_start_reshape,
5265         .finish_reshape = raid5_finish_reshape,
5266 #endif
5267         .quiesce        = raid5_quiesce,
5268 };
5269
5270 static int __init raid5_init(void)
5271 {
5272         register_md_personality(&raid6_personality);
5273         register_md_personality(&raid5_personality);
5274         register_md_personality(&raid4_personality);
5275         return 0;
5276 }
5277
5278 static void raid5_exit(void)
5279 {
5280         unregister_md_personality(&raid6_personality);
5281         unregister_md_personality(&raid5_personality);
5282         unregister_md_personality(&raid4_personality);
5283 }
5284
5285 module_init(raid5_init);
5286 module_exit(raid5_exit);
5287 MODULE_LICENSE("GPL");
5288 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5289 MODULE_ALIAS("md-raid5");
5290 MODULE_ALIAS("md-raid4");
5291 MODULE_ALIAS("md-level-5");
5292 MODULE_ALIAS("md-level-4");
5293 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5294 MODULE_ALIAS("md-raid6");
5295 MODULE_ALIAS("md-level-6");
5296
5297 /* This used to be two separate modules, they were: */
5298 MODULE_ALIAS("raid5");
5299 MODULE_ALIAS("raid6");