4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58 unsigned int nr_bytes)
61 * decide whether to reenable DMA -- 3 is a random magic for now,
62 * if we DMA timeout more than 3 times, just stay in PIO
64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65 drive->retry_pio <= 3) {
66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
70 return blk_end_request(rq, error, nr_bytes);
72 EXPORT_SYMBOL_GPL(ide_end_rq);
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
76 const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77 struct ide_taskfile *tf = &cmd->tf;
78 struct request *rq = cmd->rq;
79 u8 tf_cmd = tf->command;
84 if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
87 tp_ops->input_data(drive, cmd, data, 2);
89 cmd->tf.data = data[0];
90 cmd->hob.data = data[1];
93 ide_tf_readback(drive, cmd);
95 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97 if (tf->lbal != 0xc4) {
98 printk(KERN_ERR "%s: head unload failed!\n",
100 ide_tf_dump(drive->name, cmd);
102 drive->dev_flags |= IDE_DFLAG_PARKED;
105 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106 struct ide_cmd *orig_cmd = rq->special;
108 if (cmd->tf_flags & IDE_TFLAG_DYN)
111 memcpy(orig_cmd, cmd, sizeof(*cmd));
115 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
117 ide_hwif_t *hwif = drive->hwif;
118 struct request *rq = hwif->rq;
122 * if failfast is set on a request, override number of sectors
123 * and complete the whole request right now
125 if (blk_noretry_request(rq) && error <= 0)
126 nr_bytes = blk_rq_sectors(rq) << 9;
128 rc = ide_end_rq(drive, rq, error, nr_bytes);
134 EXPORT_SYMBOL(ide_complete_rq);
136 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
138 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
139 u8 media = drive->media;
141 drive->failed_pc = NULL;
143 if ((media == ide_floppy || media == ide_tape) && drv_req) {
146 if (media == ide_tape)
147 rq->errors = IDE_DRV_ERROR_GENERAL;
148 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
152 ide_complete_rq(drive, -EIO, blk_rq_bytes(rq));
155 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
157 tf->nsect = drive->sect;
158 tf->lbal = drive->sect;
159 tf->lbam = drive->cyl;
160 tf->lbah = drive->cyl >> 8;
161 tf->device = (drive->head - 1) | drive->select;
162 tf->command = ATA_CMD_INIT_DEV_PARAMS;
165 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
167 tf->nsect = drive->sect;
168 tf->command = ATA_CMD_RESTORE;
171 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
173 tf->nsect = drive->mult_req;
174 tf->command = ATA_CMD_SET_MULTI;
178 * do_special - issue some special commands
179 * @drive: drive the command is for
181 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
182 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
185 static ide_startstop_t do_special(ide_drive_t *drive)
190 printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
191 drive->special_flags);
193 if (drive->media != ide_disk) {
194 drive->special_flags = 0;
199 memset(&cmd, 0, sizeof(cmd));
200 cmd.protocol = ATA_PROT_NODATA;
202 if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
203 drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
204 ide_tf_set_specify_cmd(drive, &cmd.tf);
205 } else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
206 drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
207 ide_tf_set_restore_cmd(drive, &cmd.tf);
208 } else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
209 drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
210 ide_tf_set_setmult_cmd(drive, &cmd.tf);
214 cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
215 cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
216 cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
218 do_rw_taskfile(drive, &cmd);
223 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
225 ide_hwif_t *hwif = drive->hwif;
226 struct scatterlist *sg = hwif->sg_table;
227 struct request *rq = cmd->rq;
229 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
231 EXPORT_SYMBOL_GPL(ide_map_sg);
233 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
235 cmd->nbytes = cmd->nleft = nr_bytes;
239 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
242 * execute_drive_command - issue special drive command
243 * @drive: the drive to issue the command on
244 * @rq: the request structure holding the command
246 * execute_drive_cmd() issues a special drive command, usually
247 * initiated by ioctl() from the external hdparm program. The
248 * command can be a drive command, drive task or taskfile
249 * operation. Weirdly you can call it with NULL to wait for
250 * all commands to finish. Don't do this as that is due to change
253 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
256 struct ide_cmd *cmd = rq->special;
259 if (cmd->protocol == ATA_PROT_PIO) {
260 ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);
261 ide_map_sg(drive, cmd);
264 return do_rw_taskfile(drive, cmd);
268 * NULL is actually a valid way of waiting for
269 * all current requests to be flushed from the queue.
272 printk("%s: DRIVE_CMD (null)\n", drive->name);
275 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
280 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
286 case REQ_UNPARK_HEADS:
287 return ide_do_park_unpark(drive, rq);
288 case REQ_DEVSET_EXEC:
289 return ide_do_devset(drive, rq);
290 case REQ_DRIVE_RESET:
291 return ide_do_reset(drive);
298 * start_request - start of I/O and command issuing for IDE
300 * start_request() initiates handling of a new I/O request. It
301 * accepts commands and I/O (read/write) requests.
303 * FIXME: this function needs a rename
306 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
308 ide_startstop_t startstop;
310 BUG_ON(!blk_rq_started(rq));
313 printk("%s: start_request: current=0x%08lx\n",
314 drive->hwif->name, (unsigned long) rq);
317 /* bail early if we've exceeded max_failures */
318 if (drive->max_failures && (drive->failures > drive->max_failures)) {
319 rq->cmd_flags |= REQ_FAILED;
323 if (blk_pm_request(rq))
324 ide_check_pm_state(drive, rq);
326 drive->hwif->tp_ops->dev_select(drive);
327 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
328 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
329 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
333 if (drive->special_flags == 0) {
334 struct ide_driver *drv;
337 * We reset the drive so we need to issue a SETFEATURES.
338 * Do it _after_ do_special() restored device parameters.
340 if (drive->current_speed == 0xff)
341 ide_config_drive_speed(drive, drive->desired_speed);
343 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
344 return execute_drive_cmd(drive, rq);
345 else if (blk_pm_request(rq)) {
346 struct request_pm_state *pm = rq->special;
348 printk("%s: start_power_step(step: %d)\n",
349 drive->name, pm->pm_step);
351 startstop = ide_start_power_step(drive, rq);
352 if (startstop == ide_stopped &&
353 pm->pm_step == IDE_PM_COMPLETED)
354 ide_complete_pm_rq(drive, rq);
356 } else if (!rq->rq_disk && blk_special_request(rq))
358 * TODO: Once all ULDs have been modified to
359 * check for specific op codes rather than
360 * blindly accepting any special request, the
361 * check for ->rq_disk above may be replaced
362 * by a more suitable mechanism or even
365 return ide_special_rq(drive, rq);
367 drv = *(struct ide_driver **)rq->rq_disk->private_data;
369 return drv->do_request(drive, rq, blk_rq_pos(rq));
371 return do_special(drive);
373 ide_kill_rq(drive, rq);
378 * ide_stall_queue - pause an IDE device
379 * @drive: drive to stall
380 * @timeout: time to stall for (jiffies)
382 * ide_stall_queue() can be used by a drive to give excess bandwidth back
383 * to the port by sleeping for timeout jiffies.
386 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
388 if (timeout > WAIT_WORSTCASE)
389 timeout = WAIT_WORSTCASE;
390 drive->sleep = timeout + jiffies;
391 drive->dev_flags |= IDE_DFLAG_SLEEPING;
393 EXPORT_SYMBOL(ide_stall_queue);
395 static inline int ide_lock_port(ide_hwif_t *hwif)
405 static inline void ide_unlock_port(ide_hwif_t *hwif)
410 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
414 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
415 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
418 host->get_lock(ide_intr, hwif);
424 static inline void ide_unlock_host(struct ide_host *host)
426 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
427 if (host->release_lock)
428 host->release_lock();
429 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
434 * Issue a new request to a device.
436 void do_ide_request(struct request_queue *q)
438 ide_drive_t *drive = q->queuedata;
439 ide_hwif_t *hwif = drive->hwif;
440 struct ide_host *host = hwif->host;
441 struct request *rq = NULL;
442 ide_startstop_t startstop;
445 * drive is doing pre-flush, ordered write, post-flush sequence. even
446 * though that is 3 requests, it must be seen as a single transaction.
447 * we must not preempt this drive until that is complete
449 if (blk_queue_flushing(q))
451 * small race where queue could get replugged during
452 * the 3-request flush cycle, just yank the plug since
453 * we want it to finish asap
457 spin_unlock_irq(q->queue_lock);
459 /* HLD do_request() callback might sleep, make sure it's okay */
462 if (ide_lock_host(host, hwif))
465 spin_lock_irq(&hwif->lock);
467 if (!ide_lock_port(hwif)) {
468 ide_hwif_t *prev_port;
470 prev_port = hwif->host->cur_port;
472 if (drive->dev_flags & IDE_DFLAG_BLOCKED)
475 WARN_ON_ONCE(hwif->rq);
477 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
478 time_after(drive->sleep, jiffies)) {
479 ide_unlock_port(hwif);
483 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
485 ide_drive_t *cur_dev =
486 prev_port ? prev_port->cur_dev : NULL;
489 * set nIEN for previous port, drives in the
490 * quirk list may not like intr setups/cleanups
493 (cur_dev->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
494 prev_port->tp_ops->write_devctl(prev_port,
498 hwif->host->cur_port = hwif;
500 hwif->cur_dev = drive;
501 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
504 spin_unlock_irq(&hwif->lock);
505 spin_lock_irq(q->queue_lock);
507 * we know that the queue isn't empty, but this can
508 * happen if ->prep_rq_fn() decides to kill a request
510 rq = blk_fetch_request(drive->queue);
511 spin_unlock_irq(q->queue_lock);
512 spin_lock_irq(&hwif->lock);
515 ide_unlock_port(hwif);
521 * Sanity: don't accept a request that isn't a PM request
522 * if we are currently power managed.
524 BUG_ON((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
525 blk_pm_request(rq) == 0);
529 spin_unlock_irq(&hwif->lock);
530 startstop = start_request(drive, rq);
531 spin_lock_irq(&hwif->lock);
533 if (startstop == ide_stopped) {
541 spin_unlock_irq(&hwif->lock);
543 ide_unlock_host(host);
544 spin_lock_irq(q->queue_lock);
548 spin_unlock_irq(&hwif->lock);
549 ide_unlock_host(host);
551 spin_lock_irq(q->queue_lock);
554 blk_requeue_request(q, rq);
555 if (!elv_queue_empty(q))
559 static void ide_requeue_and_plug(ide_drive_t *drive, struct request *rq)
561 struct request_queue *q = drive->queue;
564 spin_lock_irqsave(q->queue_lock, flags);
567 blk_requeue_request(q, rq);
568 if (!elv_queue_empty(q))
571 spin_unlock_irqrestore(q->queue_lock, flags);
574 static int drive_is_ready(ide_drive_t *drive)
576 ide_hwif_t *hwif = drive->hwif;
579 if (drive->waiting_for_dma)
580 return hwif->dma_ops->dma_test_irq(drive);
582 if (hwif->io_ports.ctl_addr &&
583 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
584 stat = hwif->tp_ops->read_altstatus(hwif);
586 /* Note: this may clear a pending IRQ!! */
587 stat = hwif->tp_ops->read_status(hwif);
590 /* drive busy: definitely not interrupting */
593 /* drive ready: *might* be interrupting */
598 * ide_timer_expiry - handle lack of an IDE interrupt
599 * @data: timer callback magic (hwif)
601 * An IDE command has timed out before the expected drive return
602 * occurred. At this point we attempt to clean up the current
603 * mess. If the current handler includes an expiry handler then
604 * we invoke the expiry handler, and providing it is happy the
605 * work is done. If that fails we apply generic recovery rules
606 * invoking the handler and checking the drive DMA status. We
607 * have an excessively incestuous relationship with the DMA
608 * logic that wants cleaning up.
611 void ide_timer_expiry (unsigned long data)
613 ide_hwif_t *hwif = (ide_hwif_t *)data;
614 ide_drive_t *uninitialized_var(drive);
615 ide_handler_t *handler;
619 struct request *uninitialized_var(rq_in_flight);
621 spin_lock_irqsave(&hwif->lock, flags);
623 handler = hwif->handler;
625 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
627 * Either a marginal timeout occurred
628 * (got the interrupt just as timer expired),
629 * or we were "sleeping" to give other devices a chance.
630 * Either way, we don't really want to complain about anything.
633 ide_expiry_t *expiry = hwif->expiry;
634 ide_startstop_t startstop = ide_stopped;
636 drive = hwif->cur_dev;
639 wait = expiry(drive);
640 if (wait > 0) { /* continue */
642 hwif->timer.expires = jiffies + wait;
643 hwif->req_gen_timer = hwif->req_gen;
644 add_timer(&hwif->timer);
645 spin_unlock_irqrestore(&hwif->lock, flags);
649 hwif->handler = NULL;
652 * We need to simulate a real interrupt when invoking
653 * the handler() function, which means we need to
654 * globally mask the specific IRQ:
656 spin_unlock(&hwif->lock);
657 /* disable_irq_nosync ?? */
658 disable_irq(hwif->irq);
659 /* local CPU only, as if we were handling an interrupt */
662 startstop = handler(drive);
663 } else if (drive_is_ready(drive)) {
664 if (drive->waiting_for_dma)
665 hwif->dma_ops->dma_lost_irq(drive);
666 if (hwif->port_ops && hwif->port_ops->clear_irq)
667 hwif->port_ops->clear_irq(drive);
669 printk(KERN_WARNING "%s: lost interrupt\n",
671 startstop = handler(drive);
673 if (drive->waiting_for_dma)
674 startstop = ide_dma_timeout_retry(drive, wait);
676 startstop = ide_error(drive, "irq timeout",
677 hwif->tp_ops->read_status(hwif));
679 spin_lock_irq(&hwif->lock);
680 enable_irq(hwif->irq);
681 if (startstop == ide_stopped && hwif->polling == 0) {
682 rq_in_flight = hwif->rq;
684 ide_unlock_port(hwif);
688 spin_unlock_irqrestore(&hwif->lock, flags);
691 ide_unlock_host(hwif->host);
692 ide_requeue_and_plug(drive, rq_in_flight);
697 * unexpected_intr - handle an unexpected IDE interrupt
698 * @irq: interrupt line
699 * @hwif: port being processed
701 * There's nothing really useful we can do with an unexpected interrupt,
702 * other than reading the status register (to clear it), and logging it.
703 * There should be no way that an irq can happen before we're ready for it,
704 * so we needn't worry much about losing an "important" interrupt here.
706 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
707 * the drive enters "idle", "standby", or "sleep" mode, so if the status
708 * looks "good", we just ignore the interrupt completely.
710 * This routine assumes __cli() is in effect when called.
712 * If an unexpected interrupt happens on irq15 while we are handling irq14
713 * and if the two interfaces are "serialized" (CMD640), then it looks like
714 * we could screw up by interfering with a new request being set up for
717 * In reality, this is a non-issue. The new command is not sent unless
718 * the drive is ready to accept one, in which case we know the drive is
719 * not trying to interrupt us. And ide_set_handler() is always invoked
720 * before completing the issuance of any new drive command, so we will not
721 * be accidentally invoked as a result of any valid command completion
725 static void unexpected_intr(int irq, ide_hwif_t *hwif)
727 u8 stat = hwif->tp_ops->read_status(hwif);
729 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
730 /* Try to not flood the console with msgs */
731 static unsigned long last_msgtime, count;
734 if (time_after(jiffies, last_msgtime + HZ)) {
735 last_msgtime = jiffies;
736 printk(KERN_ERR "%s: unexpected interrupt, "
737 "status=0x%02x, count=%ld\n",
738 hwif->name, stat, count);
744 * ide_intr - default IDE interrupt handler
745 * @irq: interrupt number
747 * @regs: unused weirdness from the kernel irq layer
749 * This is the default IRQ handler for the IDE layer. You should
750 * not need to override it. If you do be aware it is subtle in
753 * hwif is the interface in the group currently performing
754 * a command. hwif->cur_dev is the drive and hwif->handler is
755 * the IRQ handler to call. As we issue a command the handlers
756 * step through multiple states, reassigning the handler to the
757 * next step in the process. Unlike a smart SCSI controller IDE
758 * expects the main processor to sequence the various transfer
759 * stages. We also manage a poll timer to catch up with most
760 * timeout situations. There are still a few where the handlers
761 * don't ever decide to give up.
763 * The handler eventually returns ide_stopped to indicate the
764 * request completed. At this point we issue the next request
765 * on the port and the process begins again.
768 irqreturn_t ide_intr (int irq, void *dev_id)
770 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
771 struct ide_host *host = hwif->host;
772 ide_drive_t *uninitialized_var(drive);
773 ide_handler_t *handler;
775 ide_startstop_t startstop;
776 irqreturn_t irq_ret = IRQ_NONE;
778 struct request *uninitialized_var(rq_in_flight);
780 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
781 if (hwif != host->cur_port)
785 spin_lock_irqsave(&hwif->lock, flags);
787 if (hwif->port_ops && hwif->port_ops->test_irq &&
788 hwif->port_ops->test_irq(hwif) == 0)
791 handler = hwif->handler;
793 if (handler == NULL || hwif->polling) {
795 * Not expecting an interrupt from this drive.
796 * That means this could be:
797 * (1) an interrupt from another PCI device
798 * sharing the same PCI INT# as us.
799 * or (2) a drive just entered sleep or standby mode,
800 * and is interrupting to let us know.
801 * or (3) a spurious interrupt of unknown origin.
803 * For PCI, we cannot tell the difference,
804 * so in that case we just ignore it and hope it goes away.
806 if ((host->irq_flags & IRQF_SHARED) == 0) {
808 * Probably not a shared PCI interrupt,
809 * so we can safely try to do something about it:
811 unexpected_intr(irq, hwif);
814 * Whack the status register, just in case
815 * we have a leftover pending IRQ.
817 (void)hwif->tp_ops->read_status(hwif);
822 drive = hwif->cur_dev;
824 if (!drive_is_ready(drive))
826 * This happens regularly when we share a PCI IRQ with
827 * another device. Unfortunately, it can also happen
828 * with some buggy drives that trigger the IRQ before
829 * their status register is up to date. Hopefully we have
830 * enough advance overhead that the latter isn't a problem.
834 hwif->handler = NULL;
837 del_timer(&hwif->timer);
838 spin_unlock(&hwif->lock);
840 if (hwif->port_ops && hwif->port_ops->clear_irq)
841 hwif->port_ops->clear_irq(drive);
843 if (drive->dev_flags & IDE_DFLAG_UNMASK)
844 local_irq_enable_in_hardirq();
846 /* service this interrupt, may set handler for next interrupt */
847 startstop = handler(drive);
849 spin_lock_irq(&hwif->lock);
851 * Note that handler() may have set things up for another
852 * interrupt to occur soon, but it cannot happen until
853 * we exit from this routine, because it will be the
854 * same irq as is currently being serviced here, and Linux
855 * won't allow another of the same (on any CPU) until we return.
857 if (startstop == ide_stopped && hwif->polling == 0) {
858 BUG_ON(hwif->handler);
859 rq_in_flight = hwif->rq;
861 ide_unlock_port(hwif);
864 irq_ret = IRQ_HANDLED;
866 spin_unlock_irqrestore(&hwif->lock, flags);
869 ide_unlock_host(hwif->host);
870 ide_requeue_and_plug(drive, rq_in_flight);
875 EXPORT_SYMBOL_GPL(ide_intr);
877 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
879 ide_hwif_t *hwif = drive->hwif;
884 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
886 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
890 EXPORT_SYMBOL_GPL(ide_pad_transfer);