4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak)) sched_clock(void)
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136 static inline int rt_policy(int policy)
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
143 static inline int task_has_rt_policy(struct task_struct *p)
145 return rt_policy(p->policy);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
162 /* task group related information */
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 /* spinlock to serialize modification to shares */
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
182 static struct sched_entity *init_sched_entity_p[NR_CPUS];
183 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
188 struct task_group init_task_group = {
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
199 static int init_task_group_load = INIT_TASK_GRP_LOAD;
201 /* return group to which a task belongs */
202 static inline struct task_group *task_group(struct task_struct *p)
204 struct task_group *tg;
206 #ifdef CONFIG_FAIR_USER_SCHED
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
212 tg = &init_task_group;
218 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
219 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
221 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
222 p->se.parent = task_group(p)->se[cpu];
227 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
229 #endif /* CONFIG_FAIR_GROUP_SCHED */
231 /* CFS-related fields in a runqueue */
233 struct load_weight load;
234 unsigned long nr_running;
239 struct rb_root tasks_timeline;
240 struct rb_node *rb_leftmost;
241 struct rb_node *rb_load_balance_curr;
242 /* 'curr' points to currently running entity on this cfs_rq.
243 * It is set to NULL otherwise (i.e when none are currently running).
245 struct sched_entity *curr;
247 unsigned long nr_spread_over;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
252 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
259 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
260 struct task_group *tg; /* group that "owns" this runqueue */
264 /* Real-Time classes' related field in a runqueue: */
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
272 * This is the main, per-CPU runqueue data structure.
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
286 unsigned long nr_running;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289 unsigned char idle_at_tick;
291 unsigned char in_nohz_recently;
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
295 unsigned long nr_load_updates;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
311 unsigned long nr_uninterruptible;
313 struct task_struct *curr, *idle;
314 unsigned long next_balance;
315 struct mm_struct *prev_mm;
317 u64 clock, prev_clock_raw;
320 unsigned int clock_warps, clock_overflows;
322 unsigned int clock_deep_idle_events;
328 struct sched_domain *sd;
330 /* For active balancing */
333 /* cpu of this runqueue: */
336 struct task_struct *migration_thread;
337 struct list_head migration_queue;
340 #ifdef CONFIG_SCHEDSTATS
342 struct sched_info rq_sched_info;
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
350 /* schedule() stats */
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
360 unsigned int bkl_count;
362 struct lock_class_key rq_lock_key;
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366 static DEFINE_MUTEX(sched_hotcpu_mutex);
368 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
370 rq->curr->sched_class->check_preempt_curr(rq, p);
373 static inline int cpu_of(struct rq *rq)
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
386 static void __update_rq_clock(struct rq *rq)
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397 * Protect against sched_clock() occasionally going backwards:
399 if (unlikely(delta < 0)) {
404 * Catch too large forward jumps too:
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
411 rq->clock_overflows++;
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
419 rq->prev_clock_raw = now;
423 static void update_rq_clock(struct rq *rq)
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
450 # define const_debug static const
454 * Debugging: various feature bits
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_WAKEUP_PREEMPT = 2,
459 SCHED_FEAT_START_DEBIT = 4,
460 SCHED_FEAT_TREE_AVG = 8,
461 SCHED_FEAT_APPROX_AVG = 16,
464 const_debug unsigned int sysctl_sched_features =
465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0;
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
477 const_debug unsigned int sysctl_sched_nr_migrate = 32;
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
483 unsigned long long cpu_clock(int cpu)
485 unsigned long long now;
489 local_irq_save(flags);
493 local_irq_restore(flags);
497 EXPORT_SYMBOL_GPL(cpu_clock);
499 #ifndef prepare_arch_switch
500 # define prepare_arch_switch(next) do { } while (0)
502 #ifndef finish_arch_switch
503 # define finish_arch_switch(prev) do { } while (0)
506 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
507 static inline int task_running(struct rq *rq, struct task_struct *p)
509 return rq->curr == p;
512 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
516 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
518 #ifdef CONFIG_DEBUG_SPINLOCK
519 /* this is a valid case when another task releases the spinlock */
520 rq->lock.owner = current;
523 * If we are tracking spinlock dependencies then we have to
524 * fix up the runqueue lock - which gets 'carried over' from
527 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
529 spin_unlock_irq(&rq->lock);
532 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
533 static inline int task_running(struct rq *rq, struct task_struct *p)
538 return rq->curr == p;
542 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
546 * We can optimise this out completely for !SMP, because the
547 * SMP rebalancing from interrupt is the only thing that cares
552 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 spin_unlock_irq(&rq->lock);
555 spin_unlock(&rq->lock);
559 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
563 * After ->oncpu is cleared, the task can be moved to a different CPU.
564 * We must ensure this doesn't happen until the switch is completely
570 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
574 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
577 * __task_rq_lock - lock the runqueue a given task resides on.
578 * Must be called interrupts disabled.
580 static inline struct rq *__task_rq_lock(struct task_struct *p)
584 struct rq *rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (likely(rq == task_rq(p)))
588 spin_unlock(&rq->lock);
593 * task_rq_lock - lock the runqueue a given task resides on and disable
594 * interrupts. Note the ordering: we can safely lookup the task_rq without
595 * explicitly disabling preemption.
597 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
603 local_irq_save(*flags);
605 spin_lock(&rq->lock);
606 if (likely(rq == task_rq(p)))
608 spin_unlock_irqrestore(&rq->lock, *flags);
612 static void __task_rq_unlock(struct rq *rq)
615 spin_unlock(&rq->lock);
618 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
621 spin_unlock_irqrestore(&rq->lock, *flags);
625 * this_rq_lock - lock this runqueue and disable interrupts.
627 static struct rq *this_rq_lock(void)
634 spin_lock(&rq->lock);
640 * We are going deep-idle (irqs are disabled):
642 void sched_clock_idle_sleep_event(void)
644 struct rq *rq = cpu_rq(smp_processor_id());
646 spin_lock(&rq->lock);
647 __update_rq_clock(rq);
648 spin_unlock(&rq->lock);
649 rq->clock_deep_idle_events++;
651 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
654 * We just idled delta nanoseconds (called with irqs disabled):
656 void sched_clock_idle_wakeup_event(u64 delta_ns)
658 struct rq *rq = cpu_rq(smp_processor_id());
659 u64 now = sched_clock();
661 rq->idle_clock += delta_ns;
663 * Override the previous timestamp and ignore all
664 * sched_clock() deltas that occured while we idled,
665 * and use the PM-provided delta_ns to advance the
668 spin_lock(&rq->lock);
669 rq->prev_clock_raw = now;
670 rq->clock += delta_ns;
671 spin_unlock(&rq->lock);
673 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
676 * resched_task - mark a task 'to be rescheduled now'.
678 * On UP this means the setting of the need_resched flag, on SMP it
679 * might also involve a cross-CPU call to trigger the scheduler on
684 #ifndef tsk_is_polling
685 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
688 static void resched_task(struct task_struct *p)
692 assert_spin_locked(&task_rq(p)->lock);
694 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
697 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
700 if (cpu == smp_processor_id())
703 /* NEED_RESCHED must be visible before we test polling */
705 if (!tsk_is_polling(p))
706 smp_send_reschedule(cpu);
709 static void resched_cpu(int cpu)
711 struct rq *rq = cpu_rq(cpu);
714 if (!spin_trylock_irqsave(&rq->lock, flags))
716 resched_task(cpu_curr(cpu));
717 spin_unlock_irqrestore(&rq->lock, flags);
720 static inline void resched_task(struct task_struct *p)
722 assert_spin_locked(&task_rq(p)->lock);
723 set_tsk_need_resched(p);
727 #if BITS_PER_LONG == 32
728 # define WMULT_CONST (~0UL)
730 # define WMULT_CONST (1UL << 32)
733 #define WMULT_SHIFT 32
736 * Shift right and round:
738 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
741 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
742 struct load_weight *lw)
746 if (unlikely(!lw->inv_weight))
747 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
749 tmp = (u64)delta_exec * weight;
751 * Check whether we'd overflow the 64-bit multiplication:
753 if (unlikely(tmp > WMULT_CONST))
754 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
757 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
759 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
762 static inline unsigned long
763 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
765 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
768 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
773 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
787 #define WEIGHT_IDLEPRIO 2
788 #define WMULT_IDLEPRIO (1 << 31)
791 * Nice levels are multiplicative, with a gentle 10% change for every
792 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
793 * nice 1, it will get ~10% less CPU time than another CPU-bound task
794 * that remained on nice 0.
796 * The "10% effect" is relative and cumulative: from _any_ nice level,
797 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
799 * If a task goes up by ~10% and another task goes down by ~10% then
800 * the relative distance between them is ~25%.)
802 static const int prio_to_weight[40] = {
803 /* -20 */ 88761, 71755, 56483, 46273, 36291,
804 /* -15 */ 29154, 23254, 18705, 14949, 11916,
805 /* -10 */ 9548, 7620, 6100, 4904, 3906,
806 /* -5 */ 3121, 2501, 1991, 1586, 1277,
807 /* 0 */ 1024, 820, 655, 526, 423,
808 /* 5 */ 335, 272, 215, 172, 137,
809 /* 10 */ 110, 87, 70, 56, 45,
810 /* 15 */ 36, 29, 23, 18, 15,
814 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
816 * In cases where the weight does not change often, we can use the
817 * precalculated inverse to speed up arithmetics by turning divisions
818 * into multiplications:
820 static const u32 prio_to_wmult[40] = {
821 /* -20 */ 48388, 59856, 76040, 92818, 118348,
822 /* -15 */ 147320, 184698, 229616, 287308, 360437,
823 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
824 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
825 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
826 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
827 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
828 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
831 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
834 * runqueue iterator, to support SMP load-balancing between different
835 * scheduling classes, without having to expose their internal data
836 * structures to the load-balancing proper:
840 struct task_struct *(*start)(void *);
841 struct task_struct *(*next)(void *);
846 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
847 unsigned long max_load_move, struct sched_domain *sd,
848 enum cpu_idle_type idle, int *all_pinned,
849 int *this_best_prio, struct rq_iterator *iterator);
852 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
853 struct sched_domain *sd, enum cpu_idle_type idle,
854 struct rq_iterator *iterator);
857 #include "sched_stats.h"
858 #include "sched_idletask.c"
859 #include "sched_fair.c"
860 #include "sched_rt.c"
861 #ifdef CONFIG_SCHED_DEBUG
862 # include "sched_debug.c"
865 #define sched_class_highest (&rt_sched_class)
868 * Update delta_exec, delta_fair fields for rq.
870 * delta_fair clock advances at a rate inversely proportional to
871 * total load (rq->load.weight) on the runqueue, while
872 * delta_exec advances at the same rate as wall-clock (provided
875 * delta_exec / delta_fair is a measure of the (smoothened) load on this
876 * runqueue over any given interval. This (smoothened) load is used
877 * during load balance.
879 * This function is called /before/ updating rq->load
880 * and when switching tasks.
882 static inline void inc_load(struct rq *rq, const struct task_struct *p)
884 update_load_add(&rq->load, p->se.load.weight);
887 static inline void dec_load(struct rq *rq, const struct task_struct *p)
889 update_load_sub(&rq->load, p->se.load.weight);
892 static void inc_nr_running(struct task_struct *p, struct rq *rq)
898 static void dec_nr_running(struct task_struct *p, struct rq *rq)
904 static void set_load_weight(struct task_struct *p)
906 if (task_has_rt_policy(p)) {
907 p->se.load.weight = prio_to_weight[0] * 2;
908 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
913 * SCHED_IDLE tasks get minimal weight:
915 if (p->policy == SCHED_IDLE) {
916 p->se.load.weight = WEIGHT_IDLEPRIO;
917 p->se.load.inv_weight = WMULT_IDLEPRIO;
921 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
922 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
925 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
927 sched_info_queued(p);
928 p->sched_class->enqueue_task(rq, p, wakeup);
932 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
934 p->sched_class->dequeue_task(rq, p, sleep);
939 * __normal_prio - return the priority that is based on the static prio
941 static inline int __normal_prio(struct task_struct *p)
943 return p->static_prio;
947 * Calculate the expected normal priority: i.e. priority
948 * without taking RT-inheritance into account. Might be
949 * boosted by interactivity modifiers. Changes upon fork,
950 * setprio syscalls, and whenever the interactivity
951 * estimator recalculates.
953 static inline int normal_prio(struct task_struct *p)
957 if (task_has_rt_policy(p))
958 prio = MAX_RT_PRIO-1 - p->rt_priority;
960 prio = __normal_prio(p);
965 * Calculate the current priority, i.e. the priority
966 * taken into account by the scheduler. This value might
967 * be boosted by RT tasks, or might be boosted by
968 * interactivity modifiers. Will be RT if the task got
969 * RT-boosted. If not then it returns p->normal_prio.
971 static int effective_prio(struct task_struct *p)
973 p->normal_prio = normal_prio(p);
975 * If we are RT tasks or we were boosted to RT priority,
976 * keep the priority unchanged. Otherwise, update priority
977 * to the normal priority:
979 if (!rt_prio(p->prio))
980 return p->normal_prio;
985 * activate_task - move a task to the runqueue.
987 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
989 if (p->state == TASK_UNINTERRUPTIBLE)
990 rq->nr_uninterruptible--;
992 enqueue_task(rq, p, wakeup);
993 inc_nr_running(p, rq);
997 * deactivate_task - remove a task from the runqueue.
999 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1001 if (p->state == TASK_UNINTERRUPTIBLE)
1002 rq->nr_uninterruptible++;
1004 dequeue_task(rq, p, sleep);
1005 dec_nr_running(p, rq);
1009 * task_curr - is this task currently executing on a CPU?
1010 * @p: the task in question.
1012 inline int task_curr(const struct task_struct *p)
1014 return cpu_curr(task_cpu(p)) == p;
1017 /* Used instead of source_load when we know the type == 0 */
1018 unsigned long weighted_cpuload(const int cpu)
1020 return cpu_rq(cpu)->load.weight;
1023 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1025 set_task_cfs_rq(p, cpu);
1028 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1029 * successfuly executed on another CPU. We must ensure that updates of
1030 * per-task data have been completed by this moment.
1033 task_thread_info(p)->cpu = cpu;
1040 * Is this task likely cache-hot:
1043 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1047 if (p->sched_class != &fair_sched_class)
1050 if (sysctl_sched_migration_cost == -1)
1052 if (sysctl_sched_migration_cost == 0)
1055 delta = now - p->se.exec_start;
1057 return delta < (s64)sysctl_sched_migration_cost;
1061 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1063 int old_cpu = task_cpu(p);
1064 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1065 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1066 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1069 clock_offset = old_rq->clock - new_rq->clock;
1071 #ifdef CONFIG_SCHEDSTATS
1072 if (p->se.wait_start)
1073 p->se.wait_start -= clock_offset;
1074 if (p->se.sleep_start)
1075 p->se.sleep_start -= clock_offset;
1076 if (p->se.block_start)
1077 p->se.block_start -= clock_offset;
1078 if (old_cpu != new_cpu) {
1079 schedstat_inc(p, se.nr_migrations);
1080 if (task_hot(p, old_rq->clock, NULL))
1081 schedstat_inc(p, se.nr_forced2_migrations);
1084 p->se.vruntime -= old_cfsrq->min_vruntime -
1085 new_cfsrq->min_vruntime;
1087 __set_task_cpu(p, new_cpu);
1090 struct migration_req {
1091 struct list_head list;
1093 struct task_struct *task;
1096 struct completion done;
1100 * The task's runqueue lock must be held.
1101 * Returns true if you have to wait for migration thread.
1104 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1106 struct rq *rq = task_rq(p);
1109 * If the task is not on a runqueue (and not running), then
1110 * it is sufficient to simply update the task's cpu field.
1112 if (!p->se.on_rq && !task_running(rq, p)) {
1113 set_task_cpu(p, dest_cpu);
1117 init_completion(&req->done);
1119 req->dest_cpu = dest_cpu;
1120 list_add(&req->list, &rq->migration_queue);
1126 * wait_task_inactive - wait for a thread to unschedule.
1128 * The caller must ensure that the task *will* unschedule sometime soon,
1129 * else this function might spin for a *long* time. This function can't
1130 * be called with interrupts off, or it may introduce deadlock with
1131 * smp_call_function() if an IPI is sent by the same process we are
1132 * waiting to become inactive.
1134 void wait_task_inactive(struct task_struct *p)
1136 unsigned long flags;
1142 * We do the initial early heuristics without holding
1143 * any task-queue locks at all. We'll only try to get
1144 * the runqueue lock when things look like they will
1150 * If the task is actively running on another CPU
1151 * still, just relax and busy-wait without holding
1154 * NOTE! Since we don't hold any locks, it's not
1155 * even sure that "rq" stays as the right runqueue!
1156 * But we don't care, since "task_running()" will
1157 * return false if the runqueue has changed and p
1158 * is actually now running somewhere else!
1160 while (task_running(rq, p))
1164 * Ok, time to look more closely! We need the rq
1165 * lock now, to be *sure*. If we're wrong, we'll
1166 * just go back and repeat.
1168 rq = task_rq_lock(p, &flags);
1169 running = task_running(rq, p);
1170 on_rq = p->se.on_rq;
1171 task_rq_unlock(rq, &flags);
1174 * Was it really running after all now that we
1175 * checked with the proper locks actually held?
1177 * Oops. Go back and try again..
1179 if (unlikely(running)) {
1185 * It's not enough that it's not actively running,
1186 * it must be off the runqueue _entirely_, and not
1189 * So if it wa still runnable (but just not actively
1190 * running right now), it's preempted, and we should
1191 * yield - it could be a while.
1193 if (unlikely(on_rq)) {
1194 schedule_timeout_uninterruptible(1);
1199 * Ahh, all good. It wasn't running, and it wasn't
1200 * runnable, which means that it will never become
1201 * running in the future either. We're all done!
1208 * kick_process - kick a running thread to enter/exit the kernel
1209 * @p: the to-be-kicked thread
1211 * Cause a process which is running on another CPU to enter
1212 * kernel-mode, without any delay. (to get signals handled.)
1214 * NOTE: this function doesnt have to take the runqueue lock,
1215 * because all it wants to ensure is that the remote task enters
1216 * the kernel. If the IPI races and the task has been migrated
1217 * to another CPU then no harm is done and the purpose has been
1220 void kick_process(struct task_struct *p)
1226 if ((cpu != smp_processor_id()) && task_curr(p))
1227 smp_send_reschedule(cpu);
1232 * Return a low guess at the load of a migration-source cpu weighted
1233 * according to the scheduling class and "nice" value.
1235 * We want to under-estimate the load of migration sources, to
1236 * balance conservatively.
1238 static unsigned long source_load(int cpu, int type)
1240 struct rq *rq = cpu_rq(cpu);
1241 unsigned long total = weighted_cpuload(cpu);
1246 return min(rq->cpu_load[type-1], total);
1250 * Return a high guess at the load of a migration-target cpu weighted
1251 * according to the scheduling class and "nice" value.
1253 static unsigned long target_load(int cpu, int type)
1255 struct rq *rq = cpu_rq(cpu);
1256 unsigned long total = weighted_cpuload(cpu);
1261 return max(rq->cpu_load[type-1], total);
1265 * Return the average load per task on the cpu's run queue
1267 static inline unsigned long cpu_avg_load_per_task(int cpu)
1269 struct rq *rq = cpu_rq(cpu);
1270 unsigned long total = weighted_cpuload(cpu);
1271 unsigned long n = rq->nr_running;
1273 return n ? total / n : SCHED_LOAD_SCALE;
1277 * find_idlest_group finds and returns the least busy CPU group within the
1280 static struct sched_group *
1281 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1283 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1284 unsigned long min_load = ULONG_MAX, this_load = 0;
1285 int load_idx = sd->forkexec_idx;
1286 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1289 unsigned long load, avg_load;
1293 /* Skip over this group if it has no CPUs allowed */
1294 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1297 local_group = cpu_isset(this_cpu, group->cpumask);
1299 /* Tally up the load of all CPUs in the group */
1302 for_each_cpu_mask(i, group->cpumask) {
1303 /* Bias balancing toward cpus of our domain */
1305 load = source_load(i, load_idx);
1307 load = target_load(i, load_idx);
1312 /* Adjust by relative CPU power of the group */
1313 avg_load = sg_div_cpu_power(group,
1314 avg_load * SCHED_LOAD_SCALE);
1317 this_load = avg_load;
1319 } else if (avg_load < min_load) {
1320 min_load = avg_load;
1323 } while (group = group->next, group != sd->groups);
1325 if (!idlest || 100*this_load < imbalance*min_load)
1331 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1334 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1337 unsigned long load, min_load = ULONG_MAX;
1341 /* Traverse only the allowed CPUs */
1342 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1344 for_each_cpu_mask(i, tmp) {
1345 load = weighted_cpuload(i);
1347 if (load < min_load || (load == min_load && i == this_cpu)) {
1357 * sched_balance_self: balance the current task (running on cpu) in domains
1358 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1361 * Balance, ie. select the least loaded group.
1363 * Returns the target CPU number, or the same CPU if no balancing is needed.
1365 * preempt must be disabled.
1367 static int sched_balance_self(int cpu, int flag)
1369 struct task_struct *t = current;
1370 struct sched_domain *tmp, *sd = NULL;
1372 for_each_domain(cpu, tmp) {
1374 * If power savings logic is enabled for a domain, stop there.
1376 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1378 if (tmp->flags & flag)
1384 struct sched_group *group;
1385 int new_cpu, weight;
1387 if (!(sd->flags & flag)) {
1393 group = find_idlest_group(sd, t, cpu);
1399 new_cpu = find_idlest_cpu(group, t, cpu);
1400 if (new_cpu == -1 || new_cpu == cpu) {
1401 /* Now try balancing at a lower domain level of cpu */
1406 /* Now try balancing at a lower domain level of new_cpu */
1409 weight = cpus_weight(span);
1410 for_each_domain(cpu, tmp) {
1411 if (weight <= cpus_weight(tmp->span))
1413 if (tmp->flags & flag)
1416 /* while loop will break here if sd == NULL */
1422 #endif /* CONFIG_SMP */
1425 * wake_idle() will wake a task on an idle cpu if task->cpu is
1426 * not idle and an idle cpu is available. The span of cpus to
1427 * search starts with cpus closest then further out as needed,
1428 * so we always favor a closer, idle cpu.
1430 * Returns the CPU we should wake onto.
1432 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1433 static int wake_idle(int cpu, struct task_struct *p)
1436 struct sched_domain *sd;
1440 * If it is idle, then it is the best cpu to run this task.
1442 * This cpu is also the best, if it has more than one task already.
1443 * Siblings must be also busy(in most cases) as they didn't already
1444 * pickup the extra load from this cpu and hence we need not check
1445 * sibling runqueue info. This will avoid the checks and cache miss
1446 * penalities associated with that.
1448 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1451 for_each_domain(cpu, sd) {
1452 if (sd->flags & SD_WAKE_IDLE) {
1453 cpus_and(tmp, sd->span, p->cpus_allowed);
1454 for_each_cpu_mask(i, tmp) {
1456 if (i != task_cpu(p)) {
1458 se.nr_wakeups_idle);
1470 static inline int wake_idle(int cpu, struct task_struct *p)
1477 * try_to_wake_up - wake up a thread
1478 * @p: the to-be-woken-up thread
1479 * @state: the mask of task states that can be woken
1480 * @sync: do a synchronous wakeup?
1482 * Put it on the run-queue if it's not already there. The "current"
1483 * thread is always on the run-queue (except when the actual
1484 * re-schedule is in progress), and as such you're allowed to do
1485 * the simpler "current->state = TASK_RUNNING" to mark yourself
1486 * runnable without the overhead of this.
1488 * returns failure only if the task is already active.
1490 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1492 int cpu, orig_cpu, this_cpu, success = 0;
1493 unsigned long flags;
1497 struct sched_domain *sd, *this_sd = NULL;
1498 unsigned long load, this_load;
1502 rq = task_rq_lock(p, &flags);
1503 old_state = p->state;
1504 if (!(old_state & state))
1512 this_cpu = smp_processor_id();
1515 if (unlikely(task_running(rq, p)))
1520 schedstat_inc(rq, ttwu_count);
1521 if (cpu == this_cpu) {
1522 schedstat_inc(rq, ttwu_local);
1526 for_each_domain(this_cpu, sd) {
1527 if (cpu_isset(cpu, sd->span)) {
1528 schedstat_inc(sd, ttwu_wake_remote);
1534 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1538 * Check for affine wakeup and passive balancing possibilities.
1541 int idx = this_sd->wake_idx;
1542 unsigned int imbalance;
1544 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1546 load = source_load(cpu, idx);
1547 this_load = target_load(this_cpu, idx);
1549 new_cpu = this_cpu; /* Wake to this CPU if we can */
1551 if (this_sd->flags & SD_WAKE_AFFINE) {
1552 unsigned long tl = this_load;
1553 unsigned long tl_per_task;
1556 * Attract cache-cold tasks on sync wakeups:
1558 if (sync && !task_hot(p, rq->clock, this_sd))
1561 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1562 tl_per_task = cpu_avg_load_per_task(this_cpu);
1565 * If sync wakeup then subtract the (maximum possible)
1566 * effect of the currently running task from the load
1567 * of the current CPU:
1570 tl -= current->se.load.weight;
1573 tl + target_load(cpu, idx) <= tl_per_task) ||
1574 100*(tl + p->se.load.weight) <= imbalance*load) {
1576 * This domain has SD_WAKE_AFFINE and
1577 * p is cache cold in this domain, and
1578 * there is no bad imbalance.
1580 schedstat_inc(this_sd, ttwu_move_affine);
1581 schedstat_inc(p, se.nr_wakeups_affine);
1587 * Start passive balancing when half the imbalance_pct
1590 if (this_sd->flags & SD_WAKE_BALANCE) {
1591 if (imbalance*this_load <= 100*load) {
1592 schedstat_inc(this_sd, ttwu_move_balance);
1593 schedstat_inc(p, se.nr_wakeups_passive);
1599 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1601 new_cpu = wake_idle(new_cpu, p);
1602 if (new_cpu != cpu) {
1603 set_task_cpu(p, new_cpu);
1604 task_rq_unlock(rq, &flags);
1605 /* might preempt at this point */
1606 rq = task_rq_lock(p, &flags);
1607 old_state = p->state;
1608 if (!(old_state & state))
1613 this_cpu = smp_processor_id();
1618 #endif /* CONFIG_SMP */
1619 schedstat_inc(p, se.nr_wakeups);
1621 schedstat_inc(p, se.nr_wakeups_sync);
1622 if (orig_cpu != cpu)
1623 schedstat_inc(p, se.nr_wakeups_migrate);
1624 if (cpu == this_cpu)
1625 schedstat_inc(p, se.nr_wakeups_local);
1627 schedstat_inc(p, se.nr_wakeups_remote);
1628 update_rq_clock(rq);
1629 activate_task(rq, p, 1);
1630 check_preempt_curr(rq, p);
1634 p->state = TASK_RUNNING;
1636 task_rq_unlock(rq, &flags);
1641 int fastcall wake_up_process(struct task_struct *p)
1643 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1644 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1646 EXPORT_SYMBOL(wake_up_process);
1648 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1650 return try_to_wake_up(p, state, 0);
1654 * Perform scheduler related setup for a newly forked process p.
1655 * p is forked by current.
1657 * __sched_fork() is basic setup used by init_idle() too:
1659 static void __sched_fork(struct task_struct *p)
1661 p->se.exec_start = 0;
1662 p->se.sum_exec_runtime = 0;
1663 p->se.prev_sum_exec_runtime = 0;
1665 #ifdef CONFIG_SCHEDSTATS
1666 p->se.wait_start = 0;
1667 p->se.sum_sleep_runtime = 0;
1668 p->se.sleep_start = 0;
1669 p->se.block_start = 0;
1670 p->se.sleep_max = 0;
1671 p->se.block_max = 0;
1673 p->se.slice_max = 0;
1677 INIT_LIST_HEAD(&p->run_list);
1680 #ifdef CONFIG_PREEMPT_NOTIFIERS
1681 INIT_HLIST_HEAD(&p->preempt_notifiers);
1685 * We mark the process as running here, but have not actually
1686 * inserted it onto the runqueue yet. This guarantees that
1687 * nobody will actually run it, and a signal or other external
1688 * event cannot wake it up and insert it on the runqueue either.
1690 p->state = TASK_RUNNING;
1694 * fork()/clone()-time setup:
1696 void sched_fork(struct task_struct *p, int clone_flags)
1698 int cpu = get_cpu();
1703 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1705 set_task_cpu(p, cpu);
1708 * Make sure we do not leak PI boosting priority to the child:
1710 p->prio = current->normal_prio;
1711 if (!rt_prio(p->prio))
1712 p->sched_class = &fair_sched_class;
1714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1715 if (likely(sched_info_on()))
1716 memset(&p->sched_info, 0, sizeof(p->sched_info));
1718 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1721 #ifdef CONFIG_PREEMPT
1722 /* Want to start with kernel preemption disabled. */
1723 task_thread_info(p)->preempt_count = 1;
1729 * wake_up_new_task - wake up a newly created task for the first time.
1731 * This function will do some initial scheduler statistics housekeeping
1732 * that must be done for every newly created context, then puts the task
1733 * on the runqueue and wakes it.
1735 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1737 unsigned long flags;
1740 rq = task_rq_lock(p, &flags);
1741 BUG_ON(p->state != TASK_RUNNING);
1742 update_rq_clock(rq);
1744 p->prio = effective_prio(p);
1746 if (!p->sched_class->task_new || !current->se.on_rq) {
1747 activate_task(rq, p, 0);
1750 * Let the scheduling class do new task startup
1751 * management (if any):
1753 p->sched_class->task_new(rq, p);
1754 inc_nr_running(p, rq);
1756 check_preempt_curr(rq, p);
1757 task_rq_unlock(rq, &flags);
1760 #ifdef CONFIG_PREEMPT_NOTIFIERS
1763 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1764 * @notifier: notifier struct to register
1766 void preempt_notifier_register(struct preempt_notifier *notifier)
1768 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
1770 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1773 * preempt_notifier_unregister - no longer interested in preemption notifications
1774 * @notifier: notifier struct to unregister
1776 * This is safe to call from within a preemption notifier.
1778 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1780 hlist_del(¬ifier->link);
1782 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1784 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1786 struct preempt_notifier *notifier;
1787 struct hlist_node *node;
1789 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1790 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1794 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1795 struct task_struct *next)
1797 struct preempt_notifier *notifier;
1798 struct hlist_node *node;
1800 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1801 notifier->ops->sched_out(notifier, next);
1806 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1811 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812 struct task_struct *next)
1819 * prepare_task_switch - prepare to switch tasks
1820 * @rq: the runqueue preparing to switch
1821 * @prev: the current task that is being switched out
1822 * @next: the task we are going to switch to.
1824 * This is called with the rq lock held and interrupts off. It must
1825 * be paired with a subsequent finish_task_switch after the context
1828 * prepare_task_switch sets up locking and calls architecture specific
1832 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1833 struct task_struct *next)
1835 fire_sched_out_preempt_notifiers(prev, next);
1836 prepare_lock_switch(rq, next);
1837 prepare_arch_switch(next);
1841 * finish_task_switch - clean up after a task-switch
1842 * @rq: runqueue associated with task-switch
1843 * @prev: the thread we just switched away from.
1845 * finish_task_switch must be called after the context switch, paired
1846 * with a prepare_task_switch call before the context switch.
1847 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1848 * and do any other architecture-specific cleanup actions.
1850 * Note that we may have delayed dropping an mm in context_switch(). If
1851 * so, we finish that here outside of the runqueue lock. (Doing it
1852 * with the lock held can cause deadlocks; see schedule() for
1855 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1856 __releases(rq->lock)
1858 struct mm_struct *mm = rq->prev_mm;
1864 * A task struct has one reference for the use as "current".
1865 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1866 * schedule one last time. The schedule call will never return, and
1867 * the scheduled task must drop that reference.
1868 * The test for TASK_DEAD must occur while the runqueue locks are
1869 * still held, otherwise prev could be scheduled on another cpu, die
1870 * there before we look at prev->state, and then the reference would
1872 * Manfred Spraul <manfred@colorfullife.com>
1874 prev_state = prev->state;
1875 finish_arch_switch(prev);
1876 finish_lock_switch(rq, prev);
1877 fire_sched_in_preempt_notifiers(current);
1880 if (unlikely(prev_state == TASK_DEAD)) {
1882 * Remove function-return probe instances associated with this
1883 * task and put them back on the free list.
1885 kprobe_flush_task(prev);
1886 put_task_struct(prev);
1891 * schedule_tail - first thing a freshly forked thread must call.
1892 * @prev: the thread we just switched away from.
1894 asmlinkage void schedule_tail(struct task_struct *prev)
1895 __releases(rq->lock)
1897 struct rq *rq = this_rq();
1899 finish_task_switch(rq, prev);
1900 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1901 /* In this case, finish_task_switch does not reenable preemption */
1904 if (current->set_child_tid)
1905 put_user(task_pid_vnr(current), current->set_child_tid);
1909 * context_switch - switch to the new MM and the new
1910 * thread's register state.
1913 context_switch(struct rq *rq, struct task_struct *prev,
1914 struct task_struct *next)
1916 struct mm_struct *mm, *oldmm;
1918 prepare_task_switch(rq, prev, next);
1920 oldmm = prev->active_mm;
1922 * For paravirt, this is coupled with an exit in switch_to to
1923 * combine the page table reload and the switch backend into
1926 arch_enter_lazy_cpu_mode();
1928 if (unlikely(!mm)) {
1929 next->active_mm = oldmm;
1930 atomic_inc(&oldmm->mm_count);
1931 enter_lazy_tlb(oldmm, next);
1933 switch_mm(oldmm, mm, next);
1935 if (unlikely(!prev->mm)) {
1936 prev->active_mm = NULL;
1937 rq->prev_mm = oldmm;
1940 * Since the runqueue lock will be released by the next
1941 * task (which is an invalid locking op but in the case
1942 * of the scheduler it's an obvious special-case), so we
1943 * do an early lockdep release here:
1945 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1946 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1949 /* Here we just switch the register state and the stack. */
1950 switch_to(prev, next, prev);
1954 * this_rq must be evaluated again because prev may have moved
1955 * CPUs since it called schedule(), thus the 'rq' on its stack
1956 * frame will be invalid.
1958 finish_task_switch(this_rq(), prev);
1962 * nr_running, nr_uninterruptible and nr_context_switches:
1964 * externally visible scheduler statistics: current number of runnable
1965 * threads, current number of uninterruptible-sleeping threads, total
1966 * number of context switches performed since bootup.
1968 unsigned long nr_running(void)
1970 unsigned long i, sum = 0;
1972 for_each_online_cpu(i)
1973 sum += cpu_rq(i)->nr_running;
1978 unsigned long nr_uninterruptible(void)
1980 unsigned long i, sum = 0;
1982 for_each_possible_cpu(i)
1983 sum += cpu_rq(i)->nr_uninterruptible;
1986 * Since we read the counters lockless, it might be slightly
1987 * inaccurate. Do not allow it to go below zero though:
1989 if (unlikely((long)sum < 0))
1995 unsigned long long nr_context_switches(void)
1998 unsigned long long sum = 0;
2000 for_each_possible_cpu(i)
2001 sum += cpu_rq(i)->nr_switches;
2006 unsigned long nr_iowait(void)
2008 unsigned long i, sum = 0;
2010 for_each_possible_cpu(i)
2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2016 unsigned long nr_active(void)
2018 unsigned long i, running = 0, uninterruptible = 0;
2020 for_each_online_cpu(i) {
2021 running += cpu_rq(i)->nr_running;
2022 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2025 if (unlikely((long)uninterruptible < 0))
2026 uninterruptible = 0;
2028 return running + uninterruptible;
2032 * Update rq->cpu_load[] statistics. This function is usually called every
2033 * scheduler tick (TICK_NSEC).
2035 static void update_cpu_load(struct rq *this_rq)
2037 unsigned long this_load = this_rq->load.weight;
2040 this_rq->nr_load_updates++;
2042 /* Update our load: */
2043 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2044 unsigned long old_load, new_load;
2046 /* scale is effectively 1 << i now, and >> i divides by scale */
2048 old_load = this_rq->cpu_load[i];
2049 new_load = this_load;
2051 * Round up the averaging division if load is increasing. This
2052 * prevents us from getting stuck on 9 if the load is 10, for
2055 if (new_load > old_load)
2056 new_load += scale-1;
2057 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2064 * double_rq_lock - safely lock two runqueues
2066 * Note this does not disable interrupts like task_rq_lock,
2067 * you need to do so manually before calling.
2069 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2070 __acquires(rq1->lock)
2071 __acquires(rq2->lock)
2073 BUG_ON(!irqs_disabled());
2075 spin_lock(&rq1->lock);
2076 __acquire(rq2->lock); /* Fake it out ;) */
2079 spin_lock(&rq1->lock);
2080 spin_lock(&rq2->lock);
2082 spin_lock(&rq2->lock);
2083 spin_lock(&rq1->lock);
2086 update_rq_clock(rq1);
2087 update_rq_clock(rq2);
2091 * double_rq_unlock - safely unlock two runqueues
2093 * Note this does not restore interrupts like task_rq_unlock,
2094 * you need to do so manually after calling.
2096 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2097 __releases(rq1->lock)
2098 __releases(rq2->lock)
2100 spin_unlock(&rq1->lock);
2102 spin_unlock(&rq2->lock);
2104 __release(rq2->lock);
2108 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2110 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2111 __releases(this_rq->lock)
2112 __acquires(busiest->lock)
2113 __acquires(this_rq->lock)
2115 if (unlikely(!irqs_disabled())) {
2116 /* printk() doesn't work good under rq->lock */
2117 spin_unlock(&this_rq->lock);
2120 if (unlikely(!spin_trylock(&busiest->lock))) {
2121 if (busiest < this_rq) {
2122 spin_unlock(&this_rq->lock);
2123 spin_lock(&busiest->lock);
2124 spin_lock(&this_rq->lock);
2126 spin_lock(&busiest->lock);
2131 * If dest_cpu is allowed for this process, migrate the task to it.
2132 * This is accomplished by forcing the cpu_allowed mask to only
2133 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2134 * the cpu_allowed mask is restored.
2136 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2138 struct migration_req req;
2139 unsigned long flags;
2142 rq = task_rq_lock(p, &flags);
2143 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2144 || unlikely(cpu_is_offline(dest_cpu)))
2147 /* force the process onto the specified CPU */
2148 if (migrate_task(p, dest_cpu, &req)) {
2149 /* Need to wait for migration thread (might exit: take ref). */
2150 struct task_struct *mt = rq->migration_thread;
2152 get_task_struct(mt);
2153 task_rq_unlock(rq, &flags);
2154 wake_up_process(mt);
2155 put_task_struct(mt);
2156 wait_for_completion(&req.done);
2161 task_rq_unlock(rq, &flags);
2165 * sched_exec - execve() is a valuable balancing opportunity, because at
2166 * this point the task has the smallest effective memory and cache footprint.
2168 void sched_exec(void)
2170 int new_cpu, this_cpu = get_cpu();
2171 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2173 if (new_cpu != this_cpu)
2174 sched_migrate_task(current, new_cpu);
2178 * pull_task - move a task from a remote runqueue to the local runqueue.
2179 * Both runqueues must be locked.
2181 static void pull_task(struct rq *src_rq, struct task_struct *p,
2182 struct rq *this_rq, int this_cpu)
2184 deactivate_task(src_rq, p, 0);
2185 set_task_cpu(p, this_cpu);
2186 activate_task(this_rq, p, 0);
2188 * Note that idle threads have a prio of MAX_PRIO, for this test
2189 * to be always true for them.
2191 check_preempt_curr(this_rq, p);
2195 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2198 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2199 struct sched_domain *sd, enum cpu_idle_type idle,
2203 * We do not migrate tasks that are:
2204 * 1) running (obviously), or
2205 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2206 * 3) are cache-hot on their current CPU.
2208 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2209 schedstat_inc(p, se.nr_failed_migrations_affine);
2214 if (task_running(rq, p)) {
2215 schedstat_inc(p, se.nr_failed_migrations_running);
2220 * Aggressive migration if:
2221 * 1) task is cache cold, or
2222 * 2) too many balance attempts have failed.
2225 if (!task_hot(p, rq->clock, sd) ||
2226 sd->nr_balance_failed > sd->cache_nice_tries) {
2227 #ifdef CONFIG_SCHEDSTATS
2228 if (task_hot(p, rq->clock, sd)) {
2229 schedstat_inc(sd, lb_hot_gained[idle]);
2230 schedstat_inc(p, se.nr_forced_migrations);
2236 if (task_hot(p, rq->clock, sd)) {
2237 schedstat_inc(p, se.nr_failed_migrations_hot);
2243 static unsigned long
2244 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2245 unsigned long max_load_move, struct sched_domain *sd,
2246 enum cpu_idle_type idle, int *all_pinned,
2247 int *this_best_prio, struct rq_iterator *iterator)
2249 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2250 struct task_struct *p;
2251 long rem_load_move = max_load_move;
2253 if (max_load_move == 0)
2259 * Start the load-balancing iterator:
2261 p = iterator->start(iterator->arg);
2263 if (!p || loops++ > sysctl_sched_nr_migrate)
2266 * To help distribute high priority tasks across CPUs we don't
2267 * skip a task if it will be the highest priority task (i.e. smallest
2268 * prio value) on its new queue regardless of its load weight
2270 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2271 SCHED_LOAD_SCALE_FUZZ;
2272 if ((skip_for_load && p->prio >= *this_best_prio) ||
2273 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2274 p = iterator->next(iterator->arg);
2278 pull_task(busiest, p, this_rq, this_cpu);
2280 rem_load_move -= p->se.load.weight;
2283 * We only want to steal up to the prescribed amount of weighted load.
2285 if (rem_load_move > 0) {
2286 if (p->prio < *this_best_prio)
2287 *this_best_prio = p->prio;
2288 p = iterator->next(iterator->arg);
2293 * Right now, this is one of only two places pull_task() is called,
2294 * so we can safely collect pull_task() stats here rather than
2295 * inside pull_task().
2297 schedstat_add(sd, lb_gained[idle], pulled);
2300 *all_pinned = pinned;
2302 return max_load_move - rem_load_move;
2306 * move_tasks tries to move up to max_load_move weighted load from busiest to
2307 * this_rq, as part of a balancing operation within domain "sd".
2308 * Returns 1 if successful and 0 otherwise.
2310 * Called with both runqueues locked.
2312 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2313 unsigned long max_load_move,
2314 struct sched_domain *sd, enum cpu_idle_type idle,
2317 const struct sched_class *class = sched_class_highest;
2318 unsigned long total_load_moved = 0;
2319 int this_best_prio = this_rq->curr->prio;
2323 class->load_balance(this_rq, this_cpu, busiest,
2324 max_load_move - total_load_moved,
2325 sd, idle, all_pinned, &this_best_prio);
2326 class = class->next;
2327 } while (class && max_load_move > total_load_moved);
2329 return total_load_moved > 0;
2333 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2334 struct sched_domain *sd, enum cpu_idle_type idle,
2335 struct rq_iterator *iterator)
2337 struct task_struct *p = iterator->start(iterator->arg);
2341 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2342 pull_task(busiest, p, this_rq, this_cpu);
2344 * Right now, this is only the second place pull_task()
2345 * is called, so we can safely collect pull_task()
2346 * stats here rather than inside pull_task().
2348 schedstat_inc(sd, lb_gained[idle]);
2352 p = iterator->next(iterator->arg);
2359 * move_one_task tries to move exactly one task from busiest to this_rq, as
2360 * part of active balancing operations within "domain".
2361 * Returns 1 if successful and 0 otherwise.
2363 * Called with both runqueues locked.
2365 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2366 struct sched_domain *sd, enum cpu_idle_type idle)
2368 const struct sched_class *class;
2370 for (class = sched_class_highest; class; class = class->next)
2371 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2378 * find_busiest_group finds and returns the busiest CPU group within the
2379 * domain. It calculates and returns the amount of weighted load which
2380 * should be moved to restore balance via the imbalance parameter.
2382 static struct sched_group *
2383 find_busiest_group(struct sched_domain *sd, int this_cpu,
2384 unsigned long *imbalance, enum cpu_idle_type idle,
2385 int *sd_idle, cpumask_t *cpus, int *balance)
2387 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2388 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2389 unsigned long max_pull;
2390 unsigned long busiest_load_per_task, busiest_nr_running;
2391 unsigned long this_load_per_task, this_nr_running;
2392 int load_idx, group_imb = 0;
2393 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2394 int power_savings_balance = 1;
2395 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2396 unsigned long min_nr_running = ULONG_MAX;
2397 struct sched_group *group_min = NULL, *group_leader = NULL;
2400 max_load = this_load = total_load = total_pwr = 0;
2401 busiest_load_per_task = busiest_nr_running = 0;
2402 this_load_per_task = this_nr_running = 0;
2403 if (idle == CPU_NOT_IDLE)
2404 load_idx = sd->busy_idx;
2405 else if (idle == CPU_NEWLY_IDLE)
2406 load_idx = sd->newidle_idx;
2408 load_idx = sd->idle_idx;
2411 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2414 int __group_imb = 0;
2415 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2416 unsigned long sum_nr_running, sum_weighted_load;
2418 local_group = cpu_isset(this_cpu, group->cpumask);
2421 balance_cpu = first_cpu(group->cpumask);
2423 /* Tally up the load of all CPUs in the group */
2424 sum_weighted_load = sum_nr_running = avg_load = 0;
2426 min_cpu_load = ~0UL;
2428 for_each_cpu_mask(i, group->cpumask) {
2431 if (!cpu_isset(i, *cpus))
2436 if (*sd_idle && rq->nr_running)
2439 /* Bias balancing toward cpus of our domain */
2441 if (idle_cpu(i) && !first_idle_cpu) {
2446 load = target_load(i, load_idx);
2448 load = source_load(i, load_idx);
2449 if (load > max_cpu_load)
2450 max_cpu_load = load;
2451 if (min_cpu_load > load)
2452 min_cpu_load = load;
2456 sum_nr_running += rq->nr_running;
2457 sum_weighted_load += weighted_cpuload(i);
2461 * First idle cpu or the first cpu(busiest) in this sched group
2462 * is eligible for doing load balancing at this and above
2463 * domains. In the newly idle case, we will allow all the cpu's
2464 * to do the newly idle load balance.
2466 if (idle != CPU_NEWLY_IDLE && local_group &&
2467 balance_cpu != this_cpu && balance) {
2472 total_load += avg_load;
2473 total_pwr += group->__cpu_power;
2475 /* Adjust by relative CPU power of the group */
2476 avg_load = sg_div_cpu_power(group,
2477 avg_load * SCHED_LOAD_SCALE);
2479 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2482 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2485 this_load = avg_load;
2487 this_nr_running = sum_nr_running;
2488 this_load_per_task = sum_weighted_load;
2489 } else if (avg_load > max_load &&
2490 (sum_nr_running > group_capacity || __group_imb)) {
2491 max_load = avg_load;
2493 busiest_nr_running = sum_nr_running;
2494 busiest_load_per_task = sum_weighted_load;
2495 group_imb = __group_imb;
2498 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2500 * Busy processors will not participate in power savings
2503 if (idle == CPU_NOT_IDLE ||
2504 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2508 * If the local group is idle or completely loaded
2509 * no need to do power savings balance at this domain
2511 if (local_group && (this_nr_running >= group_capacity ||
2513 power_savings_balance = 0;
2516 * If a group is already running at full capacity or idle,
2517 * don't include that group in power savings calculations
2519 if (!power_savings_balance || sum_nr_running >= group_capacity
2524 * Calculate the group which has the least non-idle load.
2525 * This is the group from where we need to pick up the load
2528 if ((sum_nr_running < min_nr_running) ||
2529 (sum_nr_running == min_nr_running &&
2530 first_cpu(group->cpumask) <
2531 first_cpu(group_min->cpumask))) {
2533 min_nr_running = sum_nr_running;
2534 min_load_per_task = sum_weighted_load /
2539 * Calculate the group which is almost near its
2540 * capacity but still has some space to pick up some load
2541 * from other group and save more power
2543 if (sum_nr_running <= group_capacity - 1) {
2544 if (sum_nr_running > leader_nr_running ||
2545 (sum_nr_running == leader_nr_running &&
2546 first_cpu(group->cpumask) >
2547 first_cpu(group_leader->cpumask))) {
2548 group_leader = group;
2549 leader_nr_running = sum_nr_running;
2554 group = group->next;
2555 } while (group != sd->groups);
2557 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2560 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2562 if (this_load >= avg_load ||
2563 100*max_load <= sd->imbalance_pct*this_load)
2566 busiest_load_per_task /= busiest_nr_running;
2568 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2571 * We're trying to get all the cpus to the average_load, so we don't
2572 * want to push ourselves above the average load, nor do we wish to
2573 * reduce the max loaded cpu below the average load, as either of these
2574 * actions would just result in more rebalancing later, and ping-pong
2575 * tasks around. Thus we look for the minimum possible imbalance.
2576 * Negative imbalances (*we* are more loaded than anyone else) will
2577 * be counted as no imbalance for these purposes -- we can't fix that
2578 * by pulling tasks to us. Be careful of negative numbers as they'll
2579 * appear as very large values with unsigned longs.
2581 if (max_load <= busiest_load_per_task)
2585 * In the presence of smp nice balancing, certain scenarios can have
2586 * max load less than avg load(as we skip the groups at or below
2587 * its cpu_power, while calculating max_load..)
2589 if (max_load < avg_load) {
2591 goto small_imbalance;
2594 /* Don't want to pull so many tasks that a group would go idle */
2595 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2597 /* How much load to actually move to equalise the imbalance */
2598 *imbalance = min(max_pull * busiest->__cpu_power,
2599 (avg_load - this_load) * this->__cpu_power)
2603 * if *imbalance is less than the average load per runnable task
2604 * there is no gaurantee that any tasks will be moved so we'll have
2605 * a think about bumping its value to force at least one task to be
2608 if (*imbalance < busiest_load_per_task) {
2609 unsigned long tmp, pwr_now, pwr_move;
2613 pwr_move = pwr_now = 0;
2615 if (this_nr_running) {
2616 this_load_per_task /= this_nr_running;
2617 if (busiest_load_per_task > this_load_per_task)
2620 this_load_per_task = SCHED_LOAD_SCALE;
2622 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2623 busiest_load_per_task * imbn) {
2624 *imbalance = busiest_load_per_task;
2629 * OK, we don't have enough imbalance to justify moving tasks,
2630 * however we may be able to increase total CPU power used by
2634 pwr_now += busiest->__cpu_power *
2635 min(busiest_load_per_task, max_load);
2636 pwr_now += this->__cpu_power *
2637 min(this_load_per_task, this_load);
2638 pwr_now /= SCHED_LOAD_SCALE;
2640 /* Amount of load we'd subtract */
2641 tmp = sg_div_cpu_power(busiest,
2642 busiest_load_per_task * SCHED_LOAD_SCALE);
2644 pwr_move += busiest->__cpu_power *
2645 min(busiest_load_per_task, max_load - tmp);
2647 /* Amount of load we'd add */
2648 if (max_load * busiest->__cpu_power <
2649 busiest_load_per_task * SCHED_LOAD_SCALE)
2650 tmp = sg_div_cpu_power(this,
2651 max_load * busiest->__cpu_power);
2653 tmp = sg_div_cpu_power(this,
2654 busiest_load_per_task * SCHED_LOAD_SCALE);
2655 pwr_move += this->__cpu_power *
2656 min(this_load_per_task, this_load + tmp);
2657 pwr_move /= SCHED_LOAD_SCALE;
2659 /* Move if we gain throughput */
2660 if (pwr_move > pwr_now)
2661 *imbalance = busiest_load_per_task;
2667 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2668 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2671 if (this == group_leader && group_leader != group_min) {
2672 *imbalance = min_load_per_task;
2682 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2685 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2686 unsigned long imbalance, cpumask_t *cpus)
2688 struct rq *busiest = NULL, *rq;
2689 unsigned long max_load = 0;
2692 for_each_cpu_mask(i, group->cpumask) {
2695 if (!cpu_isset(i, *cpus))
2699 wl = weighted_cpuload(i);
2701 if (rq->nr_running == 1 && wl > imbalance)
2704 if (wl > max_load) {
2714 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2715 * so long as it is large enough.
2717 #define MAX_PINNED_INTERVAL 512
2720 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2721 * tasks if there is an imbalance.
2723 static int load_balance(int this_cpu, struct rq *this_rq,
2724 struct sched_domain *sd, enum cpu_idle_type idle,
2727 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2728 struct sched_group *group;
2729 unsigned long imbalance;
2731 cpumask_t cpus = CPU_MASK_ALL;
2732 unsigned long flags;
2735 * When power savings policy is enabled for the parent domain, idle
2736 * sibling can pick up load irrespective of busy siblings. In this case,
2737 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2738 * portraying it as CPU_NOT_IDLE.
2740 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2744 schedstat_inc(sd, lb_count[idle]);
2747 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2754 schedstat_inc(sd, lb_nobusyg[idle]);
2758 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2760 schedstat_inc(sd, lb_nobusyq[idle]);
2764 BUG_ON(busiest == this_rq);
2766 schedstat_add(sd, lb_imbalance[idle], imbalance);
2769 if (busiest->nr_running > 1) {
2771 * Attempt to move tasks. If find_busiest_group has found
2772 * an imbalance but busiest->nr_running <= 1, the group is
2773 * still unbalanced. ld_moved simply stays zero, so it is
2774 * correctly treated as an imbalance.
2776 local_irq_save(flags);
2777 double_rq_lock(this_rq, busiest);
2778 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2779 imbalance, sd, idle, &all_pinned);
2780 double_rq_unlock(this_rq, busiest);
2781 local_irq_restore(flags);
2784 * some other cpu did the load balance for us.
2786 if (ld_moved && this_cpu != smp_processor_id())
2787 resched_cpu(this_cpu);
2789 /* All tasks on this runqueue were pinned by CPU affinity */
2790 if (unlikely(all_pinned)) {
2791 cpu_clear(cpu_of(busiest), cpus);
2792 if (!cpus_empty(cpus))
2799 schedstat_inc(sd, lb_failed[idle]);
2800 sd->nr_balance_failed++;
2802 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2804 spin_lock_irqsave(&busiest->lock, flags);
2806 /* don't kick the migration_thread, if the curr
2807 * task on busiest cpu can't be moved to this_cpu
2809 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2810 spin_unlock_irqrestore(&busiest->lock, flags);
2812 goto out_one_pinned;
2815 if (!busiest->active_balance) {
2816 busiest->active_balance = 1;
2817 busiest->push_cpu = this_cpu;
2820 spin_unlock_irqrestore(&busiest->lock, flags);
2822 wake_up_process(busiest->migration_thread);
2825 * We've kicked active balancing, reset the failure
2828 sd->nr_balance_failed = sd->cache_nice_tries+1;
2831 sd->nr_balance_failed = 0;
2833 if (likely(!active_balance)) {
2834 /* We were unbalanced, so reset the balancing interval */
2835 sd->balance_interval = sd->min_interval;
2838 * If we've begun active balancing, start to back off. This
2839 * case may not be covered by the all_pinned logic if there
2840 * is only 1 task on the busy runqueue (because we don't call
2843 if (sd->balance_interval < sd->max_interval)
2844 sd->balance_interval *= 2;
2847 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2848 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2853 schedstat_inc(sd, lb_balanced[idle]);
2855 sd->nr_balance_failed = 0;
2858 /* tune up the balancing interval */
2859 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2860 (sd->balance_interval < sd->max_interval))
2861 sd->balance_interval *= 2;
2863 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2864 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2870 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2871 * tasks if there is an imbalance.
2873 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2874 * this_rq is locked.
2877 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2879 struct sched_group *group;
2880 struct rq *busiest = NULL;
2881 unsigned long imbalance;
2885 cpumask_t cpus = CPU_MASK_ALL;
2888 * When power savings policy is enabled for the parent domain, idle
2889 * sibling can pick up load irrespective of busy siblings. In this case,
2890 * let the state of idle sibling percolate up as IDLE, instead of
2891 * portraying it as CPU_NOT_IDLE.
2893 if (sd->flags & SD_SHARE_CPUPOWER &&
2894 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2897 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2899 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2900 &sd_idle, &cpus, NULL);
2902 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2906 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2909 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2913 BUG_ON(busiest == this_rq);
2915 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2918 if (busiest->nr_running > 1) {
2919 /* Attempt to move tasks */
2920 double_lock_balance(this_rq, busiest);
2921 /* this_rq->clock is already updated */
2922 update_rq_clock(busiest);
2923 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2924 imbalance, sd, CPU_NEWLY_IDLE,
2926 spin_unlock(&busiest->lock);
2928 if (unlikely(all_pinned)) {
2929 cpu_clear(cpu_of(busiest), cpus);
2930 if (!cpus_empty(cpus))
2936 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2937 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2938 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2941 sd->nr_balance_failed = 0;
2946 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2947 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2948 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2950 sd->nr_balance_failed = 0;
2956 * idle_balance is called by schedule() if this_cpu is about to become
2957 * idle. Attempts to pull tasks from other CPUs.
2959 static void idle_balance(int this_cpu, struct rq *this_rq)
2961 struct sched_domain *sd;
2962 int pulled_task = -1;
2963 unsigned long next_balance = jiffies + HZ;
2965 for_each_domain(this_cpu, sd) {
2966 unsigned long interval;
2968 if (!(sd->flags & SD_LOAD_BALANCE))
2971 if (sd->flags & SD_BALANCE_NEWIDLE)
2972 /* If we've pulled tasks over stop searching: */
2973 pulled_task = load_balance_newidle(this_cpu,
2976 interval = msecs_to_jiffies(sd->balance_interval);
2977 if (time_after(next_balance, sd->last_balance + interval))
2978 next_balance = sd->last_balance + interval;
2982 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2984 * We are going idle. next_balance may be set based on
2985 * a busy processor. So reset next_balance.
2987 this_rq->next_balance = next_balance;
2992 * active_load_balance is run by migration threads. It pushes running tasks
2993 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2994 * running on each physical CPU where possible, and avoids physical /
2995 * logical imbalances.
2997 * Called with busiest_rq locked.
2999 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3001 int target_cpu = busiest_rq->push_cpu;
3002 struct sched_domain *sd;
3003 struct rq *target_rq;
3005 /* Is there any task to move? */
3006 if (busiest_rq->nr_running <= 1)
3009 target_rq = cpu_rq(target_cpu);
3012 * This condition is "impossible", if it occurs
3013 * we need to fix it. Originally reported by
3014 * Bjorn Helgaas on a 128-cpu setup.
3016 BUG_ON(busiest_rq == target_rq);
3018 /* move a task from busiest_rq to target_rq */
3019 double_lock_balance(busiest_rq, target_rq);
3020 update_rq_clock(busiest_rq);
3021 update_rq_clock(target_rq);
3023 /* Search for an sd spanning us and the target CPU. */
3024 for_each_domain(target_cpu, sd) {
3025 if ((sd->flags & SD_LOAD_BALANCE) &&
3026 cpu_isset(busiest_cpu, sd->span))
3031 schedstat_inc(sd, alb_count);
3033 if (move_one_task(target_rq, target_cpu, busiest_rq,
3035 schedstat_inc(sd, alb_pushed);
3037 schedstat_inc(sd, alb_failed);
3039 spin_unlock(&target_rq->lock);
3044 atomic_t load_balancer;
3046 } nohz ____cacheline_aligned = {
3047 .load_balancer = ATOMIC_INIT(-1),
3048 .cpu_mask = CPU_MASK_NONE,
3052 * This routine will try to nominate the ilb (idle load balancing)
3053 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3054 * load balancing on behalf of all those cpus. If all the cpus in the system
3055 * go into this tickless mode, then there will be no ilb owner (as there is
3056 * no need for one) and all the cpus will sleep till the next wakeup event
3059 * For the ilb owner, tick is not stopped. And this tick will be used
3060 * for idle load balancing. ilb owner will still be part of
3063 * While stopping the tick, this cpu will become the ilb owner if there
3064 * is no other owner. And will be the owner till that cpu becomes busy
3065 * or if all cpus in the system stop their ticks at which point
3066 * there is no need for ilb owner.
3068 * When the ilb owner becomes busy, it nominates another owner, during the
3069 * next busy scheduler_tick()
3071 int select_nohz_load_balancer(int stop_tick)
3073 int cpu = smp_processor_id();
3076 cpu_set(cpu, nohz.cpu_mask);
3077 cpu_rq(cpu)->in_nohz_recently = 1;
3080 * If we are going offline and still the leader, give up!
3082 if (cpu_is_offline(cpu) &&
3083 atomic_read(&nohz.load_balancer) == cpu) {
3084 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3089 /* time for ilb owner also to sleep */
3090 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3091 if (atomic_read(&nohz.load_balancer) == cpu)
3092 atomic_set(&nohz.load_balancer, -1);
3096 if (atomic_read(&nohz.load_balancer) == -1) {
3097 /* make me the ilb owner */
3098 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3100 } else if (atomic_read(&nohz.load_balancer) == cpu)
3103 if (!cpu_isset(cpu, nohz.cpu_mask))
3106 cpu_clear(cpu, nohz.cpu_mask);
3108 if (atomic_read(&nohz.load_balancer) == cpu)
3109 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3116 static DEFINE_SPINLOCK(balancing);
3119 * It checks each scheduling domain to see if it is due to be balanced,
3120 * and initiates a balancing operation if so.
3122 * Balancing parameters are set up in arch_init_sched_domains.
3124 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3127 struct rq *rq = cpu_rq(cpu);
3128 unsigned long interval;
3129 struct sched_domain *sd;
3130 /* Earliest time when we have to do rebalance again */
3131 unsigned long next_balance = jiffies + 60*HZ;
3132 int update_next_balance = 0;
3134 for_each_domain(cpu, sd) {
3135 if (!(sd->flags & SD_LOAD_BALANCE))
3138 interval = sd->balance_interval;
3139 if (idle != CPU_IDLE)
3140 interval *= sd->busy_factor;
3142 /* scale ms to jiffies */
3143 interval = msecs_to_jiffies(interval);
3144 if (unlikely(!interval))
3146 if (interval > HZ*NR_CPUS/10)
3147 interval = HZ*NR_CPUS/10;
3150 if (sd->flags & SD_SERIALIZE) {
3151 if (!spin_trylock(&balancing))
3155 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3156 if (load_balance(cpu, rq, sd, idle, &balance)) {
3158 * We've pulled tasks over so either we're no
3159 * longer idle, or one of our SMT siblings is
3162 idle = CPU_NOT_IDLE;
3164 sd->last_balance = jiffies;
3166 if (sd->flags & SD_SERIALIZE)
3167 spin_unlock(&balancing);
3169 if (time_after(next_balance, sd->last_balance + interval)) {
3170 next_balance = sd->last_balance + interval;
3171 update_next_balance = 1;
3175 * Stop the load balance at this level. There is another
3176 * CPU in our sched group which is doing load balancing more
3184 * next_balance will be updated only when there is a need.
3185 * When the cpu is attached to null domain for ex, it will not be
3188 if (likely(update_next_balance))
3189 rq->next_balance = next_balance;
3193 * run_rebalance_domains is triggered when needed from the scheduler tick.
3194 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3195 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3197 static void run_rebalance_domains(struct softirq_action *h)
3199 int this_cpu = smp_processor_id();
3200 struct rq *this_rq = cpu_rq(this_cpu);
3201 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3202 CPU_IDLE : CPU_NOT_IDLE;
3204 rebalance_domains(this_cpu, idle);
3208 * If this cpu is the owner for idle load balancing, then do the
3209 * balancing on behalf of the other idle cpus whose ticks are
3212 if (this_rq->idle_at_tick &&
3213 atomic_read(&nohz.load_balancer) == this_cpu) {
3214 cpumask_t cpus = nohz.cpu_mask;
3218 cpu_clear(this_cpu, cpus);
3219 for_each_cpu_mask(balance_cpu, cpus) {
3221 * If this cpu gets work to do, stop the load balancing
3222 * work being done for other cpus. Next load
3223 * balancing owner will pick it up.
3228 rebalance_domains(balance_cpu, CPU_IDLE);
3230 rq = cpu_rq(balance_cpu);
3231 if (time_after(this_rq->next_balance, rq->next_balance))
3232 this_rq->next_balance = rq->next_balance;
3239 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3241 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3242 * idle load balancing owner or decide to stop the periodic load balancing,
3243 * if the whole system is idle.
3245 static inline void trigger_load_balance(struct rq *rq, int cpu)
3249 * If we were in the nohz mode recently and busy at the current
3250 * scheduler tick, then check if we need to nominate new idle
3253 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3254 rq->in_nohz_recently = 0;
3256 if (atomic_read(&nohz.load_balancer) == cpu) {
3257 cpu_clear(cpu, nohz.cpu_mask);
3258 atomic_set(&nohz.load_balancer, -1);
3261 if (atomic_read(&nohz.load_balancer) == -1) {
3263 * simple selection for now: Nominate the
3264 * first cpu in the nohz list to be the next
3267 * TBD: Traverse the sched domains and nominate
3268 * the nearest cpu in the nohz.cpu_mask.
3270 int ilb = first_cpu(nohz.cpu_mask);
3278 * If this cpu is idle and doing idle load balancing for all the
3279 * cpus with ticks stopped, is it time for that to stop?
3281 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3282 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3288 * If this cpu is idle and the idle load balancing is done by
3289 * someone else, then no need raise the SCHED_SOFTIRQ
3291 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3292 cpu_isset(cpu, nohz.cpu_mask))
3295 if (time_after_eq(jiffies, rq->next_balance))
3296 raise_softirq(SCHED_SOFTIRQ);
3299 #else /* CONFIG_SMP */
3302 * on UP we do not need to balance between CPUs:
3304 static inline void idle_balance(int cpu, struct rq *rq)
3310 DEFINE_PER_CPU(struct kernel_stat, kstat);
3312 EXPORT_PER_CPU_SYMBOL(kstat);
3315 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3316 * that have not yet been banked in case the task is currently running.
3318 unsigned long long task_sched_runtime(struct task_struct *p)
3320 unsigned long flags;
3324 rq = task_rq_lock(p, &flags);
3325 ns = p->se.sum_exec_runtime;
3326 if (rq->curr == p) {
3327 update_rq_clock(rq);
3328 delta_exec = rq->clock - p->se.exec_start;
3329 if ((s64)delta_exec > 0)
3332 task_rq_unlock(rq, &flags);
3338 * Account user cpu time to a process.
3339 * @p: the process that the cpu time gets accounted to
3340 * @cputime: the cpu time spent in user space since the last update
3342 void account_user_time(struct task_struct *p, cputime_t cputime)
3344 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3347 p->utime = cputime_add(p->utime, cputime);
3349 /* Add user time to cpustat. */
3350 tmp = cputime_to_cputime64(cputime);
3351 if (TASK_NICE(p) > 0)
3352 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3354 cpustat->user = cputime64_add(cpustat->user, tmp);
3358 * Account guest cpu time to a process.
3359 * @p: the process that the cpu time gets accounted to
3360 * @cputime: the cpu time spent in virtual machine since the last update
3362 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3365 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3367 tmp = cputime_to_cputime64(cputime);
3369 p->utime = cputime_add(p->utime, cputime);
3370 p->gtime = cputime_add(p->gtime, cputime);
3372 cpustat->user = cputime64_add(cpustat->user, tmp);
3373 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3377 * Account scaled user cpu time to a process.
3378 * @p: the process that the cpu time gets accounted to
3379 * @cputime: the cpu time spent in user space since the last update
3381 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3383 p->utimescaled = cputime_add(p->utimescaled, cputime);
3387 * Account system cpu time to a process.
3388 * @p: the process that the cpu time gets accounted to
3389 * @hardirq_offset: the offset to subtract from hardirq_count()
3390 * @cputime: the cpu time spent in kernel space since the last update
3392 void account_system_time(struct task_struct *p, int hardirq_offset,
3395 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3396 struct rq *rq = this_rq();
3399 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3400 return account_guest_time(p, cputime);
3402 p->stime = cputime_add(p->stime, cputime);
3404 /* Add system time to cpustat. */
3405 tmp = cputime_to_cputime64(cputime);
3406 if (hardirq_count() - hardirq_offset)
3407 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3408 else if (softirq_count())
3409 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3410 else if (p != rq->idle)
3411 cpustat->system = cputime64_add(cpustat->system, tmp);
3412 else if (atomic_read(&rq->nr_iowait) > 0)
3413 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3415 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3416 /* Account for system time used */
3417 acct_update_integrals(p);
3421 * Account scaled system cpu time to a process.
3422 * @p: the process that the cpu time gets accounted to
3423 * @hardirq_offset: the offset to subtract from hardirq_count()
3424 * @cputime: the cpu time spent in kernel space since the last update
3426 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3428 p->stimescaled = cputime_add(p->stimescaled, cputime);
3432 * Account for involuntary wait time.
3433 * @p: the process from which the cpu time has been stolen
3434 * @steal: the cpu time spent in involuntary wait
3436 void account_steal_time(struct task_struct *p, cputime_t steal)
3438 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3439 cputime64_t tmp = cputime_to_cputime64(steal);
3440 struct rq *rq = this_rq();
3442 if (p == rq->idle) {
3443 p->stime = cputime_add(p->stime, steal);
3444 if (atomic_read(&rq->nr_iowait) > 0)
3445 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3447 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3449 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3453 * This function gets called by the timer code, with HZ frequency.
3454 * We call it with interrupts disabled.
3456 * It also gets called by the fork code, when changing the parent's
3459 void scheduler_tick(void)
3461 int cpu = smp_processor_id();
3462 struct rq *rq = cpu_rq(cpu);
3463 struct task_struct *curr = rq->curr;
3464 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3466 spin_lock(&rq->lock);
3467 __update_rq_clock(rq);
3469 * Let rq->clock advance by at least TICK_NSEC:
3471 if (unlikely(rq->clock < next_tick))
3472 rq->clock = next_tick;
3473 rq->tick_timestamp = rq->clock;
3474 update_cpu_load(rq);
3475 if (curr != rq->idle) /* FIXME: needed? */
3476 curr->sched_class->task_tick(rq, curr);
3477 spin_unlock(&rq->lock);
3480 rq->idle_at_tick = idle_cpu(cpu);
3481 trigger_load_balance(rq, cpu);
3485 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3487 void fastcall add_preempt_count(int val)
3492 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3494 preempt_count() += val;
3496 * Spinlock count overflowing soon?
3498 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3501 EXPORT_SYMBOL(add_preempt_count);
3503 void fastcall sub_preempt_count(int val)
3508 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3511 * Is the spinlock portion underflowing?
3513 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3514 !(preempt_count() & PREEMPT_MASK)))
3517 preempt_count() -= val;
3519 EXPORT_SYMBOL(sub_preempt_count);
3524 * Print scheduling while atomic bug:
3526 static noinline void __schedule_bug(struct task_struct *prev)
3528 struct pt_regs *regs = get_irq_regs();
3530 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3531 prev->comm, prev->pid, preempt_count());
3533 debug_show_held_locks(prev);
3534 if (irqs_disabled())
3535 print_irqtrace_events(prev);
3544 * Various schedule()-time debugging checks and statistics:
3546 static inline void schedule_debug(struct task_struct *prev)
3549 * Test if we are atomic. Since do_exit() needs to call into
3550 * schedule() atomically, we ignore that path for now.
3551 * Otherwise, whine if we are scheduling when we should not be.
3553 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3554 __schedule_bug(prev);
3556 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3558 schedstat_inc(this_rq(), sched_count);
3559 #ifdef CONFIG_SCHEDSTATS
3560 if (unlikely(prev->lock_depth >= 0)) {
3561 schedstat_inc(this_rq(), bkl_count);
3562 schedstat_inc(prev, sched_info.bkl_count);
3568 * Pick up the highest-prio task:
3570 static inline struct task_struct *
3571 pick_next_task(struct rq *rq, struct task_struct *prev)
3573 const struct sched_class *class;
3574 struct task_struct *p;
3577 * Optimization: we know that if all tasks are in
3578 * the fair class we can call that function directly:
3580 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3581 p = fair_sched_class.pick_next_task(rq);
3586 class = sched_class_highest;
3588 p = class->pick_next_task(rq);
3592 * Will never be NULL as the idle class always
3593 * returns a non-NULL p:
3595 class = class->next;
3600 * schedule() is the main scheduler function.
3602 asmlinkage void __sched schedule(void)
3604 struct task_struct *prev, *next;
3611 cpu = smp_processor_id();
3615 switch_count = &prev->nivcsw;
3617 release_kernel_lock(prev);
3618 need_resched_nonpreemptible:
3620 schedule_debug(prev);
3623 * Do the rq-clock update outside the rq lock:
3625 local_irq_disable();
3626 __update_rq_clock(rq);
3627 spin_lock(&rq->lock);
3628 clear_tsk_need_resched(prev);
3630 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3631 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3632 unlikely(signal_pending(prev)))) {
3633 prev->state = TASK_RUNNING;
3635 deactivate_task(rq, prev, 1);
3637 switch_count = &prev->nvcsw;
3640 if (unlikely(!rq->nr_running))
3641 idle_balance(cpu, rq);
3643 prev->sched_class->put_prev_task(rq, prev);
3644 next = pick_next_task(rq, prev);
3646 sched_info_switch(prev, next);
3648 if (likely(prev != next)) {
3653 context_switch(rq, prev, next); /* unlocks the rq */
3655 spin_unlock_irq(&rq->lock);
3657 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3658 cpu = smp_processor_id();
3660 goto need_resched_nonpreemptible;
3662 preempt_enable_no_resched();
3663 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3666 EXPORT_SYMBOL(schedule);
3668 #ifdef CONFIG_PREEMPT
3670 * this is the entry point to schedule() from in-kernel preemption
3671 * off of preempt_enable. Kernel preemptions off return from interrupt
3672 * occur there and call schedule directly.
3674 asmlinkage void __sched preempt_schedule(void)
3676 struct thread_info *ti = current_thread_info();
3677 #ifdef CONFIG_PREEMPT_BKL
3678 struct task_struct *task = current;
3679 int saved_lock_depth;
3682 * If there is a non-zero preempt_count or interrupts are disabled,
3683 * we do not want to preempt the current task. Just return..
3685 if (likely(ti->preempt_count || irqs_disabled()))
3689 add_preempt_count(PREEMPT_ACTIVE);
3692 * We keep the big kernel semaphore locked, but we
3693 * clear ->lock_depth so that schedule() doesnt
3694 * auto-release the semaphore:
3696 #ifdef CONFIG_PREEMPT_BKL
3697 saved_lock_depth = task->lock_depth;
3698 task->lock_depth = -1;
3701 #ifdef CONFIG_PREEMPT_BKL
3702 task->lock_depth = saved_lock_depth;
3704 sub_preempt_count(PREEMPT_ACTIVE);
3707 * Check again in case we missed a preemption opportunity
3708 * between schedule and now.
3711 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3713 EXPORT_SYMBOL(preempt_schedule);
3716 * this is the entry point to schedule() from kernel preemption
3717 * off of irq context.
3718 * Note, that this is called and return with irqs disabled. This will
3719 * protect us against recursive calling from irq.
3721 asmlinkage void __sched preempt_schedule_irq(void)
3723 struct thread_info *ti = current_thread_info();
3724 #ifdef CONFIG_PREEMPT_BKL
3725 struct task_struct *task = current;
3726 int saved_lock_depth;
3728 /* Catch callers which need to be fixed */
3729 BUG_ON(ti->preempt_count || !irqs_disabled());
3732 add_preempt_count(PREEMPT_ACTIVE);
3735 * We keep the big kernel semaphore locked, but we
3736 * clear ->lock_depth so that schedule() doesnt
3737 * auto-release the semaphore:
3739 #ifdef CONFIG_PREEMPT_BKL
3740 saved_lock_depth = task->lock_depth;
3741 task->lock_depth = -1;
3745 local_irq_disable();
3746 #ifdef CONFIG_PREEMPT_BKL
3747 task->lock_depth = saved_lock_depth;
3749 sub_preempt_count(PREEMPT_ACTIVE);
3752 * Check again in case we missed a preemption opportunity
3753 * between schedule and now.
3756 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3759 #endif /* CONFIG_PREEMPT */
3761 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3764 return try_to_wake_up(curr->private, mode, sync);
3766 EXPORT_SYMBOL(default_wake_function);
3769 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3770 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3771 * number) then we wake all the non-exclusive tasks and one exclusive task.
3773 * There are circumstances in which we can try to wake a task which has already
3774 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3775 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3777 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3778 int nr_exclusive, int sync, void *key)
3780 wait_queue_t *curr, *next;
3782 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3783 unsigned flags = curr->flags;
3785 if (curr->func(curr, mode, sync, key) &&
3786 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3792 * __wake_up - wake up threads blocked on a waitqueue.
3794 * @mode: which threads
3795 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3796 * @key: is directly passed to the wakeup function
3798 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3799 int nr_exclusive, void *key)
3801 unsigned long flags;
3803 spin_lock_irqsave(&q->lock, flags);
3804 __wake_up_common(q, mode, nr_exclusive, 0, key);
3805 spin_unlock_irqrestore(&q->lock, flags);
3807 EXPORT_SYMBOL(__wake_up);
3810 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3812 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3814 __wake_up_common(q, mode, 1, 0, NULL);
3818 * __wake_up_sync - wake up threads blocked on a waitqueue.
3820 * @mode: which threads
3821 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823 * The sync wakeup differs that the waker knows that it will schedule
3824 * away soon, so while the target thread will be woken up, it will not
3825 * be migrated to another CPU - ie. the two threads are 'synchronized'
3826 * with each other. This can prevent needless bouncing between CPUs.
3828 * On UP it can prevent extra preemption.
3831 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3833 unsigned long flags;
3839 if (unlikely(!nr_exclusive))
3842 spin_lock_irqsave(&q->lock, flags);
3843 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3844 spin_unlock_irqrestore(&q->lock, flags);
3846 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3848 void complete(struct completion *x)
3850 unsigned long flags;
3852 spin_lock_irqsave(&x->wait.lock, flags);
3854 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3856 spin_unlock_irqrestore(&x->wait.lock, flags);
3858 EXPORT_SYMBOL(complete);
3860 void complete_all(struct completion *x)
3862 unsigned long flags;
3864 spin_lock_irqsave(&x->wait.lock, flags);
3865 x->done += UINT_MAX/2;
3866 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3868 spin_unlock_irqrestore(&x->wait.lock, flags);
3870 EXPORT_SYMBOL(complete_all);
3872 static inline long __sched
3873 do_wait_for_common(struct completion *x, long timeout, int state)
3876 DECLARE_WAITQUEUE(wait, current);
3878 wait.flags |= WQ_FLAG_EXCLUSIVE;
3879 __add_wait_queue_tail(&x->wait, &wait);
3881 if (state == TASK_INTERRUPTIBLE &&
3882 signal_pending(current)) {
3883 __remove_wait_queue(&x->wait, &wait);
3884 return -ERESTARTSYS;
3886 __set_current_state(state);
3887 spin_unlock_irq(&x->wait.lock);
3888 timeout = schedule_timeout(timeout);
3889 spin_lock_irq(&x->wait.lock);
3891 __remove_wait_queue(&x->wait, &wait);
3895 __remove_wait_queue(&x->wait, &wait);
3902 wait_for_common(struct completion *x, long timeout, int state)
3906 spin_lock_irq(&x->wait.lock);
3907 timeout = do_wait_for_common(x, timeout, state);
3908 spin_unlock_irq(&x->wait.lock);
3912 void __sched wait_for_completion(struct completion *x)
3914 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3916 EXPORT_SYMBOL(wait_for_completion);
3918 unsigned long __sched
3919 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3921 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3923 EXPORT_SYMBOL(wait_for_completion_timeout);
3925 int __sched wait_for_completion_interruptible(struct completion *x)
3927 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3928 if (t == -ERESTARTSYS)
3932 EXPORT_SYMBOL(wait_for_completion_interruptible);
3934 unsigned long __sched
3935 wait_for_completion_interruptible_timeout(struct completion *x,
3936 unsigned long timeout)
3938 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3940 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3943 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3945 unsigned long flags;
3948 init_waitqueue_entry(&wait, current);
3950 __set_current_state(state);
3952 spin_lock_irqsave(&q->lock, flags);
3953 __add_wait_queue(q, &wait);
3954 spin_unlock(&q->lock);
3955 timeout = schedule_timeout(timeout);
3956 spin_lock_irq(&q->lock);
3957 __remove_wait_queue(q, &wait);
3958 spin_unlock_irqrestore(&q->lock, flags);
3963 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3965 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3967 EXPORT_SYMBOL(interruptible_sleep_on);
3970 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3972 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3974 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3976 void __sched sleep_on(wait_queue_head_t *q)
3978 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3980 EXPORT_SYMBOL(sleep_on);
3982 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3984 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3986 EXPORT_SYMBOL(sleep_on_timeout);
3988 #ifdef CONFIG_RT_MUTEXES
3991 * rt_mutex_setprio - set the current priority of a task
3993 * @prio: prio value (kernel-internal form)
3995 * This function changes the 'effective' priority of a task. It does
3996 * not touch ->normal_prio like __setscheduler().
3998 * Used by the rt_mutex code to implement priority inheritance logic.
4000 void rt_mutex_setprio(struct task_struct *p, int prio)
4002 unsigned long flags;
4003 int oldprio, on_rq, running;
4006 BUG_ON(prio < 0 || prio > MAX_PRIO);
4008 rq = task_rq_lock(p, &flags);
4009 update_rq_clock(rq);
4012 on_rq = p->se.on_rq;
4013 running = task_running(rq, p);
4015 dequeue_task(rq, p, 0);
4017 p->sched_class->put_prev_task(rq, p);
4021 p->sched_class = &rt_sched_class;
4023 p->sched_class = &fair_sched_class;
4029 p->sched_class->set_curr_task(rq);
4030 enqueue_task(rq, p, 0);
4032 * Reschedule if we are currently running on this runqueue and
4033 * our priority decreased, or if we are not currently running on
4034 * this runqueue and our priority is higher than the current's
4037 if (p->prio > oldprio)
4038 resched_task(rq->curr);
4040 check_preempt_curr(rq, p);
4043 task_rq_unlock(rq, &flags);
4048 void set_user_nice(struct task_struct *p, long nice)
4050 int old_prio, delta, on_rq;
4051 unsigned long flags;
4054 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4057 * We have to be careful, if called from sys_setpriority(),
4058 * the task might be in the middle of scheduling on another CPU.
4060 rq = task_rq_lock(p, &flags);
4061 update_rq_clock(rq);
4063 * The RT priorities are set via sched_setscheduler(), but we still
4064 * allow the 'normal' nice value to be set - but as expected
4065 * it wont have any effect on scheduling until the task is
4066 * SCHED_FIFO/SCHED_RR:
4068 if (task_has_rt_policy(p)) {
4069 p->static_prio = NICE_TO_PRIO(nice);
4072 on_rq = p->se.on_rq;
4074 dequeue_task(rq, p, 0);
4078 p->static_prio = NICE_TO_PRIO(nice);
4081 p->prio = effective_prio(p);
4082 delta = p->prio - old_prio;
4085 enqueue_task(rq, p, 0);
4088 * If the task increased its priority or is running and
4089 * lowered its priority, then reschedule its CPU:
4091 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4092 resched_task(rq->curr);
4095 task_rq_unlock(rq, &flags);
4097 EXPORT_SYMBOL(set_user_nice);
4100 * can_nice - check if a task can reduce its nice value
4104 int can_nice(const struct task_struct *p, const int nice)
4106 /* convert nice value [19,-20] to rlimit style value [1,40] */
4107 int nice_rlim = 20 - nice;
4109 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4110 capable(CAP_SYS_NICE));
4113 #ifdef __ARCH_WANT_SYS_NICE
4116 * sys_nice - change the priority of the current process.
4117 * @increment: priority increment
4119 * sys_setpriority is a more generic, but much slower function that
4120 * does similar things.
4122 asmlinkage long sys_nice(int increment)
4127 * Setpriority might change our priority at the same moment.
4128 * We don't have to worry. Conceptually one call occurs first
4129 * and we have a single winner.
4131 if (increment < -40)
4136 nice = PRIO_TO_NICE(current->static_prio) + increment;
4142 if (increment < 0 && !can_nice(current, nice))
4145 retval = security_task_setnice(current, nice);
4149 set_user_nice(current, nice);
4156 * task_prio - return the priority value of a given task.
4157 * @p: the task in question.
4159 * This is the priority value as seen by users in /proc.
4160 * RT tasks are offset by -200. Normal tasks are centered
4161 * around 0, value goes from -16 to +15.
4163 int task_prio(const struct task_struct *p)
4165 return p->prio - MAX_RT_PRIO;
4169 * task_nice - return the nice value of a given task.
4170 * @p: the task in question.
4172 int task_nice(const struct task_struct *p)
4174 return TASK_NICE(p);
4176 EXPORT_SYMBOL_GPL(task_nice);
4179 * idle_cpu - is a given cpu idle currently?
4180 * @cpu: the processor in question.
4182 int idle_cpu(int cpu)
4184 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4188 * idle_task - return the idle task for a given cpu.
4189 * @cpu: the processor in question.
4191 struct task_struct *idle_task(int cpu)
4193 return cpu_rq(cpu)->idle;
4197 * find_process_by_pid - find a process with a matching PID value.
4198 * @pid: the pid in question.
4200 static struct task_struct *find_process_by_pid(pid_t pid)
4202 return pid ? find_task_by_vpid(pid) : current;
4205 /* Actually do priority change: must hold rq lock. */
4207 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4209 BUG_ON(p->se.on_rq);
4212 switch (p->policy) {
4216 p->sched_class = &fair_sched_class;
4220 p->sched_class = &rt_sched_class;
4224 p->rt_priority = prio;
4225 p->normal_prio = normal_prio(p);
4226 /* we are holding p->pi_lock already */
4227 p->prio = rt_mutex_getprio(p);
4232 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4233 * @p: the task in question.
4234 * @policy: new policy.
4235 * @param: structure containing the new RT priority.
4237 * NOTE that the task may be already dead.
4239 int sched_setscheduler(struct task_struct *p, int policy,
4240 struct sched_param *param)
4242 int retval, oldprio, oldpolicy = -1, on_rq, running;
4243 unsigned long flags;
4246 /* may grab non-irq protected spin_locks */
4247 BUG_ON(in_interrupt());
4249 /* double check policy once rq lock held */
4251 policy = oldpolicy = p->policy;
4252 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4253 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4254 policy != SCHED_IDLE)
4257 * Valid priorities for SCHED_FIFO and SCHED_RR are
4258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4259 * SCHED_BATCH and SCHED_IDLE is 0.
4261 if (param->sched_priority < 0 ||
4262 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4263 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4265 if (rt_policy(policy) != (param->sched_priority != 0))
4269 * Allow unprivileged RT tasks to decrease priority:
4271 if (!capable(CAP_SYS_NICE)) {
4272 if (rt_policy(policy)) {
4273 unsigned long rlim_rtprio;
4275 if (!lock_task_sighand(p, &flags))
4277 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4278 unlock_task_sighand(p, &flags);
4280 /* can't set/change the rt policy */
4281 if (policy != p->policy && !rlim_rtprio)
4284 /* can't increase priority */
4285 if (param->sched_priority > p->rt_priority &&
4286 param->sched_priority > rlim_rtprio)
4290 * Like positive nice levels, dont allow tasks to
4291 * move out of SCHED_IDLE either:
4293 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4296 /* can't change other user's priorities */
4297 if ((current->euid != p->euid) &&
4298 (current->euid != p->uid))
4302 retval = security_task_setscheduler(p, policy, param);
4306 * make sure no PI-waiters arrive (or leave) while we are
4307 * changing the priority of the task:
4309 spin_lock_irqsave(&p->pi_lock, flags);
4311 * To be able to change p->policy safely, the apropriate
4312 * runqueue lock must be held.
4314 rq = __task_rq_lock(p);
4315 /* recheck policy now with rq lock held */
4316 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4317 policy = oldpolicy = -1;
4318 __task_rq_unlock(rq);
4319 spin_unlock_irqrestore(&p->pi_lock, flags);
4322 update_rq_clock(rq);
4323 on_rq = p->se.on_rq;
4324 running = task_running(rq, p);
4326 deactivate_task(rq, p, 0);
4328 p->sched_class->put_prev_task(rq, p);
4332 __setscheduler(rq, p, policy, param->sched_priority);
4336 p->sched_class->set_curr_task(rq);
4337 activate_task(rq, p, 0);
4339 * Reschedule if we are currently running on this runqueue and
4340 * our priority decreased, or if we are not currently running on
4341 * this runqueue and our priority is higher than the current's
4344 if (p->prio > oldprio)
4345 resched_task(rq->curr);
4347 check_preempt_curr(rq, p);
4350 __task_rq_unlock(rq);
4351 spin_unlock_irqrestore(&p->pi_lock, flags);
4353 rt_mutex_adjust_pi(p);
4357 EXPORT_SYMBOL_GPL(sched_setscheduler);
4360 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4362 struct sched_param lparam;
4363 struct task_struct *p;
4366 if (!param || pid < 0)
4368 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4373 p = find_process_by_pid(pid);
4375 retval = sched_setscheduler(p, policy, &lparam);
4382 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4383 * @pid: the pid in question.
4384 * @policy: new policy.
4385 * @param: structure containing the new RT priority.
4387 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4388 struct sched_param __user *param)
4390 /* negative values for policy are not valid */
4394 return do_sched_setscheduler(pid, policy, param);
4398 * sys_sched_setparam - set/change the RT priority of a thread
4399 * @pid: the pid in question.
4400 * @param: structure containing the new RT priority.
4402 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4404 return do_sched_setscheduler(pid, -1, param);
4408 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4409 * @pid: the pid in question.
4411 asmlinkage long sys_sched_getscheduler(pid_t pid)
4413 struct task_struct *p;
4420 read_lock(&tasklist_lock);
4421 p = find_process_by_pid(pid);
4423 retval = security_task_getscheduler(p);
4427 read_unlock(&tasklist_lock);
4432 * sys_sched_getscheduler - get the RT priority of a thread
4433 * @pid: the pid in question.
4434 * @param: structure containing the RT priority.
4436 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4438 struct sched_param lp;
4439 struct task_struct *p;
4442 if (!param || pid < 0)
4445 read_lock(&tasklist_lock);
4446 p = find_process_by_pid(pid);
4451 retval = security_task_getscheduler(p);
4455 lp.sched_priority = p->rt_priority;
4456 read_unlock(&tasklist_lock);
4459 * This one might sleep, we cannot do it with a spinlock held ...
4461 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4466 read_unlock(&tasklist_lock);
4470 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4472 cpumask_t cpus_allowed;
4473 struct task_struct *p;
4476 mutex_lock(&sched_hotcpu_mutex);
4477 read_lock(&tasklist_lock);
4479 p = find_process_by_pid(pid);
4481 read_unlock(&tasklist_lock);
4482 mutex_unlock(&sched_hotcpu_mutex);
4487 * It is not safe to call set_cpus_allowed with the
4488 * tasklist_lock held. We will bump the task_struct's
4489 * usage count and then drop tasklist_lock.
4492 read_unlock(&tasklist_lock);
4495 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4496 !capable(CAP_SYS_NICE))
4499 retval = security_task_setscheduler(p, 0, NULL);
4503 cpus_allowed = cpuset_cpus_allowed(p);
4504 cpus_and(new_mask, new_mask, cpus_allowed);
4506 retval = set_cpus_allowed(p, new_mask);
4509 cpus_allowed = cpuset_cpus_allowed(p);
4510 if (!cpus_subset(new_mask, cpus_allowed)) {
4512 * We must have raced with a concurrent cpuset
4513 * update. Just reset the cpus_allowed to the
4514 * cpuset's cpus_allowed
4516 new_mask = cpus_allowed;
4522 mutex_unlock(&sched_hotcpu_mutex);
4526 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4527 cpumask_t *new_mask)
4529 if (len < sizeof(cpumask_t)) {
4530 memset(new_mask, 0, sizeof(cpumask_t));
4531 } else if (len > sizeof(cpumask_t)) {
4532 len = sizeof(cpumask_t);
4534 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4538 * sys_sched_setaffinity - set the cpu affinity of a process
4539 * @pid: pid of the process
4540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4541 * @user_mask_ptr: user-space pointer to the new cpu mask
4543 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4544 unsigned long __user *user_mask_ptr)
4549 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4553 return sched_setaffinity(pid, new_mask);
4557 * Represents all cpu's present in the system
4558 * In systems capable of hotplug, this map could dynamically grow
4559 * as new cpu's are detected in the system via any platform specific
4560 * method, such as ACPI for e.g.
4563 cpumask_t cpu_present_map __read_mostly;
4564 EXPORT_SYMBOL(cpu_present_map);
4567 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4568 EXPORT_SYMBOL(cpu_online_map);
4570 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4571 EXPORT_SYMBOL(cpu_possible_map);
4574 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4576 struct task_struct *p;
4579 mutex_lock(&sched_hotcpu_mutex);
4580 read_lock(&tasklist_lock);
4583 p = find_process_by_pid(pid);
4587 retval = security_task_getscheduler(p);
4591 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4594 read_unlock(&tasklist_lock);
4595 mutex_unlock(&sched_hotcpu_mutex);
4601 * sys_sched_getaffinity - get the cpu affinity of a process
4602 * @pid: pid of the process
4603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4606 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4607 unsigned long __user *user_mask_ptr)
4612 if (len < sizeof(cpumask_t))
4615 ret = sched_getaffinity(pid, &mask);
4619 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4622 return sizeof(cpumask_t);
4626 * sys_sched_yield - yield the current processor to other threads.
4628 * This function yields the current CPU to other tasks. If there are no
4629 * other threads running on this CPU then this function will return.
4631 asmlinkage long sys_sched_yield(void)
4633 struct rq *rq = this_rq_lock();
4635 schedstat_inc(rq, yld_count);
4636 current->sched_class->yield_task(rq);
4639 * Since we are going to call schedule() anyway, there's
4640 * no need to preempt or enable interrupts:
4642 __release(rq->lock);
4643 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4644 _raw_spin_unlock(&rq->lock);
4645 preempt_enable_no_resched();
4652 static void __cond_resched(void)
4654 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4655 __might_sleep(__FILE__, __LINE__);
4658 * The BKS might be reacquired before we have dropped
4659 * PREEMPT_ACTIVE, which could trigger a second
4660 * cond_resched() call.
4663 add_preempt_count(PREEMPT_ACTIVE);
4665 sub_preempt_count(PREEMPT_ACTIVE);
4666 } while (need_resched());
4669 int __sched cond_resched(void)
4671 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4672 system_state == SYSTEM_RUNNING) {
4678 EXPORT_SYMBOL(cond_resched);
4681 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4682 * call schedule, and on return reacquire the lock.
4684 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4685 * operations here to prevent schedule() from being called twice (once via
4686 * spin_unlock(), once by hand).
4688 int cond_resched_lock(spinlock_t *lock)
4692 if (need_lockbreak(lock)) {
4698 if (need_resched() && system_state == SYSTEM_RUNNING) {
4699 spin_release(&lock->dep_map, 1, _THIS_IP_);
4700 _raw_spin_unlock(lock);
4701 preempt_enable_no_resched();
4708 EXPORT_SYMBOL(cond_resched_lock);
4710 int __sched cond_resched_softirq(void)
4712 BUG_ON(!in_softirq());
4714 if (need_resched() && system_state == SYSTEM_RUNNING) {
4722 EXPORT_SYMBOL(cond_resched_softirq);
4725 * yield - yield the current processor to other threads.
4727 * This is a shortcut for kernel-space yielding - it marks the
4728 * thread runnable and calls sys_sched_yield().
4730 void __sched yield(void)
4732 set_current_state(TASK_RUNNING);
4735 EXPORT_SYMBOL(yield);
4738 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4739 * that process accounting knows that this is a task in IO wait state.
4741 * But don't do that if it is a deliberate, throttling IO wait (this task
4742 * has set its backing_dev_info: the queue against which it should throttle)
4744 void __sched io_schedule(void)
4746 struct rq *rq = &__raw_get_cpu_var(runqueues);
4748 delayacct_blkio_start();
4749 atomic_inc(&rq->nr_iowait);
4751 atomic_dec(&rq->nr_iowait);
4752 delayacct_blkio_end();
4754 EXPORT_SYMBOL(io_schedule);
4756 long __sched io_schedule_timeout(long timeout)
4758 struct rq *rq = &__raw_get_cpu_var(runqueues);
4761 delayacct_blkio_start();
4762 atomic_inc(&rq->nr_iowait);
4763 ret = schedule_timeout(timeout);
4764 atomic_dec(&rq->nr_iowait);
4765 delayacct_blkio_end();
4770 * sys_sched_get_priority_max - return maximum RT priority.
4771 * @policy: scheduling class.
4773 * this syscall returns the maximum rt_priority that can be used
4774 * by a given scheduling class.
4776 asmlinkage long sys_sched_get_priority_max(int policy)
4783 ret = MAX_USER_RT_PRIO-1;
4795 * sys_sched_get_priority_min - return minimum RT priority.
4796 * @policy: scheduling class.
4798 * this syscall returns the minimum rt_priority that can be used
4799 * by a given scheduling class.
4801 asmlinkage long sys_sched_get_priority_min(int policy)
4819 * sys_sched_rr_get_interval - return the default timeslice of a process.
4820 * @pid: pid of the process.
4821 * @interval: userspace pointer to the timeslice value.
4823 * this syscall writes the default timeslice value of a given process
4824 * into the user-space timespec buffer. A value of '0' means infinity.
4827 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4829 struct task_struct *p;
4830 unsigned int time_slice;
4838 read_lock(&tasklist_lock);
4839 p = find_process_by_pid(pid);
4843 retval = security_task_getscheduler(p);
4847 if (p->policy == SCHED_FIFO)
4849 else if (p->policy == SCHED_RR)
4850 time_slice = DEF_TIMESLICE;
4852 struct sched_entity *se = &p->se;
4853 unsigned long flags;
4856 rq = task_rq_lock(p, &flags);
4857 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4858 task_rq_unlock(rq, &flags);
4860 read_unlock(&tasklist_lock);
4861 jiffies_to_timespec(time_slice, &t);
4862 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4866 read_unlock(&tasklist_lock);
4870 static const char stat_nam[] = "RSDTtZX";
4872 static void show_task(struct task_struct *p)
4874 unsigned long free = 0;
4877 state = p->state ? __ffs(p->state) + 1 : 0;
4878 printk(KERN_INFO "%-13.13s %c", p->comm,
4879 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4880 #if BITS_PER_LONG == 32
4881 if (state == TASK_RUNNING)
4882 printk(KERN_CONT " running ");
4884 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4886 if (state == TASK_RUNNING)
4887 printk(KERN_CONT " running task ");
4889 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4891 #ifdef CONFIG_DEBUG_STACK_USAGE
4893 unsigned long *n = end_of_stack(p);
4896 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4899 printk(KERN_CONT "%5lu %5d %6d\n", free,
4900 task_pid_nr(p), task_pid_nr(p->parent));
4902 if (state != TASK_RUNNING)
4903 show_stack(p, NULL);
4906 void show_state_filter(unsigned long state_filter)
4908 struct task_struct *g, *p;
4910 #if BITS_PER_LONG == 32
4912 " task PC stack pid father\n");
4915 " task PC stack pid father\n");
4917 read_lock(&tasklist_lock);
4918 do_each_thread(g, p) {
4920 * reset the NMI-timeout, listing all files on a slow
4921 * console might take alot of time:
4923 touch_nmi_watchdog();
4924 if (!state_filter || (p->state & state_filter))
4926 } while_each_thread(g, p);
4928 touch_all_softlockup_watchdogs();
4930 #ifdef CONFIG_SCHED_DEBUG
4931 sysrq_sched_debug_show();
4933 read_unlock(&tasklist_lock);
4935 * Only show locks if all tasks are dumped:
4937 if (state_filter == -1)
4938 debug_show_all_locks();
4941 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4943 idle->sched_class = &idle_sched_class;
4947 * init_idle - set up an idle thread for a given CPU
4948 * @idle: task in question
4949 * @cpu: cpu the idle task belongs to
4951 * NOTE: this function does not set the idle thread's NEED_RESCHED
4952 * flag, to make booting more robust.
4954 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4956 struct rq *rq = cpu_rq(cpu);
4957 unsigned long flags;
4960 idle->se.exec_start = sched_clock();
4962 idle->prio = idle->normal_prio = MAX_PRIO;
4963 idle->cpus_allowed = cpumask_of_cpu(cpu);
4964 __set_task_cpu(idle, cpu);
4966 spin_lock_irqsave(&rq->lock, flags);
4967 rq->curr = rq->idle = idle;
4968 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4971 spin_unlock_irqrestore(&rq->lock, flags);
4973 /* Set the preempt count _outside_ the spinlocks! */
4974 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4975 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4977 task_thread_info(idle)->preempt_count = 0;
4980 * The idle tasks have their own, simple scheduling class:
4982 idle->sched_class = &idle_sched_class;
4986 * In a system that switches off the HZ timer nohz_cpu_mask
4987 * indicates which cpus entered this state. This is used
4988 * in the rcu update to wait only for active cpus. For system
4989 * which do not switch off the HZ timer nohz_cpu_mask should
4990 * always be CPU_MASK_NONE.
4992 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4995 * Increase the granularity value when there are more CPUs,
4996 * because with more CPUs the 'effective latency' as visible
4997 * to users decreases. But the relationship is not linear,
4998 * so pick a second-best guess by going with the log2 of the
5001 * This idea comes from the SD scheduler of Con Kolivas:
5003 static inline void sched_init_granularity(void)
5005 unsigned int factor = 1 + ilog2(num_online_cpus());
5006 const unsigned long limit = 200000000;
5008 sysctl_sched_min_granularity *= factor;
5009 if (sysctl_sched_min_granularity > limit)
5010 sysctl_sched_min_granularity = limit;
5012 sysctl_sched_latency *= factor;
5013 if (sysctl_sched_latency > limit)
5014 sysctl_sched_latency = limit;
5016 sysctl_sched_wakeup_granularity *= factor;
5017 sysctl_sched_batch_wakeup_granularity *= factor;
5022 * This is how migration works:
5024 * 1) we queue a struct migration_req structure in the source CPU's
5025 * runqueue and wake up that CPU's migration thread.
5026 * 2) we down() the locked semaphore => thread blocks.
5027 * 3) migration thread wakes up (implicitly it forces the migrated
5028 * thread off the CPU)
5029 * 4) it gets the migration request and checks whether the migrated
5030 * task is still in the wrong runqueue.
5031 * 5) if it's in the wrong runqueue then the migration thread removes
5032 * it and puts it into the right queue.
5033 * 6) migration thread up()s the semaphore.
5034 * 7) we wake up and the migration is done.
5038 * Change a given task's CPU affinity. Migrate the thread to a
5039 * proper CPU and schedule it away if the CPU it's executing on
5040 * is removed from the allowed bitmask.
5042 * NOTE: the caller must have a valid reference to the task, the
5043 * task must not exit() & deallocate itself prematurely. The
5044 * call is not atomic; no spinlocks may be held.
5046 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5048 struct migration_req req;
5049 unsigned long flags;
5053 rq = task_rq_lock(p, &flags);
5054 if (!cpus_intersects(new_mask, cpu_online_map)) {
5059 p->cpus_allowed = new_mask;
5060 /* Can the task run on the task's current CPU? If so, we're done */
5061 if (cpu_isset(task_cpu(p), new_mask))
5064 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5065 /* Need help from migration thread: drop lock and wait. */
5066 task_rq_unlock(rq, &flags);
5067 wake_up_process(rq->migration_thread);
5068 wait_for_completion(&req.done);
5069 tlb_migrate_finish(p->mm);
5073 task_rq_unlock(rq, &flags);
5077 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5080 * Move (not current) task off this cpu, onto dest cpu. We're doing
5081 * this because either it can't run here any more (set_cpus_allowed()
5082 * away from this CPU, or CPU going down), or because we're
5083 * attempting to rebalance this task on exec (sched_exec).
5085 * So we race with normal scheduler movements, but that's OK, as long
5086 * as the task is no longer on this CPU.
5088 * Returns non-zero if task was successfully migrated.
5090 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5092 struct rq *rq_dest, *rq_src;
5095 if (unlikely(cpu_is_offline(dest_cpu)))
5098 rq_src = cpu_rq(src_cpu);
5099 rq_dest = cpu_rq(dest_cpu);
5101 double_rq_lock(rq_src, rq_dest);
5102 /* Already moved. */
5103 if (task_cpu(p) != src_cpu)
5105 /* Affinity changed (again). */
5106 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5109 on_rq = p->se.on_rq;
5111 deactivate_task(rq_src, p, 0);
5113 set_task_cpu(p, dest_cpu);
5115 activate_task(rq_dest, p, 0);
5116 check_preempt_curr(rq_dest, p);
5120 double_rq_unlock(rq_src, rq_dest);
5125 * migration_thread - this is a highprio system thread that performs
5126 * thread migration by bumping thread off CPU then 'pushing' onto
5129 static int migration_thread(void *data)
5131 int cpu = (long)data;
5135 BUG_ON(rq->migration_thread != current);
5137 set_current_state(TASK_INTERRUPTIBLE);
5138 while (!kthread_should_stop()) {
5139 struct migration_req *req;
5140 struct list_head *head;
5142 spin_lock_irq(&rq->lock);
5144 if (cpu_is_offline(cpu)) {
5145 spin_unlock_irq(&rq->lock);
5149 if (rq->active_balance) {
5150 active_load_balance(rq, cpu);
5151 rq->active_balance = 0;
5154 head = &rq->migration_queue;
5156 if (list_empty(head)) {
5157 spin_unlock_irq(&rq->lock);
5159 set_current_state(TASK_INTERRUPTIBLE);
5162 req = list_entry(head->next, struct migration_req, list);
5163 list_del_init(head->next);
5165 spin_unlock(&rq->lock);
5166 __migrate_task(req->task, cpu, req->dest_cpu);
5169 complete(&req->done);
5171 __set_current_state(TASK_RUNNING);
5175 /* Wait for kthread_stop */
5176 set_current_state(TASK_INTERRUPTIBLE);
5177 while (!kthread_should_stop()) {
5179 set_current_state(TASK_INTERRUPTIBLE);
5181 __set_current_state(TASK_RUNNING);
5185 #ifdef CONFIG_HOTPLUG_CPU
5187 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5191 local_irq_disable();
5192 ret = __migrate_task(p, src_cpu, dest_cpu);
5198 * Figure out where task on dead CPU should go, use force if necessary.
5199 * NOTE: interrupts should be disabled by the caller
5201 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5203 unsigned long flags;
5210 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5211 cpus_and(mask, mask, p->cpus_allowed);
5212 dest_cpu = any_online_cpu(mask);
5214 /* On any allowed CPU? */
5215 if (dest_cpu == NR_CPUS)
5216 dest_cpu = any_online_cpu(p->cpus_allowed);
5218 /* No more Mr. Nice Guy. */
5219 if (dest_cpu == NR_CPUS) {
5220 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5222 * Try to stay on the same cpuset, where the
5223 * current cpuset may be a subset of all cpus.
5224 * The cpuset_cpus_allowed_locked() variant of
5225 * cpuset_cpus_allowed() will not block. It must be
5226 * called within calls to cpuset_lock/cpuset_unlock.
5228 rq = task_rq_lock(p, &flags);
5229 p->cpus_allowed = cpus_allowed;
5230 dest_cpu = any_online_cpu(p->cpus_allowed);
5231 task_rq_unlock(rq, &flags);
5234 * Don't tell them about moving exiting tasks or
5235 * kernel threads (both mm NULL), since they never
5238 if (p->mm && printk_ratelimit())
5239 printk(KERN_INFO "process %d (%s) no "
5240 "longer affine to cpu%d\n",
5241 task_pid_nr(p), p->comm, dead_cpu);
5243 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5247 * While a dead CPU has no uninterruptible tasks queued at this point,
5248 * it might still have a nonzero ->nr_uninterruptible counter, because
5249 * for performance reasons the counter is not stricly tracking tasks to
5250 * their home CPUs. So we just add the counter to another CPU's counter,
5251 * to keep the global sum constant after CPU-down:
5253 static void migrate_nr_uninterruptible(struct rq *rq_src)
5255 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5256 unsigned long flags;
5258 local_irq_save(flags);
5259 double_rq_lock(rq_src, rq_dest);
5260 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5261 rq_src->nr_uninterruptible = 0;
5262 double_rq_unlock(rq_src, rq_dest);
5263 local_irq_restore(flags);
5266 /* Run through task list and migrate tasks from the dead cpu. */
5267 static void migrate_live_tasks(int src_cpu)
5269 struct task_struct *p, *t;
5271 read_lock(&tasklist_lock);
5273 do_each_thread(t, p) {
5277 if (task_cpu(p) == src_cpu)
5278 move_task_off_dead_cpu(src_cpu, p);
5279 } while_each_thread(t, p);
5281 read_unlock(&tasklist_lock);
5285 * Schedules idle task to be the next runnable task on current CPU.
5286 * It does so by boosting its priority to highest possible.
5287 * Used by CPU offline code.
5289 void sched_idle_next(void)
5291 int this_cpu = smp_processor_id();
5292 struct rq *rq = cpu_rq(this_cpu);
5293 struct task_struct *p = rq->idle;
5294 unsigned long flags;
5296 /* cpu has to be offline */
5297 BUG_ON(cpu_online(this_cpu));
5300 * Strictly not necessary since rest of the CPUs are stopped by now
5301 * and interrupts disabled on the current cpu.
5303 spin_lock_irqsave(&rq->lock, flags);
5305 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5307 update_rq_clock(rq);
5308 activate_task(rq, p, 0);
5310 spin_unlock_irqrestore(&rq->lock, flags);
5314 * Ensures that the idle task is using init_mm right before its cpu goes
5317 void idle_task_exit(void)
5319 struct mm_struct *mm = current->active_mm;
5321 BUG_ON(cpu_online(smp_processor_id()));
5324 switch_mm(mm, &init_mm, current);
5328 /* called under rq->lock with disabled interrupts */
5329 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5331 struct rq *rq = cpu_rq(dead_cpu);
5333 /* Must be exiting, otherwise would be on tasklist. */
5334 BUG_ON(!p->exit_state);
5336 /* Cannot have done final schedule yet: would have vanished. */
5337 BUG_ON(p->state == TASK_DEAD);
5342 * Drop lock around migration; if someone else moves it,
5343 * that's OK. No task can be added to this CPU, so iteration is
5346 spin_unlock_irq(&rq->lock);
5347 move_task_off_dead_cpu(dead_cpu, p);
5348 spin_lock_irq(&rq->lock);
5353 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5354 static void migrate_dead_tasks(unsigned int dead_cpu)
5356 struct rq *rq = cpu_rq(dead_cpu);
5357 struct task_struct *next;
5360 if (!rq->nr_running)
5362 update_rq_clock(rq);
5363 next = pick_next_task(rq, rq->curr);
5366 migrate_dead(dead_cpu, next);
5370 #endif /* CONFIG_HOTPLUG_CPU */
5372 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5374 static struct ctl_table sd_ctl_dir[] = {
5376 .procname = "sched_domain",
5382 static struct ctl_table sd_ctl_root[] = {
5384 .ctl_name = CTL_KERN,
5385 .procname = "kernel",
5387 .child = sd_ctl_dir,
5392 static struct ctl_table *sd_alloc_ctl_entry(int n)
5394 struct ctl_table *entry =
5395 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5400 static void sd_free_ctl_entry(struct ctl_table **tablep)
5402 struct ctl_table *entry;
5405 * In the intermediate directories, both the child directory and
5406 * procname are dynamically allocated and could fail but the mode
5407 * will always be set. In the lowest directory the names are
5408 * static strings and all have proc handlers.
5410 for (entry = *tablep; entry->mode; entry++) {
5412 sd_free_ctl_entry(&entry->child);
5413 if (entry->proc_handler == NULL)
5414 kfree(entry->procname);
5422 set_table_entry(struct ctl_table *entry,
5423 const char *procname, void *data, int maxlen,
5424 mode_t mode, proc_handler *proc_handler)
5426 entry->procname = procname;
5428 entry->maxlen = maxlen;
5430 entry->proc_handler = proc_handler;
5433 static struct ctl_table *
5434 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5436 struct ctl_table *table = sd_alloc_ctl_entry(12);
5441 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5442 sizeof(long), 0644, proc_doulongvec_minmax);
5443 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5444 sizeof(long), 0644, proc_doulongvec_minmax);
5445 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5446 sizeof(int), 0644, proc_dointvec_minmax);
5447 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5448 sizeof(int), 0644, proc_dointvec_minmax);
5449 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5450 sizeof(int), 0644, proc_dointvec_minmax);
5451 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5452 sizeof(int), 0644, proc_dointvec_minmax);
5453 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5454 sizeof(int), 0644, proc_dointvec_minmax);
5455 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5456 sizeof(int), 0644, proc_dointvec_minmax);
5457 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5458 sizeof(int), 0644, proc_dointvec_minmax);
5459 set_table_entry(&table[9], "cache_nice_tries",
5460 &sd->cache_nice_tries,
5461 sizeof(int), 0644, proc_dointvec_minmax);
5462 set_table_entry(&table[10], "flags", &sd->flags,
5463 sizeof(int), 0644, proc_dointvec_minmax);
5464 /* &table[11] is terminator */
5469 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5471 struct ctl_table *entry, *table;
5472 struct sched_domain *sd;
5473 int domain_num = 0, i;
5476 for_each_domain(cpu, sd)
5478 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5483 for_each_domain(cpu, sd) {
5484 snprintf(buf, 32, "domain%d", i);
5485 entry->procname = kstrdup(buf, GFP_KERNEL);
5487 entry->child = sd_alloc_ctl_domain_table(sd);
5494 static struct ctl_table_header *sd_sysctl_header;
5495 static void register_sched_domain_sysctl(void)
5497 int i, cpu_num = num_online_cpus();
5498 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5501 WARN_ON(sd_ctl_dir[0].child);
5502 sd_ctl_dir[0].child = entry;
5507 for_each_online_cpu(i) {
5508 snprintf(buf, 32, "cpu%d", i);
5509 entry->procname = kstrdup(buf, GFP_KERNEL);
5511 entry->child = sd_alloc_ctl_cpu_table(i);
5515 WARN_ON(sd_sysctl_header);
5516 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5519 /* may be called multiple times per register */
5520 static void unregister_sched_domain_sysctl(void)
5522 if (sd_sysctl_header)
5523 unregister_sysctl_table(sd_sysctl_header);
5524 sd_sysctl_header = NULL;
5525 if (sd_ctl_dir[0].child)
5526 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5529 static void register_sched_domain_sysctl(void)
5532 static void unregister_sched_domain_sysctl(void)
5538 * migration_call - callback that gets triggered when a CPU is added.
5539 * Here we can start up the necessary migration thread for the new CPU.
5541 static int __cpuinit
5542 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5544 struct task_struct *p;
5545 int cpu = (long)hcpu;
5546 unsigned long flags;
5550 case CPU_LOCK_ACQUIRE:
5551 mutex_lock(&sched_hotcpu_mutex);
5554 case CPU_UP_PREPARE:
5555 case CPU_UP_PREPARE_FROZEN:
5556 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5559 kthread_bind(p, cpu);
5560 /* Must be high prio: stop_machine expects to yield to it. */
5561 rq = task_rq_lock(p, &flags);
5562 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5563 task_rq_unlock(rq, &flags);
5564 cpu_rq(cpu)->migration_thread = p;
5568 case CPU_ONLINE_FROZEN:
5569 /* Strictly unnecessary, as first user will wake it. */
5570 wake_up_process(cpu_rq(cpu)->migration_thread);
5573 #ifdef CONFIG_HOTPLUG_CPU
5574 case CPU_UP_CANCELED:
5575 case CPU_UP_CANCELED_FROZEN:
5576 if (!cpu_rq(cpu)->migration_thread)
5578 /* Unbind it from offline cpu so it can run. Fall thru. */
5579 kthread_bind(cpu_rq(cpu)->migration_thread,
5580 any_online_cpu(cpu_online_map));
5581 kthread_stop(cpu_rq(cpu)->migration_thread);
5582 cpu_rq(cpu)->migration_thread = NULL;
5586 case CPU_DEAD_FROZEN:
5587 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5588 migrate_live_tasks(cpu);
5590 kthread_stop(rq->migration_thread);
5591 rq->migration_thread = NULL;
5592 /* Idle task back to normal (off runqueue, low prio) */
5593 spin_lock_irq(&rq->lock);
5594 update_rq_clock(rq);
5595 deactivate_task(rq, rq->idle, 0);
5596 rq->idle->static_prio = MAX_PRIO;
5597 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5598 rq->idle->sched_class = &idle_sched_class;
5599 migrate_dead_tasks(cpu);
5600 spin_unlock_irq(&rq->lock);
5602 migrate_nr_uninterruptible(rq);
5603 BUG_ON(rq->nr_running != 0);
5605 /* No need to migrate the tasks: it was best-effort if
5606 * they didn't take sched_hotcpu_mutex. Just wake up
5607 * the requestors. */
5608 spin_lock_irq(&rq->lock);
5609 while (!list_empty(&rq->migration_queue)) {
5610 struct migration_req *req;
5612 req = list_entry(rq->migration_queue.next,
5613 struct migration_req, list);
5614 list_del_init(&req->list);
5615 complete(&req->done);
5617 spin_unlock_irq(&rq->lock);
5620 case CPU_LOCK_RELEASE:
5621 mutex_unlock(&sched_hotcpu_mutex);
5627 /* Register at highest priority so that task migration (migrate_all_tasks)
5628 * happens before everything else.
5630 static struct notifier_block __cpuinitdata migration_notifier = {
5631 .notifier_call = migration_call,
5635 void __init migration_init(void)
5637 void *cpu = (void *)(long)smp_processor_id();
5640 /* Start one for the boot CPU: */
5641 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5642 BUG_ON(err == NOTIFY_BAD);
5643 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5644 register_cpu_notifier(&migration_notifier);
5650 /* Number of possible processor ids */
5651 int nr_cpu_ids __read_mostly = NR_CPUS;
5652 EXPORT_SYMBOL(nr_cpu_ids);
5654 #ifdef CONFIG_SCHED_DEBUG
5656 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5658 struct sched_group *group = sd->groups;
5659 cpumask_t groupmask;
5662 cpumask_scnprintf(str, NR_CPUS, sd->span);
5663 cpus_clear(groupmask);
5665 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5667 if (!(sd->flags & SD_LOAD_BALANCE)) {
5668 printk("does not load-balance\n");
5670 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5675 printk(KERN_CONT "span %s\n", str);
5677 if (!cpu_isset(cpu, sd->span)) {
5678 printk(KERN_ERR "ERROR: domain->span does not contain "
5681 if (!cpu_isset(cpu, group->cpumask)) {
5682 printk(KERN_ERR "ERROR: domain->groups does not contain"
5686 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5690 printk(KERN_ERR "ERROR: group is NULL\n");
5694 if (!group->__cpu_power) {
5695 printk(KERN_CONT "\n");
5696 printk(KERN_ERR "ERROR: domain->cpu_power not "
5701 if (!cpus_weight(group->cpumask)) {
5702 printk(KERN_CONT "\n");
5703 printk(KERN_ERR "ERROR: empty group\n");
5707 if (cpus_intersects(groupmask, group->cpumask)) {
5708 printk(KERN_CONT "\n");
5709 printk(KERN_ERR "ERROR: repeated CPUs\n");
5713 cpus_or(groupmask, groupmask, group->cpumask);
5715 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5716 printk(KERN_CONT " %s", str);
5718 group = group->next;
5719 } while (group != sd->groups);
5720 printk(KERN_CONT "\n");
5722 if (!cpus_equal(sd->span, groupmask))
5723 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5725 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5726 printk(KERN_ERR "ERROR: parent span is not a superset "
5727 "of domain->span\n");
5731 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5736 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5740 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5743 if (sched_domain_debug_one(sd, cpu, level))
5752 # define sched_domain_debug(sd, cpu) do { } while (0)
5755 static int sd_degenerate(struct sched_domain *sd)
5757 if (cpus_weight(sd->span) == 1)
5760 /* Following flags need at least 2 groups */
5761 if (sd->flags & (SD_LOAD_BALANCE |
5762 SD_BALANCE_NEWIDLE |
5766 SD_SHARE_PKG_RESOURCES)) {
5767 if (sd->groups != sd->groups->next)
5771 /* Following flags don't use groups */
5772 if (sd->flags & (SD_WAKE_IDLE |
5781 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5783 unsigned long cflags = sd->flags, pflags = parent->flags;
5785 if (sd_degenerate(parent))
5788 if (!cpus_equal(sd->span, parent->span))
5791 /* Does parent contain flags not in child? */
5792 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5793 if (cflags & SD_WAKE_AFFINE)
5794 pflags &= ~SD_WAKE_BALANCE;
5795 /* Flags needing groups don't count if only 1 group in parent */
5796 if (parent->groups == parent->groups->next) {
5797 pflags &= ~(SD_LOAD_BALANCE |
5798 SD_BALANCE_NEWIDLE |
5802 SD_SHARE_PKG_RESOURCES);
5804 if (~cflags & pflags)
5811 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5812 * hold the hotplug lock.
5814 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5816 struct rq *rq = cpu_rq(cpu);
5817 struct sched_domain *tmp;
5819 /* Remove the sched domains which do not contribute to scheduling. */
5820 for (tmp = sd; tmp; tmp = tmp->parent) {
5821 struct sched_domain *parent = tmp->parent;
5824 if (sd_parent_degenerate(tmp, parent)) {
5825 tmp->parent = parent->parent;
5827 parent->parent->child = tmp;
5831 if (sd && sd_degenerate(sd)) {
5837 sched_domain_debug(sd, cpu);
5839 rcu_assign_pointer(rq->sd, sd);
5842 /* cpus with isolated domains */
5843 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5845 /* Setup the mask of cpus configured for isolated domains */
5846 static int __init isolated_cpu_setup(char *str)
5848 int ints[NR_CPUS], i;
5850 str = get_options(str, ARRAY_SIZE(ints), ints);
5851 cpus_clear(cpu_isolated_map);
5852 for (i = 1; i <= ints[0]; i++)
5853 if (ints[i] < NR_CPUS)
5854 cpu_set(ints[i], cpu_isolated_map);
5858 __setup("isolcpus=", isolated_cpu_setup);
5861 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5862 * to a function which identifies what group(along with sched group) a CPU
5863 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5864 * (due to the fact that we keep track of groups covered with a cpumask_t).
5866 * init_sched_build_groups will build a circular linked list of the groups
5867 * covered by the given span, and will set each group's ->cpumask correctly,
5868 * and ->cpu_power to 0.
5871 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5872 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5873 struct sched_group **sg))
5875 struct sched_group *first = NULL, *last = NULL;
5876 cpumask_t covered = CPU_MASK_NONE;
5879 for_each_cpu_mask(i, span) {
5880 struct sched_group *sg;
5881 int group = group_fn(i, cpu_map, &sg);
5884 if (cpu_isset(i, covered))
5887 sg->cpumask = CPU_MASK_NONE;
5888 sg->__cpu_power = 0;
5890 for_each_cpu_mask(j, span) {
5891 if (group_fn(j, cpu_map, NULL) != group)
5894 cpu_set(j, covered);
5895 cpu_set(j, sg->cpumask);
5906 #define SD_NODES_PER_DOMAIN 16
5911 * find_next_best_node - find the next node to include in a sched_domain
5912 * @node: node whose sched_domain we're building
5913 * @used_nodes: nodes already in the sched_domain
5915 * Find the next node to include in a given scheduling domain. Simply
5916 * finds the closest node not already in the @used_nodes map.
5918 * Should use nodemask_t.
5920 static int find_next_best_node(int node, unsigned long *used_nodes)
5922 int i, n, val, min_val, best_node = 0;
5926 for (i = 0; i < MAX_NUMNODES; i++) {
5927 /* Start at @node */
5928 n = (node + i) % MAX_NUMNODES;
5930 if (!nr_cpus_node(n))
5933 /* Skip already used nodes */
5934 if (test_bit(n, used_nodes))
5937 /* Simple min distance search */
5938 val = node_distance(node, n);
5940 if (val < min_val) {
5946 set_bit(best_node, used_nodes);
5951 * sched_domain_node_span - get a cpumask for a node's sched_domain
5952 * @node: node whose cpumask we're constructing
5953 * @size: number of nodes to include in this span
5955 * Given a node, construct a good cpumask for its sched_domain to span. It
5956 * should be one that prevents unnecessary balancing, but also spreads tasks
5959 static cpumask_t sched_domain_node_span(int node)
5961 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5962 cpumask_t span, nodemask;
5966 bitmap_zero(used_nodes, MAX_NUMNODES);
5968 nodemask = node_to_cpumask(node);
5969 cpus_or(span, span, nodemask);
5970 set_bit(node, used_nodes);
5972 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5973 int next_node = find_next_best_node(node, used_nodes);
5975 nodemask = node_to_cpumask(next_node);
5976 cpus_or(span, span, nodemask);
5983 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5986 * SMT sched-domains:
5988 #ifdef CONFIG_SCHED_SMT
5989 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5990 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5992 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5993 struct sched_group **sg)
5996 *sg = &per_cpu(sched_group_cpus, cpu);
6002 * multi-core sched-domains:
6004 #ifdef CONFIG_SCHED_MC
6005 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6006 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6009 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6010 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6011 struct sched_group **sg)
6014 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6015 cpus_and(mask, mask, *cpu_map);
6016 group = first_cpu(mask);
6018 *sg = &per_cpu(sched_group_core, group);
6021 #elif defined(CONFIG_SCHED_MC)
6022 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6023 struct sched_group **sg)
6026 *sg = &per_cpu(sched_group_core, cpu);
6031 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6032 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6034 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6035 struct sched_group **sg)
6038 #ifdef CONFIG_SCHED_MC
6039 cpumask_t mask = cpu_coregroup_map(cpu);
6040 cpus_and(mask, mask, *cpu_map);
6041 group = first_cpu(mask);
6042 #elif defined(CONFIG_SCHED_SMT)
6043 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6044 cpus_and(mask, mask, *cpu_map);
6045 group = first_cpu(mask);
6050 *sg = &per_cpu(sched_group_phys, group);
6056 * The init_sched_build_groups can't handle what we want to do with node
6057 * groups, so roll our own. Now each node has its own list of groups which
6058 * gets dynamically allocated.
6060 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6061 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6063 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6064 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6066 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6067 struct sched_group **sg)
6069 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6072 cpus_and(nodemask, nodemask, *cpu_map);
6073 group = first_cpu(nodemask);
6076 *sg = &per_cpu(sched_group_allnodes, group);
6080 static void init_numa_sched_groups_power(struct sched_group *group_head)
6082 struct sched_group *sg = group_head;
6088 for_each_cpu_mask(j, sg->cpumask) {
6089 struct sched_domain *sd;
6091 sd = &per_cpu(phys_domains, j);
6092 if (j != first_cpu(sd->groups->cpumask)) {
6094 * Only add "power" once for each
6100 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6103 } while (sg != group_head);
6108 /* Free memory allocated for various sched_group structures */
6109 static void free_sched_groups(const cpumask_t *cpu_map)
6113 for_each_cpu_mask(cpu, *cpu_map) {
6114 struct sched_group **sched_group_nodes
6115 = sched_group_nodes_bycpu[cpu];
6117 if (!sched_group_nodes)
6120 for (i = 0; i < MAX_NUMNODES; i++) {
6121 cpumask_t nodemask = node_to_cpumask(i);
6122 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6124 cpus_and(nodemask, nodemask, *cpu_map);
6125 if (cpus_empty(nodemask))
6135 if (oldsg != sched_group_nodes[i])
6138 kfree(sched_group_nodes);
6139 sched_group_nodes_bycpu[cpu] = NULL;
6143 static void free_sched_groups(const cpumask_t *cpu_map)
6149 * Initialize sched groups cpu_power.
6151 * cpu_power indicates the capacity of sched group, which is used while
6152 * distributing the load between different sched groups in a sched domain.
6153 * Typically cpu_power for all the groups in a sched domain will be same unless
6154 * there are asymmetries in the topology. If there are asymmetries, group
6155 * having more cpu_power will pickup more load compared to the group having
6158 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6159 * the maximum number of tasks a group can handle in the presence of other idle
6160 * or lightly loaded groups in the same sched domain.
6162 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6164 struct sched_domain *child;
6165 struct sched_group *group;
6167 WARN_ON(!sd || !sd->groups);
6169 if (cpu != first_cpu(sd->groups->cpumask))
6174 sd->groups->__cpu_power = 0;
6177 * For perf policy, if the groups in child domain share resources
6178 * (for example cores sharing some portions of the cache hierarchy
6179 * or SMT), then set this domain groups cpu_power such that each group
6180 * can handle only one task, when there are other idle groups in the
6181 * same sched domain.
6183 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6185 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6186 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6191 * add cpu_power of each child group to this groups cpu_power
6193 group = child->groups;
6195 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6196 group = group->next;
6197 } while (group != child->groups);
6201 * Build sched domains for a given set of cpus and attach the sched domains
6202 * to the individual cpus
6204 static int build_sched_domains(const cpumask_t *cpu_map)
6208 struct sched_group **sched_group_nodes = NULL;
6209 int sd_allnodes = 0;
6212 * Allocate the per-node list of sched groups
6214 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6216 if (!sched_group_nodes) {
6217 printk(KERN_WARNING "Can not alloc sched group node list\n");
6220 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6224 * Set up domains for cpus specified by the cpu_map.
6226 for_each_cpu_mask(i, *cpu_map) {
6227 struct sched_domain *sd = NULL, *p;
6228 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6230 cpus_and(nodemask, nodemask, *cpu_map);
6233 if (cpus_weight(*cpu_map) >
6234 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6235 sd = &per_cpu(allnodes_domains, i);
6236 *sd = SD_ALLNODES_INIT;
6237 sd->span = *cpu_map;
6238 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6244 sd = &per_cpu(node_domains, i);
6246 sd->span = sched_domain_node_span(cpu_to_node(i));
6250 cpus_and(sd->span, sd->span, *cpu_map);
6254 sd = &per_cpu(phys_domains, i);
6256 sd->span = nodemask;
6260 cpu_to_phys_group(i, cpu_map, &sd->groups);
6262 #ifdef CONFIG_SCHED_MC
6264 sd = &per_cpu(core_domains, i);
6266 sd->span = cpu_coregroup_map(i);
6267 cpus_and(sd->span, sd->span, *cpu_map);
6270 cpu_to_core_group(i, cpu_map, &sd->groups);
6273 #ifdef CONFIG_SCHED_SMT
6275 sd = &per_cpu(cpu_domains, i);
6276 *sd = SD_SIBLING_INIT;
6277 sd->span = per_cpu(cpu_sibling_map, i);
6278 cpus_and(sd->span, sd->span, *cpu_map);
6281 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6285 #ifdef CONFIG_SCHED_SMT
6286 /* Set up CPU (sibling) groups */
6287 for_each_cpu_mask(i, *cpu_map) {
6288 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6289 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6290 if (i != first_cpu(this_sibling_map))
6293 init_sched_build_groups(this_sibling_map, cpu_map,
6298 #ifdef CONFIG_SCHED_MC
6299 /* Set up multi-core groups */
6300 for_each_cpu_mask(i, *cpu_map) {
6301 cpumask_t this_core_map = cpu_coregroup_map(i);
6302 cpus_and(this_core_map, this_core_map, *cpu_map);
6303 if (i != first_cpu(this_core_map))
6305 init_sched_build_groups(this_core_map, cpu_map,
6306 &cpu_to_core_group);
6310 /* Set up physical groups */
6311 for (i = 0; i < MAX_NUMNODES; i++) {
6312 cpumask_t nodemask = node_to_cpumask(i);
6314 cpus_and(nodemask, nodemask, *cpu_map);
6315 if (cpus_empty(nodemask))
6318 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6322 /* Set up node groups */
6324 init_sched_build_groups(*cpu_map, cpu_map,
6325 &cpu_to_allnodes_group);
6327 for (i = 0; i < MAX_NUMNODES; i++) {
6328 /* Set up node groups */
6329 struct sched_group *sg, *prev;
6330 cpumask_t nodemask = node_to_cpumask(i);
6331 cpumask_t domainspan;
6332 cpumask_t covered = CPU_MASK_NONE;
6335 cpus_and(nodemask, nodemask, *cpu_map);
6336 if (cpus_empty(nodemask)) {
6337 sched_group_nodes[i] = NULL;
6341 domainspan = sched_domain_node_span(i);
6342 cpus_and(domainspan, domainspan, *cpu_map);
6344 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6346 printk(KERN_WARNING "Can not alloc domain group for "
6350 sched_group_nodes[i] = sg;
6351 for_each_cpu_mask(j, nodemask) {
6352 struct sched_domain *sd;
6354 sd = &per_cpu(node_domains, j);
6357 sg->__cpu_power = 0;
6358 sg->cpumask = nodemask;
6360 cpus_or(covered, covered, nodemask);
6363 for (j = 0; j < MAX_NUMNODES; j++) {
6364 cpumask_t tmp, notcovered;
6365 int n = (i + j) % MAX_NUMNODES;
6367 cpus_complement(notcovered, covered);
6368 cpus_and(tmp, notcovered, *cpu_map);
6369 cpus_and(tmp, tmp, domainspan);
6370 if (cpus_empty(tmp))
6373 nodemask = node_to_cpumask(n);
6374 cpus_and(tmp, tmp, nodemask);
6375 if (cpus_empty(tmp))
6378 sg = kmalloc_node(sizeof(struct sched_group),
6382 "Can not alloc domain group for node %d\n", j);
6385 sg->__cpu_power = 0;
6387 sg->next = prev->next;
6388 cpus_or(covered, covered, tmp);
6395 /* Calculate CPU power for physical packages and nodes */
6396 #ifdef CONFIG_SCHED_SMT
6397 for_each_cpu_mask(i, *cpu_map) {
6398 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6400 init_sched_groups_power(i, sd);
6403 #ifdef CONFIG_SCHED_MC
6404 for_each_cpu_mask(i, *cpu_map) {
6405 struct sched_domain *sd = &per_cpu(core_domains, i);
6407 init_sched_groups_power(i, sd);
6411 for_each_cpu_mask(i, *cpu_map) {
6412 struct sched_domain *sd = &per_cpu(phys_domains, i);
6414 init_sched_groups_power(i, sd);
6418 for (i = 0; i < MAX_NUMNODES; i++)
6419 init_numa_sched_groups_power(sched_group_nodes[i]);
6422 struct sched_group *sg;
6424 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6425 init_numa_sched_groups_power(sg);
6429 /* Attach the domains */
6430 for_each_cpu_mask(i, *cpu_map) {
6431 struct sched_domain *sd;
6432 #ifdef CONFIG_SCHED_SMT
6433 sd = &per_cpu(cpu_domains, i);
6434 #elif defined(CONFIG_SCHED_MC)
6435 sd = &per_cpu(core_domains, i);
6437 sd = &per_cpu(phys_domains, i);
6439 cpu_attach_domain(sd, i);
6446 free_sched_groups(cpu_map);
6451 static cpumask_t *doms_cur; /* current sched domains */
6452 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6455 * Special case: If a kmalloc of a doms_cur partition (array of
6456 * cpumask_t) fails, then fallback to a single sched domain,
6457 * as determined by the single cpumask_t fallback_doms.
6459 static cpumask_t fallback_doms;
6462 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6463 * For now this just excludes isolated cpus, but could be used to
6464 * exclude other special cases in the future.
6466 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6471 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6473 doms_cur = &fallback_doms;
6474 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6475 err = build_sched_domains(doms_cur);
6476 register_sched_domain_sysctl();
6481 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6483 free_sched_groups(cpu_map);
6487 * Detach sched domains from a group of cpus specified in cpu_map
6488 * These cpus will now be attached to the NULL domain
6490 static void detach_destroy_domains(const cpumask_t *cpu_map)
6494 unregister_sched_domain_sysctl();
6496 for_each_cpu_mask(i, *cpu_map)
6497 cpu_attach_domain(NULL, i);
6498 synchronize_sched();
6499 arch_destroy_sched_domains(cpu_map);
6503 * Partition sched domains as specified by the 'ndoms_new'
6504 * cpumasks in the array doms_new[] of cpumasks. This compares
6505 * doms_new[] to the current sched domain partitioning, doms_cur[].
6506 * It destroys each deleted domain and builds each new domain.
6508 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6509 * The masks don't intersect (don't overlap.) We should setup one
6510 * sched domain for each mask. CPUs not in any of the cpumasks will
6511 * not be load balanced. If the same cpumask appears both in the
6512 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6515 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6516 * ownership of it and will kfree it when done with it. If the caller
6517 * failed the kmalloc call, then it can pass in doms_new == NULL,
6518 * and partition_sched_domains() will fallback to the single partition
6521 * Call with hotplug lock held
6523 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6527 /* always unregister in case we don't destroy any domains */
6528 unregister_sched_domain_sysctl();
6530 if (doms_new == NULL) {
6532 doms_new = &fallback_doms;
6533 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6536 /* Destroy deleted domains */
6537 for (i = 0; i < ndoms_cur; i++) {
6538 for (j = 0; j < ndoms_new; j++) {
6539 if (cpus_equal(doms_cur[i], doms_new[j]))
6542 /* no match - a current sched domain not in new doms_new[] */
6543 detach_destroy_domains(doms_cur + i);
6548 /* Build new domains */
6549 for (i = 0; i < ndoms_new; i++) {
6550 for (j = 0; j < ndoms_cur; j++) {
6551 if (cpus_equal(doms_new[i], doms_cur[j]))
6554 /* no match - add a new doms_new */
6555 build_sched_domains(doms_new + i);
6560 /* Remember the new sched domains */
6561 if (doms_cur != &fallback_doms)
6563 doms_cur = doms_new;
6564 ndoms_cur = ndoms_new;
6566 register_sched_domain_sysctl();
6569 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6570 static int arch_reinit_sched_domains(void)
6574 mutex_lock(&sched_hotcpu_mutex);
6575 detach_destroy_domains(&cpu_online_map);
6576 err = arch_init_sched_domains(&cpu_online_map);
6577 mutex_unlock(&sched_hotcpu_mutex);
6582 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6586 if (buf[0] != '0' && buf[0] != '1')
6590 sched_smt_power_savings = (buf[0] == '1');
6592 sched_mc_power_savings = (buf[0] == '1');
6594 ret = arch_reinit_sched_domains();
6596 return ret ? ret : count;
6599 #ifdef CONFIG_SCHED_MC
6600 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6602 return sprintf(page, "%u\n", sched_mc_power_savings);
6604 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6605 const char *buf, size_t count)
6607 return sched_power_savings_store(buf, count, 0);
6609 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6610 sched_mc_power_savings_store);
6613 #ifdef CONFIG_SCHED_SMT
6614 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6616 return sprintf(page, "%u\n", sched_smt_power_savings);
6618 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6619 const char *buf, size_t count)
6621 return sched_power_savings_store(buf, count, 1);
6623 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6624 sched_smt_power_savings_store);
6627 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6631 #ifdef CONFIG_SCHED_SMT
6633 err = sysfs_create_file(&cls->kset.kobj,
6634 &attr_sched_smt_power_savings.attr);
6636 #ifdef CONFIG_SCHED_MC
6637 if (!err && mc_capable())
6638 err = sysfs_create_file(&cls->kset.kobj,
6639 &attr_sched_mc_power_savings.attr);
6646 * Force a reinitialization of the sched domains hierarchy. The domains
6647 * and groups cannot be updated in place without racing with the balancing
6648 * code, so we temporarily attach all running cpus to the NULL domain
6649 * which will prevent rebalancing while the sched domains are recalculated.
6651 static int update_sched_domains(struct notifier_block *nfb,
6652 unsigned long action, void *hcpu)
6655 case CPU_UP_PREPARE:
6656 case CPU_UP_PREPARE_FROZEN:
6657 case CPU_DOWN_PREPARE:
6658 case CPU_DOWN_PREPARE_FROZEN:
6659 detach_destroy_domains(&cpu_online_map);
6662 case CPU_UP_CANCELED:
6663 case CPU_UP_CANCELED_FROZEN:
6664 case CPU_DOWN_FAILED:
6665 case CPU_DOWN_FAILED_FROZEN:
6667 case CPU_ONLINE_FROZEN:
6669 case CPU_DEAD_FROZEN:
6671 * Fall through and re-initialise the domains.
6678 /* The hotplug lock is already held by cpu_up/cpu_down */
6679 arch_init_sched_domains(&cpu_online_map);
6684 void __init sched_init_smp(void)
6686 cpumask_t non_isolated_cpus;
6688 mutex_lock(&sched_hotcpu_mutex);
6689 arch_init_sched_domains(&cpu_online_map);
6690 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6691 if (cpus_empty(non_isolated_cpus))
6692 cpu_set(smp_processor_id(), non_isolated_cpus);
6693 mutex_unlock(&sched_hotcpu_mutex);
6694 /* XXX: Theoretical race here - CPU may be hotplugged now */
6695 hotcpu_notifier(update_sched_domains, 0);
6697 /* Move init over to a non-isolated CPU */
6698 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6700 sched_init_granularity();
6703 void __init sched_init_smp(void)
6705 sched_init_granularity();
6707 #endif /* CONFIG_SMP */
6709 int in_sched_functions(unsigned long addr)
6711 return in_lock_functions(addr) ||
6712 (addr >= (unsigned long)__sched_text_start
6713 && addr < (unsigned long)__sched_text_end);
6716 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6718 cfs_rq->tasks_timeline = RB_ROOT;
6719 #ifdef CONFIG_FAIR_GROUP_SCHED
6722 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6725 void __init sched_init(void)
6727 int highest_cpu = 0;
6730 for_each_possible_cpu(i) {
6731 struct rt_prio_array *array;
6735 spin_lock_init(&rq->lock);
6736 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6739 init_cfs_rq(&rq->cfs, rq);
6740 #ifdef CONFIG_FAIR_GROUP_SCHED
6741 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6743 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6744 struct sched_entity *se =
6745 &per_cpu(init_sched_entity, i);
6747 init_cfs_rq_p[i] = cfs_rq;
6748 init_cfs_rq(cfs_rq, rq);
6749 cfs_rq->tg = &init_task_group;
6750 list_add(&cfs_rq->leaf_cfs_rq_list,
6751 &rq->leaf_cfs_rq_list);
6753 init_sched_entity_p[i] = se;
6754 se->cfs_rq = &rq->cfs;
6756 se->load.weight = init_task_group_load;
6757 se->load.inv_weight =
6758 div64_64(1ULL<<32, init_task_group_load);
6761 init_task_group.shares = init_task_group_load;
6762 spin_lock_init(&init_task_group.lock);
6765 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6766 rq->cpu_load[j] = 0;
6769 rq->active_balance = 0;
6770 rq->next_balance = jiffies;
6773 rq->migration_thread = NULL;
6774 INIT_LIST_HEAD(&rq->migration_queue);
6776 atomic_set(&rq->nr_iowait, 0);
6778 array = &rq->rt.active;
6779 for (j = 0; j < MAX_RT_PRIO; j++) {
6780 INIT_LIST_HEAD(array->queue + j);
6781 __clear_bit(j, array->bitmap);
6784 /* delimiter for bitsearch: */
6785 __set_bit(MAX_RT_PRIO, array->bitmap);
6788 set_load_weight(&init_task);
6790 #ifdef CONFIG_PREEMPT_NOTIFIERS
6791 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6795 nr_cpu_ids = highest_cpu + 1;
6796 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6799 #ifdef CONFIG_RT_MUTEXES
6800 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6804 * The boot idle thread does lazy MMU switching as well:
6806 atomic_inc(&init_mm.mm_count);
6807 enter_lazy_tlb(&init_mm, current);
6810 * Make us the idle thread. Technically, schedule() should not be
6811 * called from this thread, however somewhere below it might be,
6812 * but because we are the idle thread, we just pick up running again
6813 * when this runqueue becomes "idle".
6815 init_idle(current, smp_processor_id());
6817 * During early bootup we pretend to be a normal task:
6819 current->sched_class = &fair_sched_class;
6822 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6823 void __might_sleep(char *file, int line)
6826 static unsigned long prev_jiffy; /* ratelimiting */
6828 if ((in_atomic() || irqs_disabled()) &&
6829 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6830 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6832 prev_jiffy = jiffies;
6833 printk(KERN_ERR "BUG: sleeping function called from invalid"
6834 " context at %s:%d\n", file, line);
6835 printk("in_atomic():%d, irqs_disabled():%d\n",
6836 in_atomic(), irqs_disabled());
6837 debug_show_held_locks(current);
6838 if (irqs_disabled())
6839 print_irqtrace_events(current);
6844 EXPORT_SYMBOL(__might_sleep);
6847 #ifdef CONFIG_MAGIC_SYSRQ
6848 static void normalize_task(struct rq *rq, struct task_struct *p)
6851 update_rq_clock(rq);
6852 on_rq = p->se.on_rq;
6854 deactivate_task(rq, p, 0);
6855 __setscheduler(rq, p, SCHED_NORMAL, 0);
6857 activate_task(rq, p, 0);
6858 resched_task(rq->curr);
6862 void normalize_rt_tasks(void)
6864 struct task_struct *g, *p;
6865 unsigned long flags;
6868 read_lock_irq(&tasklist_lock);
6869 do_each_thread(g, p) {
6871 * Only normalize user tasks:
6876 p->se.exec_start = 0;
6877 #ifdef CONFIG_SCHEDSTATS
6878 p->se.wait_start = 0;
6879 p->se.sleep_start = 0;
6880 p->se.block_start = 0;
6882 task_rq(p)->clock = 0;
6886 * Renice negative nice level userspace
6889 if (TASK_NICE(p) < 0 && p->mm)
6890 set_user_nice(p, 0);
6894 spin_lock_irqsave(&p->pi_lock, flags);
6895 rq = __task_rq_lock(p);
6897 normalize_task(rq, p);
6899 __task_rq_unlock(rq);
6900 spin_unlock_irqrestore(&p->pi_lock, flags);
6901 } while_each_thread(g, p);
6903 read_unlock_irq(&tasklist_lock);
6906 #endif /* CONFIG_MAGIC_SYSRQ */
6910 * These functions are only useful for the IA64 MCA handling.
6912 * They can only be called when the whole system has been
6913 * stopped - every CPU needs to be quiescent, and no scheduling
6914 * activity can take place. Using them for anything else would
6915 * be a serious bug, and as a result, they aren't even visible
6916 * under any other configuration.
6920 * curr_task - return the current task for a given cpu.
6921 * @cpu: the processor in question.
6923 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6925 struct task_struct *curr_task(int cpu)
6927 return cpu_curr(cpu);
6931 * set_curr_task - set the current task for a given cpu.
6932 * @cpu: the processor in question.
6933 * @p: the task pointer to set.
6935 * Description: This function must only be used when non-maskable interrupts
6936 * are serviced on a separate stack. It allows the architecture to switch the
6937 * notion of the current task on a cpu in a non-blocking manner. This function
6938 * must be called with all CPU's synchronized, and interrupts disabled, the
6939 * and caller must save the original value of the current task (see
6940 * curr_task() above) and restore that value before reenabling interrupts and
6941 * re-starting the system.
6943 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6945 void set_curr_task(int cpu, struct task_struct *p)
6952 #ifdef CONFIG_FAIR_GROUP_SCHED
6954 /* allocate runqueue etc for a new task group */
6955 struct task_group *sched_create_group(void)
6957 struct task_group *tg;
6958 struct cfs_rq *cfs_rq;
6959 struct sched_entity *se;
6963 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6965 return ERR_PTR(-ENOMEM);
6967 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6970 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6974 for_each_possible_cpu(i) {
6977 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6982 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6987 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6988 memset(se, 0, sizeof(struct sched_entity));
6990 tg->cfs_rq[i] = cfs_rq;
6991 init_cfs_rq(cfs_rq, rq);
6995 se->cfs_rq = &rq->cfs;
6997 se->load.weight = NICE_0_LOAD;
6998 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7002 for_each_possible_cpu(i) {
7004 cfs_rq = tg->cfs_rq[i];
7005 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7008 tg->shares = NICE_0_LOAD;
7009 spin_lock_init(&tg->lock);
7014 for_each_possible_cpu(i) {
7016 kfree(tg->cfs_rq[i]);
7024 return ERR_PTR(-ENOMEM);
7027 /* rcu callback to free various structures associated with a task group */
7028 static void free_sched_group(struct rcu_head *rhp)
7030 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7031 struct cfs_rq *cfs_rq;
7032 struct sched_entity *se;
7035 /* now it should be safe to free those cfs_rqs */
7036 for_each_possible_cpu(i) {
7037 cfs_rq = tg->cfs_rq[i];
7049 /* Destroy runqueue etc associated with a task group */
7050 void sched_destroy_group(struct task_group *tg)
7052 struct cfs_rq *cfs_rq = NULL;
7055 for_each_possible_cpu(i) {
7056 cfs_rq = tg->cfs_rq[i];
7057 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7062 /* wait for possible concurrent references to cfs_rqs complete */
7063 call_rcu(&tg->rcu, free_sched_group);
7066 /* change task's runqueue when it moves between groups.
7067 * The caller of this function should have put the task in its new group
7068 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7069 * reflect its new group.
7071 void sched_move_task(struct task_struct *tsk)
7074 unsigned long flags;
7077 rq = task_rq_lock(tsk, &flags);
7079 if (tsk->sched_class != &fair_sched_class) {
7080 set_task_cfs_rq(tsk, task_cpu(tsk));
7084 update_rq_clock(rq);
7086 running = task_running(rq, tsk);
7087 on_rq = tsk->se.on_rq;
7090 dequeue_task(rq, tsk, 0);
7091 if (unlikely(running))
7092 tsk->sched_class->put_prev_task(rq, tsk);
7095 set_task_cfs_rq(tsk, task_cpu(tsk));
7098 if (unlikely(running))
7099 tsk->sched_class->set_curr_task(rq);
7100 enqueue_task(rq, tsk, 0);
7104 task_rq_unlock(rq, &flags);
7107 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7109 struct cfs_rq *cfs_rq = se->cfs_rq;
7110 struct rq *rq = cfs_rq->rq;
7113 spin_lock_irq(&rq->lock);
7117 dequeue_entity(cfs_rq, se, 0);
7119 se->load.weight = shares;
7120 se->load.inv_weight = div64_64((1ULL<<32), shares);
7123 enqueue_entity(cfs_rq, se, 0);
7125 spin_unlock_irq(&rq->lock);
7128 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7132 spin_lock(&tg->lock);
7133 if (tg->shares == shares)
7136 tg->shares = shares;
7137 for_each_possible_cpu(i)
7138 set_se_shares(tg->se[i], shares);
7141 spin_unlock(&tg->lock);
7145 unsigned long sched_group_shares(struct task_group *tg)
7150 #endif /* CONFIG_FAIR_GROUP_SCHED */
7152 #ifdef CONFIG_FAIR_CGROUP_SCHED
7154 /* return corresponding task_group object of a cgroup */
7155 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7157 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7158 struct task_group, css);
7161 static struct cgroup_subsys_state *
7162 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7164 struct task_group *tg;
7166 if (!cgrp->parent) {
7167 /* This is early initialization for the top cgroup */
7168 init_task_group.css.cgroup = cgrp;
7169 return &init_task_group.css;
7172 /* we support only 1-level deep hierarchical scheduler atm */
7173 if (cgrp->parent->parent)
7174 return ERR_PTR(-EINVAL);
7176 tg = sched_create_group();
7178 return ERR_PTR(-ENOMEM);
7180 /* Bind the cgroup to task_group object we just created */
7181 tg->css.cgroup = cgrp;
7186 static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7187 struct cgroup *cgrp)
7189 struct task_group *tg = cgroup_tg(cgrp);
7191 sched_destroy_group(tg);
7194 static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7195 struct cgroup *cgrp, struct task_struct *tsk)
7197 /* We don't support RT-tasks being in separate groups */
7198 if (tsk->sched_class != &fair_sched_class)
7205 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7206 struct cgroup *old_cont, struct task_struct *tsk)
7208 sched_move_task(tsk);
7211 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7214 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7217 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7219 struct task_group *tg = cgroup_tg(cgrp);
7221 return (u64) tg->shares;
7224 static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
7226 struct task_group *tg = cgroup_tg(cgrp);
7227 unsigned long flags;
7231 for_each_possible_cpu(i) {
7233 * Lock to prevent races with updating 64-bit counters
7236 spin_lock_irqsave(&cpu_rq(i)->lock, flags);
7237 res += tg->se[i]->sum_exec_runtime;
7238 spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
7240 /* Convert from ns to ms */
7241 do_div(res, NSEC_PER_MSEC);
7246 static struct cftype cpu_files[] = {
7249 .read_uint = cpu_shares_read_uint,
7250 .write_uint = cpu_shares_write_uint,
7254 .read_uint = cpu_usage_read,
7258 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7260 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7263 struct cgroup_subsys cpu_cgroup_subsys = {
7265 .create = cpu_cgroup_create,
7266 .destroy = cpu_cgroup_destroy,
7267 .can_attach = cpu_cgroup_can_attach,
7268 .attach = cpu_cgroup_attach,
7269 .populate = cpu_cgroup_populate,
7270 .subsys_id = cpu_cgroup_subsys_id,
7274 #endif /* CONFIG_FAIR_CGROUP_SCHED */