e1000e triggers sparc32 gcc bug
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
78
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
84
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
88
89 #define DRV_VERSION "2.0.26.22"
90
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
94
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
97
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
99 {
100         int ret;
101
102         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105         return ret;
106 }
107
108 /*
109  * Cards with following subsystem_id have a link state indication
110  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111  * macro below identifies these cards given the subsystem_id.
112  */
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114         (dev_type == XFRAME_I_DEVICE) ?                 \
115                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
117
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
122 {
123         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"}
230 };
231
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233         {"rmac_ttl_1519_4095_frms"},
234         {"rmac_ttl_4096_8191_frms"},
235         {"rmac_ttl_8192_max_frms"},
236         {"rmac_ttl_gt_max_frms"},
237         {"rmac_osized_alt_frms"},
238         {"rmac_jabber_alt_frms"},
239         {"rmac_gt_max_alt_frms"},
240         {"rmac_vlan_frms"},
241         {"rmac_len_discard"},
242         {"rmac_fcs_discard"},
243         {"rmac_pf_discard"},
244         {"rmac_da_discard"},
245         {"rmac_red_discard"},
246         {"rmac_rts_discard"},
247         {"rmac_ingm_full_discard"},
248         {"link_fault_cnt"}
249 };
250
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252         {"\n DRIVER STATISTICS"},
253         {"single_bit_ecc_errs"},
254         {"double_bit_ecc_errs"},
255         {"parity_err_cnt"},
256         {"serious_err_cnt"},
257         {"soft_reset_cnt"},
258         {"fifo_full_cnt"},
259         {"ring_0_full_cnt"},
260         {"ring_1_full_cnt"},
261         {"ring_2_full_cnt"},
262         {"ring_3_full_cnt"},
263         {"ring_4_full_cnt"},
264         {"ring_5_full_cnt"},
265         {"ring_6_full_cnt"},
266         {"ring_7_full_cnt"},
267         {"alarm_transceiver_temp_high"},
268         {"alarm_transceiver_temp_low"},
269         {"alarm_laser_bias_current_high"},
270         {"alarm_laser_bias_current_low"},
271         {"alarm_laser_output_power_high"},
272         {"alarm_laser_output_power_low"},
273         {"warn_transceiver_temp_high"},
274         {"warn_transceiver_temp_low"},
275         {"warn_laser_bias_current_high"},
276         {"warn_laser_bias_current_low"},
277         {"warn_laser_output_power_high"},
278         {"warn_laser_output_power_low"},
279         {"lro_aggregated_pkts"},
280         {"lro_flush_both_count"},
281         {"lro_out_of_sequence_pkts"},
282         {"lro_flush_due_to_max_pkts"},
283         {"lro_avg_aggr_pkts"},
284         {"mem_alloc_fail_cnt"},
285         {"pci_map_fail_cnt"},
286         {"watchdog_timer_cnt"},
287         {"mem_allocated"},
288         {"mem_freed"},
289         {"link_up_cnt"},
290         {"link_down_cnt"},
291         {"link_up_time"},
292         {"link_down_time"},
293         {"tx_tcode_buf_abort_cnt"},
294         {"tx_tcode_desc_abort_cnt"},
295         {"tx_tcode_parity_err_cnt"},
296         {"tx_tcode_link_loss_cnt"},
297         {"tx_tcode_list_proc_err_cnt"},
298         {"rx_tcode_parity_err_cnt"},
299         {"rx_tcode_abort_cnt"},
300         {"rx_tcode_parity_abort_cnt"},
301         {"rx_tcode_rda_fail_cnt"},
302         {"rx_tcode_unkn_prot_cnt"},
303         {"rx_tcode_fcs_err_cnt"},
304         {"rx_tcode_buf_size_err_cnt"},
305         {"rx_tcode_rxd_corrupt_cnt"},
306         {"rx_tcode_unkn_err_cnt"},
307         {"tda_err_cnt"},
308         {"pfc_err_cnt"},
309         {"pcc_err_cnt"},
310         {"tti_err_cnt"},
311         {"tpa_err_cnt"},
312         {"sm_err_cnt"},
313         {"lso_err_cnt"},
314         {"mac_tmac_err_cnt"},
315         {"mac_rmac_err_cnt"},
316         {"xgxs_txgxs_err_cnt"},
317         {"xgxs_rxgxs_err_cnt"},
318         {"rc_err_cnt"},
319         {"prc_pcix_err_cnt"},
320         {"rpa_err_cnt"},
321         {"rda_err_cnt"},
322         {"rti_err_cnt"},
323         {"mc_err_cnt"}
324 };
325
326 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
329
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
335
336 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
338
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
340                         init_timer(&timer);                     \
341                         timer.function = handle;                \
342                         timer.data = (unsigned long) arg;       \
343                         mod_timer(&timer, (jiffies + exp))      \
344
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347 {
348         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354 }
355 /* Add the vlan */
356 static void s2io_vlan_rx_register(struct net_device *dev,
357                                         struct vlan_group *grp)
358 {
359         int i;
360         struct s2io_nic *nic = dev->priv;
361         unsigned long flags[MAX_TX_FIFOS];
362         struct mac_info *mac_control = &nic->mac_control;
363         struct config_param *config = &nic->config;
364
365         for (i = 0; i < config->tx_fifo_num; i++)
366                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
367
368         nic->vlgrp = grp;
369         for (i = config->tx_fifo_num - 1; i >= 0; i--)
370                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371                                 flags[i]);
372 }
373
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag;
376
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
379 {
380         int i;
381         struct s2io_nic *nic = dev->priv;
382         unsigned long flags[MAX_TX_FIFOS];
383         struct mac_info *mac_control = &nic->mac_control;
384         struct config_param *config = &nic->config;
385
386         for (i = 0; i < config->tx_fifo_num; i++)
387                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
388
389         if (nic->vlgrp)
390                 vlan_group_set_device(nic->vlgrp, vid, NULL);
391
392         for (i = config->tx_fifo_num - 1; i >= 0; i--)
393                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
394                         flags[i]);
395 }
396
397 /*
398  * Constants to be programmed into the Xena's registers, to configure
399  * the XAUI.
400  */
401
402 #define END_SIGN        0x0
403 static const u64 herc_act_dtx_cfg[] = {
404         /* Set address */
405         0x8000051536750000ULL, 0x80000515367500E0ULL,
406         /* Write data */
407         0x8000051536750004ULL, 0x80000515367500E4ULL,
408         /* Set address */
409         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
410         /* Write data */
411         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
412         /* Set address */
413         0x801205150D440000ULL, 0x801205150D4400E0ULL,
414         /* Write data */
415         0x801205150D440004ULL, 0x801205150D4400E4ULL,
416         /* Set address */
417         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
418         /* Write data */
419         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
420         /* Done */
421         END_SIGN
422 };
423
424 static const u64 xena_dtx_cfg[] = {
425         /* Set address */
426         0x8000051500000000ULL, 0x80000515000000E0ULL,
427         /* Write data */
428         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
429         /* Set address */
430         0x8001051500000000ULL, 0x80010515000000E0ULL,
431         /* Write data */
432         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
433         /* Set address */
434         0x8002051500000000ULL, 0x80020515000000E0ULL,
435         /* Write data */
436         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
437         END_SIGN
438 };
439
440 /*
441  * Constants for Fixing the MacAddress problem seen mostly on
442  * Alpha machines.
443  */
444 static const u64 fix_mac[] = {
445         0x0060000000000000ULL, 0x0060600000000000ULL,
446         0x0040600000000000ULL, 0x0000600000000000ULL,
447         0x0020600000000000ULL, 0x0060600000000000ULL,
448         0x0020600000000000ULL, 0x0060600000000000ULL,
449         0x0020600000000000ULL, 0x0060600000000000ULL,
450         0x0020600000000000ULL, 0x0060600000000000ULL,
451         0x0020600000000000ULL, 0x0060600000000000ULL,
452         0x0020600000000000ULL, 0x0060600000000000ULL,
453         0x0020600000000000ULL, 0x0060600000000000ULL,
454         0x0020600000000000ULL, 0x0060600000000000ULL,
455         0x0020600000000000ULL, 0x0060600000000000ULL,
456         0x0020600000000000ULL, 0x0060600000000000ULL,
457         0x0020600000000000ULL, 0x0000600000000000ULL,
458         0x0040600000000000ULL, 0x0060600000000000ULL,
459         END_SIGN
460 };
461
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION);
464
465
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
468 S2IO_PARM_INT(rx_ring_num, 1);
469 S2IO_PARM_INT(multiq, 0);
470 S2IO_PARM_INT(rx_ring_mode, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472 S2IO_PARM_INT(rmac_pause_time, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475 S2IO_PARM_INT(shared_splits, 0);
476 S2IO_PARM_INT(tmac_util_period, 5);
477 S2IO_PARM_INT(rmac_util_period, 5);
478 S2IO_PARM_INT(l3l4hdr_size, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable;
487 module_param_named(lro, lro_enable, uint, 0);
488
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490  * aggregation happens until we hit max IP pkt size(64K)
491  */
492 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts, 0);
494
495 S2IO_PARM_INT(napi, 1);
496 S2IO_PARM_INT(ufo, 0);
497 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
498
499 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503 static unsigned int rts_frm_len[MAX_RX_RINGS] =
504     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
505
506 module_param_array(tx_fifo_len, uint, NULL, 0);
507 module_param_array(rx_ring_sz, uint, NULL, 0);
508 module_param_array(rts_frm_len, uint, NULL, 0);
509
510 /*
511  * S2IO device table.
512  * This table lists all the devices that this driver supports.
513  */
514 static struct pci_device_id s2io_tbl[] __devinitdata = {
515         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516          PCI_ANY_ID, PCI_ANY_ID},
517         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518          PCI_ANY_ID, PCI_ANY_ID},
519         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
520          PCI_ANY_ID, PCI_ANY_ID},
521         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522          PCI_ANY_ID, PCI_ANY_ID},
523         {0,}
524 };
525
526 MODULE_DEVICE_TABLE(pci, s2io_tbl);
527
528 static struct pci_error_handlers s2io_err_handler = {
529         .error_detected = s2io_io_error_detected,
530         .slot_reset = s2io_io_slot_reset,
531         .resume = s2io_io_resume,
532 };
533
534 static struct pci_driver s2io_driver = {
535       .name = "S2IO",
536       .id_table = s2io_tbl,
537       .probe = s2io_init_nic,
538       .remove = __devexit_p(s2io_rem_nic),
539       .err_handler = &s2io_err_handler,
540 };
541
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
544
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
547 {
548         int i;
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550         if (sp->config.multiq) {
551                 for (i = 0; i < sp->config.tx_fifo_num; i++)
552                         netif_stop_subqueue(sp->dev, i);
553         } else
554 #endif
555         {
556                 for (i = 0; i < sp->config.tx_fifo_num; i++)
557                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
558                 netif_stop_queue(sp->dev);
559         }
560 }
561
562 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
563 {
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565         if (sp->config.multiq)
566                 netif_stop_subqueue(sp->dev, fifo_no);
567         else
568 #endif
569         {
570                 sp->mac_control.fifos[fifo_no].queue_state =
571                         FIFO_QUEUE_STOP;
572                 netif_stop_queue(sp->dev);
573         }
574 }
575
576 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
577 {
578         int i;
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580         if (sp->config.multiq) {
581                 for (i = 0; i < sp->config.tx_fifo_num; i++)
582                         netif_start_subqueue(sp->dev, i);
583         } else
584 #endif
585         {
586                 for (i = 0; i < sp->config.tx_fifo_num; i++)
587                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
588                 netif_start_queue(sp->dev);
589         }
590 }
591
592 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
593 {
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595         if (sp->config.multiq)
596                 netif_start_subqueue(sp->dev, fifo_no);
597         else
598 #endif
599         {
600                 sp->mac_control.fifos[fifo_no].queue_state =
601                         FIFO_QUEUE_START;
602                 netif_start_queue(sp->dev);
603         }
604 }
605
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
607 {
608         int i;
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610         if (sp->config.multiq) {
611                 for (i = 0; i < sp->config.tx_fifo_num; i++)
612                         netif_wake_subqueue(sp->dev, i);
613         } else
614 #endif
615         {
616                 for (i = 0; i < sp->config.tx_fifo_num; i++)
617                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
618                 netif_wake_queue(sp->dev);
619         }
620 }
621
622 static inline void s2io_wake_tx_queue(
623         struct fifo_info *fifo, int cnt, u8 multiq)
624 {
625
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
627         if (multiq) {
628                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
629                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
630         } else
631 #endif
632         if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
633                 if (netif_queue_stopped(fifo->dev)) {
634                         fifo->queue_state = FIFO_QUEUE_START;
635                         netif_wake_queue(fifo->dev);
636                 }
637         }
638 }
639
640 /**
641  * init_shared_mem - Allocation and Initialization of Memory
642  * @nic: Device private variable.
643  * Description: The function allocates all the memory areas shared
644  * between the NIC and the driver. This includes Tx descriptors,
645  * Rx descriptors and the statistics block.
646  */
647
648 static int init_shared_mem(struct s2io_nic *nic)
649 {
650         u32 size;
651         void *tmp_v_addr, *tmp_v_addr_next;
652         dma_addr_t tmp_p_addr, tmp_p_addr_next;
653         struct RxD_block *pre_rxd_blk = NULL;
654         int i, j, blk_cnt;
655         int lst_size, lst_per_page;
656         struct net_device *dev = nic->dev;
657         unsigned long tmp;
658         struct buffAdd *ba;
659
660         struct mac_info *mac_control;
661         struct config_param *config;
662         unsigned long long mem_allocated = 0;
663
664         mac_control = &nic->mac_control;
665         config = &nic->config;
666
667
668         /* Allocation and initialization of TXDLs in FIOFs */
669         size = 0;
670         for (i = 0; i < config->tx_fifo_num; i++) {
671                 size += config->tx_cfg[i].fifo_len;
672         }
673         if (size > MAX_AVAILABLE_TXDS) {
674                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
675                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
676                 return -EINVAL;
677         }
678
679         size = 0;
680         for (i = 0; i < config->tx_fifo_num; i++) {
681                 size = config->tx_cfg[i].fifo_len;
682                 /*
683                  * Legal values are from 2 to 8192
684                  */
685                 if (size < 2) {
686                         DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
687                         DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
688                         DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
689                                 "are 2 to 8192\n");
690                         return -EINVAL;
691                 }
692         }
693
694         lst_size = (sizeof(struct TxD) * config->max_txds);
695         lst_per_page = PAGE_SIZE / lst_size;
696
697         for (i = 0; i < config->tx_fifo_num; i++) {
698                 int fifo_len = config->tx_cfg[i].fifo_len;
699                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
700                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
701                                                           GFP_KERNEL);
702                 if (!mac_control->fifos[i].list_info) {
703                         DBG_PRINT(INFO_DBG,
704                                   "Malloc failed for list_info\n");
705                         return -ENOMEM;
706                 }
707                 mem_allocated += list_holder_size;
708         }
709         for (i = 0; i < config->tx_fifo_num; i++) {
710                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
711                                                 lst_per_page);
712                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
713                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
714                     config->tx_cfg[i].fifo_len - 1;
715                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
716                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
717                     config->tx_cfg[i].fifo_len - 1;
718                 mac_control->fifos[i].fifo_no = i;
719                 mac_control->fifos[i].nic = nic;
720                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
721                 mac_control->fifos[i].dev = dev;
722
723                 for (j = 0; j < page_num; j++) {
724                         int k = 0;
725                         dma_addr_t tmp_p;
726                         void *tmp_v;
727                         tmp_v = pci_alloc_consistent(nic->pdev,
728                                                      PAGE_SIZE, &tmp_p);
729                         if (!tmp_v) {
730                                 DBG_PRINT(INFO_DBG,
731                                           "pci_alloc_consistent ");
732                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
733                                 return -ENOMEM;
734                         }
735                         /* If we got a zero DMA address(can happen on
736                          * certain platforms like PPC), reallocate.
737                          * Store virtual address of page we don't want,
738                          * to be freed later.
739                          */
740                         if (!tmp_p) {
741                                 mac_control->zerodma_virt_addr = tmp_v;
742                                 DBG_PRINT(INIT_DBG,
743                                 "%s: Zero DMA address for TxDL. ", dev->name);
744                                 DBG_PRINT(INIT_DBG,
745                                 "Virtual address %p\n", tmp_v);
746                                 tmp_v = pci_alloc_consistent(nic->pdev,
747                                                      PAGE_SIZE, &tmp_p);
748                                 if (!tmp_v) {
749                                         DBG_PRINT(INFO_DBG,
750                                           "pci_alloc_consistent ");
751                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
752                                         return -ENOMEM;
753                                 }
754                                 mem_allocated += PAGE_SIZE;
755                         }
756                         while (k < lst_per_page) {
757                                 int l = (j * lst_per_page) + k;
758                                 if (l == config->tx_cfg[i].fifo_len)
759                                         break;
760                                 mac_control->fifos[i].list_info[l].list_virt_addr =
761                                     tmp_v + (k * lst_size);
762                                 mac_control->fifos[i].list_info[l].list_phy_addr =
763                                     tmp_p + (k * lst_size);
764                                 k++;
765                         }
766                 }
767         }
768
769         for (i = 0; i < config->tx_fifo_num; i++) {
770                 size = config->tx_cfg[i].fifo_len;
771                 mac_control->fifos[i].ufo_in_band_v
772                         = kcalloc(size, sizeof(u64), GFP_KERNEL);
773                 if (!mac_control->fifos[i].ufo_in_band_v)
774                         return -ENOMEM;
775                 mem_allocated += (size * sizeof(u64));
776         }
777
778         /* Allocation and initialization of RXDs in Rings */
779         size = 0;
780         for (i = 0; i < config->rx_ring_num; i++) {
781                 if (config->rx_cfg[i].num_rxd %
782                     (rxd_count[nic->rxd_mode] + 1)) {
783                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
784                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
785                                   i);
786                         DBG_PRINT(ERR_DBG, "RxDs per Block");
787                         return FAILURE;
788                 }
789                 size += config->rx_cfg[i].num_rxd;
790                 mac_control->rings[i].block_count =
791                         config->rx_cfg[i].num_rxd /
792                         (rxd_count[nic->rxd_mode] + 1 );
793                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
794                         mac_control->rings[i].block_count;
795         }
796         if (nic->rxd_mode == RXD_MODE_1)
797                 size = (size * (sizeof(struct RxD1)));
798         else
799                 size = (size * (sizeof(struct RxD3)));
800
801         for (i = 0; i < config->rx_ring_num; i++) {
802                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
803                 mac_control->rings[i].rx_curr_get_info.offset = 0;
804                 mac_control->rings[i].rx_curr_get_info.ring_len =
805                     config->rx_cfg[i].num_rxd - 1;
806                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
807                 mac_control->rings[i].rx_curr_put_info.offset = 0;
808                 mac_control->rings[i].rx_curr_put_info.ring_len =
809                     config->rx_cfg[i].num_rxd - 1;
810                 mac_control->rings[i].nic = nic;
811                 mac_control->rings[i].ring_no = i;
812
813                 blk_cnt = config->rx_cfg[i].num_rxd /
814                                 (rxd_count[nic->rxd_mode] + 1);
815                 /*  Allocating all the Rx blocks */
816                 for (j = 0; j < blk_cnt; j++) {
817                         struct rx_block_info *rx_blocks;
818                         int l;
819
820                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
821                         size = SIZE_OF_BLOCK; //size is always page size
822                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
823                                                           &tmp_p_addr);
824                         if (tmp_v_addr == NULL) {
825                                 /*
826                                  * In case of failure, free_shared_mem()
827                                  * is called, which should free any
828                                  * memory that was alloced till the
829                                  * failure happened.
830                                  */
831                                 rx_blocks->block_virt_addr = tmp_v_addr;
832                                 return -ENOMEM;
833                         }
834                         mem_allocated += size;
835                         memset(tmp_v_addr, 0, size);
836                         rx_blocks->block_virt_addr = tmp_v_addr;
837                         rx_blocks->block_dma_addr = tmp_p_addr;
838                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
839                                                   rxd_count[nic->rxd_mode],
840                                                   GFP_KERNEL);
841                         if (!rx_blocks->rxds)
842                                 return -ENOMEM;
843                         mem_allocated +=
844                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
845                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
846                                 rx_blocks->rxds[l].virt_addr =
847                                         rx_blocks->block_virt_addr +
848                                         (rxd_size[nic->rxd_mode] * l);
849                                 rx_blocks->rxds[l].dma_addr =
850                                         rx_blocks->block_dma_addr +
851                                         (rxd_size[nic->rxd_mode] * l);
852                         }
853                 }
854                 /* Interlinking all Rx Blocks */
855                 for (j = 0; j < blk_cnt; j++) {
856                         tmp_v_addr =
857                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
858                         tmp_v_addr_next =
859                                 mac_control->rings[i].rx_blocks[(j + 1) %
860                                               blk_cnt].block_virt_addr;
861                         tmp_p_addr =
862                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
863                         tmp_p_addr_next =
864                                 mac_control->rings[i].rx_blocks[(j + 1) %
865                                               blk_cnt].block_dma_addr;
866
867                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
868                         pre_rxd_blk->reserved_2_pNext_RxD_block =
869                             (unsigned long) tmp_v_addr_next;
870                         pre_rxd_blk->pNext_RxD_Blk_physical =
871                             (u64) tmp_p_addr_next;
872                 }
873         }
874         if (nic->rxd_mode == RXD_MODE_3B) {
875                 /*
876                  * Allocation of Storages for buffer addresses in 2BUFF mode
877                  * and the buffers as well.
878                  */
879                 for (i = 0; i < config->rx_ring_num; i++) {
880                         blk_cnt = config->rx_cfg[i].num_rxd /
881                            (rxd_count[nic->rxd_mode]+ 1);
882                         mac_control->rings[i].ba =
883                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
884                                      GFP_KERNEL);
885                         if (!mac_control->rings[i].ba)
886                                 return -ENOMEM;
887                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
888                         for (j = 0; j < blk_cnt; j++) {
889                                 int k = 0;
890                                 mac_control->rings[i].ba[j] =
891                                         kmalloc((sizeof(struct buffAdd) *
892                                                 (rxd_count[nic->rxd_mode] + 1)),
893                                                 GFP_KERNEL);
894                                 if (!mac_control->rings[i].ba[j])
895                                         return -ENOMEM;
896                                 mem_allocated += (sizeof(struct buffAdd) *  \
897                                         (rxd_count[nic->rxd_mode] + 1));
898                                 while (k != rxd_count[nic->rxd_mode]) {
899                                         ba = &mac_control->rings[i].ba[j][k];
900
901                                         ba->ba_0_org = (void *) kmalloc
902                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
903                                         if (!ba->ba_0_org)
904                                                 return -ENOMEM;
905                                         mem_allocated +=
906                                                 (BUF0_LEN + ALIGN_SIZE);
907                                         tmp = (unsigned long)ba->ba_0_org;
908                                         tmp += ALIGN_SIZE;
909                                         tmp &= ~((unsigned long) ALIGN_SIZE);
910                                         ba->ba_0 = (void *) tmp;
911
912                                         ba->ba_1_org = (void *) kmalloc
913                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
914                                         if (!ba->ba_1_org)
915                                                 return -ENOMEM;
916                                         mem_allocated
917                                                 += (BUF1_LEN + ALIGN_SIZE);
918                                         tmp = (unsigned long) ba->ba_1_org;
919                                         tmp += ALIGN_SIZE;
920                                         tmp &= ~((unsigned long) ALIGN_SIZE);
921                                         ba->ba_1 = (void *) tmp;
922                                         k++;
923                                 }
924                         }
925                 }
926         }
927
928         /* Allocation and initialization of Statistics block */
929         size = sizeof(struct stat_block);
930         mac_control->stats_mem = pci_alloc_consistent
931             (nic->pdev, size, &mac_control->stats_mem_phy);
932
933         if (!mac_control->stats_mem) {
934                 /*
935                  * In case of failure, free_shared_mem() is called, which
936                  * should free any memory that was alloced till the
937                  * failure happened.
938                  */
939                 return -ENOMEM;
940         }
941         mem_allocated += size;
942         mac_control->stats_mem_sz = size;
943
944         tmp_v_addr = mac_control->stats_mem;
945         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
946         memset(tmp_v_addr, 0, size);
947         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
948                   (unsigned long long) tmp_p_addr);
949         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
950         return SUCCESS;
951 }
952
953 /**
954  * free_shared_mem - Free the allocated Memory
955  * @nic:  Device private variable.
956  * Description: This function is to free all memory locations allocated by
957  * the init_shared_mem() function and return it to the kernel.
958  */
959
960 static void free_shared_mem(struct s2io_nic *nic)
961 {
962         int i, j, blk_cnt, size;
963         void *tmp_v_addr;
964         dma_addr_t tmp_p_addr;
965         struct mac_info *mac_control;
966         struct config_param *config;
967         int lst_size, lst_per_page;
968         struct net_device *dev;
969         int page_num = 0;
970
971         if (!nic)
972                 return;
973
974         dev = nic->dev;
975
976         mac_control = &nic->mac_control;
977         config = &nic->config;
978
979         lst_size = (sizeof(struct TxD) * config->max_txds);
980         lst_per_page = PAGE_SIZE / lst_size;
981
982         for (i = 0; i < config->tx_fifo_num; i++) {
983                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
984                                                         lst_per_page);
985                 for (j = 0; j < page_num; j++) {
986                         int mem_blks = (j * lst_per_page);
987                         if (!mac_control->fifos[i].list_info)
988                                 return;
989                         if (!mac_control->fifos[i].list_info[mem_blks].
990                                  list_virt_addr)
991                                 break;
992                         pci_free_consistent(nic->pdev, PAGE_SIZE,
993                                             mac_control->fifos[i].
994                                             list_info[mem_blks].
995                                             list_virt_addr,
996                                             mac_control->fifos[i].
997                                             list_info[mem_blks].
998                                             list_phy_addr);
999                         nic->mac_control.stats_info->sw_stat.mem_freed
1000                                                 += PAGE_SIZE;
1001                 }
1002                 /* If we got a zero DMA address during allocation,
1003                  * free the page now
1004                  */
1005                 if (mac_control->zerodma_virt_addr) {
1006                         pci_free_consistent(nic->pdev, PAGE_SIZE,
1007                                             mac_control->zerodma_virt_addr,
1008                                             (dma_addr_t)0);
1009                         DBG_PRINT(INIT_DBG,
1010                                 "%s: Freeing TxDL with zero DMA addr. ",
1011                                 dev->name);
1012                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1013                                 mac_control->zerodma_virt_addr);
1014                         nic->mac_control.stats_info->sw_stat.mem_freed
1015                                                 += PAGE_SIZE;
1016                 }
1017                 kfree(mac_control->fifos[i].list_info);
1018                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1019                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1020         }
1021
1022         size = SIZE_OF_BLOCK;
1023         for (i = 0; i < config->rx_ring_num; i++) {
1024                 blk_cnt = mac_control->rings[i].block_count;
1025                 for (j = 0; j < blk_cnt; j++) {
1026                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1027                                 block_virt_addr;
1028                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1029                                 block_dma_addr;
1030                         if (tmp_v_addr == NULL)
1031                                 break;
1032                         pci_free_consistent(nic->pdev, size,
1033                                             tmp_v_addr, tmp_p_addr);
1034                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
1035                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
1036                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1037                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1038                 }
1039         }
1040
1041         if (nic->rxd_mode == RXD_MODE_3B) {
1042                 /* Freeing buffer storage addresses in 2BUFF mode. */
1043                 for (i = 0; i < config->rx_ring_num; i++) {
1044                         blk_cnt = config->rx_cfg[i].num_rxd /
1045                             (rxd_count[nic->rxd_mode] + 1);
1046                         for (j = 0; j < blk_cnt; j++) {
1047                                 int k = 0;
1048                                 if (!mac_control->rings[i].ba[j])
1049                                         continue;
1050                                 while (k != rxd_count[nic->rxd_mode]) {
1051                                         struct buffAdd *ba =
1052                                                 &mac_control->rings[i].ba[j][k];
1053                                         kfree(ba->ba_0_org);
1054                                         nic->mac_control.stats_info->sw_stat.\
1055                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
1056                                         kfree(ba->ba_1_org);
1057                                         nic->mac_control.stats_info->sw_stat.\
1058                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
1059                                         k++;
1060                                 }
1061                                 kfree(mac_control->rings[i].ba[j]);
1062                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1063                                         (sizeof(struct buffAdd) *
1064                                         (rxd_count[nic->rxd_mode] + 1));
1065                         }
1066                         kfree(mac_control->rings[i].ba);
1067                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1068                         (sizeof(struct buffAdd *) * blk_cnt);
1069                 }
1070         }
1071
1072         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1073                 if (mac_control->fifos[i].ufo_in_band_v) {
1074                         nic->mac_control.stats_info->sw_stat.mem_freed
1075                                 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1076                         kfree(mac_control->fifos[i].ufo_in_band_v);
1077                 }
1078         }
1079
1080         if (mac_control->stats_mem) {
1081                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1082                         mac_control->stats_mem_sz;
1083                 pci_free_consistent(nic->pdev,
1084                                     mac_control->stats_mem_sz,
1085                                     mac_control->stats_mem,
1086                                     mac_control->stats_mem_phy);
1087         }
1088 }
1089
1090 /**
1091  * s2io_verify_pci_mode -
1092  */
1093
1094 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1095 {
1096         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1097         register u64 val64 = 0;
1098         int     mode;
1099
1100         val64 = readq(&bar0->pci_mode);
1101         mode = (u8)GET_PCI_MODE(val64);
1102
1103         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1104                 return -1;      /* Unknown PCI mode */
1105         return mode;
1106 }
1107
1108 #define NEC_VENID   0x1033
1109 #define NEC_DEVID   0x0125
1110 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1111 {
1112         struct pci_dev *tdev = NULL;
1113         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1114                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1115                         if (tdev->bus == s2io_pdev->bus->parent)
1116                                 pci_dev_put(tdev);
1117                                 return 1;
1118                 }
1119         }
1120         return 0;
1121 }
1122
1123 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1124 /**
1125  * s2io_print_pci_mode -
1126  */
1127 static int s2io_print_pci_mode(struct s2io_nic *nic)
1128 {
1129         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130         register u64 val64 = 0;
1131         int     mode;
1132         struct config_param *config = &nic->config;
1133
1134         val64 = readq(&bar0->pci_mode);
1135         mode = (u8)GET_PCI_MODE(val64);
1136
1137         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1138                 return -1;      /* Unknown PCI mode */
1139
1140         config->bus_speed = bus_speed[mode];
1141
1142         if (s2io_on_nec_bridge(nic->pdev)) {
1143                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1144                                                         nic->dev->name);
1145                 return mode;
1146         }
1147
1148         if (val64 & PCI_MODE_32_BITS) {
1149                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1150         } else {
1151                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1152         }
1153
1154         switch(mode) {
1155                 case PCI_MODE_PCI_33:
1156                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1157                         break;
1158                 case PCI_MODE_PCI_66:
1159                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1160                         break;
1161                 case PCI_MODE_PCIX_M1_66:
1162                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1163                         break;
1164                 case PCI_MODE_PCIX_M1_100:
1165                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1166                         break;
1167                 case PCI_MODE_PCIX_M1_133:
1168                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1169                         break;
1170                 case PCI_MODE_PCIX_M2_66:
1171                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1172                         break;
1173                 case PCI_MODE_PCIX_M2_100:
1174                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1175                         break;
1176                 case PCI_MODE_PCIX_M2_133:
1177                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1178                         break;
1179                 default:
1180                         return -1;      /* Unsupported bus speed */
1181         }
1182
1183         return mode;
1184 }
1185
1186 /**
1187  *  init_tti - Initialization transmit traffic interrupt scheme
1188  *  @nic: device private variable
1189  *  @link: link status (UP/DOWN) used to enable/disable continuous
1190  *  transmit interrupts
1191  *  Description: The function configures transmit traffic interrupts
1192  *  Return Value:  SUCCESS on success and
1193  *  '-1' on failure
1194  */
1195
1196 static int init_tti(struct s2io_nic *nic, int link)
1197 {
1198         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1199         register u64 val64 = 0;
1200         int i;
1201         struct config_param *config;
1202
1203         config = &nic->config;
1204
1205         for (i = 0; i < config->tx_fifo_num; i++) {
1206                 /*
1207                  * TTI Initialization. Default Tx timer gets us about
1208                  * 250 interrupts per sec. Continuous interrupts are enabled
1209                  * by default.
1210                  */
1211                 if (nic->device_type == XFRAME_II_DEVICE) {
1212                         int count = (nic->config.bus_speed * 125)/2;
1213                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1214                 } else
1215                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1216
1217                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1218                                 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1219                                 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1220                                 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1221
1222                 if (use_continuous_tx_intrs && (link == LINK_UP))
1223                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1224                 writeq(val64, &bar0->tti_data1_mem);
1225
1226                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227                                 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228                                 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229                                 TTI_DATA2_MEM_TX_UFC_D(0x80);
1230
1231                 writeq(val64, &bar0->tti_data2_mem);
1232
1233                 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1234                                 TTI_CMD_MEM_OFFSET(i);
1235                 writeq(val64, &bar0->tti_command_mem);
1236
1237                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1238                         TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1239                         return FAILURE;
1240         }
1241
1242         return SUCCESS;
1243 }
1244
1245 /**
1246  *  init_nic - Initialization of hardware
1247  *  @nic: device private variable
1248  *  Description: The function sequentially configures every block
1249  *  of the H/W from their reset values.
1250  *  Return Value:  SUCCESS on success and
1251  *  '-1' on failure (endian settings incorrect).
1252  */
1253
1254 static int init_nic(struct s2io_nic *nic)
1255 {
1256         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1257         struct net_device *dev = nic->dev;
1258         register u64 val64 = 0;
1259         void __iomem *add;
1260         u32 time;
1261         int i, j;
1262         struct mac_info *mac_control;
1263         struct config_param *config;
1264         int dtx_cnt = 0;
1265         unsigned long long mem_share;
1266         int mem_size;
1267
1268         mac_control = &nic->mac_control;
1269         config = &nic->config;
1270
1271         /* to set the swapper controle on the card */
1272         if(s2io_set_swapper(nic)) {
1273                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1274                 return -EIO;
1275         }
1276
1277         /*
1278          * Herc requires EOI to be removed from reset before XGXS, so..
1279          */
1280         if (nic->device_type & XFRAME_II_DEVICE) {
1281                 val64 = 0xA500000000ULL;
1282                 writeq(val64, &bar0->sw_reset);
1283                 msleep(500);
1284                 val64 = readq(&bar0->sw_reset);
1285         }
1286
1287         /* Remove XGXS from reset state */
1288         val64 = 0;
1289         writeq(val64, &bar0->sw_reset);
1290         msleep(500);
1291         val64 = readq(&bar0->sw_reset);
1292
1293         /* Ensure that it's safe to access registers by checking
1294          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1295          */
1296         if (nic->device_type == XFRAME_II_DEVICE) {
1297                 for (i = 0; i < 50; i++) {
1298                         val64 = readq(&bar0->adapter_status);
1299                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1300                                 break;
1301                         msleep(10);
1302                 }
1303                 if (i == 50)
1304                         return -ENODEV;
1305         }
1306
1307         /*  Enable Receiving broadcasts */
1308         add = &bar0->mac_cfg;
1309         val64 = readq(&bar0->mac_cfg);
1310         val64 |= MAC_RMAC_BCAST_ENABLE;
1311         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1312         writel((u32) val64, add);
1313         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314         writel((u32) (val64 >> 32), (add + 4));
1315
1316         /* Read registers in all blocks */
1317         val64 = readq(&bar0->mac_int_mask);
1318         val64 = readq(&bar0->mc_int_mask);
1319         val64 = readq(&bar0->xgxs_int_mask);
1320
1321         /*  Set MTU */
1322         val64 = dev->mtu;
1323         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1324
1325         if (nic->device_type & XFRAME_II_DEVICE) {
1326                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1327                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1328                                           &bar0->dtx_control, UF);
1329                         if (dtx_cnt & 0x1)
1330                                 msleep(1); /* Necessary!! */
1331                         dtx_cnt++;
1332                 }
1333         } else {
1334                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1335                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1336                                           &bar0->dtx_control, UF);
1337                         val64 = readq(&bar0->dtx_control);
1338                         dtx_cnt++;
1339                 }
1340         }
1341
1342         /*  Tx DMA Initialization */
1343         val64 = 0;
1344         writeq(val64, &bar0->tx_fifo_partition_0);
1345         writeq(val64, &bar0->tx_fifo_partition_1);
1346         writeq(val64, &bar0->tx_fifo_partition_2);
1347         writeq(val64, &bar0->tx_fifo_partition_3);
1348
1349
1350         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1351                 val64 |=
1352                     vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1353                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1354                                     ((j * 32) + 5), 3);
1355
1356                 if (i == (config->tx_fifo_num - 1)) {
1357                         if (i % 2 == 0)
1358                                 i++;
1359                 }
1360
1361                 switch (i) {
1362                 case 1:
1363                         writeq(val64, &bar0->tx_fifo_partition_0);
1364                         val64 = 0;
1365                         j = 0;
1366                         break;
1367                 case 3:
1368                         writeq(val64, &bar0->tx_fifo_partition_1);
1369                         val64 = 0;
1370                         j = 0;
1371                         break;
1372                 case 5:
1373                         writeq(val64, &bar0->tx_fifo_partition_2);
1374                         val64 = 0;
1375                         j = 0;
1376                         break;
1377                 case 7:
1378                         writeq(val64, &bar0->tx_fifo_partition_3);
1379                         val64 = 0;
1380                         j = 0;
1381                         break;
1382                 default:
1383                         j++;
1384                         break;
1385                 }
1386         }
1387
1388         /*
1389          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1390          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1391          */
1392         if ((nic->device_type == XFRAME_I_DEVICE) &&
1393                 (nic->pdev->revision < 4))
1394                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1395
1396         val64 = readq(&bar0->tx_fifo_partition_0);
1397         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1398                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1399
1400         /*
1401          * Initialization of Tx_PA_CONFIG register to ignore packet
1402          * integrity checking.
1403          */
1404         val64 = readq(&bar0->tx_pa_cfg);
1405         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1406             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1407         writeq(val64, &bar0->tx_pa_cfg);
1408
1409         /* Rx DMA intialization. */
1410         val64 = 0;
1411         for (i = 0; i < config->rx_ring_num; i++) {
1412                 val64 |=
1413                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1414                          3);
1415         }
1416         writeq(val64, &bar0->rx_queue_priority);
1417
1418         /*
1419          * Allocating equal share of memory to all the
1420          * configured Rings.
1421          */
1422         val64 = 0;
1423         if (nic->device_type & XFRAME_II_DEVICE)
1424                 mem_size = 32;
1425         else
1426                 mem_size = 64;
1427
1428         for (i = 0; i < config->rx_ring_num; i++) {
1429                 switch (i) {
1430                 case 0:
1431                         mem_share = (mem_size / config->rx_ring_num +
1432                                      mem_size % config->rx_ring_num);
1433                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1434                         continue;
1435                 case 1:
1436                         mem_share = (mem_size / config->rx_ring_num);
1437                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1438                         continue;
1439                 case 2:
1440                         mem_share = (mem_size / config->rx_ring_num);
1441                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1442                         continue;
1443                 case 3:
1444                         mem_share = (mem_size / config->rx_ring_num);
1445                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1446                         continue;
1447                 case 4:
1448                         mem_share = (mem_size / config->rx_ring_num);
1449                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1450                         continue;
1451                 case 5:
1452                         mem_share = (mem_size / config->rx_ring_num);
1453                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1454                         continue;
1455                 case 6:
1456                         mem_share = (mem_size / config->rx_ring_num);
1457                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1458                         continue;
1459                 case 7:
1460                         mem_share = (mem_size / config->rx_ring_num);
1461                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1462                         continue;
1463                 }
1464         }
1465         writeq(val64, &bar0->rx_queue_cfg);
1466
1467         /*
1468          * Filling Tx round robin registers
1469          * as per the number of FIFOs for equal scheduling priority
1470          */
1471         switch (config->tx_fifo_num) {
1472         case 1:
1473                 val64 = 0x0;
1474                 writeq(val64, &bar0->tx_w_round_robin_0);
1475                 writeq(val64, &bar0->tx_w_round_robin_1);
1476                 writeq(val64, &bar0->tx_w_round_robin_2);
1477                 writeq(val64, &bar0->tx_w_round_robin_3);
1478                 writeq(val64, &bar0->tx_w_round_robin_4);
1479                 break;
1480         case 2:
1481                 val64 = 0x0001000100010001ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_0);
1483                 writeq(val64, &bar0->tx_w_round_robin_1);
1484                 writeq(val64, &bar0->tx_w_round_robin_2);
1485                 writeq(val64, &bar0->tx_w_round_robin_3);
1486                 val64 = 0x0001000100000000ULL;
1487                 writeq(val64, &bar0->tx_w_round_robin_4);
1488                 break;
1489         case 3:
1490                 val64 = 0x0001020001020001ULL;
1491                 writeq(val64, &bar0->tx_w_round_robin_0);
1492                 val64 = 0x0200010200010200ULL;
1493                 writeq(val64, &bar0->tx_w_round_robin_1);
1494                 val64 = 0x0102000102000102ULL;
1495                 writeq(val64, &bar0->tx_w_round_robin_2);
1496                 val64 = 0x0001020001020001ULL;
1497                 writeq(val64, &bar0->tx_w_round_robin_3);
1498                 val64 = 0x0200010200000000ULL;
1499                 writeq(val64, &bar0->tx_w_round_robin_4);
1500                 break;
1501         case 4:
1502                 val64 = 0x0001020300010203ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_0);
1504                 writeq(val64, &bar0->tx_w_round_robin_1);
1505                 writeq(val64, &bar0->tx_w_round_robin_2);
1506                 writeq(val64, &bar0->tx_w_round_robin_3);
1507                 val64 = 0x0001020300000000ULL;
1508                 writeq(val64, &bar0->tx_w_round_robin_4);
1509                 break;
1510         case 5:
1511                 val64 = 0x0001020304000102ULL;
1512                 writeq(val64, &bar0->tx_w_round_robin_0);
1513                 val64 = 0x0304000102030400ULL;
1514                 writeq(val64, &bar0->tx_w_round_robin_1);
1515                 val64 = 0x0102030400010203ULL;
1516                 writeq(val64, &bar0->tx_w_round_robin_2);
1517                 val64 = 0x0400010203040001ULL;
1518                 writeq(val64, &bar0->tx_w_round_robin_3);
1519                 val64 = 0x0203040000000000ULL;
1520                 writeq(val64, &bar0->tx_w_round_robin_4);
1521                 break;
1522         case 6:
1523                 val64 = 0x0001020304050001ULL;
1524                 writeq(val64, &bar0->tx_w_round_robin_0);
1525                 val64 = 0x0203040500010203ULL;
1526                 writeq(val64, &bar0->tx_w_round_robin_1);
1527                 val64 = 0x0405000102030405ULL;
1528                 writeq(val64, &bar0->tx_w_round_robin_2);
1529                 val64 = 0x0001020304050001ULL;
1530                 writeq(val64, &bar0->tx_w_round_robin_3);
1531                 val64 = 0x0203040500000000ULL;
1532                 writeq(val64, &bar0->tx_w_round_robin_4);
1533                 break;
1534         case 7:
1535                 val64 = 0x0001020304050600ULL;
1536                 writeq(val64, &bar0->tx_w_round_robin_0);
1537                 val64 = 0x0102030405060001ULL;
1538                 writeq(val64, &bar0->tx_w_round_robin_1);
1539                 val64 = 0x0203040506000102ULL;
1540                 writeq(val64, &bar0->tx_w_round_robin_2);
1541                 val64 = 0x0304050600010203ULL;
1542                 writeq(val64, &bar0->tx_w_round_robin_3);
1543                 val64 = 0x0405060000000000ULL;
1544                 writeq(val64, &bar0->tx_w_round_robin_4);
1545                 break;
1546         case 8:
1547                 val64 = 0x0001020304050607ULL;
1548                 writeq(val64, &bar0->tx_w_round_robin_0);
1549                 writeq(val64, &bar0->tx_w_round_robin_1);
1550                 writeq(val64, &bar0->tx_w_round_robin_2);
1551                 writeq(val64, &bar0->tx_w_round_robin_3);
1552                 val64 = 0x0001020300000000ULL;
1553                 writeq(val64, &bar0->tx_w_round_robin_4);
1554                 break;
1555         }
1556
1557         /* Enable all configured Tx FIFO partitions */
1558         val64 = readq(&bar0->tx_fifo_partition_0);
1559         val64 |= (TX_FIFO_PARTITION_EN);
1560         writeq(val64, &bar0->tx_fifo_partition_0);
1561
1562         /* Filling the Rx round robin registers as per the
1563          * number of Rings and steering based on QoS.
1564          */
1565         switch (config->rx_ring_num) {
1566         case 1:
1567                 val64 = 0x8080808080808080ULL;
1568                 writeq(val64, &bar0->rts_qos_steering);
1569                 break;
1570         case 2:
1571                 val64 = 0x0000010000010000ULL;
1572                 writeq(val64, &bar0->rx_w_round_robin_0);
1573                 val64 = 0x0100000100000100ULL;
1574                 writeq(val64, &bar0->rx_w_round_robin_1);
1575                 val64 = 0x0001000001000001ULL;
1576                 writeq(val64, &bar0->rx_w_round_robin_2);
1577                 val64 = 0x0000010000010000ULL;
1578                 writeq(val64, &bar0->rx_w_round_robin_3);
1579                 val64 = 0x0100000000000000ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_4);
1581
1582                 val64 = 0x8080808040404040ULL;
1583                 writeq(val64, &bar0->rts_qos_steering);
1584                 break;
1585         case 3:
1586                 val64 = 0x0001000102000001ULL;
1587                 writeq(val64, &bar0->rx_w_round_robin_0);
1588                 val64 = 0x0001020000010001ULL;
1589                 writeq(val64, &bar0->rx_w_round_robin_1);
1590                 val64 = 0x0200000100010200ULL;
1591                 writeq(val64, &bar0->rx_w_round_robin_2);
1592                 val64 = 0x0001000102000001ULL;
1593                 writeq(val64, &bar0->rx_w_round_robin_3);
1594                 val64 = 0x0001020000000000ULL;
1595                 writeq(val64, &bar0->rx_w_round_robin_4);
1596
1597                 val64 = 0x8080804040402020ULL;
1598                 writeq(val64, &bar0->rts_qos_steering);
1599                 break;
1600         case 4:
1601                 val64 = 0x0001020300010200ULL;
1602                 writeq(val64, &bar0->rx_w_round_robin_0);
1603                 val64 = 0x0100000102030001ULL;
1604                 writeq(val64, &bar0->rx_w_round_robin_1);
1605                 val64 = 0x0200010000010203ULL;
1606                 writeq(val64, &bar0->rx_w_round_robin_2);
1607                 val64 = 0x0001020001000001ULL;
1608                 writeq(val64, &bar0->rx_w_round_robin_3);
1609                 val64 = 0x0203000100000000ULL;
1610                 writeq(val64, &bar0->rx_w_round_robin_4);
1611
1612                 val64 = 0x8080404020201010ULL;
1613                 writeq(val64, &bar0->rts_qos_steering);
1614                 break;
1615         case 5:
1616                 val64 = 0x0001000203000102ULL;
1617                 writeq(val64, &bar0->rx_w_round_robin_0);
1618                 val64 = 0x0001020001030004ULL;
1619                 writeq(val64, &bar0->rx_w_round_robin_1);
1620                 val64 = 0x0001000203000102ULL;
1621                 writeq(val64, &bar0->rx_w_round_robin_2);
1622                 val64 = 0x0001020001030004ULL;
1623                 writeq(val64, &bar0->rx_w_round_robin_3);
1624                 val64 = 0x0001000000000000ULL;
1625                 writeq(val64, &bar0->rx_w_round_robin_4);
1626
1627                 val64 = 0x8080404020201008ULL;
1628                 writeq(val64, &bar0->rts_qos_steering);
1629                 break;
1630         case 6:
1631                 val64 = 0x0001020304000102ULL;
1632                 writeq(val64, &bar0->rx_w_round_robin_0);
1633                 val64 = 0x0304050001020001ULL;
1634                 writeq(val64, &bar0->rx_w_round_robin_1);
1635                 val64 = 0x0203000100000102ULL;
1636                 writeq(val64, &bar0->rx_w_round_robin_2);
1637                 val64 = 0x0304000102030405ULL;
1638                 writeq(val64, &bar0->rx_w_round_robin_3);
1639                 val64 = 0x0001000200000000ULL;
1640                 writeq(val64, &bar0->rx_w_round_robin_4);
1641
1642                 val64 = 0x8080404020100804ULL;
1643                 writeq(val64, &bar0->rts_qos_steering);
1644                 break;
1645         case 7:
1646                 val64 = 0x0001020001020300ULL;
1647                 writeq(val64, &bar0->rx_w_round_robin_0);
1648                 val64 = 0x0102030400010203ULL;
1649                 writeq(val64, &bar0->rx_w_round_robin_1);
1650                 val64 = 0x0405060001020001ULL;
1651                 writeq(val64, &bar0->rx_w_round_robin_2);
1652                 val64 = 0x0304050000010200ULL;
1653                 writeq(val64, &bar0->rx_w_round_robin_3);
1654                 val64 = 0x0102030000000000ULL;
1655                 writeq(val64, &bar0->rx_w_round_robin_4);
1656
1657                 val64 = 0x8080402010080402ULL;
1658                 writeq(val64, &bar0->rts_qos_steering);
1659                 break;
1660         case 8:
1661                 val64 = 0x0001020300040105ULL;
1662                 writeq(val64, &bar0->rx_w_round_robin_0);
1663                 val64 = 0x0200030106000204ULL;
1664                 writeq(val64, &bar0->rx_w_round_robin_1);
1665                 val64 = 0x0103000502010007ULL;
1666                 writeq(val64, &bar0->rx_w_round_robin_2);
1667                 val64 = 0x0304010002060500ULL;
1668                 writeq(val64, &bar0->rx_w_round_robin_3);
1669                 val64 = 0x0103020400000000ULL;
1670                 writeq(val64, &bar0->rx_w_round_robin_4);
1671
1672                 val64 = 0x8040201008040201ULL;
1673                 writeq(val64, &bar0->rts_qos_steering);
1674                 break;
1675         }
1676
1677         /* UDP Fix */
1678         val64 = 0;
1679         for (i = 0; i < 8; i++)
1680                 writeq(val64, &bar0->rts_frm_len_n[i]);
1681
1682         /* Set the default rts frame length for the rings configured */
1683         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1684         for (i = 0 ; i < config->rx_ring_num ; i++)
1685                 writeq(val64, &bar0->rts_frm_len_n[i]);
1686
1687         /* Set the frame length for the configured rings
1688          * desired by the user
1689          */
1690         for (i = 0; i < config->rx_ring_num; i++) {
1691                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1692                  * specified frame length steering.
1693                  * If the user provides the frame length then program
1694                  * the rts_frm_len register for those values or else
1695                  * leave it as it is.
1696                  */
1697                 if (rts_frm_len[i] != 0) {
1698                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1699                                 &bar0->rts_frm_len_n[i]);
1700                 }
1701         }
1702
1703         /* Disable differentiated services steering logic */
1704         for (i = 0; i < 64; i++) {
1705                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1706                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1707                                 dev->name);
1708                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1709                         return -ENODEV;
1710                 }
1711         }
1712
1713         /* Program statistics memory */
1714         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1715
1716         if (nic->device_type == XFRAME_II_DEVICE) {
1717                 val64 = STAT_BC(0x320);
1718                 writeq(val64, &bar0->stat_byte_cnt);
1719         }
1720
1721         /*
1722          * Initializing the sampling rate for the device to calculate the
1723          * bandwidth utilization.
1724          */
1725         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1726             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1727         writeq(val64, &bar0->mac_link_util);
1728
1729         /*
1730          * Initializing the Transmit and Receive Traffic Interrupt
1731          * Scheme.
1732          */
1733
1734         /* Initialize TTI */
1735         if (SUCCESS != init_tti(nic, nic->last_link_state))
1736                 return -ENODEV;
1737
1738         /* RTI Initialization */
1739         if (nic->device_type == XFRAME_II_DEVICE) {
1740                 /*
1741                  * Programmed to generate Apprx 500 Intrs per
1742                  * second
1743                  */
1744                 int count = (nic->config.bus_speed * 125)/4;
1745                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1746         } else
1747                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1748         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1749                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1750                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1751
1752         writeq(val64, &bar0->rti_data1_mem);
1753
1754         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756         if (nic->config.intr_type == MSI_X)
1757             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1758                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1759         else
1760             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1761                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1762         writeq(val64, &bar0->rti_data2_mem);
1763
1764         for (i = 0; i < config->rx_ring_num; i++) {
1765                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1766                                 | RTI_CMD_MEM_OFFSET(i);
1767                 writeq(val64, &bar0->rti_command_mem);
1768
1769                 /*
1770                  * Once the operation completes, the Strobe bit of the
1771                  * command register will be reset. We poll for this
1772                  * particular condition. We wait for a maximum of 500ms
1773                  * for the operation to complete, if it's not complete
1774                  * by then we return error.
1775                  */
1776                 time = 0;
1777                 while (TRUE) {
1778                         val64 = readq(&bar0->rti_command_mem);
1779                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780                                 break;
1781
1782                         if (time > 10) {
1783                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1784                                           dev->name);
1785                                 return -ENODEV;
1786                         }
1787                         time++;
1788                         msleep(50);
1789                 }
1790         }
1791
1792         /*
1793          * Initializing proper values as Pause threshold into all
1794          * the 8 Queues on Rx side.
1795          */
1796         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799         /* Disable RMAC PAD STRIPPING */
1800         add = &bar0->mac_cfg;
1801         val64 = readq(&bar0->mac_cfg);
1802         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804         writel((u32) (val64), add);
1805         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806         writel((u32) (val64 >> 32), (add + 4));
1807         val64 = readq(&bar0->mac_cfg);
1808
1809         /* Enable FCS stripping by adapter */
1810         add = &bar0->mac_cfg;
1811         val64 = readq(&bar0->mac_cfg);
1812         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813         if (nic->device_type == XFRAME_II_DEVICE)
1814                 writeq(val64, &bar0->mac_cfg);
1815         else {
1816                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817                 writel((u32) (val64), add);
1818                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819                 writel((u32) (val64 >> 32), (add + 4));
1820         }
1821
1822         /*
1823          * Set the time value to be inserted in the pause frame
1824          * generated by xena.
1825          */
1826         val64 = readq(&bar0->rmac_pause_cfg);
1827         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829         writeq(val64, &bar0->rmac_pause_cfg);
1830
1831         /*
1832          * Set the Threshold Limit for Generating the pause frame
1833          * If the amount of data in any Queue exceeds ratio of
1834          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835          * pause frame is generated
1836          */
1837         val64 = 0;
1838         for (i = 0; i < 4; i++) {
1839                 val64 |=
1840                     (((u64) 0xFF00 | nic->mac_control.
1841                       mc_pause_threshold_q0q3)
1842                      << (i * 2 * 8));
1843         }
1844         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1845
1846         val64 = 0;
1847         for (i = 0; i < 4; i++) {
1848                 val64 |=
1849                     (((u64) 0xFF00 | nic->mac_control.
1850                       mc_pause_threshold_q4q7)
1851                      << (i * 2 * 8));
1852         }
1853         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1854
1855         /*
1856          * TxDMA will stop Read request if the number of read split has
1857          * exceeded the limit pointed by shared_splits
1858          */
1859         val64 = readq(&bar0->pic_control);
1860         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1861         writeq(val64, &bar0->pic_control);
1862
1863         if (nic->config.bus_speed == 266) {
1864                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1865                 writeq(0x0, &bar0->read_retry_delay);
1866                 writeq(0x0, &bar0->write_retry_delay);
1867         }
1868
1869         /*
1870          * Programming the Herc to split every write transaction
1871          * that does not start on an ADB to reduce disconnects.
1872          */
1873         if (nic->device_type == XFRAME_II_DEVICE) {
1874                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1875                         MISC_LINK_STABILITY_PRD(3);
1876                 writeq(val64, &bar0->misc_control);
1877                 val64 = readq(&bar0->pic_control2);
1878                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1879                 writeq(val64, &bar0->pic_control2);
1880         }
1881         if (strstr(nic->product_name, "CX4")) {
1882                 val64 = TMAC_AVG_IPG(0x17);
1883                 writeq(val64, &bar0->tmac_avg_ipg);
1884         }
1885
1886         return SUCCESS;
1887 }
1888 #define LINK_UP_DOWN_INTERRUPT          1
1889 #define MAC_RMAC_ERR_TIMER              2
1890
1891 static int s2io_link_fault_indication(struct s2io_nic *nic)
1892 {
1893         if (nic->config.intr_type != INTA)
1894                 return MAC_RMAC_ERR_TIMER;
1895         if (nic->device_type == XFRAME_II_DEVICE)
1896                 return LINK_UP_DOWN_INTERRUPT;
1897         else
1898                 return MAC_RMAC_ERR_TIMER;
1899 }
1900
1901 /**
1902  *  do_s2io_write_bits -  update alarm bits in alarm register
1903  *  @value: alarm bits
1904  *  @flag: interrupt status
1905  *  @addr: address value
1906  *  Description: update alarm bits in alarm register
1907  *  Return Value:
1908  *  NONE.
1909  */
1910 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1911 {
1912         u64 temp64;
1913
1914         temp64 = readq(addr);
1915
1916         if(flag == ENABLE_INTRS)
1917                 temp64 &= ~((u64) value);
1918         else
1919                 temp64 |= ((u64) value);
1920         writeq(temp64, addr);
1921 }
1922
1923 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1924 {
1925         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1926         register u64 gen_int_mask = 0;
1927
1928         if (mask & TX_DMA_INTR) {
1929
1930                 gen_int_mask |= TXDMA_INT_M;
1931
1932                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1933                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1934                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1935                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1936
1937                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1938                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1939                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1940                                 &bar0->pfc_err_mask);
1941
1942                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1943                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1944                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1945
1946                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1947                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1948                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1949                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1950                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1951                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1952
1953                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1954                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1955
1956                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1957                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1958                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1959                                 flag, &bar0->lso_err_mask);
1960
1961                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1962                                 flag, &bar0->tpa_err_mask);
1963
1964                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1965
1966         }
1967
1968         if (mask & TX_MAC_INTR) {
1969                 gen_int_mask |= TXMAC_INT_M;
1970                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1971                                 &bar0->mac_int_mask);
1972                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1973                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1974                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1975                                 flag, &bar0->mac_tmac_err_mask);
1976         }
1977
1978         if (mask & TX_XGXS_INTR) {
1979                 gen_int_mask |= TXXGXS_INT_M;
1980                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1981                                 &bar0->xgxs_int_mask);
1982                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1983                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1984                                 flag, &bar0->xgxs_txgxs_err_mask);
1985         }
1986
1987         if (mask & RX_DMA_INTR) {
1988                 gen_int_mask |= RXDMA_INT_M;
1989                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1990                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1991                                 flag, &bar0->rxdma_int_mask);
1992                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1993                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1994                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1995                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1996                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1997                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1998                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1999                                 &bar0->prc_pcix_err_mask);
2000                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2001                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2002                                 &bar0->rpa_err_mask);
2003                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2004                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2005                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2006                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2007                                 flag, &bar0->rda_err_mask);
2008                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2009                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2010                                 flag, &bar0->rti_err_mask);
2011         }
2012
2013         if (mask & RX_MAC_INTR) {
2014                 gen_int_mask |= RXMAC_INT_M;
2015                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2016                                 &bar0->mac_int_mask);
2017                 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2018                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2019                                 RMAC_DOUBLE_ECC_ERR |
2020                                 RMAC_LINK_STATE_CHANGE_INT,
2021                                 flag, &bar0->mac_rmac_err_mask);
2022         }
2023
2024         if (mask & RX_XGXS_INTR)
2025         {
2026                 gen_int_mask |= RXXGXS_INT_M;
2027                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2028                                 &bar0->xgxs_int_mask);
2029                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2030                                 &bar0->xgxs_rxgxs_err_mask);
2031         }
2032
2033         if (mask & MC_INTR) {
2034                 gen_int_mask |= MC_INT_M;
2035                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2036                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038                                 &bar0->mc_err_mask);
2039         }
2040         nic->general_int_mask = gen_int_mask;
2041
2042         /* Remove this line when alarm interrupts are enabled */
2043         nic->general_int_mask = 0;
2044 }
2045 /**
2046  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2047  *  @nic: device private variable,
2048  *  @mask: A mask indicating which Intr block must be modified and,
2049  *  @flag: A flag indicating whether to enable or disable the Intrs.
2050  *  Description: This function will either disable or enable the interrupts
2051  *  depending on the flag argument. The mask argument can be used to
2052  *  enable/disable any Intr block.
2053  *  Return Value: NONE.
2054  */
2055
2056 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2057 {
2058         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2059         register u64 temp64 = 0, intr_mask = 0;
2060
2061         intr_mask = nic->general_int_mask;
2062
2063         /*  Top level interrupt classification */
2064         /*  PIC Interrupts */
2065         if (mask & TX_PIC_INTR) {
2066                 /*  Enable PIC Intrs in the general intr mask register */
2067                 intr_mask |= TXPIC_INT_M;
2068                 if (flag == ENABLE_INTRS) {
2069                         /*
2070                          * If Hercules adapter enable GPIO otherwise
2071                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2072                          * interrupts for now.
2073                          * TODO
2074                          */
2075                         if (s2io_link_fault_indication(nic) ==
2076                                         LINK_UP_DOWN_INTERRUPT ) {
2077                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2078                                                 &bar0->pic_int_mask);
2079                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2080                                                 &bar0->gpio_int_mask);
2081                         } else
2082                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2083                 } else if (flag == DISABLE_INTRS) {
2084                         /*
2085                          * Disable PIC Intrs in the general
2086                          * intr mask register
2087                          */
2088                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2089                 }
2090         }
2091
2092         /*  Tx traffic interrupts */
2093         if (mask & TX_TRAFFIC_INTR) {
2094                 intr_mask |= TXTRAFFIC_INT_M;
2095                 if (flag == ENABLE_INTRS) {
2096                         /*
2097                          * Enable all the Tx side interrupts
2098                          * writing 0 Enables all 64 TX interrupt levels
2099                          */
2100                         writeq(0x0, &bar0->tx_traffic_mask);
2101                 } else if (flag == DISABLE_INTRS) {
2102                         /*
2103                          * Disable Tx Traffic Intrs in the general intr mask
2104                          * register.
2105                          */
2106                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2107                 }
2108         }
2109
2110         /*  Rx traffic interrupts */
2111         if (mask & RX_TRAFFIC_INTR) {
2112                 intr_mask |= RXTRAFFIC_INT_M;
2113                 if (flag == ENABLE_INTRS) {
2114                         /* writing 0 Enables all 8 RX interrupt levels */
2115                         writeq(0x0, &bar0->rx_traffic_mask);
2116                 } else if (flag == DISABLE_INTRS) {
2117                         /*
2118                          * Disable Rx Traffic Intrs in the general intr mask
2119                          * register.
2120                          */
2121                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2122                 }
2123         }
2124
2125         temp64 = readq(&bar0->general_int_mask);
2126         if (flag == ENABLE_INTRS)
2127                 temp64 &= ~((u64) intr_mask);
2128         else
2129                 temp64 = DISABLE_ALL_INTRS;
2130         writeq(temp64, &bar0->general_int_mask);
2131
2132         nic->general_int_mask = readq(&bar0->general_int_mask);
2133 }
2134
2135 /**
2136  *  verify_pcc_quiescent- Checks for PCC quiescent state
2137  *  Return: 1 If PCC is quiescence
2138  *          0 If PCC is not quiescence
2139  */
2140 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2141 {
2142         int ret = 0, herc;
2143         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2144         u64 val64 = readq(&bar0->adapter_status);
2145
2146         herc = (sp->device_type == XFRAME_II_DEVICE);
2147
2148         if (flag == FALSE) {
2149                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2150                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2151                                 ret = 1;
2152                 } else {
2153                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2154                                 ret = 1;
2155                 }
2156         } else {
2157                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2158                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2159                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2160                                 ret = 1;
2161                 } else {
2162                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2163                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2164                                 ret = 1;
2165                 }
2166         }
2167
2168         return ret;
2169 }
2170 /**
2171  *  verify_xena_quiescence - Checks whether the H/W is ready
2172  *  Description: Returns whether the H/W is ready to go or not. Depending
2173  *  on whether adapter enable bit was written or not the comparison
2174  *  differs and the calling function passes the input argument flag to
2175  *  indicate this.
2176  *  Return: 1 If xena is quiescence
2177  *          0 If Xena is not quiescence
2178  */
2179
2180 static int verify_xena_quiescence(struct s2io_nic *sp)
2181 {
2182         int  mode;
2183         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2184         u64 val64 = readq(&bar0->adapter_status);
2185         mode = s2io_verify_pci_mode(sp);
2186
2187         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2188                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2189                 return 0;
2190         }
2191         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2192         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2193                 return 0;
2194         }
2195         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2196                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2197                 return 0;
2198         }
2199         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2200                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2201                 return 0;
2202         }
2203         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2204                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2205                 return 0;
2206         }
2207         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2208                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2209                 return 0;
2210         }
2211         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2212                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2213                 return 0;
2214         }
2215         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2216                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2217                 return 0;
2218         }
2219
2220         /*
2221          * In PCI 33 mode, the P_PLL is not used, and therefore,
2222          * the the P_PLL_LOCK bit in the adapter_status register will
2223          * not be asserted.
2224          */
2225         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2226                 sp->device_type == XFRAME_II_DEVICE && mode !=
2227                 PCI_MODE_PCI_33) {
2228                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2229                 return 0;
2230         }
2231         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2232                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2233                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2234                 return 0;
2235         }
2236         return 1;
2237 }
2238
2239 /**
2240  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2241  * @sp: Pointer to device specifc structure
2242  * Description :
2243  * New procedure to clear mac address reading  problems on Alpha platforms
2244  *
2245  */
2246
2247 static void fix_mac_address(struct s2io_nic * sp)
2248 {
2249         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2250         u64 val64;
2251         int i = 0;
2252
2253         while (fix_mac[i] != END_SIGN) {
2254                 writeq(fix_mac[i++], &bar0->gpio_control);
2255                 udelay(10);
2256                 val64 = readq(&bar0->gpio_control);
2257         }
2258 }
2259
2260 /**
2261  *  start_nic - Turns the device on
2262  *  @nic : device private variable.
2263  *  Description:
2264  *  This function actually turns the device on. Before this  function is
2265  *  called,all Registers are configured from their reset states
2266  *  and shared memory is allocated but the NIC is still quiescent. On
2267  *  calling this function, the device interrupts are cleared and the NIC is
2268  *  literally switched on by writing into the adapter control register.
2269  *  Return Value:
2270  *  SUCCESS on success and -1 on failure.
2271  */
2272
2273 static int start_nic(struct s2io_nic *nic)
2274 {
2275         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2276         struct net_device *dev = nic->dev;
2277         register u64 val64 = 0;
2278         u16 subid, i;
2279         struct mac_info *mac_control;
2280         struct config_param *config;
2281
2282         mac_control = &nic->mac_control;
2283         config = &nic->config;
2284
2285         /*  PRC Initialization and configuration */
2286         for (i = 0; i < config->rx_ring_num; i++) {
2287                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2288                        &bar0->prc_rxd0_n[i]);
2289
2290                 val64 = readq(&bar0->prc_ctrl_n[i]);
2291                 if (nic->rxd_mode == RXD_MODE_1)
2292                         val64 |= PRC_CTRL_RC_ENABLED;
2293                 else
2294                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295                 if (nic->device_type == XFRAME_II_DEVICE)
2296                         val64 |= PRC_CTRL_GROUP_READS;
2297                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299                 writeq(val64, &bar0->prc_ctrl_n[i]);
2300         }
2301
2302         if (nic->rxd_mode == RXD_MODE_3B) {
2303                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304                 val64 = readq(&bar0->rx_pa_cfg);
2305                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306                 writeq(val64, &bar0->rx_pa_cfg);
2307         }
2308
2309         if (vlan_tag_strip == 0) {
2310                 val64 = readq(&bar0->rx_pa_cfg);
2311                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312                 writeq(val64, &bar0->rx_pa_cfg);
2313                 vlan_strip_flag = 0;
2314         }
2315
2316         /*
2317          * Enabling MC-RLDRAM. After enabling the device, we timeout
2318          * for around 100ms, which is approximately the time required
2319          * for the device to be ready for operation.
2320          */
2321         val64 = readq(&bar0->mc_rldram_mrs);
2322         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324         val64 = readq(&bar0->mc_rldram_mrs);
2325
2326         msleep(100);    /* Delay by around 100 ms. */
2327
2328         /* Enabling ECC Protection. */
2329         val64 = readq(&bar0->adapter_control);
2330         val64 &= ~ADAPTER_ECC_EN;
2331         writeq(val64, &bar0->adapter_control);
2332
2333         /*
2334          * Verify if the device is ready to be enabled, if so enable
2335          * it.
2336          */
2337         val64 = readq(&bar0->adapter_status);
2338         if (!verify_xena_quiescence(nic)) {
2339                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2340                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2341                           (unsigned long long) val64);
2342                 return FAILURE;
2343         }
2344
2345         /*
2346          * With some switches, link might be already up at this point.
2347          * Because of this weird behavior, when we enable laser,
2348          * we may not get link. We need to handle this. We cannot
2349          * figure out which switch is misbehaving. So we are forced to
2350          * make a global change.
2351          */
2352
2353         /* Enabling Laser. */
2354         val64 = readq(&bar0->adapter_control);
2355         val64 |= ADAPTER_EOI_TX_ON;
2356         writeq(val64, &bar0->adapter_control);
2357
2358         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359                 /*
2360                  * Dont see link state interrupts initally on some switches,
2361                  * so directly scheduling the link state task here.
2362                  */
2363                 schedule_work(&nic->set_link_task);
2364         }
2365         /* SXE-002: Initialize link and activity LED */
2366         subid = nic->pdev->subsystem_device;
2367         if (((subid & 0xFF) >= 0x07) &&
2368             (nic->device_type == XFRAME_I_DEVICE)) {
2369                 val64 = readq(&bar0->gpio_control);
2370                 val64 |= 0x0000800000000000ULL;
2371                 writeq(val64, &bar0->gpio_control);
2372                 val64 = 0x0411040400000000ULL;
2373                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2374         }
2375
2376         return SUCCESS;
2377 }
2378 /**
2379  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380  */
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2382                                         TxD *txdlp, int get_off)
2383 {
2384         struct s2io_nic *nic = fifo_data->nic;
2385         struct sk_buff *skb;
2386         struct TxD *txds;
2387         u16 j, frg_cnt;
2388
2389         txds = txdlp;
2390         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391                 pci_unmap_single(nic->pdev, (dma_addr_t)
2392                         txds->Buffer_Pointer, sizeof(u64),
2393                         PCI_DMA_TODEVICE);
2394                 txds++;
2395         }
2396
2397         skb = (struct sk_buff *) ((unsigned long)
2398                         txds->Host_Control);
2399         if (!skb) {
2400                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2401                 return NULL;
2402         }
2403         pci_unmap_single(nic->pdev, (dma_addr_t)
2404                          txds->Buffer_Pointer,
2405                          skb->len - skb->data_len,
2406                          PCI_DMA_TODEVICE);
2407         frg_cnt = skb_shinfo(skb)->nr_frags;
2408         if (frg_cnt) {
2409                 txds++;
2410                 for (j = 0; j < frg_cnt; j++, txds++) {
2411                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2412                         if (!txds->Buffer_Pointer)
2413                                 break;
2414                         pci_unmap_page(nic->pdev, (dma_addr_t)
2415                                         txds->Buffer_Pointer,
2416                                        frag->size, PCI_DMA_TODEVICE);
2417                 }
2418         }
2419         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2420         return(skb);
2421 }
2422
2423 /**
2424  *  free_tx_buffers - Free all queued Tx buffers
2425  *  @nic : device private variable.
2426  *  Description:
2427  *  Free all queued Tx buffers.
2428  *  Return Value: void
2429 */
2430
2431 static void free_tx_buffers(struct s2io_nic *nic)
2432 {
2433         struct net_device *dev = nic->dev;
2434         struct sk_buff *skb;
2435         struct TxD *txdp;
2436         int i, j;
2437         struct mac_info *mac_control;
2438         struct config_param *config;
2439         int cnt = 0;
2440
2441         mac_control = &nic->mac_control;
2442         config = &nic->config;
2443
2444         for (i = 0; i < config->tx_fifo_num; i++) {
2445                 unsigned long flags;
2446                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2447                 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2448                         txdp = (struct TxD *) \
2449                         mac_control->fifos[i].list_info[j].list_virt_addr;
2450                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2451                         if (skb) {
2452                                 nic->mac_control.stats_info->sw_stat.mem_freed
2453                                         += skb->truesize;
2454                                 dev_kfree_skb(skb);
2455                                 cnt++;
2456                         }
2457                 }
2458                 DBG_PRINT(INTR_DBG,
2459                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2460                           dev->name, cnt, i);
2461                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2462                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2463                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2464         }
2465 }
2466
2467 /**
2468  *   stop_nic -  To stop the nic
2469  *   @nic ; device private variable.
2470  *   Description:
2471  *   This function does exactly the opposite of what the start_nic()
2472  *   function does. This function is called to stop the device.
2473  *   Return Value:
2474  *   void.
2475  */
2476
2477 static void stop_nic(struct s2io_nic *nic)
2478 {
2479         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2480         register u64 val64 = 0;
2481         u16 interruptible;
2482         struct mac_info *mac_control;
2483         struct config_param *config;
2484
2485         mac_control = &nic->mac_control;
2486         config = &nic->config;
2487
2488         /*  Disable all interrupts */
2489         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2490         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2491         interruptible |= TX_PIC_INTR;
2492         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2493
2494         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2495         val64 = readq(&bar0->adapter_control);
2496         val64 &= ~(ADAPTER_CNTL_EN);
2497         writeq(val64, &bar0->adapter_control);
2498 }
2499
2500 /**
2501  *  fill_rx_buffers - Allocates the Rx side skbs
2502  *  @nic:  device private variable
2503  *  @ring_no: ring number
2504  *  Description:
2505  *  The function allocates Rx side skbs and puts the physical
2506  *  address of these buffers into the RxD buffer pointers, so that the NIC
2507  *  can DMA the received frame into these locations.
2508  *  The NIC supports 3 receive modes, viz
2509  *  1. single buffer,
2510  *  2. three buffer and
2511  *  3. Five buffer modes.
2512  *  Each mode defines how many fragments the received frame will be split
2513  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2514  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2515  *  is split into 3 fragments. As of now only single buffer mode is
2516  *  supported.
2517  *   Return Value:
2518  *  SUCCESS on success or an appropriate -ve value on failure.
2519  */
2520
2521 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2522 {
2523         struct net_device *dev = nic->dev;
2524         struct sk_buff *skb;
2525         struct RxD_t *rxdp;
2526         int off, off1, size, block_no, block_no1;
2527         u32 alloc_tab = 0;
2528         u32 alloc_cnt;
2529         struct mac_info *mac_control;
2530         struct config_param *config;
2531         u64 tmp;
2532         struct buffAdd *ba;
2533         struct RxD_t *first_rxdp = NULL;
2534         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2535         struct RxD1 *rxdp1;
2536         struct RxD3 *rxdp3;
2537         struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2538
2539         mac_control = &nic->mac_control;
2540         config = &nic->config;
2541         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2542             atomic_read(&nic->rx_bufs_left[ring_no]);
2543
2544         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2545         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2546         while (alloc_tab < alloc_cnt) {
2547                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2548                     block_index;
2549                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2550
2551                 rxdp = mac_control->rings[ring_no].
2552                                 rx_blocks[block_no].rxds[off].virt_addr;
2553
2554                 if ((block_no == block_no1) && (off == off1) &&
2555                                         (rxdp->Host_Control)) {
2556                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2557                                   dev->name);
2558                         DBG_PRINT(INTR_DBG, " info equated\n");
2559                         goto end;
2560                 }
2561                 if (off && (off == rxd_count[nic->rxd_mode])) {
2562                         mac_control->rings[ring_no].rx_curr_put_info.
2563                             block_index++;
2564                         if (mac_control->rings[ring_no].rx_curr_put_info.
2565                             block_index == mac_control->rings[ring_no].
2566                                         block_count)
2567                                 mac_control->rings[ring_no].rx_curr_put_info.
2568                                         block_index = 0;
2569                         block_no = mac_control->rings[ring_no].
2570                                         rx_curr_put_info.block_index;
2571                         if (off == rxd_count[nic->rxd_mode])
2572                                 off = 0;
2573                         mac_control->rings[ring_no].rx_curr_put_info.
2574                                 offset = off;
2575                         rxdp = mac_control->rings[ring_no].
2576                                 rx_blocks[block_no].block_virt_addr;
2577                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2578                                   dev->name, rxdp);
2579                 }
2580
2581                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2582                         ((nic->rxd_mode == RXD_MODE_3B) &&
2583                                 (rxdp->Control_2 & s2BIT(0)))) {
2584                         mac_control->rings[ring_no].rx_curr_put_info.
2585                                         offset = off;
2586                         goto end;
2587                 }
2588                 /* calculate size of skb based on ring mode */
2589                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2590                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2591                 if (nic->rxd_mode == RXD_MODE_1)
2592                         size += NET_IP_ALIGN;
2593                 else
2594                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2595
2596                 /* allocate skb */
2597                 skb = dev_alloc_skb(size);
2598                 if(!skb) {
2599                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2600                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2601                         if (first_rxdp) {
2602                                 wmb();
2603                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2604                         }
2605                         nic->mac_control.stats_info->sw_stat. \
2606                                 mem_alloc_fail_cnt++;
2607                         return -ENOMEM ;
2608                 }
2609                 nic->mac_control.stats_info->sw_stat.mem_allocated
2610                         += skb->truesize;
2611                 if (nic->rxd_mode == RXD_MODE_1) {
2612                         /* 1 buffer mode - normal operation mode */
2613                         rxdp1 = (struct RxD1*)rxdp;
2614                         memset(rxdp, 0, sizeof(struct RxD1));
2615                         skb_reserve(skb, NET_IP_ALIGN);
2616                         rxdp1->Buffer0_ptr = pci_map_single
2617                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2618                                 PCI_DMA_FROMDEVICE);
2619                         if( (rxdp1->Buffer0_ptr == 0) ||
2620                                 (rxdp1->Buffer0_ptr ==
2621                                 DMA_ERROR_CODE))
2622                                 goto pci_map_failed;
2623
2624                         rxdp->Control_2 =
2625                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2626
2627                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2628                         /*
2629                          * 2 buffer mode -
2630                          * 2 buffer mode provides 128
2631                          * byte aligned receive buffers.
2632                          */
2633
2634                         rxdp3 = (struct RxD3*)rxdp;
2635                         /* save buffer pointers to avoid frequent dma mapping */
2636                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2637                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2638                         memset(rxdp, 0, sizeof(struct RxD3));
2639                         /* restore the buffer pointers for dma sync*/
2640                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2641                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2642
2643                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2644                         skb_reserve(skb, BUF0_LEN);
2645                         tmp = (u64)(unsigned long) skb->data;
2646                         tmp += ALIGN_SIZE;
2647                         tmp &= ~ALIGN_SIZE;
2648                         skb->data = (void *) (unsigned long)tmp;
2649                         skb_reset_tail_pointer(skb);
2650
2651                         if (!(rxdp3->Buffer0_ptr))
2652                                 rxdp3->Buffer0_ptr =
2653                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2654                                            PCI_DMA_FROMDEVICE);
2655                         else
2656                                 pci_dma_sync_single_for_device(nic->pdev,
2657                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2658                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2659                         if( (rxdp3->Buffer0_ptr == 0) ||
2660                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2661                                 goto pci_map_failed;
2662
2663                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2664                         if (nic->rxd_mode == RXD_MODE_3B) {
2665                                 /* Two buffer mode */
2666
2667                                 /*
2668                                  * Buffer2 will have L3/L4 header plus
2669                                  * L4 payload
2670                                  */
2671                                 rxdp3->Buffer2_ptr = pci_map_single
2672                                 (nic->pdev, skb->data, dev->mtu + 4,
2673                                                 PCI_DMA_FROMDEVICE);
2674
2675                                 if( (rxdp3->Buffer2_ptr == 0) ||
2676                                         (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2677                                         goto pci_map_failed;
2678
2679                                 rxdp3->Buffer1_ptr =
2680                                                 pci_map_single(nic->pdev,
2681                                                 ba->ba_1, BUF1_LEN,
2682                                                 PCI_DMA_FROMDEVICE);
2683                                 if( (rxdp3->Buffer1_ptr == 0) ||
2684                                         (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2685                                         pci_unmap_single
2686                                                 (nic->pdev,
2687                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
2688                                                 dev->mtu + 4,
2689                                                 PCI_DMA_FROMDEVICE);
2690                                         goto pci_map_failed;
2691                                 }
2692                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2693                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2694                                                                 (dev->mtu + 4);
2695                         }
2696                         rxdp->Control_2 |= s2BIT(0);
2697                 }
2698                 rxdp->Host_Control = (unsigned long) (skb);
2699                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2700                         rxdp->Control_1 |= RXD_OWN_XENA;
2701                 off++;
2702                 if (off == (rxd_count[nic->rxd_mode] + 1))
2703                         off = 0;
2704                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2705
2706                 rxdp->Control_2 |= SET_RXD_MARKER;
2707                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2708                         if (first_rxdp) {
2709                                 wmb();
2710                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2711                         }
2712                         first_rxdp = rxdp;
2713                 }
2714                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2715                 alloc_tab++;
2716         }
2717
2718       end:
2719         /* Transfer ownership of first descriptor to adapter just before
2720          * exiting. Before that, use memory barrier so that ownership
2721          * and other fields are seen by adapter correctly.
2722          */
2723         if (first_rxdp) {
2724                 wmb();
2725                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2726         }
2727
2728         return SUCCESS;
2729 pci_map_failed:
2730         stats->pci_map_fail_cnt++;
2731         stats->mem_freed += skb->truesize;
2732         dev_kfree_skb_irq(skb);
2733         return -ENOMEM;
2734 }
2735
2736 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2737 {
2738         struct net_device *dev = sp->dev;
2739         int j;
2740         struct sk_buff *skb;
2741         struct RxD_t *rxdp;
2742         struct mac_info *mac_control;
2743         struct buffAdd *ba;
2744         struct RxD1 *rxdp1;
2745         struct RxD3 *rxdp3;
2746
2747         mac_control = &sp->mac_control;
2748         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2749                 rxdp = mac_control->rings[ring_no].
2750                                 rx_blocks[blk].rxds[j].virt_addr;
2751                 skb = (struct sk_buff *)
2752                         ((unsigned long) rxdp->Host_Control);
2753                 if (!skb) {
2754                         continue;
2755                 }
2756                 if (sp->rxd_mode == RXD_MODE_1) {
2757                         rxdp1 = (struct RxD1*)rxdp;
2758                         pci_unmap_single(sp->pdev, (dma_addr_t)
2759                                 rxdp1->Buffer0_ptr,
2760                                 dev->mtu +
2761                                 HEADER_ETHERNET_II_802_3_SIZE
2762                                 + HEADER_802_2_SIZE +
2763                                 HEADER_SNAP_SIZE,
2764                                 PCI_DMA_FROMDEVICE);
2765                         memset(rxdp, 0, sizeof(struct RxD1));
2766                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2767                         rxdp3 = (struct RxD3*)rxdp;
2768                         ba = &mac_control->rings[ring_no].
2769                                 ba[blk][j];
2770                         pci_unmap_single(sp->pdev, (dma_addr_t)
2771                                 rxdp3->Buffer0_ptr,
2772                                 BUF0_LEN,
2773                                 PCI_DMA_FROMDEVICE);
2774                         pci_unmap_single(sp->pdev, (dma_addr_t)
2775                                 rxdp3->Buffer1_ptr,
2776                                 BUF1_LEN,
2777                                 PCI_DMA_FROMDEVICE);
2778                         pci_unmap_single(sp->pdev, (dma_addr_t)
2779                                 rxdp3->Buffer2_ptr,
2780                                 dev->mtu + 4,
2781                                 PCI_DMA_FROMDEVICE);
2782                         memset(rxdp, 0, sizeof(struct RxD3));
2783                 }
2784                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2785                 dev_kfree_skb(skb);
2786                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2787         }
2788 }
2789
2790 /**
2791  *  free_rx_buffers - Frees all Rx buffers
2792  *  @sp: device private variable.
2793  *  Description:
2794  *  This function will free all Rx buffers allocated by host.
2795  *  Return Value:
2796  *  NONE.
2797  */
2798
2799 static void free_rx_buffers(struct s2io_nic *sp)
2800 {
2801         struct net_device *dev = sp->dev;
2802         int i, blk = 0, buf_cnt = 0;
2803         struct mac_info *mac_control;
2804         struct config_param *config;
2805
2806         mac_control = &sp->mac_control;
2807         config = &sp->config;
2808
2809         for (i = 0; i < config->rx_ring_num; i++) {
2810                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2811                         free_rxd_blk(sp,i,blk);
2812
2813                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2814                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2815                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2816                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2817                 atomic_set(&sp->rx_bufs_left[i], 0);
2818                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2819                           dev->name, buf_cnt, i);
2820         }
2821 }
2822
2823 /**
2824  * s2io_poll - Rx interrupt handler for NAPI support
2825  * @napi : pointer to the napi structure.
2826  * @budget : The number of packets that were budgeted to be processed
2827  * during  one pass through the 'Poll" function.
2828  * Description:
2829  * Comes into picture only if NAPI support has been incorporated. It does
2830  * the same thing that rx_intr_handler does, but not in a interrupt context
2831  * also It will process only a given number of packets.
2832  * Return value:
2833  * 0 on success and 1 if there are No Rx packets to be processed.
2834  */
2835
2836 static int s2io_poll(struct napi_struct *napi, int budget)
2837 {
2838         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2839         struct net_device *dev = nic->dev;
2840         int pkt_cnt = 0, org_pkts_to_process;
2841         struct mac_info *mac_control;
2842         struct config_param *config;
2843         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2844         int i;
2845
2846         mac_control = &nic->mac_control;
2847         config = &nic->config;
2848
2849         nic->pkts_to_process = budget;
2850         org_pkts_to_process = nic->pkts_to_process;
2851
2852         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2853         readl(&bar0->rx_traffic_int);
2854
2855         for (i = 0; i < config->rx_ring_num; i++) {
2856                 rx_intr_handler(&mac_control->rings[i]);
2857                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2858                 if (!nic->pkts_to_process) {
2859                         /* Quota for the current iteration has been met */
2860                         goto no_rx;
2861                 }
2862         }
2863
2864         netif_rx_complete(dev, napi);
2865
2866         for (i = 0; i < config->rx_ring_num; i++) {
2867                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2868                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2869                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2870                         break;
2871                 }
2872         }
2873         /* Re enable the Rx interrupts. */
2874         writeq(0x0, &bar0->rx_traffic_mask);
2875         readl(&bar0->rx_traffic_mask);
2876         return pkt_cnt;
2877
2878 no_rx:
2879         for (i = 0; i < config->rx_ring_num; i++) {
2880                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2881                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2882                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2883                         break;
2884                 }
2885         }
2886         return pkt_cnt;
2887 }
2888
2889 #ifdef CONFIG_NET_POLL_CONTROLLER
2890 /**
2891  * s2io_netpoll - netpoll event handler entry point
2892  * @dev : pointer to the device structure.
2893  * Description:
2894  *      This function will be called by upper layer to check for events on the
2895  * interface in situations where interrupts are disabled. It is used for
2896  * specific in-kernel networking tasks, such as remote consoles and kernel
2897  * debugging over the network (example netdump in RedHat).
2898  */
2899 static void s2io_netpoll(struct net_device *dev)
2900 {
2901         struct s2io_nic *nic = dev->priv;
2902         struct mac_info *mac_control;
2903         struct config_param *config;
2904         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2905         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2906         int i;
2907
2908         if (pci_channel_offline(nic->pdev))
2909                 return;
2910
2911         disable_irq(dev->irq);
2912
2913         mac_control = &nic->mac_control;
2914         config = &nic->config;
2915
2916         writeq(val64, &bar0->rx_traffic_int);
2917         writeq(val64, &bar0->tx_traffic_int);
2918
2919         /* we need to free up the transmitted skbufs or else netpoll will
2920          * run out of skbs and will fail and eventually netpoll application such
2921          * as netdump will fail.
2922          */
2923         for (i = 0; i < config->tx_fifo_num; i++)
2924                 tx_intr_handler(&mac_control->fifos[i]);
2925
2926         /* check for received packet and indicate up to network */
2927         for (i = 0; i < config->rx_ring_num; i++)
2928                 rx_intr_handler(&mac_control->rings[i]);
2929
2930         for (i = 0; i < config->rx_ring_num; i++) {
2931                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2932                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2933                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2934                         break;
2935                 }
2936         }
2937         enable_irq(dev->irq);
2938         return;
2939 }
2940 #endif
2941
2942 /**
2943  *  rx_intr_handler - Rx interrupt handler
2944  *  @nic: device private variable.
2945  *  Description:
2946  *  If the interrupt is because of a received frame or if the
2947  *  receive ring contains fresh as yet un-processed frames,this function is
2948  *  called. It picks out the RxD at which place the last Rx processing had
2949  *  stopped and sends the skb to the OSM's Rx handler and then increments
2950  *  the offset.
2951  *  Return Value:
2952  *  NONE.
2953  */
2954 static void rx_intr_handler(struct ring_info *ring_data)
2955 {
2956         struct s2io_nic *nic = ring_data->nic;
2957         struct net_device *dev = (struct net_device *) nic->dev;
2958         int get_block, put_block;
2959         struct rx_curr_get_info get_info, put_info;
2960         struct RxD_t *rxdp;
2961         struct sk_buff *skb;
2962         int pkt_cnt = 0;
2963         int i;
2964         struct RxD1* rxdp1;
2965         struct RxD3* rxdp3;
2966
2967         get_info = ring_data->rx_curr_get_info;
2968         get_block = get_info.block_index;
2969         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2970         put_block = put_info.block_index;
2971         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2972
2973         while (RXD_IS_UP2DT(rxdp)) {
2974                 /*
2975                  * If your are next to put index then it's
2976                  * FIFO full condition
2977                  */
2978                 if ((get_block == put_block) &&
2979                     (get_info.offset + 1) == put_info.offset) {
2980                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2981                         break;
2982                 }
2983                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2984                 if (skb == NULL) {
2985                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2986                                   dev->name);
2987                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2988                         return;
2989                 }
2990                 if (nic->rxd_mode == RXD_MODE_1) {
2991                         rxdp1 = (struct RxD1*)rxdp;
2992                         pci_unmap_single(nic->pdev, (dma_addr_t)
2993                                 rxdp1->Buffer0_ptr,
2994                                 dev->mtu +
2995                                 HEADER_ETHERNET_II_802_3_SIZE +
2996                                 HEADER_802_2_SIZE +
2997                                 HEADER_SNAP_SIZE,
2998                                 PCI_DMA_FROMDEVICE);
2999                 } else if (nic->rxd_mode == RXD_MODE_3B) {
3000                         rxdp3 = (struct RxD3*)rxdp;
3001                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
3002                                 rxdp3->Buffer0_ptr,
3003                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
3004                         pci_unmap_single(nic->pdev, (dma_addr_t)
3005                                 rxdp3->Buffer2_ptr,
3006                                 dev->mtu + 4,
3007                                 PCI_DMA_FROMDEVICE);
3008                 }
3009                 prefetch(skb->data);
3010                 rx_osm_handler(ring_data, rxdp);
3011                 get_info.offset++;
3012                 ring_data->rx_curr_get_info.offset = get_info.offset;
3013                 rxdp = ring_data->rx_blocks[get_block].
3014                                 rxds[get_info.offset].virt_addr;
3015                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
3016                         get_info.offset = 0;
3017                         ring_data->rx_curr_get_info.offset = get_info.offset;
3018                         get_block++;
3019                         if (get_block == ring_data->block_count)
3020                                 get_block = 0;
3021                         ring_data->rx_curr_get_info.block_index = get_block;
3022                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3023                 }
3024
3025                 nic->pkts_to_process -= 1;
3026                 if ((napi) && (!nic->pkts_to_process))
3027                         break;
3028                 pkt_cnt++;
3029                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3030                         break;
3031         }
3032         if (nic->lro) {
3033                 /* Clear all LRO sessions before exiting */
3034                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3035                         struct lro *lro = &nic->lro0_n[i];
3036                         if (lro->in_use) {
3037                                 update_L3L4_header(nic, lro);
3038                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3039                                 clear_lro_session(lro);
3040                         }
3041                 }
3042         }
3043 }
3044
3045 /**
3046  *  tx_intr_handler - Transmit interrupt handler
3047  *  @nic : device private variable
3048  *  Description:
3049  *  If an interrupt was raised to indicate DMA complete of the
3050  *  Tx packet, this function is called. It identifies the last TxD
3051  *  whose buffer was freed and frees all skbs whose data have already
3052  *  DMA'ed into the NICs internal memory.
3053  *  Return Value:
3054  *  NONE
3055  */
3056
3057 static void tx_intr_handler(struct fifo_info *fifo_data)
3058 {
3059         struct s2io_nic *nic = fifo_data->nic;
3060         struct tx_curr_get_info get_info, put_info;
3061         struct sk_buff *skb = NULL;
3062         struct TxD *txdlp;
3063         int pkt_cnt = 0;
3064         unsigned long flags = 0;
3065         u8 err_mask;
3066
3067         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3068                         return;
3069
3070         get_info = fifo_data->tx_curr_get_info;
3071         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3072         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3073             list_virt_addr;
3074         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3075                (get_info.offset != put_info.offset) &&
3076                (txdlp->Host_Control)) {
3077                 /* Check for TxD errors */
3078                 if (txdlp->Control_1 & TXD_T_CODE) {
3079                         unsigned long long err;
3080                         err = txdlp->Control_1 & TXD_T_CODE;
3081                         if (err & 0x1) {
3082                                 nic->mac_control.stats_info->sw_stat.
3083                                                 parity_err_cnt++;
3084                         }
3085
3086                         /* update t_code statistics */
3087                         err_mask = err >> 48;
3088                         switch(err_mask) {
3089                                 case 2:
3090                                         nic->mac_control.stats_info->sw_stat.
3091                                                         tx_buf_abort_cnt++;
3092                                 break;
3093
3094                                 case 3:
3095                                         nic->mac_control.stats_info->sw_stat.
3096                                                         tx_desc_abort_cnt++;
3097                                 break;
3098
3099                                 case 7:
3100                                         nic->mac_control.stats_info->sw_stat.
3101                                                         tx_parity_err_cnt++;
3102                                 break;
3103
3104                                 case 10:
3105                                         nic->mac_control.stats_info->sw_stat.
3106                                                         tx_link_loss_cnt++;
3107                                 break;
3108
3109                                 case 15:
3110                                         nic->mac_control.stats_info->sw_stat.
3111                                                         tx_list_proc_err_cnt++;
3112                                 break;
3113                         }
3114                 }
3115
3116                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3117                 if (skb == NULL) {
3118                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3119                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
3120                         __FUNCTION__);
3121                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3122                         return;
3123                 }
3124                 pkt_cnt++;
3125
3126                 /* Updating the statistics block */
3127                 nic->stats.tx_bytes += skb->len;
3128                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3129                 dev_kfree_skb_irq(skb);
3130
3131                 get_info.offset++;
3132                 if (get_info.offset == get_info.fifo_len + 1)
3133                         get_info.offset = 0;
3134                 txdlp = (struct TxD *) fifo_data->list_info
3135                     [get_info.offset].list_virt_addr;
3136                 fifo_data->tx_curr_get_info.offset =
3137                     get_info.offset;
3138         }
3139
3140         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3141
3142         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3143 }
3144
3145 /**
3146  *  s2io_mdio_write - Function to write in to MDIO registers
3147  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3148  *  @addr     : address value
3149  *  @value    : data value
3150  *  @dev      : pointer to net_device structure
3151  *  Description:
3152  *  This function is used to write values to the MDIO registers
3153  *  NONE
3154  */
3155 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3156 {
3157         u64 val64 = 0x0;
3158         struct s2io_nic *sp = dev->priv;
3159         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3160
3161         //address transaction
3162         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3163                         | MDIO_MMD_DEV_ADDR(mmd_type)
3164                         | MDIO_MMS_PRT_ADDR(0x0);
3165         writeq(val64, &bar0->mdio_control);
3166         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3167         writeq(val64, &bar0->mdio_control);
3168         udelay(100);
3169
3170         //Data transaction
3171         val64 = 0x0;
3172         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3173                         | MDIO_MMD_DEV_ADDR(mmd_type)
3174                         | MDIO_MMS_PRT_ADDR(0x0)
3175                         | MDIO_MDIO_DATA(value)
3176                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3177         writeq(val64, &bar0->mdio_control);
3178         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3179         writeq(val64, &bar0->mdio_control);
3180         udelay(100);
3181
3182         val64 = 0x0;
3183         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3184         | MDIO_MMD_DEV_ADDR(mmd_type)
3185         | MDIO_MMS_PRT_ADDR(0x0)
3186         | MDIO_OP(MDIO_OP_READ_TRANS);
3187         writeq(val64, &bar0->mdio_control);
3188         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3189         writeq(val64, &bar0->mdio_control);
3190         udelay(100);
3191
3192 }
3193
3194 /**
3195  *  s2io_mdio_read - Function to write in to MDIO registers
3196  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3197  *  @addr     : address value
3198  *  @dev      : pointer to net_device structure
3199  *  Description:
3200  *  This function is used to read values to the MDIO registers
3201  *  NONE
3202  */
3203 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3204 {
3205         u64 val64 = 0x0;
3206         u64 rval64 = 0x0;
3207         struct s2io_nic *sp = dev->priv;
3208         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3209
3210         /* address transaction */
3211         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3212                         | MDIO_MMD_DEV_ADDR(mmd_type)
3213                         | MDIO_MMS_PRT_ADDR(0x0);
3214         writeq(val64, &bar0->mdio_control);
3215         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3216         writeq(val64, &bar0->mdio_control);
3217         udelay(100);
3218
3219         /* Data transaction */
3220         val64 = 0x0;
3221         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3222                         | MDIO_MMD_DEV_ADDR(mmd_type)
3223                         | MDIO_MMS_PRT_ADDR(0x0)
3224                         | MDIO_OP(MDIO_OP_READ_TRANS);
3225         writeq(val64, &bar0->mdio_control);
3226         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3227         writeq(val64, &bar0->mdio_control);
3228         udelay(100);
3229
3230         /* Read the value from regs */
3231         rval64 = readq(&bar0->mdio_control);
3232         rval64 = rval64 & 0xFFFF0000;
3233         rval64 = rval64 >> 16;
3234         return rval64;
3235 }
3236 /**
3237  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3238  *  @counter      : couter value to be updated
3239  *  @flag         : flag to indicate the status
3240  *  @type         : counter type
3241  *  Description:
3242  *  This function is to check the status of the xpak counters value
3243  *  NONE
3244  */
3245
3246 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3247 {
3248         u64 mask = 0x3;
3249         u64 val64;
3250         int i;
3251         for(i = 0; i <index; i++)
3252                 mask = mask << 0x2;
3253
3254         if(flag > 0)
3255         {
3256                 *counter = *counter + 1;
3257                 val64 = *regs_stat & mask;
3258                 val64 = val64 >> (index * 0x2);
3259                 val64 = val64 + 1;
3260                 if(val64 == 3)
3261                 {
3262                         switch(type)
3263                         {
3264                         case 1:
3265                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3266                                           "service. Excessive temperatures may "
3267                                           "result in premature transceiver "
3268                                           "failure \n");
3269                         break;
3270                         case 2:
3271                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3272                                           "service Excessive bias currents may "
3273                                           "indicate imminent laser diode "
3274                                           "failure \n");
3275                         break;
3276                         case 3:
3277                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3278                                           "service Excessive laser output "
3279                                           "power may saturate far-end "
3280                                           "receiver\n");
3281                         break;
3282                         default:
3283                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3284                                           "type \n");
3285                         }
3286                         val64 = 0x0;
3287                 }
3288                 val64 = val64 << (index * 0x2);
3289                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3290
3291         } else {
3292                 *regs_stat = *regs_stat & (~mask);
3293         }
3294 }
3295
3296 /**
3297  *  s2io_updt_xpak_counter - Function to update the xpak counters
3298  *  @dev         : pointer to net_device struct
3299  *  Description:
3300  *  This function is to upate the status of the xpak counters value
3301  *  NONE
3302  */
3303 static void s2io_updt_xpak_counter(struct net_device *dev)
3304 {
3305         u16 flag  = 0x0;
3306         u16 type  = 0x0;
3307         u16 val16 = 0x0;
3308         u64 val64 = 0x0;
3309         u64 addr  = 0x0;
3310
3311         struct s2io_nic *sp = dev->priv;
3312         struct stat_block *stat_info = sp->mac_control.stats_info;
3313
3314         /* Check the communication with the MDIO slave */
3315         addr = 0x0000;
3316         val64 = 0x0;
3317         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3318         if((val64 == 0xFFFF) || (val64 == 0x0000))
3319         {
3320                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3321                           "Returned %llx\n", (unsigned long long)val64);
3322                 return;
3323         }
3324
3325         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3326         if(val64 != 0x2040)
3327         {
3328                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3329                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3330                           (unsigned long long)val64);
3331                 return;
3332         }
3333
3334         /* Loading the DOM register to MDIO register */
3335         addr = 0xA100;
3336         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3337         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3338
3339         /* Reading the Alarm flags */
3340         addr = 0xA070;
3341         val64 = 0x0;
3342         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3343
3344         flag = CHECKBIT(val64, 0x7);
3345         type = 1;
3346         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3347                                 &stat_info->xpak_stat.xpak_regs_stat,
3348                                 0x0, flag, type);
3349
3350         if(CHECKBIT(val64, 0x6))
3351                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3352
3353         flag = CHECKBIT(val64, 0x3);
3354         type = 2;
3355         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3356                                 &stat_info->xpak_stat.xpak_regs_stat,
3357                                 0x2, flag, type);
3358
3359         if(CHECKBIT(val64, 0x2))
3360                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3361
3362         flag = CHECKBIT(val64, 0x1);
3363         type = 3;
3364         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3365                                 &stat_info->xpak_stat.xpak_regs_stat,
3366                                 0x4, flag, type);
3367
3368         if(CHECKBIT(val64, 0x0))
3369                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3370
3371         /* Reading the Warning flags */
3372         addr = 0xA074;
3373         val64 = 0x0;
3374         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3375
3376         if(CHECKBIT(val64, 0x7))
3377                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3378
3379         if(CHECKBIT(val64, 0x6))
3380                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3381
3382         if(CHECKBIT(val64, 0x3))
3383                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3384
3385         if(CHECKBIT(val64, 0x2))
3386                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3387
3388         if(CHECKBIT(val64, 0x1))
3389                 stat_info->xpak_stat.warn_laser_output_power_high++;
3390
3391         if(CHECKBIT(val64, 0x0))
3392                 stat_info->xpak_stat.warn_laser_output_power_low++;
3393 }
3394
3395 /**
3396  *  wait_for_cmd_complete - waits for a command to complete.
3397  *  @sp : private member of the device structure, which is a pointer to the
3398  *  s2io_nic structure.
3399  *  Description: Function that waits for a command to Write into RMAC
3400  *  ADDR DATA registers to be completed and returns either success or
3401  *  error depending on whether the command was complete or not.
3402  *  Return value:
3403  *   SUCCESS on success and FAILURE on failure.
3404  */
3405
3406 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3407                                 int bit_state)
3408 {
3409         int ret = FAILURE, cnt = 0, delay = 1;
3410         u64 val64;
3411
3412         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3413                 return FAILURE;
3414
3415         do {
3416                 val64 = readq(addr);
3417                 if (bit_state == S2IO_BIT_RESET) {
3418                         if (!(val64 & busy_bit)) {
3419                                 ret = SUCCESS;
3420                                 break;
3421                         }
3422                 } else {
3423                         if (!(val64 & busy_bit)) {
3424                                 ret = SUCCESS;
3425                                 break;
3426                         }
3427                 }
3428
3429                 if(in_interrupt())
3430                         mdelay(delay);
3431                 else
3432                         msleep(delay);
3433
3434                 if (++cnt >= 10)
3435                         delay = 50;
3436         } while (cnt < 20);
3437         return ret;
3438 }
3439 /*
3440  * check_pci_device_id - Checks if the device id is supported
3441  * @id : device id
3442  * Description: Function to check if the pci device id is supported by driver.
3443  * Return value: Actual device id if supported else PCI_ANY_ID
3444  */
3445 static u16 check_pci_device_id(u16 id)
3446 {
3447         switch (id) {
3448         case PCI_DEVICE_ID_HERC_WIN:
3449         case PCI_DEVICE_ID_HERC_UNI:
3450                 return XFRAME_II_DEVICE;
3451         case PCI_DEVICE_ID_S2IO_UNI:
3452         case PCI_DEVICE_ID_S2IO_WIN:
3453                 return XFRAME_I_DEVICE;
3454         default:
3455                 return PCI_ANY_ID;
3456         }
3457 }
3458
3459 /**
3460  *  s2io_reset - Resets the card.
3461  *  @sp : private member of the device structure.
3462  *  Description: Function to Reset the card. This function then also
3463  *  restores the previously saved PCI configuration space registers as
3464  *  the card reset also resets the configuration space.
3465  *  Return value:
3466  *  void.
3467  */
3468
3469 static void s2io_reset(struct s2io_nic * sp)
3470 {
3471         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3472         u64 val64;
3473         u16 subid, pci_cmd;
3474         int i;
3475         u16 val16;
3476         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3477         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3478
3479         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3480                         __FUNCTION__, sp->dev->name);
3481
3482         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3483         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3484
3485         val64 = SW_RESET_ALL;
3486         writeq(val64, &bar0->sw_reset);
3487         if (strstr(sp->product_name, "CX4")) {
3488                 msleep(750);
3489         }
3490         msleep(250);
3491         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3492
3493                 /* Restore the PCI state saved during initialization. */
3494                 pci_restore_state(sp->pdev);
3495                 pci_read_config_word(sp->pdev, 0x2, &val16);
3496                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3497                         break;
3498                 msleep(200);
3499         }
3500
3501         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3502                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3503         }
3504
3505         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3506
3507         s2io_init_pci(sp);
3508
3509         /* Set swapper to enable I/O register access */
3510         s2io_set_swapper(sp);
3511
3512         /* restore mac_addr entries */
3513         do_s2io_restore_unicast_mc(sp);
3514
3515         /* Restore the MSIX table entries from local variables */
3516         restore_xmsi_data(sp);
3517
3518         /* Clear certain PCI/PCI-X fields after reset */
3519         if (sp->device_type == XFRAME_II_DEVICE) {
3520                 /* Clear "detected parity error" bit */
3521                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3522
3523                 /* Clearing PCIX Ecc status register */
3524                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3525
3526                 /* Clearing PCI_STATUS error reflected here */
3527                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3528         }
3529
3530         /* Reset device statistics maintained by OS */
3531         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3532
3533         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3534         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3535         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3536         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3537         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3538         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3539         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3540         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3541         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3542         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3543         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3544         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3545         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3546         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3547         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3548         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3549         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3550         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3551         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3552
3553         /* SXE-002: Configure link and activity LED to turn it off */
3554         subid = sp->pdev->subsystem_device;
3555         if (((subid & 0xFF) >= 0x07) &&
3556             (sp->device_type == XFRAME_I_DEVICE)) {
3557                 val64 = readq(&bar0->gpio_control);
3558                 val64 |= 0x0000800000000000ULL;
3559                 writeq(val64, &bar0->gpio_control);
3560                 val64 = 0x0411040400000000ULL;
3561                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3562         }
3563
3564         /*
3565          * Clear spurious ECC interrupts that would have occured on
3566          * XFRAME II cards after reset.
3567          */
3568         if (sp->device_type == XFRAME_II_DEVICE) {
3569                 val64 = readq(&bar0->pcc_err_reg);
3570                 writeq(val64, &bar0->pcc_err_reg);
3571         }
3572
3573         sp->device_enabled_once = FALSE;
3574 }
3575
3576 /**
3577  *  s2io_set_swapper - to set the swapper controle on the card
3578  *  @sp : private member of the device structure,
3579  *  pointer to the s2io_nic structure.
3580  *  Description: Function to set the swapper control on the card
3581  *  correctly depending on the 'endianness' of the system.
3582  *  Return value:
3583  *  SUCCESS on success and FAILURE on failure.
3584  */
3585
3586 static int s2io_set_swapper(struct s2io_nic * sp)
3587 {
3588         struct net_device *dev = sp->dev;
3589         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3590         u64 val64, valt, valr;
3591
3592         /*
3593          * Set proper endian settings and verify the same by reading
3594          * the PIF Feed-back register.
3595          */
3596
3597         val64 = readq(&bar0->pif_rd_swapper_fb);
3598         if (val64 != 0x0123456789ABCDEFULL) {
3599                 int i = 0;
3600                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3601                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3602                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3603                                 0};                     /* FE=0, SE=0 */
3604
3605                 while(i<4) {
3606                         writeq(value[i], &bar0->swapper_ctrl);
3607                         val64 = readq(&bar0->pif_rd_swapper_fb);
3608                         if (val64 == 0x0123456789ABCDEFULL)
3609                                 break;
3610                         i++;
3611                 }
3612                 if (i == 4) {
3613                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3614                                 dev->name);
3615                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3616                                 (unsigned long long) val64);
3617                         return FAILURE;
3618                 }
3619                 valr = value[i];
3620         } else {
3621                 valr = readq(&bar0->swapper_ctrl);
3622         }
3623
3624         valt = 0x0123456789ABCDEFULL;
3625         writeq(valt, &bar0->xmsi_address);
3626         val64 = readq(&bar0->xmsi_address);
3627
3628         if(val64 != valt) {
3629                 int i = 0;
3630                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3631                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3632                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3633                                 0};                     /* FE=0, SE=0 */
3634
3635                 while(i<4) {
3636                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3637                         writeq(valt, &bar0->xmsi_address);
3638                         val64 = readq(&bar0->xmsi_address);
3639                         if(val64 == valt)
3640                                 break;
3641                         i++;
3642                 }
3643                 if(i == 4) {
3644                         unsigned long long x = val64;
3645                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3646                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3647                         return FAILURE;
3648                 }
3649         }
3650         val64 = readq(&bar0->swapper_ctrl);
3651         val64 &= 0xFFFF000000000000ULL;
3652
3653 #ifdef  __BIG_ENDIAN
3654         /*
3655          * The device by default set to a big endian format, so a
3656          * big endian driver need not set anything.
3657          */
3658         val64 |= (SWAPPER_CTRL_TXP_FE |
3659                  SWAPPER_CTRL_TXP_SE |
3660                  SWAPPER_CTRL_TXD_R_FE |
3661                  SWAPPER_CTRL_TXD_W_FE |
3662                  SWAPPER_CTRL_TXF_R_FE |
3663                  SWAPPER_CTRL_RXD_R_FE |
3664                  SWAPPER_CTRL_RXD_W_FE |
3665                  SWAPPER_CTRL_RXF_W_FE |
3666                  SWAPPER_CTRL_XMSI_FE |
3667                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3668         if (sp->config.intr_type == INTA)
3669                 val64 |= SWAPPER_CTRL_XMSI_SE;
3670         writeq(val64, &bar0->swapper_ctrl);
3671 #else
3672         /*
3673          * Initially we enable all bits to make it accessible by the
3674          * driver, then we selectively enable only those bits that
3675          * we want to set.
3676          */
3677         val64 |= (SWAPPER_CTRL_TXP_FE |
3678                  SWAPPER_CTRL_TXP_SE |
3679                  SWAPPER_CTRL_TXD_R_FE |
3680                  SWAPPER_CTRL_TXD_R_SE |
3681                  SWAPPER_CTRL_TXD_W_FE |
3682                  SWAPPER_CTRL_TXD_W_SE |
3683                  SWAPPER_CTRL_TXF_R_FE |
3684                  SWAPPER_CTRL_RXD_R_FE |
3685                  SWAPPER_CTRL_RXD_R_SE |
3686                  SWAPPER_CTRL_RXD_W_FE |
3687                  SWAPPER_CTRL_RXD_W_SE |
3688                  SWAPPER_CTRL_RXF_W_FE |
3689                  SWAPPER_CTRL_XMSI_FE |
3690                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3691         if (sp->config.intr_type == INTA)
3692                 val64 |= SWAPPER_CTRL_XMSI_SE;
3693         writeq(val64, &bar0->swapper_ctrl);
3694 #endif
3695         val64 = readq(&bar0->swapper_ctrl);
3696
3697         /*
3698          * Verifying if endian settings are accurate by reading a
3699          * feedback register.
3700          */
3701         val64 = readq(&bar0->pif_rd_swapper_fb);
3702         if (val64 != 0x0123456789ABCDEFULL) {
3703                 /* Endian settings are incorrect, calls for another dekko. */
3704                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3705                           dev->name);
3706                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3707                           (unsigned long long) val64);
3708                 return FAILURE;
3709         }
3710
3711         return SUCCESS;
3712 }
3713
3714 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3715 {
3716         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3717         u64 val64;
3718         int ret = 0, cnt = 0;
3719
3720         do {
3721                 val64 = readq(&bar0->xmsi_access);
3722                 if (!(val64 & s2BIT(15)))
3723                         break;
3724                 mdelay(1);
3725                 cnt++;
3726         } while(cnt < 5);
3727         if (cnt == 5) {
3728                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3729                 ret = 1;
3730         }
3731
3732         return ret;
3733 }
3734
3735 static void restore_xmsi_data(struct s2io_nic *nic)
3736 {
3737         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3738         u64 val64;
3739         int i;
3740
3741         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3742                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3743                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3744                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3745                 writeq(val64, &bar0->xmsi_access);
3746                 if (wait_for_msix_trans(nic, i)) {
3747                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3748                         continue;
3749                 }
3750         }
3751 }
3752
3753 static void store_xmsi_data(struct s2io_nic *nic)
3754 {
3755         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3756         u64 val64, addr, data;
3757         int i;
3758
3759         /* Store and display */
3760         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3761                 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3762                 writeq(val64, &bar0->xmsi_access);
3763                 if (wait_for_msix_trans(nic, i)) {
3764                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3765                         continue;
3766                 }
3767                 addr = readq(&bar0->xmsi_address);
3768                 data = readq(&bar0->xmsi_data);
3769                 if (addr && data) {
3770                         nic->msix_info[i].addr = addr;
3771                         nic->msix_info[i].data = data;
3772                 }
3773         }
3774 }
3775
3776 static int s2io_enable_msi_x(struct s2io_nic *nic)
3777 {
3778         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3779         u64 tx_mat, rx_mat;
3780         u16 msi_control; /* Temp variable */
3781         int ret, i, j, msix_indx = 1;
3782
3783         nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3784                                GFP_KERNEL);
3785         if (!nic->entries) {
3786                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3787                         __FUNCTION__);
3788                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3789                 return -ENOMEM;
3790         }
3791         nic->mac_control.stats_info->sw_stat.mem_allocated
3792                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3793
3794         nic->s2io_entries =
3795                 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3796                                    GFP_KERNEL);
3797         if (!nic->s2io_entries) {
3798                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3799                         __FUNCTION__);
3800                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3801                 kfree(nic->entries);
3802                 nic->mac_control.stats_info->sw_stat.mem_freed
3803                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3804                 return -ENOMEM;
3805         }
3806          nic->mac_control.stats_info->sw_stat.mem_allocated
3807                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3808
3809         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3810                 nic->entries[i].entry = i;
3811                 nic->s2io_entries[i].entry = i;
3812                 nic->s2io_entries[i].arg = NULL;
3813                 nic->s2io_entries[i].in_use = 0;
3814         }
3815
3816         tx_mat = readq(&bar0->tx_mat0_n[0]);
3817         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3818                 tx_mat |= TX_MAT_SET(i, msix_indx);
3819                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3820                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3821                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3822         }
3823         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3824
3825         rx_mat = readq(&bar0->rx_mat);
3826         for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3827                 rx_mat |= RX_MAT_SET(j, msix_indx);
3828                 nic->s2io_entries[msix_indx].arg
3829                         = &nic->mac_control.rings[j];
3830                 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3831                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3832         }
3833         writeq(rx_mat, &bar0->rx_mat);
3834
3835         nic->avail_msix_vectors = 0;
3836         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3837         /* We fail init if error or we get less vectors than min required */
3838         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3839                 nic->avail_msix_vectors = ret;
3840                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3841         }
3842         if (ret) {
3843                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3844                 kfree(nic->entries);
3845                 nic->mac_control.stats_info->sw_stat.mem_freed
3846                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3847                 kfree(nic->s2io_entries);
3848                 nic->mac_control.stats_info->sw_stat.mem_freed
3849                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3850                 nic->entries = NULL;
3851                 nic->s2io_entries = NULL;
3852                 nic->avail_msix_vectors = 0;
3853                 return -ENOMEM;
3854         }
3855         if (!nic->avail_msix_vectors)
3856                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3857
3858         /*
3859          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3860          * in the herc NIC. (Temp change, needs to be removed later)
3861          */
3862         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3863         msi_control |= 0x1; /* Enable MSI */
3864         pci_write_config_word(nic->pdev, 0x42, msi_control);
3865
3866         return 0;
3867 }
3868
3869 /* Handle software interrupt used during MSI(X) test */
3870 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3871 {
3872         struct s2io_nic *sp = dev_id;
3873
3874         sp->msi_detected = 1;
3875         wake_up(&sp->msi_wait);
3876
3877         return IRQ_HANDLED;
3878 }
3879
3880 /* Test interrupt path by forcing a a software IRQ */
3881 static int s2io_test_msi(struct s2io_nic *sp)
3882 {
3883         struct pci_dev *pdev = sp->pdev;
3884         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3885         int err;
3886         u64 val64, saved64;
3887
3888         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3889                         sp->name, sp);
3890         if (err) {
3891                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3892                        sp->dev->name, pci_name(pdev), pdev->irq);
3893                 return err;
3894         }
3895
3896         init_waitqueue_head (&sp->msi_wait);
3897         sp->msi_detected = 0;
3898
3899         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3900         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3901         val64 |= SCHED_INT_CTRL_TIMER_EN;
3902         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3903         writeq(val64, &bar0->scheduled_int_ctrl);
3904
3905         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3906
3907         if (!sp->msi_detected) {
3908                 /* MSI(X) test failed, go back to INTx mode */
3909                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3910                         "using MSI(X) during test\n", sp->dev->name,
3911                         pci_name(pdev));
3912
3913                 err = -EOPNOTSUPP;
3914         }
3915
3916         free_irq(sp->entries[1].vector, sp);
3917
3918         writeq(saved64, &bar0->scheduled_int_ctrl);
3919
3920         return err;
3921 }
3922
3923 static void remove_msix_isr(struct s2io_nic *sp)
3924 {
3925         int i;
3926         u16 msi_control;
3927
3928         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3929                 if (sp->s2io_entries[i].in_use ==
3930                         MSIX_REGISTERED_SUCCESS) {
3931                         int vector = sp->entries[i].vector;
3932                         void *arg = sp->s2io_entries[i].arg;
3933                         free_irq(vector, arg);
3934                 }
3935         }
3936
3937         kfree(sp->entries);
3938         kfree(sp->s2io_entries);
3939         sp->entries = NULL;
3940         sp->s2io_entries = NULL;
3941
3942         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3943         msi_control &= 0xFFFE; /* Disable MSI */
3944         pci_write_config_word(sp->pdev, 0x42, msi_control);
3945
3946         pci_disable_msix(sp->pdev);
3947 }
3948
3949 static void remove_inta_isr(struct s2io_nic *sp)
3950 {
3951         struct net_device *dev = sp->dev;
3952
3953         free_irq(sp->pdev->irq, dev);
3954 }
3955
3956 /* ********************************************************* *
3957  * Functions defined below concern the OS part of the driver *
3958  * ********************************************************* */
3959
3960 /**
3961  *  s2io_open - open entry point of the driver
3962  *  @dev : pointer to the device structure.
3963  *  Description:
3964  *  This function is the open entry point of the driver. It mainly calls a
3965  *  function to allocate Rx buffers and inserts them into the buffer
3966  *  descriptors and then enables the Rx part of the NIC.
3967  *  Return value:
3968  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3969  *   file on failure.
3970  */
3971
3972 static int s2io_open(struct net_device *dev)
3973 {
3974         struct s2io_nic *sp = dev->priv;
3975         int err = 0;
3976
3977         /*
3978          * Make sure you have link off by default every time
3979          * Nic is initialized
3980          */
3981         netif_carrier_off(dev);
3982         sp->last_link_state = 0;
3983
3984         if (sp->config.intr_type == MSI_X) {
3985                 int ret = s2io_enable_msi_x(sp);
3986
3987                 if (!ret) {
3988                         ret = s2io_test_msi(sp);
3989                         /* rollback MSI-X, will re-enable during add_isr() */
3990                         remove_msix_isr(sp);
3991                 }
3992                 if (ret) {
3993
3994                         DBG_PRINT(ERR_DBG,
3995                           "%s: MSI-X requested but failed to enable\n",
3996                           dev->name);
3997                         sp->config.intr_type = INTA;
3998                 }
3999         }
4000
4001         /* NAPI doesn't work well with MSI(X) */
4002          if (sp->config.intr_type != INTA) {
4003                 if(sp->config.napi)
4004                         sp->config.napi = 0;
4005         }
4006
4007         /* Initialize H/W and enable interrupts */
4008         err = s2io_card_up(sp);
4009         if (err) {
4010                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4011                           dev->name);
4012                 goto hw_init_failed;
4013         }
4014
4015         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4016                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4017                 s2io_card_down(sp);
4018                 err = -ENODEV;
4019                 goto hw_init_failed;
4020         }
4021         s2io_start_all_tx_queue(sp);
4022         return 0;
4023
4024 hw_init_failed:
4025         if (sp->config.intr_type == MSI_X) {
4026                 if (sp->entries) {
4027                         kfree(sp->entries);
4028                         sp->mac_control.stats_info->sw_stat.mem_freed
4029                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
4030                 }
4031                 if (sp->s2io_entries) {
4032                         kfree(sp->s2io_entries);
4033                         sp->mac_control.stats_info->sw_stat.mem_freed
4034                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
4035                 }
4036         }
4037         return err;
4038 }
4039
4040 /**
4041  *  s2io_close -close entry point of the driver
4042  *  @dev : device pointer.
4043  *  Description:
4044  *  This is the stop entry point of the driver. It needs to undo exactly
4045  *  whatever was done by the open entry point,thus it's usually referred to
4046  *  as the close function.Among other things this function mainly stops the
4047  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4048  *  Return value:
4049  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4050  *  file on failure.
4051  */
4052
4053 static int s2io_close(struct net_device *dev)
4054 {
4055         struct s2io_nic *sp = dev->priv;
4056         struct config_param *config = &sp->config;
4057         u64 tmp64;
4058         int offset;
4059
4060         /* Return if the device is already closed               *
4061         *  Can happen when s2io_card_up failed in change_mtu    *
4062         */
4063         if (!is_s2io_card_up(sp))
4064                 return 0;
4065
4066         s2io_stop_all_tx_queue(sp);
4067         /* delete all populated mac entries */
4068         for (offset = 1; offset < config->max_mc_addr; offset++) {
4069                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4070                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4071                         do_s2io_delete_unicast_mc(sp, tmp64);
4072         }
4073
4074         s2io_card_down(sp);
4075
4076         return 0;
4077 }
4078
4079 /**
4080  *  s2io_xmit - Tx entry point of te driver
4081  *  @skb : the socket buffer containing the Tx data.
4082  *  @dev : device pointer.
4083  *  Description :
4084  *  This function is the Tx entry point of the driver. S2IO NIC supports
4085  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4086  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4087  *  not be upadted.
4088  *  Return value:
4089  *  0 on success & 1 on failure.
4090  */
4091
4092 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4093 {
4094         struct s2io_nic *sp = dev->priv;
4095         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4096         register u64 val64;
4097         struct TxD *txdp;
4098         struct TxFIFO_element __iomem *tx_fifo;
4099         unsigned long flags = 0;
4100         u16 vlan_tag = 0;
4101         struct fifo_info *fifo = NULL;
4102         struct mac_info *mac_control;
4103         struct config_param *config;
4104         int do_spin_lock = 1;
4105         int offload_type;
4106         int enable_per_list_interrupt = 0;
4107         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4108
4109         mac_control = &sp->mac_control;
4110         config = &sp->config;
4111
4112         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4113
4114         if (unlikely(skb->len <= 0)) {
4115                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4116                 dev_kfree_skb_any(skb);
4117                 return 0;
4118         }
4119
4120         if (!is_s2io_card_up(sp)) {
4121                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4122                           dev->name);
4123                 dev_kfree_skb(skb);
4124                 return 0;
4125         }
4126
4127         queue = 0;
4128         if (sp->vlgrp && vlan_tx_tag_present(skb))
4129                 vlan_tag = vlan_tx_tag_get(skb);
4130         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4131                 if (skb->protocol == htons(ETH_P_IP)) {
4132                         struct iphdr *ip;
4133                         struct tcphdr *th;
4134                         ip = ip_hdr(skb);
4135
4136                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4137                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4138                                                 ip->ihl*4);
4139
4140                                 if (ip->protocol == IPPROTO_TCP) {
4141                                         queue_len = sp->total_tcp_fifos;
4142                                         queue = (ntohs(th->source) +
4143                                                         ntohs(th->dest)) &
4144                                             sp->fifo_selector[queue_len - 1];
4145                                         if (queue >= queue_len)
4146                                                 queue = queue_len - 1;
4147                                 } else if (ip->protocol == IPPROTO_UDP) {
4148                                         queue_len = sp->total_udp_fifos;
4149                                         queue = (ntohs(th->source) +
4150                                                         ntohs(th->dest)) &
4151                                             sp->fifo_selector[queue_len - 1];
4152                                         if (queue >= queue_len)
4153                                                 queue = queue_len - 1;
4154                                         queue += sp->udp_fifo_idx;
4155                                         if (skb->len > 1024)
4156                                                 enable_per_list_interrupt = 1;
4157                                         do_spin_lock = 0;
4158                                 }
4159                         }
4160                 }
4161         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4162                 /* get fifo number based on skb->priority value */
4163                 queue = config->fifo_mapping
4164                                         [skb->priority & (MAX_TX_FIFOS - 1)];
4165         fifo = &mac_control->fifos[queue];
4166
4167         if (do_spin_lock)
4168                 spin_lock_irqsave(&fifo->tx_lock, flags);
4169         else {
4170                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4171                         return NETDEV_TX_LOCKED;
4172         }
4173
4174 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4175         if (sp->config.multiq) {
4176                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4177                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178                         return NETDEV_TX_BUSY;
4179                 }
4180         } else
4181 #endif
4182         if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4183                 if (netif_queue_stopped(dev)) {
4184                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4185                         return NETDEV_TX_BUSY;
4186                 }
4187         }
4188
4189         put_off = (u16) fifo->tx_curr_put_info.offset;
4190         get_off = (u16) fifo->tx_curr_get_info.offset;
4191         txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4192
4193         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4194         /* Avoid "put" pointer going beyond "get" pointer */
4195         if (txdp->Host_Control ||
4196                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4197                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4198                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4199                 dev_kfree_skb(skb);
4200                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4201                 return 0;
4202         }
4203
4204         offload_type = s2io_offload_type(skb);
4205         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4206                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4207                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4208         }
4209         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4210                 txdp->Control_2 |=
4211                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4212                      TXD_TX_CKO_UDP_EN);
4213         }
4214         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4215         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4216         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4217         if (enable_per_list_interrupt)
4218                 if (put_off & (queue_len >> 5))
4219                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4220         if (vlan_tag) {
4221                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4222                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4223         }
4224
4225         frg_len = skb->len - skb->data_len;
4226         if (offload_type == SKB_GSO_UDP) {
4227                 int ufo_size;
4228
4229                 ufo_size = s2io_udp_mss(skb);
4230                 ufo_size &= ~7;
4231                 txdp->Control_1 |= TXD_UFO_EN;
4232                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4233                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4234 #ifdef __BIG_ENDIAN
4235                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4236                 fifo->ufo_in_band_v[put_off] =
4237                                 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4238 #else
4239                 fifo->ufo_in_band_v[put_off] =
4240                                 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4241 #endif
4242                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4243                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4244                                         fifo->ufo_in_band_v,
4245                                         sizeof(u64), PCI_DMA_TODEVICE);
4246                 if((txdp->Buffer_Pointer == 0) ||
4247                         (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4248                         goto pci_map_failed;
4249                 txdp++;
4250         }
4251
4252         txdp->Buffer_Pointer = pci_map_single
4253             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4254         if((txdp->Buffer_Pointer == 0) ||
4255                 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4256                 goto pci_map_failed;
4257
4258         txdp->Host_Control = (unsigned long) skb;
4259         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4260         if (offload_type == SKB_GSO_UDP)
4261                 txdp->Control_1 |= TXD_UFO_EN;
4262
4263         frg_cnt = skb_shinfo(skb)->nr_frags;
4264         /* For fragmented SKB. */
4265         for (i = 0; i < frg_cnt; i++) {
4266                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4267                 /* A '0' length fragment will be ignored */
4268                 if (!frag->size)
4269                         continue;
4270                 txdp++;
4271                 txdp->Buffer_Pointer = (u64) pci_map_page
4272                     (sp->pdev, frag->page, frag->page_offset,
4273                      frag->size, PCI_DMA_TODEVICE);
4274                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4275                 if (offload_type == SKB_GSO_UDP)
4276                         txdp->Control_1 |= TXD_UFO_EN;
4277         }
4278         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4279
4280         if (offload_type == SKB_GSO_UDP)
4281                 frg_cnt++; /* as Txd0 was used for inband header */
4282
4283         tx_fifo = mac_control->tx_FIFO_start[queue];
4284         val64 = fifo->list_info[put_off].list_phy_addr;
4285         writeq(val64, &tx_fifo->TxDL_Pointer);
4286
4287         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4288                  TX_FIFO_LAST_LIST);
4289         if (offload_type)
4290                 val64 |= TX_FIFO_SPECIAL_FUNC;
4291
4292         writeq(val64, &tx_fifo->List_Control);
4293
4294         mmiowb();
4295
4296         put_off++;
4297         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4298                 put_off = 0;
4299         fifo->tx_curr_put_info.offset = put_off;
4300
4301         /* Avoid "put" pointer going beyond "get" pointer */
4302         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4303                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4304                 DBG_PRINT(TX_DBG,
4305                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4306                           put_off, get_off);
4307                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4308         }
4309         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4310         dev->trans_start = jiffies;
4311         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4312
4313         if (sp->config.intr_type == MSI_X)
4314                 tx_intr_handler(fifo);
4315
4316         return 0;
4317 pci_map_failed:
4318         stats->pci_map_fail_cnt++;
4319         s2io_stop_tx_queue(sp, fifo->fifo_no);
4320         stats->mem_freed += skb->truesize;
4321         dev_kfree_skb(skb);
4322         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4323         return 0;
4324 }
4325
4326 static void
4327 s2io_alarm_handle(unsigned long data)
4328 {
4329         struct s2io_nic *sp = (struct s2io_nic *)data;
4330         struct net_device *dev = sp->dev;
4331
4332         s2io_handle_errors(dev);
4333         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4334 }
4335
4336 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4337 {
4338         if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4339                 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4340                 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4341         }
4342         return 0;
4343 }
4344
4345 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4346 {
4347         struct ring_info *ring = (struct ring_info *)dev_id;
4348         struct s2io_nic *sp = ring->nic;
4349
4350         if (!is_s2io_card_up(sp))
4351                 return IRQ_HANDLED;
4352
4353         rx_intr_handler(ring);
4354         s2io_chk_rx_buffers(sp, ring->ring_no);
4355
4356         return IRQ_HANDLED;
4357 }
4358
4359 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4360 {
4361         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4362         struct s2io_nic *sp = fifo->nic;
4363
4364         if (!is_s2io_card_up(sp))
4365                 return IRQ_HANDLED;
4366
4367         tx_intr_handler(fifo);
4368         return IRQ_HANDLED;
4369 }
4370 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4371 {
4372         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4373         u64 val64;
4374
4375         val64 = readq(&bar0->pic_int_status);
4376         if (val64 & PIC_INT_GPIO) {
4377                 val64 = readq(&bar0->gpio_int_reg);
4378                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4379                     (val64 & GPIO_INT_REG_LINK_UP)) {
4380                         /*
4381                          * This is unstable state so clear both up/down
4382                          * interrupt and adapter to re-evaluate the link state.
4383                          */
4384                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4385                         val64 |= GPIO_INT_REG_LINK_UP;
4386                         writeq(val64, &bar0->gpio_int_reg);
4387                         val64 = readq(&bar0->gpio_int_mask);
4388                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4389                                    GPIO_INT_MASK_LINK_DOWN);
4390                         writeq(val64, &bar0->gpio_int_mask);
4391                 }
4392                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4393                         val64 = readq(&bar0->adapter_status);
4394                                 /* Enable Adapter */
4395                         val64 = readq(&bar0->adapter_control);
4396                         val64 |= ADAPTER_CNTL_EN;
4397                         writeq(val64, &bar0->adapter_control);
4398                         val64 |= ADAPTER_LED_ON;
4399                         writeq(val64, &bar0->adapter_control);
4400                         if (!sp->device_enabled_once)
4401                                 sp->device_enabled_once = 1;
4402
4403                         s2io_link(sp, LINK_UP);
4404                         /*
4405                          * unmask link down interrupt and mask link-up
4406                          * intr
4407                          */
4408                         val64 = readq(&bar0->gpio_int_mask);
4409                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4410                         val64 |= GPIO_INT_MASK_LINK_UP;
4411                         writeq(val64, &bar0->gpio_int_mask);
4412
4413                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4414                         val64 = readq(&bar0->adapter_status);
4415                         s2io_link(sp, LINK_DOWN);
4416                         /* Link is down so unmaks link up interrupt */
4417                         val64 = readq(&bar0->gpio_int_mask);
4418                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4419                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4420                         writeq(val64, &bar0->gpio_int_mask);
4421
4422                         /* turn off LED */
4423                         val64 = readq(&bar0->adapter_control);
4424                         val64 = val64 &(~ADAPTER_LED_ON);
4425                         writeq(val64, &bar0->adapter_control);
4426                 }
4427         }
4428         val64 = readq(&bar0->gpio_int_mask);
4429 }
4430
4431 /**
4432  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4433  *  @value: alarm bits
4434  *  @addr: address value
4435  *  @cnt: counter variable
4436  *  Description: Check for alarm and increment the counter
4437  *  Return Value:
4438  *  1 - if alarm bit set
4439  *  0 - if alarm bit is not set
4440  */
4441 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4442                           unsigned long long *cnt)
4443 {
4444         u64 val64;
4445         val64 = readq(addr);
4446         if ( val64 & value ) {
4447                 writeq(val64, addr);
4448                 (*cnt)++;
4449                 return 1;
4450         }
4451         return 0;
4452
4453 }
4454
4455 /**
4456  *  s2io_handle_errors - Xframe error indication handler
4457  *  @nic: device private variable
4458  *  Description: Handle alarms such as loss of link, single or
4459  *  double ECC errors, critical and serious errors.
4460  *  Return Value:
4461  *  NONE
4462  */
4463 static void s2io_handle_errors(void * dev_id)
4464 {
4465         struct net_device *dev = (struct net_device *) dev_id;
4466         struct s2io_nic *sp = dev->priv;
4467         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4468         u64 temp64 = 0,val64=0;
4469         int i = 0;
4470
4471         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4472         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4473
4474         if (!is_s2io_card_up(sp))
4475                 return;
4476
4477         if (pci_channel_offline(sp->pdev))
4478                 return;
4479
4480         memset(&sw_stat->ring_full_cnt, 0,
4481                 sizeof(sw_stat->ring_full_cnt));
4482
4483         /* Handling the XPAK counters update */
4484         if(stats->xpak_timer_count < 72000) {
4485                 /* waiting for an hour */
4486                 stats->xpak_timer_count++;
4487         } else {
4488                 s2io_updt_xpak_counter(dev);
4489                 /* reset the count to zero */
4490                 stats->xpak_timer_count = 0;
4491         }
4492
4493         /* Handling link status change error Intr */
4494         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4495                 val64 = readq(&bar0->mac_rmac_err_reg);
4496                 writeq(val64, &bar0->mac_rmac_err_reg);
4497                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4498                         schedule_work(&sp->set_link_task);
4499         }
4500
4501         /* In case of a serious error, the device will be Reset. */
4502         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4503                                 &sw_stat->serious_err_cnt))
4504                 goto reset;
4505
4506         /* Check for data parity error */
4507         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4508                                 &sw_stat->parity_err_cnt))
4509                 goto reset;
4510
4511         /* Check for ring full counter */
4512         if (sp->device_type == XFRAME_II_DEVICE) {
4513                 val64 = readq(&bar0->ring_bump_counter1);
4514                 for (i=0; i<4; i++) {
4515                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4516                         temp64 >>= 64 - ((i+1)*16);
4517                         sw_stat->ring_full_cnt[i] += temp64;
4518                 }
4519
4520                 val64 = readq(&bar0->ring_bump_counter2);
4521                 for (i=0; i<4; i++) {
4522                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4523                         temp64 >>= 64 - ((i+1)*16);
4524                          sw_stat->ring_full_cnt[i+4] += temp64;
4525                 }
4526         }
4527
4528         val64 = readq(&bar0->txdma_int_status);
4529         /*check for pfc_err*/
4530         if (val64 & TXDMA_PFC_INT) {
4531                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4532                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4533                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4534                                 &sw_stat->pfc_err_cnt))
4535                         goto reset;
4536                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4537                                 &sw_stat->pfc_err_cnt);
4538         }
4539
4540         /*check for tda_err*/
4541         if (val64 & TXDMA_TDA_INT) {
4542                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4543                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4544                                 &sw_stat->tda_err_cnt))
4545                         goto reset;
4546                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4547                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4548         }
4549         /*check for pcc_err*/
4550         if (val64 & TXDMA_PCC_INT) {
4551                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4552                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4553                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4554                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4555                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4556                                 &sw_stat->pcc_err_cnt))
4557                         goto reset;
4558                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4559                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4560         }
4561
4562         /*check for tti_err*/
4563         if (val64 & TXDMA_TTI_INT) {
4564                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4565                                 &sw_stat->tti_err_cnt))
4566                         goto reset;
4567                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4568                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4569         }
4570
4571         /*check for lso_err*/
4572         if (val64 & TXDMA_LSO_INT) {
4573                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4574                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4575                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4576                         goto reset;
4577                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4578                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4579         }
4580
4581         /*check for tpa_err*/
4582         if (val64 & TXDMA_TPA_INT) {
4583                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4584                         &sw_stat->tpa_err_cnt))
4585                         goto reset;
4586                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4587                         &sw_stat->tpa_err_cnt);
4588         }
4589
4590         /*check for sm_err*/
4591         if (val64 & TXDMA_SM_INT) {
4592                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4593                         &sw_stat->sm_err_cnt))
4594                         goto reset;
4595         }
4596
4597         val64 = readq(&bar0->mac_int_status);
4598         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4599                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4600                                 &bar0->mac_tmac_err_reg,
4601                                 &sw_stat->mac_tmac_err_cnt))
4602                         goto reset;
4603                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4604                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4605                                 &bar0->mac_tmac_err_reg,
4606                                 &sw_stat->mac_tmac_err_cnt);
4607         }
4608
4609         val64 = readq(&bar0->xgxs_int_status);
4610         if (val64 & XGXS_INT_STATUS_TXGXS) {
4611                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4612                                 &bar0->xgxs_txgxs_err_reg,
4613                                 &sw_stat->xgxs_txgxs_err_cnt))
4614                         goto reset;
4615                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4616                                 &bar0->xgxs_txgxs_err_reg,
4617                                 &sw_stat->xgxs_txgxs_err_cnt);
4618         }
4619
4620         val64 = readq(&bar0->rxdma_int_status);
4621         if (val64 & RXDMA_INT_RC_INT_M) {
4622                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4623                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4624                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4625                         goto reset;
4626                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4627                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4628                                 &sw_stat->rc_err_cnt);
4629                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4630                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4631                                 &sw_stat->prc_pcix_err_cnt))
4632                         goto reset;
4633                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4634                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4635                                 &sw_stat->prc_pcix_err_cnt);
4636         }
4637
4638         if (val64 & RXDMA_INT_RPA_INT_M) {
4639                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4640                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4641                         goto reset;
4642                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4643                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4644         }
4645
4646         if (val64 & RXDMA_INT_RDA_INT_M) {
4647                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4648                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4649                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4650                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4651                         goto reset;
4652                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4653                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4654                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4655         }
4656
4657         if (val64 & RXDMA_INT_RTI_INT_M) {
4658                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4659                                 &sw_stat->rti_err_cnt))
4660                         goto reset;
4661                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4662                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4663         }
4664
4665         val64 = readq(&bar0->mac_int_status);
4666         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4667                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4668                                 &bar0->mac_rmac_err_reg,
4669                                 &sw_stat->mac_rmac_err_cnt))
4670                         goto reset;
4671                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4672                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4673                                 &sw_stat->mac_rmac_err_cnt);
4674         }
4675
4676         val64 = readq(&bar0->xgxs_int_status);
4677         if (val64 & XGXS_INT_STATUS_RXGXS) {
4678                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4679                                 &bar0->xgxs_rxgxs_err_reg,
4680                                 &sw_stat->xgxs_rxgxs_err_cnt))
4681                         goto reset;
4682         }
4683
4684         val64 = readq(&bar0->mc_int_status);
4685         if(val64 & MC_INT_STATUS_MC_INT) {
4686                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4687                                 &sw_stat->mc_err_cnt))
4688                         goto reset;
4689
4690                 /* Handling Ecc errors */
4691                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4692                         writeq(val64, &bar0->mc_err_reg);
4693                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4694                                 sw_stat->double_ecc_errs++;
4695                                 if (sp->device_type != XFRAME_II_DEVICE) {
4696                                         /*
4697                                          * Reset XframeI only if critical error
4698                                          */
4699                                         if (val64 &
4700                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4701                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4702                                                                 goto reset;
4703                                         }
4704                         } else
4705                                 sw_stat->single_ecc_errs++;
4706                 }
4707         }
4708         return;
4709
4710 reset:
4711         s2io_stop_all_tx_queue(sp);
4712         schedule_work(&sp->rst_timer_task);
4713         sw_stat->soft_reset_cnt++;
4714         return;
4715 }
4716
4717 /**
4718  *  s2io_isr - ISR handler of the device .
4719  *  @irq: the irq of the device.
4720  *  @dev_id: a void pointer to the dev structure of the NIC.
4721  *  Description:  This function is the ISR handler of the device. It
4722  *  identifies the reason for the interrupt and calls the relevant
4723  *  service routines. As a contongency measure, this ISR allocates the
4724  *  recv buffers, if their numbers are below the panic value which is
4725  *  presently set to 25% of the original number of rcv buffers allocated.
4726  *  Return value:
4727  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4728  *   IRQ_NONE: will be returned if interrupt is not from our device
4729  */
4730 static irqreturn_t s2io_isr(int irq, void *dev_id)
4731 {
4732         struct net_device *dev = (struct net_device *) dev_id;
4733         struct s2io_nic *sp = dev->priv;
4734         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4735         int i;
4736         u64 reason = 0;
4737         struct mac_info *mac_control;
4738         struct config_param *config;
4739
4740         /* Pretend we handled any irq's from a disconnected card */
4741         if (pci_channel_offline(sp->pdev))
4742                 return IRQ_NONE;
4743
4744         if (!is_s2io_card_up(sp))
4745                 return IRQ_NONE;
4746
4747         mac_control = &sp->mac_control;
4748         config = &sp->config;
4749
4750         /*
4751          * Identify the cause for interrupt and call the appropriate
4752          * interrupt handler. Causes for the interrupt could be;
4753          * 1. Rx of packet.
4754          * 2. Tx complete.
4755          * 3. Link down.
4756          */
4757         reason = readq(&bar0->general_int_status);
4758
4759         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4760                 /* Nothing much can be done. Get out */
4761                 return IRQ_HANDLED;
4762         }
4763
4764         if (reason & (GEN_INTR_RXTRAFFIC |
4765                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4766         {
4767                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4768
4769                 if (config->napi) {
4770                         if (reason & GEN_INTR_RXTRAFFIC) {
4771                                 if (likely(netif_rx_schedule_prep(dev,
4772                                                         &sp->napi))) {
4773                                         __netif_rx_schedule(dev, &sp->napi);
4774                                         writeq(S2IO_MINUS_ONE,
4775                                                &bar0->rx_traffic_mask);
4776                                 } else
4777                                         writeq(S2IO_MINUS_ONE,
4778                                                &bar0->rx_traffic_int);
4779                         }
4780                 } else {
4781                         /*
4782                          * rx_traffic_int reg is an R1 register, writing all 1's
4783                          * will ensure that the actual interrupt causing bit
4784                          * get's cleared and hence a read can be avoided.
4785                          */
4786                         if (reason & GEN_INTR_RXTRAFFIC)
4787                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4788
4789                         for (i = 0; i < config->rx_ring_num; i++)
4790                                 rx_intr_handler(&mac_control->rings[i]);
4791                 }
4792
4793                 /*
4794                  * tx_traffic_int reg is an R1 register, writing all 1's
4795                  * will ensure that the actual interrupt causing bit get's
4796                  * cleared and hence a read can be avoided.
4797                  */
4798                 if (reason & GEN_INTR_TXTRAFFIC)
4799                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4800
4801                 for (i = 0; i < config->tx_fifo_num; i++)
4802                         tx_intr_handler(&mac_control->fifos[i]);
4803
4804                 if (reason & GEN_INTR_TXPIC)
4805                         s2io_txpic_intr_handle(sp);
4806
4807                 /*
4808                  * Reallocate the buffers from the interrupt handler itself.
4809                  */
4810                 if (!config->napi) {
4811                         for (i = 0; i < config->rx_ring_num; i++)
4812                                 s2io_chk_rx_buffers(sp, i);
4813                 }
4814                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4815                 readl(&bar0->general_int_status);
4816
4817                 return IRQ_HANDLED;
4818
4819         }
4820         else if (!reason) {
4821                 /* The interrupt was not raised by us */
4822                 return IRQ_NONE;
4823         }
4824
4825         return IRQ_HANDLED;
4826 }
4827
4828 /**
4829  * s2io_updt_stats -
4830  */
4831 static void s2io_updt_stats(struct s2io_nic *sp)
4832 {
4833         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4834         u64 val64;
4835         int cnt = 0;
4836
4837         if (is_s2io_card_up(sp)) {
4838                 /* Apprx 30us on a 133 MHz bus */
4839                 val64 = SET_UPDT_CLICKS(10) |
4840                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4841                 writeq(val64, &bar0->stat_cfg);
4842                 do {
4843                         udelay(100);
4844                         val64 = readq(&bar0->stat_cfg);
4845                         if (!(val64 & s2BIT(0)))
4846                                 break;
4847                         cnt++;
4848                         if (cnt == 5)
4849                                 break; /* Updt failed */
4850                 } while(1);
4851         }
4852 }
4853
4854 /**
4855  *  s2io_get_stats - Updates the device statistics structure.
4856  *  @dev : pointer to the device structure.
4857  *  Description:
4858  *  This function updates the device statistics structure in the s2io_nic
4859  *  structure and returns a pointer to the same.
4860  *  Return value:
4861  *  pointer to the updated net_device_stats structure.
4862  */
4863
4864 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4865 {
4866         struct s2io_nic *sp = dev->priv;
4867         struct mac_info *mac_control;
4868         struct config_param *config;
4869
4870
4871         mac_control = &sp->mac_control;
4872         config = &sp->config;
4873
4874         /* Configure Stats for immediate updt */
4875         s2io_updt_stats(sp);
4876
4877         sp->stats.tx_packets =
4878                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4879         sp->stats.tx_errors =
4880                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4881         sp->stats.rx_errors =
4882                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4883         sp->stats.multicast =
4884                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4885         sp->stats.rx_length_errors =
4886                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4887
4888         return (&sp->stats);
4889 }
4890
4891 /**
4892  *  s2io_set_multicast - entry point for multicast address enable/disable.
4893  *  @dev : pointer to the device structure
4894  *  Description:
4895  *  This function is a driver entry point which gets called by the kernel
4896  *  whenever multicast addresses must be enabled/disabled. This also gets
4897  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4898  *  determine, if multicast address must be enabled or if promiscuous mode
4899  *  is to be disabled etc.
4900  *  Return value:
4901  *  void.
4902  */
4903
4904 static void s2io_set_multicast(struct net_device *dev)
4905 {
4906         int i, j, prev_cnt;
4907         struct dev_mc_list *mclist;
4908         struct s2io_nic *sp = dev->priv;
4909         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4910         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4911             0xfeffffffffffULL;
4912         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4913         void __iomem *add;
4914         struct config_param *config = &sp->config;
4915
4916         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4917                 /*  Enable all Multicast addresses */
4918                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4919                        &bar0->rmac_addr_data0_mem);
4920                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4921                        &bar0->rmac_addr_data1_mem);
4922                 val64 = RMAC_ADDR_CMD_MEM_WE |
4923                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4924                     RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4925                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4926                 /* Wait till command completes */
4927                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4928                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4929                                         S2IO_BIT_RESET);
4930
4931                 sp->m_cast_flg = 1;
4932                 sp->all_multi_pos = config->max_mc_addr - 1;
4933         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4934                 /*  Disable all Multicast addresses */
4935                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4936                        &bar0->rmac_addr_data0_mem);
4937                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4938                        &bar0->rmac_addr_data1_mem);
4939                 val64 = RMAC_ADDR_CMD_MEM_WE |
4940                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4941                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4942                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4943                 /* Wait till command completes */
4944                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4945                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4946                                         S2IO_BIT_RESET);
4947
4948                 sp->m_cast_flg = 0;
4949                 sp->all_multi_pos = 0;
4950         }
4951
4952         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4953                 /*  Put the NIC into promiscuous mode */
4954                 add = &bar0->mac_cfg;
4955                 val64 = readq(&bar0->mac_cfg);
4956                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4957
4958                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4959                 writel((u32) val64, add);
4960                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4961                 writel((u32) (val64 >> 32), (add + 4));
4962
4963                 if (vlan_tag_strip != 1) {
4964                         val64 = readq(&bar0->rx_pa_cfg);
4965                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4966                         writeq(val64, &bar0->rx_pa_cfg);
4967                         vlan_strip_flag = 0;
4968                 }
4969
4970                 val64 = readq(&bar0->mac_cfg);
4971                 sp->promisc_flg = 1;
4972                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4973                           dev->name);
4974         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4975                 /*  Remove the NIC from promiscuous mode */
4976                 add = &bar0->mac_cfg;
4977                 val64 = readq(&bar0->mac_cfg);
4978                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4979
4980                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4981                 writel((u32) val64, add);
4982                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4983                 writel((u32) (val64 >> 32), (add + 4));
4984
4985                 if (vlan_tag_strip != 0) {
4986                         val64 = readq(&bar0->rx_pa_cfg);
4987                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4988                         writeq(val64, &bar0->rx_pa_cfg);
4989                         vlan_strip_flag = 1;
4990                 }
4991
4992                 val64 = readq(&bar0->mac_cfg);
4993                 sp->promisc_flg = 0;
4994                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4995                           dev->name);
4996         }
4997
4998         /*  Update individual M_CAST address list */
4999         if ((!sp->m_cast_flg) && dev->mc_count) {
5000                 if (dev->mc_count >
5001                     (config->max_mc_addr - config->max_mac_addr)) {
5002                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5003                                   dev->name);
5004                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
5005                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5006                         return;
5007                 }
5008
5009                 prev_cnt = sp->mc_addr_count;
5010                 sp->mc_addr_count = dev->mc_count;
5011
5012                 /* Clear out the previous list of Mc in the H/W. */
5013                 for (i = 0; i < prev_cnt; i++) {
5014                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5015                                &bar0->rmac_addr_data0_mem);
5016                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5017                                 &bar0->rmac_addr_data1_mem);
5018                         val64 = RMAC_ADDR_CMD_MEM_WE |
5019                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5020                             RMAC_ADDR_CMD_MEM_OFFSET
5021                             (config->mc_start_offset + i);
5022                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5023
5024                         /* Wait for command completes */
5025                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5026                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5027                                         S2IO_BIT_RESET)) {
5028                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5029                                           dev->name);
5030                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5031                                 return;
5032                         }
5033                 }
5034
5035                 /* Create the new Rx filter list and update the same in H/W. */
5036                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5037                      i++, mclist = mclist->next) {
5038                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5039                                ETH_ALEN);
5040                         mac_addr = 0;
5041                         for (j = 0; j < ETH_ALEN; j++) {
5042                                 mac_addr |= mclist->dmi_addr[j];
5043                                 mac_addr <<= 8;
5044                         }
5045                         mac_addr >>= 8;
5046                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5047                                &bar0->rmac_addr_data0_mem);
5048                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5049                                 &bar0->rmac_addr_data1_mem);
5050                         val64 = RMAC_ADDR_CMD_MEM_WE |
5051                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5052                             RMAC_ADDR_CMD_MEM_OFFSET
5053                             (i + config->mc_start_offset);
5054                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5055
5056                         /* Wait for command completes */
5057                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5058                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5059                                         S2IO_BIT_RESET)) {
5060                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5061                                           dev->name);
5062                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5063                                 return;
5064                         }
5065                 }
5066         }
5067 }
5068
5069 /* read from CAM unicast & multicast addresses and store it in
5070  * def_mac_addr structure
5071  */
5072 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5073 {
5074         int offset;
5075         u64 mac_addr = 0x0;
5076         struct config_param *config = &sp->config;
5077
5078         /* store unicast & multicast mac addresses */
5079         for (offset = 0; offset < config->max_mc_addr; offset++) {
5080                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5081                 /* if read fails disable the entry */
5082                 if (mac_addr == FAILURE)
5083                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5084                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5085         }
5086 }
5087
5088 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5089 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5090 {
5091         int offset;
5092         struct config_param *config = &sp->config;
5093         /* restore unicast mac address */
5094         for (offset = 0; offset < config->max_mac_addr; offset++)
5095                 do_s2io_prog_unicast(sp->dev,
5096                         sp->def_mac_addr[offset].mac_addr);
5097
5098         /* restore multicast mac address */
5099         for (offset = config->mc_start_offset;
5100                 offset < config->max_mc_addr; offset++)
5101                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5102 }
5103
5104 /* add a multicast MAC address to CAM */
5105 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5106 {
5107         int i;
5108         u64 mac_addr = 0;
5109         struct config_param *config = &sp->config;
5110
5111         for (i = 0; i < ETH_ALEN; i++) {
5112                 mac_addr <<= 8;
5113                 mac_addr |= addr[i];
5114         }
5115         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5116                 return SUCCESS;
5117
5118         /* check if the multicast mac already preset in CAM */
5119         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5120                 u64 tmp64;
5121                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5122                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5123                         break;
5124
5125                 if (tmp64 == mac_addr)
5126                         return SUCCESS;
5127         }
5128         if (i == config->max_mc_addr) {
5129                 DBG_PRINT(ERR_DBG,
5130                         "CAM full no space left for multicast MAC\n");
5131                 return FAILURE;
5132         }
5133         /* Update the internal structure with this new mac address */
5134         do_s2io_copy_mac_addr(sp, i, mac_addr);
5135
5136         return (do_s2io_add_mac(sp, mac_addr, i));
5137 }
5138
5139 /* add MAC address to CAM */
5140 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5141 {
5142         u64 val64;
5143         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5144
5145         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5146                 &bar0->rmac_addr_data0_mem);
5147
5148         val64 =
5149                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5150                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5151         writeq(val64, &bar0->rmac_addr_cmd_mem);
5152
5153         /* Wait till command completes */
5154         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5155                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5156                 S2IO_BIT_RESET)) {
5157                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5158                 return FAILURE;
5159         }
5160         return SUCCESS;
5161 }
5162 /* deletes a specified unicast/multicast mac entry from CAM */
5163 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5164 {
5165         int offset;
5166         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5167         struct config_param *config = &sp->config;
5168
5169         for (offset = 1;
5170                 offset < config->max_mc_addr; offset++) {
5171                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5172                 if (tmp64 == addr) {
5173                         /* disable the entry by writing  0xffffffffffffULL */
5174                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5175                                 return FAILURE;
5176                         /* store the new mac list from CAM */
5177                         do_s2io_store_unicast_mc(sp);
5178                         return SUCCESS;
5179                 }
5180         }
5181         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5182                         (unsigned long long)addr);
5183         return FAILURE;
5184 }
5185
5186 /* read mac entries from CAM */
5187 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5188 {
5189         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5190         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5191
5192         /* read mac addr */
5193         val64 =
5194                 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5195                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5196         writeq(val64, &bar0->rmac_addr_cmd_mem);
5197
5198         /* Wait till command completes */
5199         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5200                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5201                 S2IO_BIT_RESET)) {
5202                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5203                 return FAILURE;
5204         }
5205         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5206         return (tmp64 >> 16);
5207 }
5208
5209 /**
5210  * s2io_set_mac_addr driver entry point
5211  */
5212
5213 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5214 {
5215         struct sockaddr *addr = p;
5216
5217         if (!is_valid_ether_addr(addr->sa_data))
5218                 return -EINVAL;
5219
5220         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5221
5222         /* store the MAC address in CAM */
5223         return (do_s2io_prog_unicast(dev, dev->dev_addr));
5224 }
5225 /**
5226  *  do_s2io_prog_unicast - Programs the Xframe mac address
5227  *  @dev : pointer to the device structure.
5228  *  @addr: a uchar pointer to the new mac address which is to be set.
5229  *  Description : This procedure will program the Xframe to receive
5230  *  frames with new Mac Address
5231  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5232  *  as defined in errno.h file on failure.
5233  */
5234
5235 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5236 {
5237         struct s2io_nic *sp = dev->priv;
5238         register u64 mac_addr = 0, perm_addr = 0;
5239         int i;
5240         u64 tmp64;
5241         struct config_param *config = &sp->config;
5242
5243         /*
5244         * Set the new MAC address as the new unicast filter and reflect this
5245         * change on the device address registered with the OS. It will be
5246         * at offset 0.
5247         */
5248         for (i = 0; i < ETH_ALEN; i++) {
5249                 mac_addr <<= 8;
5250                 mac_addr |= addr[i];
5251                 perm_addr <<= 8;
5252                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5253         }
5254
5255         /* check if the dev_addr is different than perm_addr */
5256         if (mac_addr == perm_addr)
5257                 return SUCCESS;
5258
5259         /* check if the mac already preset in CAM */
5260         for (i = 1; i < config->max_mac_addr; i++) {
5261                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5262                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5263                         break;
5264
5265                 if (tmp64 == mac_addr) {
5266                         DBG_PRINT(INFO_DBG,
5267                         "MAC addr:0x%llx already present in CAM\n",
5268                         (unsigned long long)mac_addr);
5269                         return SUCCESS;
5270                 }
5271         }
5272         if (i == config->max_mac_addr) {
5273                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5274                 return FAILURE;
5275         }
5276         /* Update the internal structure with this new mac address */
5277         do_s2io_copy_mac_addr(sp, i, mac_addr);
5278         return (do_s2io_add_mac(sp, mac_addr, i));
5279 }
5280
5281 /**
5282  * s2io_ethtool_sset - Sets different link parameters.
5283  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5284  * @info: pointer to the structure with parameters given by ethtool to set
5285  * link information.
5286  * Description:
5287  * The function sets different link parameters provided by the user onto
5288  * the NIC.
5289  * Return value:
5290  * 0 on success.
5291 */
5292
5293 static int s2io_ethtool_sset(struct net_device *dev,
5294                              struct ethtool_cmd *info)
5295 {
5296         struct s2io_nic *sp = dev->priv;
5297         if ((info->autoneg == AUTONEG_ENABLE) ||
5298             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5299                 return -EINVAL;
5300         else {
5301                 s2io_close(sp->dev);
5302                 s2io_open(sp->dev);
5303         }
5304
5305         return 0;
5306 }
5307
5308 /**
5309  * s2io_ethtol_gset - Return link specific information.
5310  * @sp : private member of the device structure, pointer to the
5311  *      s2io_nic structure.
5312  * @info : pointer to the structure with parameters given by ethtool
5313  * to return link information.
5314  * Description:
5315  * Returns link specific information like speed, duplex etc.. to ethtool.
5316  * Return value :
5317  * return 0 on success.
5318  */
5319
5320 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5321 {
5322         struct s2io_nic *sp = dev->priv;
5323         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5324         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5325         info->port = PORT_FIBRE;
5326
5327         /* info->transceiver */
5328         info->transceiver = XCVR_EXTERNAL;
5329
5330         if (netif_carrier_ok(sp->dev)) {
5331                 info->speed = 10000;
5332                 info->duplex = DUPLEX_FULL;
5333         } else {
5334                 info->speed = -1;
5335                 info->duplex = -1;
5336         }
5337
5338         info->autoneg = AUTONEG_DISABLE;
5339         return 0;
5340 }
5341
5342 /**
5343  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5344  * @sp : private member of the device structure, which is a pointer to the
5345  * s2io_nic structure.
5346  * @info : pointer to the structure with parameters given by ethtool to
5347  * return driver information.
5348  * Description:
5349  * Returns driver specefic information like name, version etc.. to ethtool.
5350  * Return value:
5351  *  void
5352  */
5353
5354 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5355                                   struct ethtool_drvinfo *info)
5356 {
5357         struct s2io_nic *sp = dev->priv;
5358
5359         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5360         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5361         strncpy(info->fw_version, "", sizeof(info->fw_version));
5362         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5363         info->regdump_len = XENA_REG_SPACE;
5364         info->eedump_len = XENA_EEPROM_SPACE;
5365 }
5366
5367 /**
5368  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5369  *  @sp: private member of the device structure, which is a pointer to the
5370  *  s2io_nic structure.
5371  *  @regs : pointer to the structure with parameters given by ethtool for
5372  *  dumping the registers.
5373  *  @reg_space: The input argumnet into which all the registers are dumped.
5374  *  Description:
5375  *  Dumps the entire register space of xFrame NIC into the user given
5376  *  buffer area.
5377  * Return value :
5378  * void .
5379 */
5380
5381 static void s2io_ethtool_gregs(struct net_device *dev,
5382                                struct ethtool_regs *regs, void *space)
5383 {
5384         int i;
5385         u64 reg;
5386         u8 *reg_space = (u8 *) space;
5387         struct s2io_nic *sp = dev->priv;
5388
5389         regs->len = XENA_REG_SPACE;
5390         regs->version = sp->pdev->subsystem_device;
5391
5392         for (i = 0; i < regs->len; i += 8) {
5393                 reg = readq(sp->bar0 + i);
5394                 memcpy((reg_space + i), &reg, 8);
5395         }
5396 }
5397
5398 /**
5399  *  s2io_phy_id  - timer function that alternates adapter LED.
5400  *  @data : address of the private member of the device structure, which
5401  *  is a pointer to the s2io_nic structure, provided as an u32.
5402  * Description: This is actually the timer function that alternates the
5403  * adapter LED bit of the adapter control bit to set/reset every time on
5404  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5405  *  once every second.
5406 */
5407 static void s2io_phy_id(unsigned long data)
5408 {
5409         struct s2io_nic *sp = (struct s2io_nic *) data;
5410         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5411         u64 val64 = 0;
5412         u16 subid;
5413
5414         subid = sp->pdev->subsystem_device;
5415         if ((sp->device_type == XFRAME_II_DEVICE) ||
5416                    ((subid & 0xFF) >= 0x07)) {
5417                 val64 = readq(&bar0->gpio_control);
5418                 val64 ^= GPIO_CTRL_GPIO_0;
5419                 writeq(val64, &bar0->gpio_control);
5420         } else {
5421                 val64 = readq(&bar0->adapter_control);
5422                 val64 ^= ADAPTER_LED_ON;
5423                 writeq(val64, &bar0->adapter_control);
5424         }
5425
5426         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5427 }
5428
5429 /**
5430  * s2io_ethtool_idnic - To physically identify the nic on the system.
5431  * @sp : private member of the device structure, which is a pointer to the
5432  * s2io_nic structure.
5433  * @id : pointer to the structure with identification parameters given by
5434  * ethtool.
5435  * Description: Used to physically identify the NIC on the system.
5436  * The Link LED will blink for a time specified by the user for
5437  * identification.
5438  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5439  * identification is possible only if it's link is up.
5440  * Return value:
5441  * int , returns 0 on success
5442  */
5443
5444 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5445 {
5446         u64 val64 = 0, last_gpio_ctrl_val;
5447         struct s2io_nic *sp = dev->priv;
5448         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5449         u16 subid;
5450
5451         subid = sp->pdev->subsystem_device;
5452         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5453         if ((sp->device_type == XFRAME_I_DEVICE) &&
5454                 ((subid & 0xFF) < 0x07)) {
5455                 val64 = readq(&bar0->adapter_control);
5456                 if (!(val64 & ADAPTER_CNTL_EN)) {
5457                         printk(KERN_ERR
5458                                "Adapter Link down, cannot blink LED\n");
5459                         return -EFAULT;
5460                 }
5461         }
5462         if (sp->id_timer.function == NULL) {
5463                 init_timer(&sp->id_timer);
5464                 sp->id_timer.function = s2io_phy_id;
5465                 sp->id_timer.data = (unsigned long) sp;
5466         }
5467         mod_timer(&sp->id_timer, jiffies);
5468         if (data)
5469                 msleep_interruptible(data * HZ);
5470         else
5471                 msleep_interruptible(MAX_FLICKER_TIME);
5472         del_timer_sync(&sp->id_timer);
5473
5474         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5475                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5476                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5477         }
5478
5479         return 0;
5480 }
5481
5482 static void s2io_ethtool_gringparam(struct net_device *dev,
5483                                     struct ethtool_ringparam *ering)
5484 {
5485         struct s2io_nic *sp = dev->priv;
5486         int i,tx_desc_count=0,rx_desc_count=0;
5487
5488         if (sp->rxd_mode == RXD_MODE_1)
5489                 ering->rx_max_pending = MAX_RX_DESC_1;
5490         else if (sp->rxd_mode == RXD_MODE_3B)
5491                 ering->rx_max_pending = MAX_RX_DESC_2;
5492
5493         ering->tx_max_pending = MAX_TX_DESC;
5494         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5495                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5496
5497         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5498         ering->tx_pending = tx_desc_count;
5499         rx_desc_count = 0;
5500         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5501                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5502
5503         ering->rx_pending = rx_desc_count;
5504
5505         ering->rx_mini_max_pending = 0;
5506         ering->rx_mini_pending = 0;
5507         if(sp->rxd_mode == RXD_MODE_1)
5508                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5509         else if (sp->rxd_mode == RXD_MODE_3B)
5510                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5511         ering->rx_jumbo_pending = rx_desc_count;
5512 }
5513
5514 /**
5515  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5516  * @sp : private member of the device structure, which is a pointer to the
5517  *      s2io_nic structure.
5518  * @ep : pointer to the structure with pause parameters given by ethtool.
5519  * Description:
5520  * Returns the Pause frame generation and reception capability of the NIC.
5521  * Return value:
5522  *  void
5523  */
5524 static void s2io_ethtool_getpause_data(struct net_device *dev,
5525                                        struct ethtool_pauseparam *ep)
5526 {
5527         u64 val64;
5528         struct s2io_nic *sp = dev->priv;
5529         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5530
5531         val64 = readq(&bar0->rmac_pause_cfg);
5532         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5533                 ep->tx_pause = TRUE;
5534         if (val64 & RMAC_PAUSE_RX_ENABLE)
5535                 ep->rx_pause = TRUE;
5536         ep->autoneg = FALSE;
5537 }
5538
5539 /**
5540  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5541  * @sp : private member of the device structure, which is a pointer to the
5542  *      s2io_nic structure.
5543  * @ep : pointer to the structure with pause parameters given by ethtool.
5544  * Description:
5545  * It can be used to set or reset Pause frame generation or reception
5546  * support of the NIC.
5547  * Return value:
5548  * int, returns 0 on Success
5549  */
5550
5551 static int s2io_ethtool_setpause_data(struct net_device *dev,
5552                                struct ethtool_pauseparam *ep)
5553 {
5554         u64 val64;
5555         struct s2io_nic *sp = dev->priv;
5556         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5557
5558         val64 = readq(&bar0->rmac_pause_cfg);
5559         if (ep->tx_pause)
5560                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5561         else
5562                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5563         if (ep->rx_pause)
5564                 val64 |= RMAC_PAUSE_RX_ENABLE;
5565         else
5566                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5567         writeq(val64, &bar0->rmac_pause_cfg);
5568         return 0;
5569 }
5570
5571 /**
5572  * read_eeprom - reads 4 bytes of data from user given offset.
5573  * @sp : private member of the device structure, which is a pointer to the
5574  *      s2io_nic structure.
5575  * @off : offset at which the data must be written
5576  * @data : Its an output parameter where the data read at the given
5577  *      offset is stored.
5578  * Description:
5579  * Will read 4 bytes of data from the user given offset and return the
5580  * read data.
5581  * NOTE: Will allow to read only part of the EEPROM visible through the
5582  *   I2C bus.
5583  * Return value:
5584  *  -1 on failure and 0 on success.
5585  */
5586
5587 #define S2IO_DEV_ID             5
5588 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5589 {
5590         int ret = -1;
5591         u32 exit_cnt = 0;
5592         u64 val64;
5593         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5594
5595         if (sp->device_type == XFRAME_I_DEVICE) {
5596                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5597                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5598                     I2C_CONTROL_CNTL_START;
5599                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5600
5601                 while (exit_cnt < 5) {
5602                         val64 = readq(&bar0->i2c_control);
5603                         if (I2C_CONTROL_CNTL_END(val64)) {
5604                                 *data = I2C_CONTROL_GET_DATA(val64);
5605                                 ret = 0;
5606                                 break;
5607                         }
5608                         msleep(50);
5609                         exit_cnt++;
5610                 }
5611         }
5612
5613         if (sp->device_type == XFRAME_II_DEVICE) {
5614                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5615                         SPI_CONTROL_BYTECNT(0x3) |
5616                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5617                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5618                 val64 |= SPI_CONTROL_REQ;
5619                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5620                 while (exit_cnt < 5) {
5621                         val64 = readq(&bar0->spi_control);
5622                         if (val64 & SPI_CONTROL_NACK) {
5623                                 ret = 1;
5624                                 break;
5625                         } else if (val64 & SPI_CONTROL_DONE) {
5626                                 *data = readq(&bar0->spi_data);
5627                                 *data &= 0xffffff;
5628                                 ret = 0;
5629                                 break;
5630                         }
5631                         msleep(50);
5632                         exit_cnt++;
5633                 }
5634         }
5635         return ret;
5636 }
5637
5638 /**
5639  *  write_eeprom - actually writes the relevant part of the data value.
5640  *  @sp : private member of the device structure, which is a pointer to the
5641  *       s2io_nic structure.
5642  *  @off : offset at which the data must be written
5643  *  @data : The data that is to be written
5644  *  @cnt : Number of bytes of the data that are actually to be written into
5645  *  the Eeprom. (max of 3)
5646  * Description:
5647  *  Actually writes the relevant part of the data value into the Eeprom
5648  *  through the I2C bus.
5649  * Return value:
5650  *  0 on success, -1 on failure.
5651  */
5652
5653 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5654 {
5655         int exit_cnt = 0, ret = -1;
5656         u64 val64;
5657         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5658
5659         if (sp->device_type == XFRAME_I_DEVICE) {
5660                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5661                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5662                     I2C_CONTROL_CNTL_START;
5663                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5664
5665                 while (exit_cnt < 5) {
5666                         val64 = readq(&bar0->i2c_control);
5667                         if (I2C_CONTROL_CNTL_END(val64)) {
5668                                 if (!(val64 & I2C_CONTROL_NACK))
5669                                         ret = 0;
5670                                 break;
5671                         }
5672                         msleep(50);
5673                         exit_cnt++;
5674                 }
5675         }
5676
5677         if (sp->device_type == XFRAME_II_DEVICE) {
5678                 int write_cnt = (cnt == 8) ? 0 : cnt;
5679                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5680
5681                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5682                         SPI_CONTROL_BYTECNT(write_cnt) |
5683                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5684                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5685                 val64 |= SPI_CONTROL_REQ;
5686                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5687                 while (exit_cnt < 5) {
5688                         val64 = readq(&bar0->spi_control);
5689                         if (val64 & SPI_CONTROL_NACK) {
5690                                 ret = 1;
5691                                 break;
5692                         } else if (val64 & SPI_CONTROL_DONE) {
5693                                 ret = 0;
5694                                 break;
5695                         }
5696                         msleep(50);
5697                         exit_cnt++;
5698                 }
5699         }
5700         return ret;
5701 }
5702 static void s2io_vpd_read(struct s2io_nic *nic)
5703 {
5704         u8 *vpd_data;
5705         u8 data;
5706         int i=0, cnt, fail = 0;
5707         int vpd_addr = 0x80;
5708
5709         if (nic->device_type == XFRAME_II_DEVICE) {
5710                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5711                 vpd_addr = 0x80;
5712         }
5713         else {
5714                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5715                 vpd_addr = 0x50;
5716         }
5717         strcpy(nic->serial_num, "NOT AVAILABLE");
5718
5719         vpd_data = kmalloc(256, GFP_KERNEL);
5720         if (!vpd_data) {
5721                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5722                 return;
5723         }
5724         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5725
5726         for (i = 0; i < 256; i +=4 ) {
5727                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5728                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5729                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5730                 for (cnt = 0; cnt <5; cnt++) {
5731                         msleep(2);
5732                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5733                         if (data == 0x80)
5734                                 break;
5735                 }
5736                 if (cnt >= 5) {
5737                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5738                         fail = 1;
5739                         break;
5740                 }
5741                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5742                                       (u32 *)&vpd_data[i]);
5743         }
5744
5745         if(!fail) {
5746                 /* read serial number of adapter */
5747                 for (cnt = 0; cnt < 256; cnt++) {
5748                 if ((vpd_data[cnt] == 'S') &&
5749                         (vpd_data[cnt+1] == 'N') &&
5750                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5751                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5752                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5753                                         vpd_data[cnt+2]);
5754                                 break;
5755                         }
5756                 }
5757         }
5758
5759         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5760                 memset(nic->product_name, 0, vpd_data[1]);
5761                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5762         }
5763         kfree(vpd_data);
5764         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5765 }
5766
5767 /**
5768  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5769  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5770  *  @eeprom : pointer to the user level structure provided by ethtool,
5771  *  containing all relevant information.
5772  *  @data_buf : user defined value to be written into Eeprom.
5773  *  Description: Reads the values stored in the Eeprom at given offset
5774  *  for a given length. Stores these values int the input argument data
5775  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5776  *  Return value:
5777  *  int  0 on success
5778  */
5779
5780 static int s2io_ethtool_geeprom(struct net_device *dev,
5781                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5782 {
5783         u32 i, valid;
5784         u64 data;
5785         struct s2io_nic *sp = dev->priv;
5786
5787         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5788
5789         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5790                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5791
5792         for (i = 0; i < eeprom->len; i += 4) {
5793                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5794                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5795                         return -EFAULT;
5796                 }
5797                 valid = INV(data);
5798                 memcpy((data_buf + i), &valid, 4);
5799         }
5800         return 0;
5801 }
5802
5803 /**
5804  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5805  *  @sp : private member of the device structure, which is a pointer to the
5806  *  s2io_nic structure.
5807  *  @eeprom : pointer to the user level structure provided by ethtool,
5808  *  containing all relevant information.
5809  *  @data_buf ; user defined value to be written into Eeprom.
5810  *  Description:
5811  *  Tries to write the user provided value in the Eeprom, at the offset
5812  *  given by the user.
5813  *  Return value:
5814  *  0 on success, -EFAULT on failure.
5815  */
5816
5817 static int s2io_ethtool_seeprom(struct net_device *dev,
5818                                 struct ethtool_eeprom *eeprom,
5819                                 u8 * data_buf)
5820 {
5821         int len = eeprom->len, cnt = 0;
5822         u64 valid = 0, data;
5823         struct s2io_nic *sp = dev->priv;
5824
5825         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5826                 DBG_PRINT(ERR_DBG,
5827                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5828                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5829                           eeprom->magic);
5830                 return -EFAULT;
5831         }
5832
5833         while (len) {
5834                 data = (u32) data_buf[cnt] & 0x000000FF;
5835                 if (data) {
5836                         valid = (u32) (data << 24);
5837                 } else
5838                         valid = data;
5839
5840                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5841                         DBG_PRINT(ERR_DBG,
5842                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5843                         DBG_PRINT(ERR_DBG,
5844                                   "write into the specified offset\n");
5845                         return -EFAULT;
5846                 }
5847                 cnt++;
5848                 len--;
5849         }
5850
5851         return 0;
5852 }
5853
5854 /**
5855  * s2io_register_test - reads and writes into all clock domains.
5856  * @sp : private member of the device structure, which is a pointer to the
5857  * s2io_nic structure.
5858  * @data : variable that returns the result of each of the test conducted b
5859  * by the driver.
5860  * Description:
5861  * Read and write into all clock domains. The NIC has 3 clock domains,
5862  * see that registers in all the three regions are accessible.
5863  * Return value:
5864  * 0 on success.
5865  */
5866
5867 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5868 {
5869         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5870         u64 val64 = 0, exp_val;
5871         int fail = 0;
5872
5873         val64 = readq(&bar0->pif_rd_swapper_fb);
5874         if (val64 != 0x123456789abcdefULL) {
5875                 fail = 1;
5876                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5877         }
5878
5879         val64 = readq(&bar0->rmac_pause_cfg);
5880         if (val64 != 0xc000ffff00000000ULL) {
5881                 fail = 1;
5882                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5883         }
5884
5885         val64 = readq(&bar0->rx_queue_cfg);
5886         if (sp->device_type == XFRAME_II_DEVICE)
5887                 exp_val = 0x0404040404040404ULL;
5888         else
5889                 exp_val = 0x0808080808080808ULL;
5890         if (val64 != exp_val) {
5891                 fail = 1;
5892                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5893         }
5894
5895         val64 = readq(&bar0->xgxs_efifo_cfg);
5896         if (val64 != 0x000000001923141EULL) {
5897                 fail = 1;
5898                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5899         }
5900
5901         val64 = 0x5A5A5A5A5A5A5A5AULL;
5902         writeq(val64, &bar0->xmsi_data);
5903         val64 = readq(&bar0->xmsi_data);
5904         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5905                 fail = 1;
5906                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5907         }
5908
5909         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5910         writeq(val64, &bar0->xmsi_data);
5911         val64 = readq(&bar0->xmsi_data);
5912         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5913                 fail = 1;
5914                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5915         }
5916
5917         *data = fail;
5918         return fail;
5919 }
5920
5921 /**
5922  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5923  * @sp : private member of the device structure, which is a pointer to the
5924  * s2io_nic structure.
5925  * @data:variable that returns the result of each of the test conducted by
5926  * the driver.
5927  * Description:
5928  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5929  * register.
5930  * Return value:
5931  * 0 on success.
5932  */
5933
5934 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5935 {
5936         int fail = 0;
5937         u64 ret_data, org_4F0, org_7F0;
5938         u8 saved_4F0 = 0, saved_7F0 = 0;
5939         struct net_device *dev = sp->dev;
5940
5941         /* Test Write Error at offset 0 */
5942         /* Note that SPI interface allows write access to all areas
5943          * of EEPROM. Hence doing all negative testing only for Xframe I.
5944          */
5945         if (sp->device_type == XFRAME_I_DEVICE)
5946                 if (!write_eeprom(sp, 0, 0, 3))
5947                         fail = 1;
5948
5949         /* Save current values at offsets 0x4F0 and 0x7F0 */
5950         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5951                 saved_4F0 = 1;
5952         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5953                 saved_7F0 = 1;
5954
5955         /* Test Write at offset 4f0 */
5956         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5957                 fail = 1;
5958         if (read_eeprom(sp, 0x4F0, &ret_data))
5959                 fail = 1;
5960
5961         if (ret_data != 0x012345) {
5962                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5963                         "Data written %llx Data read %llx\n",
5964                         dev->name, (unsigned long long)0x12345,
5965                         (unsigned long long)ret_data);
5966                 fail = 1;
5967         }
5968
5969         /* Reset the EEPROM data go FFFF */
5970         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5971
5972         /* Test Write Request Error at offset 0x7c */
5973         if (sp->device_type == XFRAME_I_DEVICE)
5974                 if (!write_eeprom(sp, 0x07C, 0, 3))
5975                         fail = 1;
5976
5977         /* Test Write Request at offset 0x7f0 */
5978         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5979                 fail = 1;
5980         if (read_eeprom(sp, 0x7F0, &ret_data))
5981                 fail = 1;
5982
5983         if (ret_data != 0x012345) {
5984                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5985                         "Data written %llx Data read %llx\n",
5986                         dev->name, (unsigned long long)0x12345,
5987                         (unsigned long long)ret_data);
5988                 fail = 1;
5989         }
5990
5991         /* Reset the EEPROM data go FFFF */
5992         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5993
5994         if (sp->device_type == XFRAME_I_DEVICE) {
5995                 /* Test Write Error at offset 0x80 */
5996                 if (!write_eeprom(sp, 0x080, 0, 3))
5997                         fail = 1;
5998
5999                 /* Test Write Error at offset 0xfc */
6000                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6001                         fail = 1;
6002
6003                 /* Test Write Error at offset 0x100 */
6004                 if (!write_eeprom(sp, 0x100, 0, 3))
6005                         fail = 1;
6006
6007                 /* Test Write Error at offset 4ec */
6008                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6009                         fail = 1;
6010         }
6011
6012         /* Restore values at offsets 0x4F0 and 0x7F0 */
6013         if (saved_4F0)
6014                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6015         if (saved_7F0)
6016                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6017
6018         *data = fail;
6019         return fail;
6020 }
6021
6022 /**
6023  * s2io_bist_test - invokes the MemBist test of the card .
6024  * @sp : private member of the device structure, which is a pointer to the
6025  * s2io_nic structure.
6026  * @data:variable that returns the result of each of the test conducted by
6027  * the driver.
6028  * Description:
6029  * This invokes the MemBist test of the card. We give around
6030  * 2 secs time for the Test to complete. If it's still not complete
6031  * within this peiod, we consider that the test failed.
6032  * Return value:
6033  * 0 on success and -1 on failure.
6034  */
6035
6036 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6037 {
6038         u8 bist = 0;
6039         int cnt = 0, ret = -1;
6040
6041         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6042         bist |= PCI_BIST_START;
6043         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6044
6045         while (cnt < 20) {
6046                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6047                 if (!(bist & PCI_BIST_START)) {
6048                         *data = (bist & PCI_BIST_CODE_MASK);
6049                         ret = 0;
6050                         break;
6051                 }
6052                 msleep(100);
6053                 cnt++;
6054         }
6055
6056         return ret;
6057 }
6058
6059 /**
6060  * s2io-link_test - verifies the link state of the nic
6061  * @sp ; private member of the device structure, which is a pointer to the
6062  * s2io_nic structure.
6063  * @data: variable that returns the result of each of the test conducted by
6064  * the driver.
6065  * Description:
6066  * The function verifies the link state of the NIC and updates the input
6067  * argument 'data' appropriately.
6068  * Return value:
6069  * 0 on success.
6070  */
6071
6072 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6073 {
6074         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6075         u64 val64;
6076
6077         val64 = readq(&bar0->adapter_status);
6078         if(!(LINK_IS_UP(val64)))
6079                 *data = 1;
6080         else
6081                 *data = 0;
6082
6083         return *data;
6084 }
6085
6086 /**
6087  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6088  * @sp - private member of the device structure, which is a pointer to the
6089  * s2io_nic structure.
6090  * @data - variable that returns the result of each of the test
6091  * conducted by the driver.
6092  * Description:
6093  *  This is one of the offline test that tests the read and write
6094  *  access to the RldRam chip on the NIC.
6095  * Return value:
6096  *  0 on success.
6097  */
6098
6099 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6100 {
6101         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6102         u64 val64;
6103         int cnt, iteration = 0, test_fail = 0;
6104
6105         val64 = readq(&bar0->adapter_control);
6106         val64 &= ~ADAPTER_ECC_EN;
6107         writeq(val64, &bar0->adapter_control);
6108
6109         val64 = readq(&bar0->mc_rldram_test_ctrl);
6110         val64 |= MC_RLDRAM_TEST_MODE;
6111         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6112
6113         val64 = readq(&bar0->mc_rldram_mrs);
6114         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6115         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6116
6117         val64 |= MC_RLDRAM_MRS_ENABLE;
6118         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6119
6120         while (iteration < 2) {
6121                 val64 = 0x55555555aaaa0000ULL;
6122                 if (iteration == 1) {
6123                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6124                 }
6125                 writeq(val64, &bar0->mc_rldram_test_d0);
6126
6127                 val64 = 0xaaaa5a5555550000ULL;
6128                 if (iteration == 1) {
6129                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6130                 }
6131                 writeq(val64, &bar0->mc_rldram_test_d1);
6132
6133                 val64 = 0x55aaaaaaaa5a0000ULL;
6134                 if (iteration == 1) {
6135                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6136                 }
6137                 writeq(val64, &bar0->mc_rldram_test_d2);
6138
6139                 val64 = (u64) (0x0000003ffffe0100ULL);
6140                 writeq(val64, &bar0->mc_rldram_test_add);
6141
6142                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6143                         MC_RLDRAM_TEST_GO;
6144                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6145
6146                 for (cnt = 0; cnt < 5; cnt++) {
6147                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6148                         if (val64 & MC_RLDRAM_TEST_DONE)
6149                                 break;
6150                         msleep(200);
6151                 }
6152
6153                 if (cnt == 5)
6154                         break;
6155
6156                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6157                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6158
6159                 for (cnt = 0; cnt < 5; cnt++) {
6160                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6161                         if (val64 & MC_RLDRAM_TEST_DONE)
6162                                 break;
6163                         msleep(500);
6164                 }
6165
6166                 if (cnt == 5)
6167                         break;
6168
6169                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6170                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6171                         test_fail = 1;
6172
6173                 iteration++;
6174         }
6175
6176         *data = test_fail;
6177
6178         /* Bring the adapter out of test mode */
6179         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6180
6181         return test_fail;
6182 }
6183
6184 /**
6185  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6186  *  @sp : private member of the device structure, which is a pointer to the
6187  *  s2io_nic structure.
6188  *  @ethtest : pointer to a ethtool command specific structure that will be
6189  *  returned to the user.
6190  *  @data : variable that returns the result of each of the test
6191  * conducted by the driver.
6192  * Description:
6193  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6194  *  the health of the card.
6195  * Return value:
6196  *  void
6197  */
6198
6199 static void s2io_ethtool_test(struct net_device *dev,
6200                               struct ethtool_test *ethtest,
6201                               uint64_t * data)
6202 {
6203         struct s2io_nic *sp = dev->priv;
6204         int orig_state = netif_running(sp->dev);
6205
6206         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6207                 /* Offline Tests. */
6208                 if (orig_state)
6209                         s2io_close(sp->dev);
6210
6211                 if (s2io_register_test(sp, &data[0]))
6212                         ethtest->flags |= ETH_TEST_FL_FAILED;
6213
6214                 s2io_reset(sp);
6215
6216                 if (s2io_rldram_test(sp, &data[3]))
6217                         ethtest->flags |= ETH_TEST_FL_FAILED;
6218
6219                 s2io_reset(sp);
6220
6221                 if (s2io_eeprom_test(sp, &data[1]))
6222                         ethtest->flags |= ETH_TEST_FL_FAILED;
6223
6224                 if (s2io_bist_test(sp, &data[4]))
6225                         ethtest->flags |= ETH_TEST_FL_FAILED;
6226
6227                 if (orig_state)
6228                         s2io_open(sp->dev);
6229
6230                 data[2] = 0;
6231         } else {
6232                 /* Online Tests. */
6233                 if (!orig_state) {
6234                         DBG_PRINT(ERR_DBG,
6235                                   "%s: is not up, cannot run test\n",
6236                                   dev->name);
6237                         data[0] = -1;
6238                         data[1] = -1;
6239                         data[2] = -1;
6240                         data[3] = -1;
6241                         data[4] = -1;
6242                 }
6243
6244                 if (s2io_link_test(sp, &data[2]))
6245                         ethtest->flags |= ETH_TEST_FL_FAILED;
6246
6247                 data[0] = 0;
6248                 data[1] = 0;
6249                 data[3] = 0;
6250                 data[4] = 0;
6251         }
6252 }
6253
6254 static void s2io_get_ethtool_stats(struct net_device *dev,
6255                                    struct ethtool_stats *estats,
6256                                    u64 * tmp_stats)
6257 {
6258         int i = 0, k;
6259         struct s2io_nic *sp = dev->priv;
6260         struct stat_block *stat_info = sp->mac_control.stats_info;
6261
6262         s2io_updt_stats(sp);
6263         tmp_stats[i++] =
6264                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
6265                 le32_to_cpu(stat_info->tmac_frms);
6266         tmp_stats[i++] =
6267                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6268                 le32_to_cpu(stat_info->tmac_data_octets);
6269         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6270         tmp_stats[i++] =
6271                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6272                 le32_to_cpu(stat_info->tmac_mcst_frms);
6273         tmp_stats[i++] =
6274                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6275                 le32_to_cpu(stat_info->tmac_bcst_frms);
6276         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6277         tmp_stats[i++] =
6278                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6279                 le32_to_cpu(stat_info->tmac_ttl_octets);
6280         tmp_stats[i++] =
6281                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6282                 le32_to_cpu(stat_info->tmac_ucst_frms);
6283         tmp_stats[i++] =
6284                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6285                 le32_to_cpu(stat_info->tmac_nucst_frms);
6286         tmp_stats[i++] =
6287                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6288                 le32_to_cpu(stat_info->tmac_any_err_frms);
6289         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6290         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6291         tmp_stats[i++] =
6292                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6293                 le32_to_cpu(stat_info->tmac_vld_ip);
6294         tmp_stats[i++] =
6295                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6296                 le32_to_cpu(stat_info->tmac_drop_ip);
6297         tmp_stats[i++] =
6298                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6299                 le32_to_cpu(stat_info->tmac_icmp);
6300         tmp_stats[i++] =
6301                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6302                 le32_to_cpu(stat_info->tmac_rst_tcp);
6303         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6304         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6305                 le32_to_cpu(stat_info->tmac_udp);
6306         tmp_stats[i++] =
6307                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6308                 le32_to_cpu(stat_info->rmac_vld_frms);
6309         tmp_stats[i++] =
6310                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6311                 le32_to_cpu(stat_info->rmac_data_octets);
6312         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6313         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6314         tmp_stats[i++] =
6315                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6316                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6317         tmp_stats[i++] =
6318                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6319                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6320         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6321         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6322         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6323         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6324         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6325         tmp_stats[i++] =
6326                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6327                 le32_to_cpu(stat_info->rmac_ttl_octets);
6328         tmp_stats[i++] =
6329                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6330                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6331         tmp_stats[i++] =
6332                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6333                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6334         tmp_stats[i++] =
6335                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6336                 le32_to_cpu(stat_info->rmac_discarded_frms);
6337         tmp_stats[i++] =
6338                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6339                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6340         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6341         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6342         tmp_stats[i++] =
6343                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6344                 le32_to_cpu(stat_info->rmac_usized_frms);
6345         tmp_stats[i++] =
6346                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6347                 le32_to_cpu(stat_info->rmac_osized_frms);
6348         tmp_stats[i++] =
6349                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6350                 le32_to_cpu(stat_info->rmac_frag_frms);
6351         tmp_stats[i++] =
6352                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6353                 le32_to_cpu(stat_info->rmac_jabber_frms);
6354         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6355         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6356         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6357         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6358         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6359         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6360         tmp_stats[i++] =
6361                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6362                 le32_to_cpu(stat_info->rmac_ip);
6363         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6364         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6365         tmp_stats[i++] =
6366                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6367                 le32_to_cpu(stat_info->rmac_drop_ip);
6368         tmp_stats[i++] =
6369                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6370                 le32_to_cpu(stat_info->rmac_icmp);
6371         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6372         tmp_stats[i++] =
6373                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6374                 le32_to_cpu(stat_info->rmac_udp);
6375         tmp_stats[i++] =
6376                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6377                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6378         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6379         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6380         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6381         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6382         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6383         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6384         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6385         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6386         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6387         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6388         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6389         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6390         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6391         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6392         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6393         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6394         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6395         tmp_stats[i++] =
6396                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6397                 le32_to_cpu(stat_info->rmac_pause_cnt);
6398         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6399         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6400         tmp_stats[i++] =
6401                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6402                 le32_to_cpu(stat_info->rmac_accepted_ip);
6403         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6404         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6405         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6406         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6407         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6408         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6409         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6410         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6411         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6412         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6413         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6414         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6415         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6416         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6417         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6418         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6419         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6420         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6421         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6422
6423         /* Enhanced statistics exist only for Hercules */
6424         if(sp->device_type == XFRAME_II_DEVICE) {
6425                 tmp_stats[i++] =
6426                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6427                 tmp_stats[i++] =
6428                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6429                 tmp_stats[i++] =
6430                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6431                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6432                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6433                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6434                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6435                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6436                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6437                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6438                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6439                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6440                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6441                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6442                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6443                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6444         }
6445
6446         tmp_stats[i++] = 0;
6447         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6448         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6449         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6450         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6451         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6452         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6453         for (k = 0; k < MAX_RX_RINGS; k++)
6454                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6455         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6456         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6457         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6458         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6459         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6460         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6461         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6462         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6463         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6464         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6465         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6466         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6467         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6468         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6469         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6470         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6471         if (stat_info->sw_stat.num_aggregations) {
6472                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6473                 int count = 0;
6474                 /*
6475                  * Since 64-bit divide does not work on all platforms,
6476                  * do repeated subtraction.
6477                  */
6478                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6479                         tmp -= stat_info->sw_stat.num_aggregations;
6480                         count++;
6481                 }
6482                 tmp_stats[i++] = count;
6483         }
6484         else
6485                 tmp_stats[i++] = 0;
6486         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6487         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6488         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6489         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6490         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6491         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6492         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6493         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6494         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6495
6496         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6497         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6498         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6499         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6500         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6501
6502         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6503         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6504         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6505         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6506         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6507         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6508         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6509         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6510         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6511         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6512         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6513         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6514         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6515         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6516         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6517         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6518         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6519         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6520         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6521         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6522         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6523         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6524         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6525         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6526         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6527         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6528 }
6529
6530 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6531 {
6532         return (XENA_REG_SPACE);
6533 }
6534
6535
6536 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6537 {
6538         struct s2io_nic *sp = dev->priv;
6539
6540         return (sp->rx_csum);
6541 }
6542
6543 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6544 {
6545         struct s2io_nic *sp = dev->priv;
6546
6547         if (data)
6548                 sp->rx_csum = 1;
6549         else
6550                 sp->rx_csum = 0;
6551
6552         return 0;
6553 }
6554
6555 static int s2io_get_eeprom_len(struct net_device *dev)
6556 {
6557         return (XENA_EEPROM_SPACE);
6558 }
6559
6560 static int s2io_get_sset_count(struct net_device *dev, int sset)
6561 {
6562         struct s2io_nic *sp = dev->priv;
6563
6564         switch (sset) {
6565         case ETH_SS_TEST:
6566                 return S2IO_TEST_LEN;
6567         case ETH_SS_STATS:
6568                 switch(sp->device_type) {
6569                 case XFRAME_I_DEVICE:
6570                         return XFRAME_I_STAT_LEN;
6571                 case XFRAME_II_DEVICE:
6572                         return XFRAME_II_STAT_LEN;
6573                 default:
6574                         return 0;
6575                 }
6576         default:
6577                 return -EOPNOTSUPP;
6578         }
6579 }
6580
6581 static void s2io_ethtool_get_strings(struct net_device *dev,
6582                                      u32 stringset, u8 * data)
6583 {
6584         int stat_size = 0;
6585         struct s2io_nic *sp = dev->priv;
6586
6587         switch (stringset) {
6588         case ETH_SS_TEST:
6589                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6590                 break;
6591         case ETH_SS_STATS:
6592                 stat_size = sizeof(ethtool_xena_stats_keys);
6593                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6594                 if(sp->device_type == XFRAME_II_DEVICE) {
6595                         memcpy(data + stat_size,
6596                                 &ethtool_enhanced_stats_keys,
6597                                 sizeof(ethtool_enhanced_stats_keys));
6598                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6599                 }
6600
6601                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6602                         sizeof(ethtool_driver_stats_keys));
6603         }
6604 }
6605
6606 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6607 {
6608         if (data)
6609                 dev->features |= NETIF_F_IP_CSUM;
6610         else
6611                 dev->features &= ~NETIF_F_IP_CSUM;
6612
6613         return 0;
6614 }
6615
6616 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6617 {
6618         return (dev->features & NETIF_F_TSO) != 0;
6619 }
6620 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6621 {
6622         if (data)
6623                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6624         else
6625                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6626
6627         return 0;
6628 }
6629
6630 static const struct ethtool_ops netdev_ethtool_ops = {
6631         .get_settings = s2io_ethtool_gset,
6632         .set_settings = s2io_ethtool_sset,
6633         .get_drvinfo = s2io_ethtool_gdrvinfo,
6634         .get_regs_len = s2io_ethtool_get_regs_len,
6635         .get_regs = s2io_ethtool_gregs,
6636         .get_link = ethtool_op_get_link,
6637         .get_eeprom_len = s2io_get_eeprom_len,
6638         .get_eeprom = s2io_ethtool_geeprom,
6639         .set_eeprom = s2io_ethtool_seeprom,
6640         .get_ringparam = s2io_ethtool_gringparam,
6641         .get_pauseparam = s2io_ethtool_getpause_data,
6642         .set_pauseparam = s2io_ethtool_setpause_data,
6643         .get_rx_csum = s2io_ethtool_get_rx_csum,
6644         .set_rx_csum = s2io_ethtool_set_rx_csum,
6645         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6646         .set_sg = ethtool_op_set_sg,
6647         .get_tso = s2io_ethtool_op_get_tso,
6648         .set_tso = s2io_ethtool_op_set_tso,
6649         .set_ufo = ethtool_op_set_ufo,
6650         .self_test = s2io_ethtool_test,
6651         .get_strings = s2io_ethtool_get_strings,
6652         .phys_id = s2io_ethtool_idnic,
6653         .get_ethtool_stats = s2io_get_ethtool_stats,
6654         .get_sset_count = s2io_get_sset_count,
6655 };
6656
6657 /**
6658  *  s2io_ioctl - Entry point for the Ioctl
6659  *  @dev :  Device pointer.
6660  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6661  *  a proprietary structure used to pass information to the driver.
6662  *  @cmd :  This is used to distinguish between the different commands that
6663  *  can be passed to the IOCTL functions.
6664  *  Description:
6665  *  Currently there are no special functionality supported in IOCTL, hence
6666  *  function always return EOPNOTSUPPORTED
6667  */
6668
6669 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6670 {
6671         return -EOPNOTSUPP;
6672 }
6673
6674 /**
6675  *  s2io_change_mtu - entry point to change MTU size for the device.
6676  *   @dev : device pointer.
6677  *   @new_mtu : the new MTU size for the device.
6678  *   Description: A driver entry point to change MTU size for the device.
6679  *   Before changing the MTU the device must be stopped.
6680  *  Return value:
6681  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6682  *   file on failure.
6683  */
6684
6685 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6686 {
6687         struct s2io_nic *sp = dev->priv;
6688         int ret = 0;
6689
6690         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6691                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6692                           dev->name);
6693                 return -EPERM;
6694         }
6695
6696         dev->mtu = new_mtu;
6697         if (netif_running(dev)) {
6698                 s2io_stop_all_tx_queue(sp);
6699                 s2io_card_down(sp);
6700                 ret = s2io_card_up(sp);
6701                 if (ret) {
6702                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6703                                   __FUNCTION__);
6704                         return ret;
6705                 }
6706                 s2io_wake_all_tx_queue(sp);
6707         } else { /* Device is down */
6708                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6709                 u64 val64 = new_mtu;
6710
6711                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6712         }
6713
6714         return ret;
6715 }
6716
6717 /**
6718  * s2io_set_link - Set the LInk status
6719  * @data: long pointer to device private structue
6720  * Description: Sets the link status for the adapter
6721  */
6722
6723 static void s2io_set_link(struct work_struct *work)
6724 {
6725         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6726         struct net_device *dev = nic->dev;
6727         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6728         register u64 val64;
6729         u16 subid;
6730
6731         rtnl_lock();
6732
6733         if (!netif_running(dev))
6734                 goto out_unlock;
6735
6736         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6737                 /* The card is being reset, no point doing anything */
6738                 goto out_unlock;
6739         }
6740
6741         subid = nic->pdev->subsystem_device;
6742         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6743                 /*
6744                  * Allow a small delay for the NICs self initiated
6745                  * cleanup to complete.
6746                  */
6747                 msleep(100);
6748         }
6749
6750         val64 = readq(&bar0->adapter_status);
6751         if (LINK_IS_UP(val64)) {
6752                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6753                         if (verify_xena_quiescence(nic)) {
6754                                 val64 = readq(&bar0->adapter_control);
6755                                 val64 |= ADAPTER_CNTL_EN;
6756                                 writeq(val64, &bar0->adapter_control);
6757                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6758                                         nic->device_type, subid)) {
6759                                         val64 = readq(&bar0->gpio_control);
6760                                         val64 |= GPIO_CTRL_GPIO_0;
6761                                         writeq(val64, &bar0->gpio_control);
6762                                         val64 = readq(&bar0->gpio_control);
6763                                 } else {
6764                                         val64 |= ADAPTER_LED_ON;
6765                                         writeq(val64, &bar0->adapter_control);
6766                                 }
6767                                 nic->device_enabled_once = TRUE;
6768                         } else {
6769                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6770                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6771                                 s2io_stop_all_tx_queue(nic);
6772                         }
6773                 }
6774                 val64 = readq(&bar0->adapter_control);
6775                 val64 |= ADAPTER_LED_ON;
6776                 writeq(val64, &bar0->adapter_control);
6777                 s2io_link(nic, LINK_UP);
6778         } else {
6779                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6780                                                       subid)) {
6781                         val64 = readq(&bar0->gpio_control);
6782                         val64 &= ~GPIO_CTRL_GPIO_0;
6783                         writeq(val64, &bar0->gpio_control);
6784                         val64 = readq(&bar0->gpio_control);
6785                 }
6786                 /* turn off LED */
6787                 val64 = readq(&bar0->adapter_control);
6788                 val64 = val64 &(~ADAPTER_LED_ON);
6789                 writeq(val64, &bar0->adapter_control);
6790                 s2io_link(nic, LINK_DOWN);
6791         }
6792         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6793
6794 out_unlock:
6795         rtnl_unlock();
6796 }
6797
6798 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6799                                 struct buffAdd *ba,
6800                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6801                                 u64 *temp2, int size)
6802 {
6803         struct net_device *dev = sp->dev;
6804         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6805
6806         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6807                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6808                 /* allocate skb */
6809                 if (*skb) {
6810                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6811                         /*
6812                          * As Rx frame are not going to be processed,
6813                          * using same mapped address for the Rxd
6814                          * buffer pointer
6815                          */
6816                         rxdp1->Buffer0_ptr = *temp0;
6817                 } else {
6818                         *skb = dev_alloc_skb(size);
6819                         if (!(*skb)) {
6820                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6821                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6822                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6823                                 sp->mac_control.stats_info->sw_stat. \
6824                                         mem_alloc_fail_cnt++;
6825                                 return -ENOMEM ;
6826                         }
6827                         sp->mac_control.stats_info->sw_stat.mem_allocated
6828                                 += (*skb)->truesize;
6829                         /* storing the mapped addr in a temp variable
6830                          * such it will be used for next rxd whose
6831                          * Host Control is NULL
6832                          */
6833                         rxdp1->Buffer0_ptr = *temp0 =
6834                                 pci_map_single( sp->pdev, (*skb)->data,
6835                                         size - NET_IP_ALIGN,
6836                                         PCI_DMA_FROMDEVICE);
6837                         if( (rxdp1->Buffer0_ptr == 0) ||
6838                                 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6839                                 goto memalloc_failed;
6840                         }
6841                         rxdp->Host_Control = (unsigned long) (*skb);
6842                 }
6843         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6844                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6845                 /* Two buffer Mode */
6846                 if (*skb) {
6847                         rxdp3->Buffer2_ptr = *temp2;
6848                         rxdp3->Buffer0_ptr = *temp0;
6849                         rxdp3->Buffer1_ptr = *temp1;
6850                 } else {
6851                         *skb = dev_alloc_skb(size);
6852                         if (!(*skb)) {
6853                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6854                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6855                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6856                                 sp->mac_control.stats_info->sw_stat. \
6857                                         mem_alloc_fail_cnt++;
6858                                 return -ENOMEM;
6859                         }
6860                         sp->mac_control.stats_info->sw_stat.mem_allocated
6861                                 += (*skb)->truesize;
6862                         rxdp3->Buffer2_ptr = *temp2 =
6863                                 pci_map_single(sp->pdev, (*skb)->data,
6864                                                dev->mtu + 4,
6865                                                PCI_DMA_FROMDEVICE);
6866                         if( (rxdp3->Buffer2_ptr == 0) ||
6867                                 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6868                                 goto memalloc_failed;
6869                         }
6870                         rxdp3->Buffer0_ptr = *temp0 =
6871                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6872                                                 PCI_DMA_FROMDEVICE);
6873                         if( (rxdp3->Buffer0_ptr == 0) ||
6874                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6875                                 pci_unmap_single (sp->pdev,
6876                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6877                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6878                                 goto memalloc_failed;
6879                         }
6880                         rxdp->Host_Control = (unsigned long) (*skb);
6881
6882                         /* Buffer-1 will be dummy buffer not used */
6883                         rxdp3->Buffer1_ptr = *temp1 =
6884                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6885                                                 PCI_DMA_FROMDEVICE);
6886                         if( (rxdp3->Buffer1_ptr == 0) ||
6887                                 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6888                                 pci_unmap_single (sp->pdev,
6889                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6890                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6891                                 pci_unmap_single (sp->pdev,
6892                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6893                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6894                                 goto memalloc_failed;
6895                         }
6896                 }
6897         }
6898         return 0;
6899         memalloc_failed:
6900                 stats->pci_map_fail_cnt++;
6901                 stats->mem_freed += (*skb)->truesize;
6902                 dev_kfree_skb(*skb);
6903                 return -ENOMEM;
6904 }
6905
6906 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6907                                 int size)
6908 {
6909         struct net_device *dev = sp->dev;
6910         if (sp->rxd_mode == RXD_MODE_1) {
6911                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6912         } else if (sp->rxd_mode == RXD_MODE_3B) {
6913                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6914                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6915                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6916         }
6917 }
6918
6919 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6920 {
6921         int i, j, k, blk_cnt = 0, size;
6922         struct mac_info * mac_control = &sp->mac_control;
6923         struct config_param *config = &sp->config;
6924         struct net_device *dev = sp->dev;
6925         struct RxD_t *rxdp = NULL;
6926         struct sk_buff *skb = NULL;
6927         struct buffAdd *ba = NULL;
6928         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6929
6930         /* Calculate the size based on ring mode */
6931         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6932                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6933         if (sp->rxd_mode == RXD_MODE_1)
6934                 size += NET_IP_ALIGN;
6935         else if (sp->rxd_mode == RXD_MODE_3B)
6936                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6937
6938         for (i = 0; i < config->rx_ring_num; i++) {
6939                 blk_cnt = config->rx_cfg[i].num_rxd /
6940                         (rxd_count[sp->rxd_mode] +1);
6941
6942                 for (j = 0; j < blk_cnt; j++) {
6943                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6944                                 rxdp = mac_control->rings[i].
6945                                         rx_blocks[j].rxds[k].virt_addr;
6946                                 if(sp->rxd_mode == RXD_MODE_3B)
6947                                         ba = &mac_control->rings[i].ba[j][k];
6948                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6949                                                        &skb,(u64 *)&temp0_64,
6950                                                        (u64 *)&temp1_64,
6951                                                        (u64 *)&temp2_64,
6952                                                         size) == ENOMEM) {
6953                                         return 0;
6954                                 }
6955
6956                                 set_rxd_buffer_size(sp, rxdp, size);
6957                                 wmb();
6958                                 /* flip the Ownership bit to Hardware */
6959                                 rxdp->Control_1 |= RXD_OWN_XENA;
6960                         }
6961                 }
6962         }
6963         return 0;
6964
6965 }
6966
6967 static int s2io_add_isr(struct s2io_nic * sp)
6968 {
6969         int ret = 0;
6970         struct net_device *dev = sp->dev;
6971         int err = 0;
6972
6973         if (sp->config.intr_type == MSI_X)
6974                 ret = s2io_enable_msi_x(sp);
6975         if (ret) {
6976                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6977                 sp->config.intr_type = INTA;
6978         }
6979
6980         /* Store the values of the MSIX table in the struct s2io_nic structure */
6981         store_xmsi_data(sp);
6982
6983         /* After proper initialization of H/W, register ISR */
6984         if (sp->config.intr_type == MSI_X) {
6985                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6986
6987                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6988                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6989                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6990                                         dev->name, i);
6991                                 err = request_irq(sp->entries[i].vector,
6992                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6993                                                   sp->s2io_entries[i].arg);
6994                                 /* If either data or addr is zero print it */
6995                                 if(!(sp->msix_info[i].addr &&
6996                                         sp->msix_info[i].data)) {
6997                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6998                                                 "Data:0x%llx\n",sp->desc[i],
6999                                                 (unsigned long long)
7000                                                 sp->msix_info[i].addr,
7001                                                 (unsigned long long)
7002                                                 sp->msix_info[i].data);
7003                                 } else {
7004                                         msix_tx_cnt++;
7005                                 }
7006                         } else {
7007                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7008                                         dev->name, i);
7009                                 err = request_irq(sp->entries[i].vector,
7010                                           s2io_msix_ring_handle, 0, sp->desc[i],
7011                                                   sp->s2io_entries[i].arg);
7012                                 /* If either data or addr is zero print it */
7013                                 if(!(sp->msix_info[i].addr &&
7014                                         sp->msix_info[i].data)) {
7015                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
7016                                                 "Data:0x%llx\n",sp->desc[i],
7017                                                 (unsigned long long)
7018                                                 sp->msix_info[i].addr,
7019                                                 (unsigned long long)
7020                                                 sp->msix_info[i].data);
7021                                 } else {
7022                                         msix_rx_cnt++;
7023                                 }
7024                         }
7025                         if (err) {
7026                                 remove_msix_isr(sp);
7027                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
7028                                           "failed\n", dev->name, i);
7029                                 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
7030                                                  dev->name);
7031                                 sp->config.intr_type = INTA;
7032                                 break;
7033                         }
7034                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
7035                 }
7036                 if (!err) {
7037                         printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
7038                                 msix_tx_cnt);
7039                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7040                                 msix_rx_cnt);
7041                 }
7042         }
7043         if (sp->config.intr_type == INTA) {
7044                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7045                                 sp->name, dev);
7046                 if (err) {
7047                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7048                                   dev->name);
7049                         return -1;
7050                 }
7051         }
7052         return 0;
7053 }
7054 static void s2io_rem_isr(struct s2io_nic * sp)
7055 {
7056         if (sp->config.intr_type == MSI_X)
7057                 remove_msix_isr(sp);
7058         else
7059                 remove_inta_isr(sp);
7060 }
7061
7062 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7063 {
7064         int cnt = 0;
7065         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7066         register u64 val64 = 0;
7067         struct config_param *config;
7068         config = &sp->config;
7069
7070         if (!is_s2io_card_up(sp))
7071                 return;
7072
7073         del_timer_sync(&sp->alarm_timer);
7074         /* If s2io_set_link task is executing, wait till it completes. */
7075         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7076                 msleep(50);
7077         }
7078         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7079
7080         /* Disable napi */
7081         if (config->napi)
7082                 napi_disable(&sp->napi);
7083
7084         /* disable Tx and Rx traffic on the NIC */
7085         if (do_io)
7086                 stop_nic(sp);
7087
7088         s2io_rem_isr(sp);
7089
7090         /* Check if the device is Quiescent and then Reset the NIC */
7091         while(do_io) {
7092                 /* As per the HW requirement we need to replenish the
7093                  * receive buffer to avoid the ring bump. Since there is
7094                  * no intention of processing the Rx frame at this pointwe are
7095                  * just settting the ownership bit of rxd in Each Rx
7096                  * ring to HW and set the appropriate buffer size
7097                  * based on the ring mode
7098                  */
7099                 rxd_owner_bit_reset(sp);
7100
7101                 val64 = readq(&bar0->adapter_status);
7102                 if (verify_xena_quiescence(sp)) {
7103                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7104                         break;
7105                 }
7106
7107                 msleep(50);
7108                 cnt++;
7109                 if (cnt == 10) {
7110                         DBG_PRINT(ERR_DBG,
7111                                   "s2io_close:Device not Quiescent ");
7112                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7113                                   (unsigned long long) val64);
7114                         break;
7115                 }
7116         }
7117         if (do_io)
7118                 s2io_reset(sp);
7119
7120         /* Free all Tx buffers */
7121         free_tx_buffers(sp);
7122
7123         /* Free all Rx buffers */
7124         free_rx_buffers(sp);
7125
7126         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7127 }
7128
7129 static void s2io_card_down(struct s2io_nic * sp)
7130 {
7131         do_s2io_card_down(sp, 1);
7132 }
7133
7134 static int s2io_card_up(struct s2io_nic * sp)
7135 {
7136         int i, ret = 0;
7137         struct mac_info *mac_control;
7138         struct config_param *config;
7139         struct net_device *dev = (struct net_device *) sp->dev;
7140         u16 interruptible;
7141
7142         /* Initialize the H/W I/O registers */
7143         ret = init_nic(sp);
7144         if (ret != 0) {
7145                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7146                           dev->name);
7147                 if (ret != -EIO)
7148                         s2io_reset(sp);
7149                 return ret;
7150         }
7151
7152         /*
7153          * Initializing the Rx buffers. For now we are considering only 1
7154          * Rx ring and initializing buffers into 30 Rx blocks
7155          */
7156         mac_control = &sp->mac_control;
7157         config = &sp->config;
7158
7159         for (i = 0; i < config->rx_ring_num; i++) {
7160                 if ((ret = fill_rx_buffers(sp, i))) {
7161                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7162                                   dev->name);
7163                         s2io_reset(sp);
7164                         free_rx_buffers(sp);
7165                         return -ENOMEM;
7166                 }
7167                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7168                           atomic_read(&sp->rx_bufs_left[i]));
7169         }
7170
7171         /* Initialise napi */
7172         if (config->napi)
7173                 napi_enable(&sp->napi);
7174
7175         /* Maintain the state prior to the open */
7176         if (sp->promisc_flg)
7177                 sp->promisc_flg = 0;
7178         if (sp->m_cast_flg) {
7179                 sp->m_cast_flg = 0;
7180                 sp->all_multi_pos= 0;
7181         }
7182
7183         /* Setting its receive mode */
7184         s2io_set_multicast(dev);
7185
7186         if (sp->lro) {
7187                 /* Initialize max aggregatable pkts per session based on MTU */
7188                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7189                 /* Check if we can use(if specified) user provided value */
7190                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7191                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7192         }
7193
7194         /* Enable Rx Traffic and interrupts on the NIC */
7195         if (start_nic(sp)) {
7196                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7197                 s2io_reset(sp);
7198                 free_rx_buffers(sp);
7199                 return -ENODEV;
7200         }
7201
7202         /* Add interrupt service routine */
7203         if (s2io_add_isr(sp) != 0) {
7204                 if (sp->config.intr_type == MSI_X)
7205                         s2io_rem_isr(sp);
7206                 s2io_reset(sp);
7207                 free_rx_buffers(sp);
7208                 return -ENODEV;
7209         }
7210
7211         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7212
7213         /*  Enable select interrupts */
7214         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7215         if (sp->config.intr_type != INTA)
7216                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7217         else {
7218                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7219                 interruptible |= TX_PIC_INTR;
7220                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7221         }
7222
7223         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7224         return 0;
7225 }
7226
7227 /**
7228  * s2io_restart_nic - Resets the NIC.
7229  * @data : long pointer to the device private structure
7230  * Description:
7231  * This function is scheduled to be run by the s2io_tx_watchdog
7232  * function after 0.5 secs to reset the NIC. The idea is to reduce
7233  * the run time of the watch dog routine which is run holding a
7234  * spin lock.
7235  */
7236
7237 static void s2io_restart_nic(struct work_struct *work)
7238 {
7239         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7240         struct net_device *dev = sp->dev;
7241
7242         rtnl_lock();
7243
7244         if (!netif_running(dev))
7245                 goto out_unlock;
7246
7247         s2io_card_down(sp);
7248         if (s2io_card_up(sp)) {
7249                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7250                           dev->name);
7251         }
7252         s2io_wake_all_tx_queue(sp);
7253         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7254                   dev->name);
7255 out_unlock:
7256         rtnl_unlock();
7257 }
7258
7259 /**
7260  *  s2io_tx_watchdog - Watchdog for transmit side.
7261  *  @dev : Pointer to net device structure
7262  *  Description:
7263  *  This function is triggered if the Tx Queue is stopped
7264  *  for a pre-defined amount of time when the Interface is still up.
7265  *  If the Interface is jammed in such a situation, the hardware is
7266  *  reset (by s2io_close) and restarted again (by s2io_open) to
7267  *  overcome any problem that might have been caused in the hardware.
7268  *  Return value:
7269  *  void
7270  */
7271
7272 static void s2io_tx_watchdog(struct net_device *dev)
7273 {
7274         struct s2io_nic *sp = dev->priv;
7275
7276         if (netif_carrier_ok(dev)) {
7277                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7278                 schedule_work(&sp->rst_timer_task);
7279                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7280         }
7281 }
7282
7283 /**
7284  *   rx_osm_handler - To perform some OS related operations on SKB.
7285  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7286  *   @skb : the socket buffer pointer.
7287  *   @len : length of the packet
7288  *   @cksum : FCS checksum of the frame.
7289  *   @ring_no : the ring from which this RxD was extracted.
7290  *   Description:
7291  *   This function is called by the Rx interrupt serivce routine to perform
7292  *   some OS related operations on the SKB before passing it to the upper
7293  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7294  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7295  *   to the upper layer. If the checksum is wrong, it increments the Rx
7296  *   packet error count, frees the SKB and returns error.
7297  *   Return value:
7298  *   SUCCESS on success and -1 on failure.
7299  */
7300 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7301 {
7302         struct s2io_nic *sp = ring_data->nic;
7303         struct net_device *dev = (struct net_device *) sp->dev;
7304         struct sk_buff *skb = (struct sk_buff *)
7305                 ((unsigned long) rxdp->Host_Control);
7306         int ring_no = ring_data->ring_no;
7307         u16 l3_csum, l4_csum;
7308         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7309         struct lro *lro;
7310         u8 err_mask;
7311
7312         skb->dev = dev;
7313
7314         if (err) {
7315                 /* Check for parity error */
7316                 if (err & 0x1) {
7317                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7318                 }
7319                 err_mask = err >> 48;
7320                 switch(err_mask) {
7321                         case 1:
7322                                 sp->mac_control.stats_info->sw_stat.
7323                                 rx_parity_err_cnt++;
7324                         break;
7325
7326                         case 2:
7327                                 sp->mac_control.stats_info->sw_stat.
7328                                 rx_abort_cnt++;
7329                         break;
7330
7331                         case 3:
7332                                 sp->mac_control.stats_info->sw_stat.
7333                                 rx_parity_abort_cnt++;
7334                         break;
7335
7336                         case 4:
7337                                 sp->mac_control.stats_info->sw_stat.
7338                                 rx_rda_fail_cnt++;
7339                         break;
7340
7341                         case 5:
7342                                 sp->mac_control.stats_info->sw_stat.
7343                                 rx_unkn_prot_cnt++;
7344                         break;
7345
7346                         case 6:
7347                                 sp->mac_control.stats_info->sw_stat.
7348                                 rx_fcs_err_cnt++;
7349                         break;
7350
7351                         case 7:
7352                                 sp->mac_control.stats_info->sw_stat.
7353                                 rx_buf_size_err_cnt++;
7354                         break;
7355
7356                         case 8:
7357                                 sp->mac_control.stats_info->sw_stat.
7358                                 rx_rxd_corrupt_cnt++;
7359                         break;
7360
7361                         case 15:
7362                                 sp->mac_control.stats_info->sw_stat.
7363                                 rx_unkn_err_cnt++;
7364                         break;
7365                 }
7366                 /*
7367                 * Drop the packet if bad transfer code. Exception being
7368                 * 0x5, which could be due to unsupported IPv6 extension header.
7369                 * In this case, we let stack handle the packet.
7370                 * Note that in this case, since checksum will be incorrect,
7371                 * stack will validate the same.
7372                 */
7373                 if (err_mask != 0x5) {
7374                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7375                                 dev->name, err_mask);
7376                         sp->stats.rx_crc_errors++;
7377                         sp->mac_control.stats_info->sw_stat.mem_freed
7378                                 += skb->truesize;
7379                         dev_kfree_skb(skb);
7380                         atomic_dec(&sp->rx_bufs_left[ring_no]);
7381                         rxdp->Host_Control = 0;
7382                         return 0;
7383                 }
7384         }
7385
7386         /* Updating statistics */
7387         sp->stats.rx_packets++;
7388         rxdp->Host_Control = 0;
7389         if (sp->rxd_mode == RXD_MODE_1) {
7390                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7391
7392                 sp->stats.rx_bytes += len;
7393                 skb_put(skb, len);
7394
7395         } else if (sp->rxd_mode == RXD_MODE_3B) {
7396                 int get_block = ring_data->rx_curr_get_info.block_index;
7397                 int get_off = ring_data->rx_curr_get_info.offset;
7398                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7399                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7400                 unsigned char *buff = skb_push(skb, buf0_len);
7401
7402                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7403                 sp->stats.rx_bytes += buf0_len + buf2_len;
7404                 memcpy(buff, ba->ba_0, buf0_len);
7405                 skb_put(skb, buf2_len);
7406         }
7407
7408         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7409             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7410             (sp->rx_csum)) {
7411                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7412                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7413                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7414                         /*
7415                          * NIC verifies if the Checksum of the received
7416                          * frame is Ok or not and accordingly returns
7417                          * a flag in the RxD.
7418                          */
7419                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7420                         if (sp->lro) {
7421                                 u32 tcp_len;
7422                                 u8 *tcp;
7423                                 int ret = 0;
7424
7425                                 ret = s2io_club_tcp_session(skb->data, &tcp,
7426                                                             &tcp_len, &lro,
7427                                                             rxdp, sp);
7428                                 switch (ret) {
7429                                         case 3: /* Begin anew */
7430                                                 lro->parent = skb;
7431                                                 goto aggregate;
7432                                         case 1: /* Aggregate */
7433                                         {
7434                                                 lro_append_pkt(sp, lro,
7435                                                         skb, tcp_len);
7436                                                 goto aggregate;
7437                                         }
7438                                         case 4: /* Flush session */
7439                                         {
7440                                                 lro_append_pkt(sp, lro,
7441                                                         skb, tcp_len);
7442                                                 queue_rx_frame(lro->parent,
7443                                                         lro->vlan_tag);
7444                                                 clear_lro_session(lro);
7445                                                 sp->mac_control.stats_info->
7446                                                     sw_stat.flush_max_pkts++;
7447                                                 goto aggregate;
7448                                         }
7449                                         case 2: /* Flush both */
7450                                                 lro->parent->data_len =
7451                                                         lro->frags_len;
7452                                                 sp->mac_control.stats_info->
7453                                                      sw_stat.sending_both++;
7454                                                 queue_rx_frame(lro->parent,
7455                                                         lro->vlan_tag);
7456                                                 clear_lro_session(lro);
7457                                                 goto send_up;
7458                                         case 0: /* sessions exceeded */
7459                                         case -1: /* non-TCP or not
7460                                                   * L2 aggregatable
7461                                                   */
7462                                         case 5: /*
7463                                                  * First pkt in session not
7464                                                  * L3/L4 aggregatable
7465                                                  */
7466                                                 break;
7467                                         default:
7468                                                 DBG_PRINT(ERR_DBG,
7469                                                         "%s: Samadhana!!\n",
7470                                                          __FUNCTION__);
7471                                                 BUG();
7472                                 }
7473                         }
7474                 } else {
7475                         /*
7476                          * Packet with erroneous checksum, let the
7477                          * upper layers deal with it.
7478                          */
7479                         skb->ip_summed = CHECKSUM_NONE;
7480                 }
7481         } else
7482                 skb->ip_summed = CHECKSUM_NONE;
7483
7484         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7485 send_up:
7486         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7487         dev->last_rx = jiffies;
7488 aggregate:
7489         atomic_dec(&sp->rx_bufs_left[ring_no]);
7490         return SUCCESS;
7491 }
7492
7493 /**
7494  *  s2io_link - stops/starts the Tx queue.
7495  *  @sp : private member of the device structure, which is a pointer to the
7496  *  s2io_nic structure.
7497  *  @link : inidicates whether link is UP/DOWN.
7498  *  Description:
7499  *  This function stops/starts the Tx queue depending on whether the link
7500  *  status of the NIC is is down or up. This is called by the Alarm
7501  *  interrupt handler whenever a link change interrupt comes up.
7502  *  Return value:
7503  *  void.
7504  */
7505
7506 static void s2io_link(struct s2io_nic * sp, int link)
7507 {
7508         struct net_device *dev = (struct net_device *) sp->dev;
7509
7510         if (link != sp->last_link_state) {
7511                 init_tti(sp, link);
7512                 if (link == LINK_DOWN) {
7513                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7514                         s2io_stop_all_tx_queue(sp);
7515                         netif_carrier_off(dev);
7516                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7517                         sp->mac_control.stats_info->sw_stat.link_up_time =
7518                                 jiffies - sp->start_time;
7519                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7520                 } else {
7521                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7522                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7523                         sp->mac_control.stats_info->sw_stat.link_down_time =
7524                                 jiffies - sp->start_time;
7525                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7526                         netif_carrier_on(dev);
7527                         s2io_wake_all_tx_queue(sp);
7528                 }
7529         }
7530         sp->last_link_state = link;
7531         sp->start_time = jiffies;
7532 }
7533
7534 /**
7535  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7536  *  @sp : private member of the device structure, which is a pointer to the
7537  *  s2io_nic structure.
7538  *  Description:
7539  *  This function initializes a few of the PCI and PCI-X configuration registers
7540  *  with recommended values.
7541  *  Return value:
7542  *  void
7543  */
7544
7545 static void s2io_init_pci(struct s2io_nic * sp)
7546 {
7547         u16 pci_cmd = 0, pcix_cmd = 0;
7548
7549         /* Enable Data Parity Error Recovery in PCI-X command register. */
7550         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7551                              &(pcix_cmd));
7552         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7553                               (pcix_cmd | 1));
7554         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7555                              &(pcix_cmd));
7556
7557         /* Set the PErr Response bit in PCI command register. */
7558         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7559         pci_write_config_word(sp->pdev, PCI_COMMAND,
7560                               (pci_cmd | PCI_COMMAND_PARITY));
7561         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7562 }
7563
7564 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7565         u8 *dev_multiq)
7566 {
7567         if ((tx_fifo_num > MAX_TX_FIFOS) ||
7568                 (tx_fifo_num < 1)) {
7569                 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7570                         "(%d) not supported\n", tx_fifo_num);
7571
7572                 if (tx_fifo_num < 1)
7573                         tx_fifo_num = 1;
7574                 else
7575                         tx_fifo_num = MAX_TX_FIFOS;
7576
7577                 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7578                 DBG_PRINT(ERR_DBG, "tx fifos\n");
7579         }
7580
7581 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7582         if (multiq) {
7583                 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7584                 multiq = 0;
7585         }
7586 #endif
7587         if (multiq)
7588                 *dev_multiq = multiq;
7589
7590         if (tx_steering_type && (1 == tx_fifo_num)) {
7591                 if (tx_steering_type != TX_DEFAULT_STEERING)
7592                         DBG_PRINT(ERR_DBG,
7593                                 "s2io: Tx steering is not supported with "
7594                                 "one fifo. Disabling Tx steering.\n");
7595                 tx_steering_type = NO_STEERING;
7596         }
7597
7598         if ((tx_steering_type < NO_STEERING) ||
7599                 (tx_steering_type > TX_DEFAULT_STEERING)) {
7600                 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7601                          "supported\n");
7602                 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7603                 tx_steering_type = NO_STEERING;
7604         }
7605
7606         if ( rx_ring_num > 8) {
7607                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7608                          "supported\n");
7609                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7610                 rx_ring_num = 8;
7611         }
7612         if (*dev_intr_type != INTA)
7613                 napi = 0;
7614
7615         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7616                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7617                           "Defaulting to INTA\n");
7618                 *dev_intr_type = INTA;
7619         }
7620
7621         if ((*dev_intr_type == MSI_X) &&
7622                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7623                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7624                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7625                                         "Defaulting to INTA\n");
7626                 *dev_intr_type = INTA;
7627         }
7628
7629         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7630                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7631                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7632                 rx_ring_mode = 1;
7633         }
7634         return SUCCESS;
7635 }
7636
7637 /**
7638  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7639  * or Traffic class respectively.
7640  * @nic: device private variable
7641  * Description: The function configures the receive steering to
7642  * desired receive ring.
7643  * Return Value:  SUCCESS on success and
7644  * '-1' on failure (endian settings incorrect).
7645  */
7646 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7647 {
7648         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7649         register u64 val64 = 0;
7650
7651         if (ds_codepoint > 63)
7652                 return FAILURE;
7653
7654         val64 = RTS_DS_MEM_DATA(ring);
7655         writeq(val64, &bar0->rts_ds_mem_data);
7656
7657         val64 = RTS_DS_MEM_CTRL_WE |
7658                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7659                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7660
7661         writeq(val64, &bar0->rts_ds_mem_ctrl);
7662
7663         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7664                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7665                                 S2IO_BIT_RESET);
7666 }
7667
7668 /**
7669  *  s2io_init_nic - Initialization of the adapter .
7670  *  @pdev : structure containing the PCI related information of the device.
7671  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7672  *  Description:
7673  *  The function initializes an adapter identified by the pci_dec structure.
7674  *  All OS related initialization including memory and device structure and
7675  *  initlaization of the device private variable is done. Also the swapper
7676  *  control register is initialized to enable read and write into the I/O
7677  *  registers of the device.
7678  *  Return value:
7679  *  returns 0 on success and negative on failure.
7680  */
7681
7682 static int __devinit
7683 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7684 {
7685         struct s2io_nic *sp;
7686         struct net_device *dev;
7687         int i, j, ret;
7688         int dma_flag = FALSE;
7689         u32 mac_up, mac_down;
7690         u64 val64 = 0, tmp64 = 0;
7691         struct XENA_dev_config __iomem *bar0 = NULL;
7692         u16 subid;
7693         struct mac_info *mac_control;
7694         struct config_param *config;
7695         int mode;
7696         u8 dev_intr_type = intr_type;
7697         u8 dev_multiq = 0;
7698         DECLARE_MAC_BUF(mac);
7699
7700         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7701         if (ret)
7702                 return ret;
7703
7704         if ((ret = pci_enable_device(pdev))) {
7705                 DBG_PRINT(ERR_DBG,
7706                           "s2io_init_nic: pci_enable_device failed\n");
7707                 return ret;
7708         }
7709
7710         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7711                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7712                 dma_flag = TRUE;
7713                 if (pci_set_consistent_dma_mask
7714                     (pdev, DMA_64BIT_MASK)) {
7715                         DBG_PRINT(ERR_DBG,
7716                                   "Unable to obtain 64bit DMA for \
7717                                         consistent allocations\n");
7718                         pci_disable_device(pdev);
7719                         return -ENOMEM;
7720                 }
7721         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7722                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7723         } else {
7724                 pci_disable_device(pdev);
7725                 return -ENOMEM;
7726         }
7727         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7728                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7729                 pci_disable_device(pdev);
7730                 return -ENODEV;
7731         }
7732 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7733         if (dev_multiq)
7734                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7735         else
7736 #endif
7737         dev = alloc_etherdev(sizeof(struct s2io_nic));
7738         if (dev == NULL) {
7739                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7740                 pci_disable_device(pdev);
7741                 pci_release_regions(pdev);
7742                 return -ENODEV;
7743         }
7744
7745         pci_set_master(pdev);
7746         pci_set_drvdata(pdev, dev);
7747         SET_NETDEV_DEV(dev, &pdev->dev);
7748
7749         /*  Private member variable initialized to s2io NIC structure */
7750         sp = dev->priv;
7751         memset(sp, 0, sizeof(struct s2io_nic));
7752         sp->dev = dev;
7753         sp->pdev = pdev;
7754         sp->high_dma_flag = dma_flag;
7755         sp->device_enabled_once = FALSE;
7756         if (rx_ring_mode == 1)
7757                 sp->rxd_mode = RXD_MODE_1;
7758         if (rx_ring_mode == 2)
7759                 sp->rxd_mode = RXD_MODE_3B;
7760
7761         sp->config.intr_type = dev_intr_type;
7762
7763         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7764                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7765                 sp->device_type = XFRAME_II_DEVICE;
7766         else
7767                 sp->device_type = XFRAME_I_DEVICE;
7768
7769         sp->lro = lro_enable;
7770
7771         /* Initialize some PCI/PCI-X fields of the NIC. */
7772         s2io_init_pci(sp);
7773
7774         /*
7775          * Setting the device configuration parameters.
7776          * Most of these parameters can be specified by the user during
7777          * module insertion as they are module loadable parameters. If
7778          * these parameters are not not specified during load time, they
7779          * are initialized with default values.
7780          */
7781         mac_control = &sp->mac_control;
7782         config = &sp->config;
7783
7784         config->napi = napi;
7785         config->tx_steering_type = tx_steering_type;
7786
7787         /* Tx side parameters. */
7788         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7789                 config->tx_fifo_num = MAX_TX_FIFOS;
7790         else
7791                 config->tx_fifo_num = tx_fifo_num;
7792
7793         /* Initialize the fifos used for tx steering */
7794         if (config->tx_fifo_num < 5) {
7795                         if (config->tx_fifo_num  == 1)
7796                                 sp->total_tcp_fifos = 1;
7797                         else
7798                                 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7799                         sp->udp_fifo_idx = config->tx_fifo_num - 1;
7800                         sp->total_udp_fifos = 1;
7801                         sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7802         } else {
7803                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7804                                                 FIFO_OTHER_MAX_NUM);
7805                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7806                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7807                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7808         }
7809
7810         config->multiq = dev_multiq;
7811         for (i = 0; i < config->tx_fifo_num; i++) {
7812                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7813                 config->tx_cfg[i].fifo_priority = i;
7814         }
7815
7816         /* mapping the QoS priority to the configured fifos */
7817         for (i = 0; i < MAX_TX_FIFOS; i++)
7818                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7819
7820         /* map the hashing selector table to the configured fifos */
7821         for (i = 0; i < config->tx_fifo_num; i++)
7822                 sp->fifo_selector[i] = fifo_selector[i];
7823
7824
7825         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7826         for (i = 0; i < config->tx_fifo_num; i++) {
7827                 config->tx_cfg[i].f_no_snoop =
7828                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7829                 if (config->tx_cfg[i].fifo_len < 65) {
7830                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7831                         break;
7832                 }
7833         }
7834         /* + 2 because one Txd for skb->data and one Txd for UFO */
7835         config->max_txds = MAX_SKB_FRAGS + 2;
7836
7837         /* Rx side parameters. */
7838         config->rx_ring_num = rx_ring_num;
7839         for (i = 0; i < MAX_RX_RINGS; i++) {
7840                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7841                     (rxd_count[sp->rxd_mode] + 1);
7842                 config->rx_cfg[i].ring_priority = i;
7843         }
7844
7845         for (i = 0; i < rx_ring_num; i++) {
7846                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7847                 config->rx_cfg[i].f_no_snoop =
7848                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7849         }
7850
7851         /*  Setting Mac Control parameters */
7852         mac_control->rmac_pause_time = rmac_pause_time;
7853         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7854         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7855
7856
7857         /* Initialize Ring buffer parameters. */
7858         for (i = 0; i < config->rx_ring_num; i++)
7859                 atomic_set(&sp->rx_bufs_left[i], 0);
7860
7861         /*  initialize the shared memory used by the NIC and the host */
7862         if (init_shared_mem(sp)) {
7863                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7864                           dev->name);
7865                 ret = -ENOMEM;
7866                 goto mem_alloc_failed;
7867         }
7868
7869         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7870                                      pci_resource_len(pdev, 0));
7871         if (!sp->bar0) {
7872                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7873                           dev->name);
7874                 ret = -ENOMEM;
7875                 goto bar0_remap_failed;
7876         }
7877
7878         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7879                                      pci_resource_len(pdev, 2));
7880         if (!sp->bar1) {
7881                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7882                           dev->name);
7883                 ret = -ENOMEM;
7884                 goto bar1_remap_failed;
7885         }
7886
7887         dev->irq = pdev->irq;
7888         dev->base_addr = (unsigned long) sp->bar0;
7889
7890         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7891         for (j = 0; j < MAX_TX_FIFOS; j++) {
7892                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7893                     (sp->bar1 + (j * 0x00020000));
7894         }
7895
7896         /*  Driver entry points */
7897         dev->open = &s2io_open;
7898         dev->stop = &s2io_close;
7899         dev->hard_start_xmit = &s2io_xmit;
7900         dev->get_stats = &s2io_get_stats;
7901         dev->set_multicast_list = &s2io_set_multicast;
7902         dev->do_ioctl = &s2io_ioctl;
7903         dev->set_mac_address = &s2io_set_mac_addr;
7904         dev->change_mtu = &s2io_change_mtu;
7905         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7906         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7907         dev->vlan_rx_register = s2io_vlan_rx_register;
7908         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7909
7910         /*
7911          * will use eth_mac_addr() for  dev->set_mac_address
7912          * mac address will be set every time dev->open() is called
7913          */
7914         netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7915
7916 #ifdef CONFIG_NET_POLL_CONTROLLER
7917         dev->poll_controller = s2io_netpoll;
7918 #endif
7919
7920         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7921         if (sp->high_dma_flag == TRUE)
7922                 dev->features |= NETIF_F_HIGHDMA;
7923         dev->features |= NETIF_F_TSO;
7924         dev->features |= NETIF_F_TSO6;
7925         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7926                 dev->features |= NETIF_F_UFO;
7927                 dev->features |= NETIF_F_HW_CSUM;
7928         }
7929 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7930         if (config->multiq)
7931                 dev->features |= NETIF_F_MULTI_QUEUE;
7932 #endif
7933         dev->tx_timeout = &s2io_tx_watchdog;
7934         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7935         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7936         INIT_WORK(&sp->set_link_task, s2io_set_link);
7937
7938         pci_save_state(sp->pdev);
7939
7940         /* Setting swapper control on the NIC, for proper reset operation */
7941         if (s2io_set_swapper(sp)) {
7942                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7943                           dev->name);
7944                 ret = -EAGAIN;
7945                 goto set_swap_failed;
7946         }
7947
7948         /* Verify if the Herc works on the slot its placed into */
7949         if (sp->device_type & XFRAME_II_DEVICE) {
7950                 mode = s2io_verify_pci_mode(sp);
7951                 if (mode < 0) {
7952                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7953                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7954                         ret = -EBADSLT;
7955                         goto set_swap_failed;
7956                 }
7957         }
7958
7959         /* Not needed for Herc */
7960         if (sp->device_type & XFRAME_I_DEVICE) {
7961                 /*
7962                  * Fix for all "FFs" MAC address problems observed on
7963                  * Alpha platforms
7964                  */
7965                 fix_mac_address(sp);
7966                 s2io_reset(sp);
7967         }
7968
7969         /*
7970          * MAC address initialization.
7971          * For now only one mac address will be read and used.
7972          */
7973         bar0 = sp->bar0;
7974         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7975             RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7976         writeq(val64, &bar0->rmac_addr_cmd_mem);
7977         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7978                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7979         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7980         mac_down = (u32) tmp64;
7981         mac_up = (u32) (tmp64 >> 32);
7982
7983         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7984         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7985         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7986         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7987         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7988         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7989
7990         /*  Set the factory defined MAC address initially   */
7991         dev->addr_len = ETH_ALEN;
7992         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7993         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7994
7995         /* initialize number of multicast & unicast MAC entries variables */
7996         if (sp->device_type == XFRAME_I_DEVICE) {
7997                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7998                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7999                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8000         } else if (sp->device_type == XFRAME_II_DEVICE) {
8001                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8002                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8003                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8004         }
8005
8006         /* store mac addresses from CAM to s2io_nic structure */
8007         do_s2io_store_unicast_mc(sp);
8008
8009          /* Store the values of the MSIX table in the s2io_nic structure */
8010         store_xmsi_data(sp);
8011         /* reset Nic and bring it to known state */
8012         s2io_reset(sp);
8013
8014         /*
8015          * Initialize link state flags
8016          * and the card state parameter
8017          */
8018         sp->state = 0;
8019
8020         /* Initialize spinlocks */
8021         for (i = 0; i < sp->config.tx_fifo_num; i++)
8022                 spin_lock_init(&mac_control->fifos[i].tx_lock);
8023
8024         /*
8025          * SXE-002: Configure link and activity LED to init state
8026          * on driver load.
8027          */
8028         subid = sp->pdev->subsystem_device;
8029         if ((subid & 0xFF) >= 0x07) {
8030                 val64 = readq(&bar0->gpio_control);
8031                 val64 |= 0x0000800000000000ULL;
8032                 writeq(val64, &bar0->gpio_control);
8033                 val64 = 0x0411040400000000ULL;
8034                 writeq(val64, (void __iomem *) bar0 + 0x2700);
8035                 val64 = readq(&bar0->gpio_control);
8036         }
8037
8038         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8039
8040         if (register_netdev(dev)) {
8041                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8042                 ret = -ENODEV;
8043                 goto register_failed;
8044         }
8045         s2io_vpd_read(sp);
8046         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8047         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8048                   sp->product_name, pdev->revision);
8049         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8050                   s2io_driver_version);
8051         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8052                   dev->name, print_mac(mac, dev->dev_addr));
8053         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8054         if (sp->device_type & XFRAME_II_DEVICE) {
8055                 mode = s2io_print_pci_mode(sp);
8056                 if (mode < 0) {
8057                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8058                         ret = -EBADSLT;
8059                         unregister_netdev(dev);
8060                         goto set_swap_failed;
8061                 }
8062         }
8063         switch(sp->rxd_mode) {
8064                 case RXD_MODE_1:
8065                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8066                                                 dev->name);
8067                     break;
8068                 case RXD_MODE_3B:
8069                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8070                                                 dev->name);
8071                     break;
8072         }
8073
8074         if (napi)
8075                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8076
8077         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8078                 sp->config.tx_fifo_num);
8079
8080         switch(sp->config.intr_type) {
8081                 case INTA:
8082                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8083                     break;
8084                 case MSI_X:
8085                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8086                     break;
8087         }
8088         if (sp->config.multiq) {
8089         for (i = 0; i < sp->config.tx_fifo_num; i++)
8090                 mac_control->fifos[i].multiq = config->multiq;
8091                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8092                         dev->name);
8093         } else
8094                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8095                         dev->name);
8096
8097         switch (sp->config.tx_steering_type) {
8098         case NO_STEERING:
8099                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8100                         " transmit\n", dev->name);
8101                         break;
8102         case TX_PRIORITY_STEERING:
8103                 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8104                         " transmit\n", dev->name);
8105                 break;
8106         case TX_DEFAULT_STEERING:
8107                 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8108                         " transmit\n", dev->name);
8109         }
8110
8111         if (sp->lro)
8112                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8113                           dev->name);
8114         if (ufo)
8115                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8116                                         " enabled\n", dev->name);
8117         /* Initialize device name */
8118         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8119
8120         /*
8121          * Make Link state as off at this point, when the Link change
8122          * interrupt comes the state will be automatically changed to
8123          * the right state.
8124          */
8125         netif_carrier_off(dev);
8126
8127         return 0;
8128
8129       register_failed:
8130       set_swap_failed:
8131         iounmap(sp->bar1);
8132       bar1_remap_failed:
8133         iounmap(sp->bar0);
8134       bar0_remap_failed:
8135       mem_alloc_failed:
8136         free_shared_mem(sp);
8137         pci_disable_device(pdev);
8138         pci_release_regions(pdev);
8139         pci_set_drvdata(pdev, NULL);
8140         free_netdev(dev);
8141
8142         return ret;
8143 }
8144
8145 /**
8146  * s2io_rem_nic - Free the PCI device
8147  * @pdev: structure containing the PCI related information of the device.
8148  * Description: This function is called by the Pci subsystem to release a
8149  * PCI device and free up all resource held up by the device. This could
8150  * be in response to a Hot plug event or when the driver is to be removed
8151  * from memory.
8152  */
8153
8154 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8155 {
8156         struct net_device *dev =
8157             (struct net_device *) pci_get_drvdata(pdev);
8158         struct s2io_nic *sp;
8159
8160         if (dev == NULL) {
8161                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8162                 return;
8163         }
8164
8165         flush_scheduled_work();
8166
8167         sp = dev->priv;
8168         unregister_netdev(dev);
8169
8170         free_shared_mem(sp);
8171         iounmap(sp->bar0);
8172         iounmap(sp->bar1);
8173         pci_release_regions(pdev);
8174         pci_set_drvdata(pdev, NULL);
8175         free_netdev(dev);
8176         pci_disable_device(pdev);
8177 }
8178
8179 /**
8180  * s2io_starter - Entry point for the driver
8181  * Description: This function is the entry point for the driver. It verifies
8182  * the module loadable parameters and initializes PCI configuration space.
8183  */
8184
8185 static int __init s2io_starter(void)
8186 {
8187         return pci_register_driver(&s2io_driver);
8188 }
8189
8190 /**
8191  * s2io_closer - Cleanup routine for the driver
8192  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8193  */
8194
8195 static __exit void s2io_closer(void)
8196 {
8197         pci_unregister_driver(&s2io_driver);
8198         DBG_PRINT(INIT_DBG, "cleanup done\n");
8199 }
8200
8201 module_init(s2io_starter);
8202 module_exit(s2io_closer);
8203
8204 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8205                 struct tcphdr **tcp, struct RxD_t *rxdp,
8206                 struct s2io_nic *sp)
8207 {
8208         int ip_off;
8209         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8210
8211         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8212                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8213                           __FUNCTION__);
8214                 return -1;
8215         }
8216
8217         /* Checking for DIX type or DIX type with VLAN */
8218         if ((l2_type == 0)
8219                 || (l2_type == 4)) {
8220                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8221                 /*
8222                  * If vlan stripping is disabled and the frame is VLAN tagged,
8223                  * shift the offset by the VLAN header size bytes.
8224                  */
8225                 if ((!vlan_strip_flag) &&
8226                         (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8227                         ip_off += HEADER_VLAN_SIZE;
8228         } else {
8229                 /* LLC, SNAP etc are considered non-mergeable */
8230                 return -1;
8231         }
8232
8233         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8234         ip_len = (u8)((*ip)->ihl);
8235         ip_len <<= 2;
8236         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8237
8238         return 0;
8239 }
8240
8241 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8242                                   struct tcphdr *tcp)
8243 {
8244         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8245         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8246            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8247                 return -1;
8248         return 0;
8249 }
8250
8251 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8252 {
8253         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8254 }
8255
8256 static void initiate_new_session(struct lro *lro, u8 *l2h,
8257         struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8258 {
8259         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8260         lro->l2h = l2h;
8261         lro->iph = ip;
8262         lro->tcph = tcp;
8263         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8264         lro->tcp_ack = tcp->ack_seq;
8265         lro->sg_num = 1;
8266         lro->total_len = ntohs(ip->tot_len);
8267         lro->frags_len = 0;
8268         lro->vlan_tag = vlan_tag;
8269         /*
8270          * check if we saw TCP timestamp. Other consistency checks have
8271          * already been done.
8272          */
8273         if (tcp->doff == 8) {
8274                 __be32 *ptr;
8275                 ptr = (__be32 *)(tcp+1);
8276                 lro->saw_ts = 1;
8277                 lro->cur_tsval = ntohl(*(ptr+1));
8278                 lro->cur_tsecr = *(ptr+2);
8279         }
8280         lro->in_use = 1;
8281 }
8282
8283 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8284 {
8285         struct iphdr *ip = lro->iph;
8286         struct tcphdr *tcp = lro->tcph;
8287         __sum16 nchk;
8288         struct stat_block *statinfo = sp->mac_control.stats_info;
8289         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8290
8291         /* Update L3 header */
8292         ip->tot_len = htons(lro->total_len);
8293         ip->check = 0;
8294         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8295         ip->check = nchk;
8296
8297         /* Update L4 header */
8298         tcp->ack_seq = lro->tcp_ack;
8299         tcp->window = lro->window;
8300
8301         /* Update tsecr field if this session has timestamps enabled */
8302         if (lro->saw_ts) {
8303                 __be32 *ptr = (__be32 *)(tcp + 1);
8304                 *(ptr+2) = lro->cur_tsecr;
8305         }
8306
8307         /* Update counters required for calculation of
8308          * average no. of packets aggregated.
8309          */
8310         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8311         statinfo->sw_stat.num_aggregations++;
8312 }
8313
8314 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8315                 struct tcphdr *tcp, u32 l4_pyld)
8316 {
8317         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8318         lro->total_len += l4_pyld;
8319         lro->frags_len += l4_pyld;
8320         lro->tcp_next_seq += l4_pyld;
8321         lro->sg_num++;
8322
8323         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8324         lro->tcp_ack = tcp->ack_seq;
8325         lro->window = tcp->window;
8326
8327         if (lro->saw_ts) {
8328                 __be32 *ptr;
8329                 /* Update tsecr and tsval from this packet */
8330                 ptr = (__be32 *)(tcp+1);
8331                 lro->cur_tsval = ntohl(*(ptr+1));
8332                 lro->cur_tsecr = *(ptr + 2);
8333         }
8334 }
8335
8336 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8337                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8338 {
8339         u8 *ptr;
8340
8341         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8342
8343         if (!tcp_pyld_len) {
8344                 /* Runt frame or a pure ack */
8345                 return -1;
8346         }
8347
8348         if (ip->ihl != 5) /* IP has options */
8349                 return -1;
8350
8351         /* If we see CE codepoint in IP header, packet is not mergeable */
8352         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8353                 return -1;
8354
8355         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8356         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8357                                     tcp->ece || tcp->cwr || !tcp->ack) {
8358                 /*
8359                  * Currently recognize only the ack control word and
8360                  * any other control field being set would result in
8361                  * flushing the LRO session
8362                  */
8363                 return -1;
8364         }
8365
8366         /*
8367          * Allow only one TCP timestamp option. Don't aggregate if
8368          * any other options are detected.
8369          */
8370         if (tcp->doff != 5 && tcp->doff != 8)
8371                 return -1;
8372
8373         if (tcp->doff == 8) {
8374                 ptr = (u8 *)(tcp + 1);
8375                 while (*ptr == TCPOPT_NOP)
8376                         ptr++;
8377                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8378                         return -1;
8379
8380                 /* Ensure timestamp value increases monotonically */
8381                 if (l_lro)
8382                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8383                                 return -1;
8384
8385                 /* timestamp echo reply should be non-zero */
8386                 if (*((__be32 *)(ptr+6)) == 0)
8387                         return -1;
8388         }
8389
8390         return 0;
8391 }
8392
8393 static int
8394 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8395                       struct RxD_t *rxdp, struct s2io_nic *sp)
8396 {
8397         struct iphdr *ip;
8398         struct tcphdr *tcph;
8399         int ret = 0, i;
8400         u16 vlan_tag = 0;
8401
8402         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8403                                          rxdp, sp))) {
8404                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8405                           ip->saddr, ip->daddr);
8406         } else
8407                 return ret;
8408
8409         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8410         tcph = (struct tcphdr *)*tcp;
8411         *tcp_len = get_l4_pyld_length(ip, tcph);
8412         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8413                 struct lro *l_lro = &sp->lro0_n[i];
8414                 if (l_lro->in_use) {
8415                         if (check_for_socket_match(l_lro, ip, tcph))
8416                                 continue;
8417                         /* Sock pair matched */
8418                         *lro = l_lro;
8419
8420                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8421                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8422                                           "0x%x, actual 0x%x\n", __FUNCTION__,
8423                                           (*lro)->tcp_next_seq,
8424                                           ntohl(tcph->seq));
8425
8426                                 sp->mac_control.stats_info->
8427                                    sw_stat.outof_sequence_pkts++;
8428                                 ret = 2;
8429                                 break;
8430                         }
8431
8432                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8433                                 ret = 1; /* Aggregate */
8434                         else
8435                                 ret = 2; /* Flush both */
8436                         break;
8437                 }
8438         }
8439
8440         if (ret == 0) {
8441                 /* Before searching for available LRO objects,
8442                  * check if the pkt is L3/L4 aggregatable. If not
8443                  * don't create new LRO session. Just send this
8444                  * packet up.
8445                  */
8446                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8447                         return 5;
8448                 }
8449
8450                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8451                         struct lro *l_lro = &sp->lro0_n[i];
8452                         if (!(l_lro->in_use)) {
8453                                 *lro = l_lro;
8454                                 ret = 3; /* Begin anew */
8455                                 break;
8456                         }
8457                 }
8458         }
8459
8460         if (ret == 0) { /* sessions exceeded */
8461                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8462                           __FUNCTION__);
8463                 *lro = NULL;
8464                 return ret;
8465         }
8466
8467         switch (ret) {
8468                 case 3:
8469                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8470                                                                 vlan_tag);
8471                         break;
8472                 case 2:
8473                         update_L3L4_header(sp, *lro);
8474                         break;
8475                 case 1:
8476                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8477                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8478                                 update_L3L4_header(sp, *lro);
8479                                 ret = 4; /* Flush the LRO */
8480                         }
8481                         break;
8482                 default:
8483                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8484                                 __FUNCTION__);
8485                         break;
8486         }
8487
8488         return ret;
8489 }
8490
8491 static void clear_lro_session(struct lro *lro)
8492 {
8493         static u16 lro_struct_size = sizeof(struct lro);
8494
8495         memset(lro, 0, lro_struct_size);
8496 }
8497
8498 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8499 {
8500         struct net_device *dev = skb->dev;
8501         struct s2io_nic *sp = dev->priv;
8502
8503         skb->protocol = eth_type_trans(skb, dev);
8504         if (sp->vlgrp && vlan_tag
8505                 && (vlan_strip_flag)) {
8506                 /* Queueing the vlan frame to the upper layer */
8507                 if (sp->config.napi)
8508                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8509                 else
8510                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8511         } else {
8512                 if (sp->config.napi)
8513                         netif_receive_skb(skb);
8514                 else
8515                         netif_rx(skb);
8516         }
8517 }
8518
8519 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8520                            struct sk_buff *skb,
8521                            u32 tcp_len)
8522 {
8523         struct sk_buff *first = lro->parent;
8524
8525         first->len += tcp_len;
8526         first->data_len = lro->frags_len;
8527         skb_pull(skb, (skb->len - tcp_len));
8528         if (skb_shinfo(first)->frag_list)
8529                 lro->last_frag->next = skb;
8530         else
8531                 skb_shinfo(first)->frag_list = skb;
8532         first->truesize += skb->truesize;
8533         lro->last_frag = skb;
8534         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8535         return;
8536 }
8537
8538 /**
8539  * s2io_io_error_detected - called when PCI error is detected
8540  * @pdev: Pointer to PCI device
8541  * @state: The current pci connection state
8542  *
8543  * This function is called after a PCI bus error affecting
8544  * this device has been detected.
8545  */
8546 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8547                                                pci_channel_state_t state)
8548 {
8549         struct net_device *netdev = pci_get_drvdata(pdev);
8550         struct s2io_nic *sp = netdev->priv;
8551
8552         netif_device_detach(netdev);
8553
8554         if (netif_running(netdev)) {
8555                 /* Bring down the card, while avoiding PCI I/O */
8556                 do_s2io_card_down(sp, 0);
8557         }
8558         pci_disable_device(pdev);
8559
8560         return PCI_ERS_RESULT_NEED_RESET;
8561 }
8562
8563 /**
8564  * s2io_io_slot_reset - called after the pci bus has been reset.
8565  * @pdev: Pointer to PCI device
8566  *
8567  * Restart the card from scratch, as if from a cold-boot.
8568  * At this point, the card has exprienced a hard reset,
8569  * followed by fixups by BIOS, and has its config space
8570  * set up identically to what it was at cold boot.
8571  */
8572 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8573 {
8574         struct net_device *netdev = pci_get_drvdata(pdev);
8575         struct s2io_nic *sp = netdev->priv;
8576
8577         if (pci_enable_device(pdev)) {
8578                 printk(KERN_ERR "s2io: "
8579                        "Cannot re-enable PCI device after reset.\n");
8580                 return PCI_ERS_RESULT_DISCONNECT;
8581         }
8582
8583         pci_set_master(pdev);
8584         s2io_reset(sp);
8585
8586         return PCI_ERS_RESULT_RECOVERED;
8587 }
8588
8589 /**
8590  * s2io_io_resume - called when traffic can start flowing again.
8591  * @pdev: Pointer to PCI device
8592  *
8593  * This callback is called when the error recovery driver tells
8594  * us that its OK to resume normal operation.
8595  */
8596 static void s2io_io_resume(struct pci_dev *pdev)
8597 {
8598         struct net_device *netdev = pci_get_drvdata(pdev);
8599         struct s2io_nic *sp = netdev->priv;
8600
8601         if (netif_running(netdev)) {
8602                 if (s2io_card_up(sp)) {
8603                         printk(KERN_ERR "s2io: "
8604                                "Can't bring device back up after reset.\n");
8605                         return;
8606                 }
8607
8608                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8609                         s2io_card_down(sp);
8610                         printk(KERN_ERR "s2io: "
8611                                "Can't resetore mac addr after reset.\n");
8612                         return;
8613                 }
8614         }
8615
8616         netif_device_attach(netdev);
8617         netif_wake_queue(netdev);
8618 }