[POWERPC] Rename device_is_compatible to of_device_is_compatible
[linux-2.6] / arch / powerpc / math-emu / op-1.h
1 /*
2  * Basic one-word fraction declaration and manipulation.
3  */
4
5 #define _FP_FRAC_DECL_1(X)      _FP_W_TYPE X##_f
6 #define _FP_FRAC_COPY_1(D,S)    (D##_f = S##_f)
7 #define _FP_FRAC_SET_1(X,I)     (X##_f = I)
8 #define _FP_FRAC_HIGH_1(X)      (X##_f)
9 #define _FP_FRAC_LOW_1(X)       (X##_f)
10 #define _FP_FRAC_WORD_1(X,w)    (X##_f)
11
12 #define _FP_FRAC_ADDI_1(X,I)    (X##_f += I)
13 #define _FP_FRAC_SLL_1(X,N)                     \
14   do {                                          \
15     if (__builtin_constant_p(N) && (N) == 1)    \
16       X##_f += X##_f;                           \
17     else                                        \
18       X##_f <<= (N);                            \
19   } while (0)
20 #define _FP_FRAC_SRL_1(X,N)     (X##_f >>= N)
21
22 /* Right shift with sticky-lsb.  */
23 #define _FP_FRAC_SRS_1(X,N,sz)  __FP_FRAC_SRS_1(X##_f, N, sz)
24
25 #define __FP_FRAC_SRS_1(X,N,sz)                                         \
26    (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1                \
27                      ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
28
29 #define _FP_FRAC_ADD_1(R,X,Y)   (R##_f = X##_f + Y##_f)
30 #define _FP_FRAC_SUB_1(R,X,Y)   (R##_f = X##_f - Y##_f)
31 #define _FP_FRAC_CLZ_1(z, X)    __FP_CLZ(z, X##_f)
32
33 /* Predicates */
34 #define _FP_FRAC_NEGP_1(X)      ((_FP_WS_TYPE)X##_f < 0)
35 #define _FP_FRAC_ZEROP_1(X)     (X##_f == 0)
36 #define _FP_FRAC_OVERP_1(fs,X)  (X##_f & _FP_OVERFLOW_##fs)
37 #define _FP_FRAC_EQ_1(X, Y)     (X##_f == Y##_f)
38 #define _FP_FRAC_GE_1(X, Y)     (X##_f >= Y##_f)
39 #define _FP_FRAC_GT_1(X, Y)     (X##_f > Y##_f)
40
41 #define _FP_ZEROFRAC_1          0
42 #define _FP_MINFRAC_1           1
43
44 /*
45  * Unpack the raw bits of a native fp value.  Do not classify or
46  * normalize the data.
47  */
48
49 #define _FP_UNPACK_RAW_1(fs, X, val)                            \
50   do {                                                          \
51     union _FP_UNION_##fs _flo; _flo.flt = (val);                \
52                                                                 \
53     X##_f = _flo.bits.frac;                                     \
54     X##_e = _flo.bits.exp;                                      \
55     X##_s = _flo.bits.sign;                                     \
56   } while (0)
57
58
59 /*
60  * Repack the raw bits of a native fp value.
61  */
62
63 #define _FP_PACK_RAW_1(fs, val, X)                              \
64   do {                                                          \
65     union _FP_UNION_##fs _flo;                                  \
66                                                                 \
67     _flo.bits.frac = X##_f;                                     \
68     _flo.bits.exp  = X##_e;                                     \
69     _flo.bits.sign = X##_s;                                     \
70                                                                 \
71     (val) = _flo.flt;                                           \
72   } while (0)
73
74
75 /*
76  * Multiplication algorithms:
77  */
78
79 /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
80    multiplication immediately.  */
81
82 #define _FP_MUL_MEAT_1_imm(fs, R, X, Y)                                 \
83   do {                                                                  \
84     R##_f = X##_f * Y##_f;                                              \
85     /* Normalize since we know where the msb of the multiplicands       \
86        were (bit B), we know that the msb of the of the product is      \
87        at either 2B or 2B-1.  */                                        \
88     _FP_FRAC_SRS_1(R, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);      \
89   } while (0)
90
91 /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
92
93 #define _FP_MUL_MEAT_1_wide(fs, R, X, Y, doit)                          \
94   do {                                                                  \
95     _FP_W_TYPE _Z_f0, _Z_f1;                                            \
96     doit(_Z_f1, _Z_f0, X##_f, Y##_f);                                   \
97     /* Normalize since we know where the msb of the multiplicands       \
98        were (bit B), we know that the msb of the of the product is      \
99        at either 2B or 2B-1.  */                                        \
100     _FP_FRAC_SRS_2(_Z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);     \
101     R##_f = _Z_f0;                                                      \
102   } while (0)
103
104 /* Finally, a simple widening multiply algorithm.  What fun!  */
105
106 #define _FP_MUL_MEAT_1_hard(fs, R, X, Y)                                \
107   do {                                                                  \
108     _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;          \
109                                                                         \
110     /* split the words in half */                                       \
111     _xh = X##_f >> (_FP_W_TYPE_SIZE/2);                                 \
112     _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);         \
113     _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);                                 \
114     _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);         \
115                                                                         \
116     /* multiply the pieces */                                           \
117     _z_f0 = _xl * _yl;                                                  \
118     _a_f0 = _xh * _yl;                                                  \
119     _a_f1 = _xl * _yh;                                                  \
120     _z_f1 = _xh * _yh;                                                  \
121                                                                         \
122     /* reassemble into two full words */                                \
123     if ((_a_f0 += _a_f1) < _a_f1)                                       \
124       _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);                    \
125     _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);                               \
126     _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);                               \
127     _FP_FRAC_ADD_2(_z, _z, _a);                                         \
128                                                                         \
129     /* normalize */                                                     \
130     _FP_FRAC_SRS_2(_z, _FP_WFRACBITS_##fs - 1, 2*_FP_WFRACBITS_##fs);   \
131     R##_f = _z_f0;                                                      \
132   } while (0)
133
134
135 /*
136  * Division algorithms:
137  */
138
139 /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
140    division immediately.  Give this macro either _FP_DIV_HELP_imm for
141    C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
142    choose will depend on what the compiler does with divrem4.  */
143
144 #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)           \
145   do {                                                  \
146     _FP_W_TYPE _q, _r;                                  \
147     X##_f <<= (X##_f < Y##_f                            \
148                ? R##_e--, _FP_WFRACBITS_##fs            \
149                : _FP_WFRACBITS_##fs - 1);               \
150     doit(_q, _r, X##_f, Y##_f);                         \
151     R##_f = _q | (_r != 0);                             \
152   } while (0)
153
154 /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
155    that may be useful in this situation.  This first is for a primitive
156    that requires normalization, the second for one that does not.  Look
157    for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
158
159 #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)                           \
160   do {                                                                  \
161     _FP_W_TYPE _nh, _nl, _q, _r;                                        \
162                                                                         \
163     /* Normalize Y -- i.e. make the most significant bit set.  */       \
164     Y##_f <<= _FP_WFRACXBITS_##fs - 1;                                  \
165                                                                         \
166     /* Shift X op correspondingly high, that is, up one full word.  */  \
167     if (X##_f <= Y##_f)                                                 \
168       {                                                                 \
169         _nl = 0;                                                        \
170         _nh = X##_f;                                                    \
171       }                                                                 \
172     else                                                                \
173       {                                                                 \
174         R##_e++;                                                        \
175         _nl = X##_f << (_FP_W_TYPE_SIZE-1);                             \
176         _nh = X##_f >> 1;                                               \
177       }                                                                 \
178                                                                         \
179     udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);                                \
180     R##_f = _q | (_r != 0);                                             \
181   } while (0)
182
183 #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)                \
184   do {                                                  \
185     _FP_W_TYPE _nh, _nl, _q, _r;                        \
186     if (X##_f < Y##_f)                                  \
187       {                                                 \
188         R##_e--;                                        \
189         _nl = X##_f << _FP_WFRACBITS_##fs;              \
190         _nh = X##_f >> _FP_WFRACXBITS_##fs;             \
191       }                                                 \
192     else                                                \
193       {                                                 \
194         _nl = X##_f << (_FP_WFRACBITS_##fs - 1);        \
195         _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);       \
196       }                                                 \
197     udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);                \
198     R##_f = _q | (_r != 0);                             \
199   } while (0)
200
201
202 /*
203  * Square root algorithms:
204  * We have just one right now, maybe Newton approximation
205  * should be added for those machines where division is fast.
206  */
207
208 #define _FP_SQRT_MEAT_1(R, S, T, X, q)                  \
209   do {                                                  \
210     while (q)                                           \
211       {                                                 \
212         T##_f = S##_f + q;                              \
213         if (T##_f <= X##_f)                             \
214           {                                             \
215             S##_f = T##_f + q;                          \
216             X##_f -= T##_f;                             \
217             R##_f += q;                                 \
218           }                                             \
219         _FP_FRAC_SLL_1(X, 1);                           \
220         q >>= 1;                                        \
221       }                                                 \
222   } while (0)
223
224 /*
225  * Assembly/disassembly for converting to/from integral types.
226  * No shifting or overflow handled here.
227  */
228
229 #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)        (r = X##_f)
230 #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)     (X##_f = r)
231
232
233 /*
234  * Convert FP values between word sizes
235  */
236
237 #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)                               \
238   do {                                                                  \
239     D##_f = S##_f;                                                      \
240     if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)                      \
241       _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),      \
242                      _FP_WFRACBITS_##sfs);                              \
243     else                                                                \
244       D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;              \
245   } while (0)