Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int sizeof_stat;
43         int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47                       offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49         { "rx_packets", IGB_STAT(stats.gprc) },
50         { "tx_packets", IGB_STAT(stats.gptc) },
51         { "rx_bytes", IGB_STAT(stats.gorc) },
52         { "tx_bytes", IGB_STAT(stats.gotc) },
53         { "rx_broadcast", IGB_STAT(stats.bprc) },
54         { "tx_broadcast", IGB_STAT(stats.bptc) },
55         { "rx_multicast", IGB_STAT(stats.mprc) },
56         { "tx_multicast", IGB_STAT(stats.mptc) },
57         { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58         { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59         { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60         { "multicast", IGB_STAT(stats.mprc) },
61         { "collisions", IGB_STAT(stats.colc) },
62         { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63         { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65         { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67         { "rx_queue_drop_packet_count", IGB_STAT(net_stats.rx_fifo_errors) },
68         { "rx_missed_errors", IGB_STAT(stats.mpc) },
69         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
70         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
71         { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
72         { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
73         { "tx_window_errors", IGB_STAT(stats.latecol) },
74         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
75         { "tx_deferred_ok", IGB_STAT(stats.dc) },
76         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
77         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
78         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
79         { "tx_restart_queue", IGB_STAT(restart_queue) },
80         { "rx_long_length_errors", IGB_STAT(stats.roc) },
81         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
82         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
83         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
84         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
85         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
86         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
87         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
88         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
89         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
90         { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
91         { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
92         { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
93         { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
94         { "tx_smbus", IGB_STAT(stats.mgptc) },
95         { "rx_smbus", IGB_STAT(stats.mgprc) },
96         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
97 };
98
99 #define IGB_QUEUE_STATS_LEN \
100         (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
101           (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
102          ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
103           (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
104 #define IGB_GLOBAL_STATS_LEN    \
105         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
106 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
107 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
108         "Register test  (offline)", "Eeprom test    (offline)",
109         "Interrupt test (offline)", "Loopback test  (offline)",
110         "Link test   (on/offline)"
111 };
112 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
113
114 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
115 {
116         struct igb_adapter *adapter = netdev_priv(netdev);
117         struct e1000_hw *hw = &adapter->hw;
118
119         if (hw->phy.media_type == e1000_media_type_copper) {
120
121                 ecmd->supported = (SUPPORTED_10baseT_Half |
122                                    SUPPORTED_10baseT_Full |
123                                    SUPPORTED_100baseT_Half |
124                                    SUPPORTED_100baseT_Full |
125                                    SUPPORTED_1000baseT_Full|
126                                    SUPPORTED_Autoneg |
127                                    SUPPORTED_TP);
128                 ecmd->advertising = ADVERTISED_TP;
129
130                 if (hw->mac.autoneg == 1) {
131                         ecmd->advertising |= ADVERTISED_Autoneg;
132                         /* the e1000 autoneg seems to match ethtool nicely */
133                         ecmd->advertising |= hw->phy.autoneg_advertised;
134                 }
135
136                 ecmd->port = PORT_TP;
137                 ecmd->phy_address = hw->phy.addr;
138         } else {
139                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
140                                      SUPPORTED_FIBRE |
141                                      SUPPORTED_Autoneg);
142
143                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
144                                      ADVERTISED_FIBRE |
145                                      ADVERTISED_Autoneg);
146
147                 ecmd->port = PORT_FIBRE;
148         }
149
150         ecmd->transceiver = XCVR_INTERNAL;
151
152         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
153
154                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
155                                         &adapter->link_speed,
156                                         &adapter->link_duplex);
157                 ecmd->speed = adapter->link_speed;
158
159                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
160                  *          and HALF_DUPLEX != DUPLEX_HALF */
161
162                 if (adapter->link_duplex == FULL_DUPLEX)
163                         ecmd->duplex = DUPLEX_FULL;
164                 else
165                         ecmd->duplex = DUPLEX_HALF;
166         } else {
167                 ecmd->speed = -1;
168                 ecmd->duplex = -1;
169         }
170
171         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
172                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
173         return 0;
174 }
175
176 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
177 {
178         struct igb_adapter *adapter = netdev_priv(netdev);
179         struct e1000_hw *hw = &adapter->hw;
180
181         /* When SoL/IDER sessions are active, autoneg/speed/duplex
182          * cannot be changed */
183         if (igb_check_reset_block(hw)) {
184                 dev_err(&adapter->pdev->dev, "Cannot change link "
185                         "characteristics when SoL/IDER is active.\n");
186                 return -EINVAL;
187         }
188
189         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
190                 msleep(1);
191
192         if (ecmd->autoneg == AUTONEG_ENABLE) {
193                 hw->mac.autoneg = 1;
194                 if (hw->phy.media_type == e1000_media_type_fiber)
195                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
196                                                      ADVERTISED_FIBRE |
197                                                      ADVERTISED_Autoneg;
198                 else
199                         hw->phy.autoneg_advertised = ecmd->advertising |
200                                                      ADVERTISED_TP |
201                                                      ADVERTISED_Autoneg;
202                 ecmd->advertising = hw->phy.autoneg_advertised;
203         } else
204                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205                         clear_bit(__IGB_RESETTING, &adapter->state);
206                         return -EINVAL;
207                 }
208
209         /* reset the link */
210
211         if (netif_running(adapter->netdev)) {
212                 igb_down(adapter);
213                 igb_up(adapter);
214         } else
215                 igb_reset(adapter);
216
217         clear_bit(__IGB_RESETTING, &adapter->state);
218         return 0;
219 }
220
221 static void igb_get_pauseparam(struct net_device *netdev,
222                                struct ethtool_pauseparam *pause)
223 {
224         struct igb_adapter *adapter = netdev_priv(netdev);
225         struct e1000_hw *hw = &adapter->hw;
226
227         pause->autoneg =
228                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
229
230         if (hw->fc.type == e1000_fc_rx_pause)
231                 pause->rx_pause = 1;
232         else if (hw->fc.type == e1000_fc_tx_pause)
233                 pause->tx_pause = 1;
234         else if (hw->fc.type == e1000_fc_full) {
235                 pause->rx_pause = 1;
236                 pause->tx_pause = 1;
237         }
238 }
239
240 static int igb_set_pauseparam(struct net_device *netdev,
241                               struct ethtool_pauseparam *pause)
242 {
243         struct igb_adapter *adapter = netdev_priv(netdev);
244         struct e1000_hw *hw = &adapter->hw;
245         int retval = 0;
246
247         adapter->fc_autoneg = pause->autoneg;
248
249         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
250                 msleep(1);
251
252         if (pause->rx_pause && pause->tx_pause)
253                 hw->fc.type = e1000_fc_full;
254         else if (pause->rx_pause && !pause->tx_pause)
255                 hw->fc.type = e1000_fc_rx_pause;
256         else if (!pause->rx_pause && pause->tx_pause)
257                 hw->fc.type = e1000_fc_tx_pause;
258         else if (!pause->rx_pause && !pause->tx_pause)
259                 hw->fc.type = e1000_fc_none;
260
261         hw->fc.original_type = hw->fc.type;
262
263         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
264                 if (netif_running(adapter->netdev)) {
265                         igb_down(adapter);
266                         igb_up(adapter);
267                 } else
268                         igb_reset(adapter);
269         } else
270                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
271                           igb_setup_link(hw) : igb_force_mac_fc(hw));
272
273         clear_bit(__IGB_RESETTING, &adapter->state);
274         return retval;
275 }
276
277 static u32 igb_get_rx_csum(struct net_device *netdev)
278 {
279         struct igb_adapter *adapter = netdev_priv(netdev);
280         return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
281 }
282
283 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
284 {
285         struct igb_adapter *adapter = netdev_priv(netdev);
286
287         if (data)
288                 adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
289         else
290                 adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
291
292         return 0;
293 }
294
295 static u32 igb_get_tx_csum(struct net_device *netdev)
296 {
297         return (netdev->features & NETIF_F_IP_CSUM) != 0;
298 }
299
300 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
301 {
302         struct igb_adapter *adapter = netdev_priv(netdev);
303
304         if (data) {
305                 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
306                 if (adapter->hw.mac.type == e1000_82576)
307                         netdev->features |= NETIF_F_SCTP_CSUM;
308         } else {
309                 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
310                                       NETIF_F_SCTP_CSUM);
311         }
312
313         return 0;
314 }
315
316 static int igb_set_tso(struct net_device *netdev, u32 data)
317 {
318         struct igb_adapter *adapter = netdev_priv(netdev);
319
320         if (data) {
321                 netdev->features |= NETIF_F_TSO;
322                 netdev->features |= NETIF_F_TSO6;
323         } else {
324                 netdev->features &= ~NETIF_F_TSO;
325                 netdev->features &= ~NETIF_F_TSO6;
326         }
327
328         dev_info(&adapter->pdev->dev, "TSO is %s\n",
329                  data ? "Enabled" : "Disabled");
330         return 0;
331 }
332
333 static u32 igb_get_msglevel(struct net_device *netdev)
334 {
335         struct igb_adapter *adapter = netdev_priv(netdev);
336         return adapter->msg_enable;
337 }
338
339 static void igb_set_msglevel(struct net_device *netdev, u32 data)
340 {
341         struct igb_adapter *adapter = netdev_priv(netdev);
342         adapter->msg_enable = data;
343 }
344
345 static int igb_get_regs_len(struct net_device *netdev)
346 {
347 #define IGB_REGS_LEN 551
348         return IGB_REGS_LEN * sizeof(u32);
349 }
350
351 static void igb_get_regs(struct net_device *netdev,
352                          struct ethtool_regs *regs, void *p)
353 {
354         struct igb_adapter *adapter = netdev_priv(netdev);
355         struct e1000_hw *hw = &adapter->hw;
356         u32 *regs_buff = p;
357         u8 i;
358
359         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
360
361         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
362
363         /* General Registers */
364         regs_buff[0] = rd32(E1000_CTRL);
365         regs_buff[1] = rd32(E1000_STATUS);
366         regs_buff[2] = rd32(E1000_CTRL_EXT);
367         regs_buff[3] = rd32(E1000_MDIC);
368         regs_buff[4] = rd32(E1000_SCTL);
369         regs_buff[5] = rd32(E1000_CONNSW);
370         regs_buff[6] = rd32(E1000_VET);
371         regs_buff[7] = rd32(E1000_LEDCTL);
372         regs_buff[8] = rd32(E1000_PBA);
373         regs_buff[9] = rd32(E1000_PBS);
374         regs_buff[10] = rd32(E1000_FRTIMER);
375         regs_buff[11] = rd32(E1000_TCPTIMER);
376
377         /* NVM Register */
378         regs_buff[12] = rd32(E1000_EECD);
379
380         /* Interrupt */
381         /* Reading EICS for EICR because they read the
382          * same but EICS does not clear on read */
383         regs_buff[13] = rd32(E1000_EICS);
384         regs_buff[14] = rd32(E1000_EICS);
385         regs_buff[15] = rd32(E1000_EIMS);
386         regs_buff[16] = rd32(E1000_EIMC);
387         regs_buff[17] = rd32(E1000_EIAC);
388         regs_buff[18] = rd32(E1000_EIAM);
389         /* Reading ICS for ICR because they read the
390          * same but ICS does not clear on read */
391         regs_buff[19] = rd32(E1000_ICS);
392         regs_buff[20] = rd32(E1000_ICS);
393         regs_buff[21] = rd32(E1000_IMS);
394         regs_buff[22] = rd32(E1000_IMC);
395         regs_buff[23] = rd32(E1000_IAC);
396         regs_buff[24] = rd32(E1000_IAM);
397         regs_buff[25] = rd32(E1000_IMIRVP);
398
399         /* Flow Control */
400         regs_buff[26] = rd32(E1000_FCAL);
401         regs_buff[27] = rd32(E1000_FCAH);
402         regs_buff[28] = rd32(E1000_FCTTV);
403         regs_buff[29] = rd32(E1000_FCRTL);
404         regs_buff[30] = rd32(E1000_FCRTH);
405         regs_buff[31] = rd32(E1000_FCRTV);
406
407         /* Receive */
408         regs_buff[32] = rd32(E1000_RCTL);
409         regs_buff[33] = rd32(E1000_RXCSUM);
410         regs_buff[34] = rd32(E1000_RLPML);
411         regs_buff[35] = rd32(E1000_RFCTL);
412         regs_buff[36] = rd32(E1000_MRQC);
413         regs_buff[37] = rd32(E1000_VT_CTL);
414
415         /* Transmit */
416         regs_buff[38] = rd32(E1000_TCTL);
417         regs_buff[39] = rd32(E1000_TCTL_EXT);
418         regs_buff[40] = rd32(E1000_TIPG);
419         regs_buff[41] = rd32(E1000_DTXCTL);
420
421         /* Wake Up */
422         regs_buff[42] = rd32(E1000_WUC);
423         regs_buff[43] = rd32(E1000_WUFC);
424         regs_buff[44] = rd32(E1000_WUS);
425         regs_buff[45] = rd32(E1000_IPAV);
426         regs_buff[46] = rd32(E1000_WUPL);
427
428         /* MAC */
429         regs_buff[47] = rd32(E1000_PCS_CFG0);
430         regs_buff[48] = rd32(E1000_PCS_LCTL);
431         regs_buff[49] = rd32(E1000_PCS_LSTAT);
432         regs_buff[50] = rd32(E1000_PCS_ANADV);
433         regs_buff[51] = rd32(E1000_PCS_LPAB);
434         regs_buff[52] = rd32(E1000_PCS_NPTX);
435         regs_buff[53] = rd32(E1000_PCS_LPABNP);
436
437         /* Statistics */
438         regs_buff[54] = adapter->stats.crcerrs;
439         regs_buff[55] = adapter->stats.algnerrc;
440         regs_buff[56] = adapter->stats.symerrs;
441         regs_buff[57] = adapter->stats.rxerrc;
442         regs_buff[58] = adapter->stats.mpc;
443         regs_buff[59] = adapter->stats.scc;
444         regs_buff[60] = adapter->stats.ecol;
445         regs_buff[61] = adapter->stats.mcc;
446         regs_buff[62] = adapter->stats.latecol;
447         regs_buff[63] = adapter->stats.colc;
448         regs_buff[64] = adapter->stats.dc;
449         regs_buff[65] = adapter->stats.tncrs;
450         regs_buff[66] = adapter->stats.sec;
451         regs_buff[67] = adapter->stats.htdpmc;
452         regs_buff[68] = adapter->stats.rlec;
453         regs_buff[69] = adapter->stats.xonrxc;
454         regs_buff[70] = adapter->stats.xontxc;
455         regs_buff[71] = adapter->stats.xoffrxc;
456         regs_buff[72] = adapter->stats.xofftxc;
457         regs_buff[73] = adapter->stats.fcruc;
458         regs_buff[74] = adapter->stats.prc64;
459         regs_buff[75] = adapter->stats.prc127;
460         regs_buff[76] = adapter->stats.prc255;
461         regs_buff[77] = adapter->stats.prc511;
462         regs_buff[78] = adapter->stats.prc1023;
463         regs_buff[79] = adapter->stats.prc1522;
464         regs_buff[80] = adapter->stats.gprc;
465         regs_buff[81] = adapter->stats.bprc;
466         regs_buff[82] = adapter->stats.mprc;
467         regs_buff[83] = adapter->stats.gptc;
468         regs_buff[84] = adapter->stats.gorc;
469         regs_buff[86] = adapter->stats.gotc;
470         regs_buff[88] = adapter->stats.rnbc;
471         regs_buff[89] = adapter->stats.ruc;
472         regs_buff[90] = adapter->stats.rfc;
473         regs_buff[91] = adapter->stats.roc;
474         regs_buff[92] = adapter->stats.rjc;
475         regs_buff[93] = adapter->stats.mgprc;
476         regs_buff[94] = adapter->stats.mgpdc;
477         regs_buff[95] = adapter->stats.mgptc;
478         regs_buff[96] = adapter->stats.tor;
479         regs_buff[98] = adapter->stats.tot;
480         regs_buff[100] = adapter->stats.tpr;
481         regs_buff[101] = adapter->stats.tpt;
482         regs_buff[102] = adapter->stats.ptc64;
483         regs_buff[103] = adapter->stats.ptc127;
484         regs_buff[104] = adapter->stats.ptc255;
485         regs_buff[105] = adapter->stats.ptc511;
486         regs_buff[106] = adapter->stats.ptc1023;
487         regs_buff[107] = adapter->stats.ptc1522;
488         regs_buff[108] = adapter->stats.mptc;
489         regs_buff[109] = adapter->stats.bptc;
490         regs_buff[110] = adapter->stats.tsctc;
491         regs_buff[111] = adapter->stats.iac;
492         regs_buff[112] = adapter->stats.rpthc;
493         regs_buff[113] = adapter->stats.hgptc;
494         regs_buff[114] = adapter->stats.hgorc;
495         regs_buff[116] = adapter->stats.hgotc;
496         regs_buff[118] = adapter->stats.lenerrs;
497         regs_buff[119] = adapter->stats.scvpc;
498         regs_buff[120] = adapter->stats.hrmpc;
499
500         /* These should probably be added to e1000_regs.h instead */
501         #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
502         #define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
503         #define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
504         #define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
505         #define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
506         #define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
507         #define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))
508
509         for (i = 0; i < 4; i++)
510                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
511         for (i = 0; i < 4; i++)
512                 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
513         for (i = 0; i < 4; i++)
514                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
515         for (i = 0; i < 4; i++)
516                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
517         for (i = 0; i < 4; i++)
518                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
519         for (i = 0; i < 4; i++)
520                 regs_buff[141 + i] = rd32(E1000_RDH(i));
521         for (i = 0; i < 4; i++)
522                 regs_buff[145 + i] = rd32(E1000_RDT(i));
523         for (i = 0; i < 4; i++)
524                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
525
526         for (i = 0; i < 10; i++)
527                 regs_buff[153 + i] = rd32(E1000_EITR(i));
528         for (i = 0; i < 8; i++)
529                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
530         for (i = 0; i < 8; i++)
531                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
532         for (i = 0; i < 16; i++)
533                 regs_buff[179 + i] = rd32(E1000_RAL(i));
534         for (i = 0; i < 16; i++)
535                 regs_buff[195 + i] = rd32(E1000_RAH(i));
536
537         for (i = 0; i < 4; i++)
538                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
539         for (i = 0; i < 4; i++)
540                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
541         for (i = 0; i < 4; i++)
542                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
543         for (i = 0; i < 4; i++)
544                 regs_buff[223 + i] = rd32(E1000_TDH(i));
545         for (i = 0; i < 4; i++)
546                 regs_buff[227 + i] = rd32(E1000_TDT(i));
547         for (i = 0; i < 4; i++)
548                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
549         for (i = 0; i < 4; i++)
550                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
551         for (i = 0; i < 4; i++)
552                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
553         for (i = 0; i < 4; i++)
554                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
555
556         for (i = 0; i < 4; i++)
557                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
558         for (i = 0; i < 4; i++)
559                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
560         for (i = 0; i < 32; i++)
561                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
562         for (i = 0; i < 128; i++)
563                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
564         for (i = 0; i < 128; i++)
565                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
566         for (i = 0; i < 4; i++)
567                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
568
569         regs_buff[547] = rd32(E1000_TDFH);
570         regs_buff[548] = rd32(E1000_TDFT);
571         regs_buff[549] = rd32(E1000_TDFHS);
572         regs_buff[550] = rd32(E1000_TDFPC);
573
574 }
575
576 static int igb_get_eeprom_len(struct net_device *netdev)
577 {
578         struct igb_adapter *adapter = netdev_priv(netdev);
579         return adapter->hw.nvm.word_size * 2;
580 }
581
582 static int igb_get_eeprom(struct net_device *netdev,
583                           struct ethtool_eeprom *eeprom, u8 *bytes)
584 {
585         struct igb_adapter *adapter = netdev_priv(netdev);
586         struct e1000_hw *hw = &adapter->hw;
587         u16 *eeprom_buff;
588         int first_word, last_word;
589         int ret_val = 0;
590         u16 i;
591
592         if (eeprom->len == 0)
593                 return -EINVAL;
594
595         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
596
597         first_word = eeprom->offset >> 1;
598         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
599
600         eeprom_buff = kmalloc(sizeof(u16) *
601                         (last_word - first_word + 1), GFP_KERNEL);
602         if (!eeprom_buff)
603                 return -ENOMEM;
604
605         if (hw->nvm.type == e1000_nvm_eeprom_spi)
606                 ret_val = hw->nvm.ops.read(hw, first_word,
607                                             last_word - first_word + 1,
608                                             eeprom_buff);
609         else {
610                 for (i = 0; i < last_word - first_word + 1; i++) {
611                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
612                                                     &eeprom_buff[i]);
613                         if (ret_val)
614                                 break;
615                 }
616         }
617
618         /* Device's eeprom is always little-endian, word addressable */
619         for (i = 0; i < last_word - first_word + 1; i++)
620                 le16_to_cpus(&eeprom_buff[i]);
621
622         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
623                         eeprom->len);
624         kfree(eeprom_buff);
625
626         return ret_val;
627 }
628
629 static int igb_set_eeprom(struct net_device *netdev,
630                           struct ethtool_eeprom *eeprom, u8 *bytes)
631 {
632         struct igb_adapter *adapter = netdev_priv(netdev);
633         struct e1000_hw *hw = &adapter->hw;
634         u16 *eeprom_buff;
635         void *ptr;
636         int max_len, first_word, last_word, ret_val = 0;
637         u16 i;
638
639         if (eeprom->len == 0)
640                 return -EOPNOTSUPP;
641
642         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
643                 return -EFAULT;
644
645         max_len = hw->nvm.word_size * 2;
646
647         first_word = eeprom->offset >> 1;
648         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
649         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
650         if (!eeprom_buff)
651                 return -ENOMEM;
652
653         ptr = (void *)eeprom_buff;
654
655         if (eeprom->offset & 1) {
656                 /* need read/modify/write of first changed EEPROM word */
657                 /* only the second byte of the word is being modified */
658                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
659                                             &eeprom_buff[0]);
660                 ptr++;
661         }
662         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
663                 /* need read/modify/write of last changed EEPROM word */
664                 /* only the first byte of the word is being modified */
665                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
666                                    &eeprom_buff[last_word - first_word]);
667         }
668
669         /* Device's eeprom is always little-endian, word addressable */
670         for (i = 0; i < last_word - first_word + 1; i++)
671                 le16_to_cpus(&eeprom_buff[i]);
672
673         memcpy(ptr, bytes, eeprom->len);
674
675         for (i = 0; i < last_word - first_word + 1; i++)
676                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
677
678         ret_val = hw->nvm.ops.write(hw, first_word,
679                                      last_word - first_word + 1, eeprom_buff);
680
681         /* Update the checksum over the first part of the EEPROM if needed
682          * and flush shadow RAM for 82573 controllers */
683         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
684                 igb_update_nvm_checksum(hw);
685
686         kfree(eeprom_buff);
687         return ret_val;
688 }
689
690 static void igb_get_drvinfo(struct net_device *netdev,
691                             struct ethtool_drvinfo *drvinfo)
692 {
693         struct igb_adapter *adapter = netdev_priv(netdev);
694         char firmware_version[32];
695         u16 eeprom_data;
696
697         strncpy(drvinfo->driver,  igb_driver_name, 32);
698         strncpy(drvinfo->version, igb_driver_version, 32);
699
700         /* EEPROM image version # is reported as firmware version # for
701          * 82575 controllers */
702         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
703         sprintf(firmware_version, "%d.%d-%d",
704                 (eeprom_data & 0xF000) >> 12,
705                 (eeprom_data & 0x0FF0) >> 4,
706                 eeprom_data & 0x000F);
707
708         strncpy(drvinfo->fw_version, firmware_version, 32);
709         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
710         drvinfo->n_stats = IGB_STATS_LEN;
711         drvinfo->testinfo_len = IGB_TEST_LEN;
712         drvinfo->regdump_len = igb_get_regs_len(netdev);
713         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
714 }
715
716 static void igb_get_ringparam(struct net_device *netdev,
717                               struct ethtool_ringparam *ring)
718 {
719         struct igb_adapter *adapter = netdev_priv(netdev);
720
721         ring->rx_max_pending = IGB_MAX_RXD;
722         ring->tx_max_pending = IGB_MAX_TXD;
723         ring->rx_mini_max_pending = 0;
724         ring->rx_jumbo_max_pending = 0;
725         ring->rx_pending = adapter->rx_ring_count;
726         ring->tx_pending = adapter->tx_ring_count;
727         ring->rx_mini_pending = 0;
728         ring->rx_jumbo_pending = 0;
729 }
730
731 static int igb_set_ringparam(struct net_device *netdev,
732                              struct ethtool_ringparam *ring)
733 {
734         struct igb_adapter *adapter = netdev_priv(netdev);
735         struct igb_ring *temp_ring;
736         int i, err;
737         u32 new_rx_count, new_tx_count;
738
739         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
740                 return -EINVAL;
741
742         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
743         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
744         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
745
746         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
747         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
748         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
749
750         if ((new_tx_count == adapter->tx_ring_count) &&
751             (new_rx_count == adapter->rx_ring_count)) {
752                 /* nothing to do */
753                 return 0;
754         }
755
756         if (adapter->num_tx_queues > adapter->num_rx_queues)
757                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
758         else
759                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
760         if (!temp_ring)
761                 return -ENOMEM;
762
763         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
764                 msleep(1);
765
766         if (netif_running(adapter->netdev))
767                 igb_down(adapter);
768
769         /*
770          * We can't just free everything and then setup again,
771          * because the ISRs in MSI-X mode get passed pointers
772          * to the tx and rx ring structs.
773          */
774         if (new_tx_count != adapter->tx_ring_count) {
775                 memcpy(temp_ring, adapter->tx_ring,
776                        adapter->num_tx_queues * sizeof(struct igb_ring));
777
778                 for (i = 0; i < adapter->num_tx_queues; i++) {
779                         temp_ring[i].count = new_tx_count;
780                         err = igb_setup_tx_resources(adapter, &temp_ring[i]);
781                         if (err) {
782                                 while (i) {
783                                         i--;
784                                         igb_free_tx_resources(&temp_ring[i]);
785                                 }
786                                 goto err_setup;
787                         }
788                 }
789
790                 for (i = 0; i < adapter->num_tx_queues; i++)
791                         igb_free_tx_resources(&adapter->tx_ring[i]);
792
793                 memcpy(adapter->tx_ring, temp_ring,
794                        adapter->num_tx_queues * sizeof(struct igb_ring));
795
796                 adapter->tx_ring_count = new_tx_count;
797         }
798
799         if (new_rx_count != adapter->rx_ring->count) {
800                 memcpy(temp_ring, adapter->rx_ring,
801                        adapter->num_rx_queues * sizeof(struct igb_ring));
802
803                 for (i = 0; i < adapter->num_rx_queues; i++) {
804                         temp_ring[i].count = new_rx_count;
805                         err = igb_setup_rx_resources(adapter, &temp_ring[i]);
806                         if (err) {
807                                 while (i) {
808                                         i--;
809                                         igb_free_rx_resources(&temp_ring[i]);
810                                 }
811                                 goto err_setup;
812                         }
813
814                 }
815
816                 for (i = 0; i < adapter->num_rx_queues; i++)
817                         igb_free_rx_resources(&adapter->rx_ring[i]);
818
819                 memcpy(adapter->rx_ring, temp_ring,
820                        adapter->num_rx_queues * sizeof(struct igb_ring));
821
822                 adapter->rx_ring_count = new_rx_count;
823         }
824
825         err = 0;
826 err_setup:
827         if (netif_running(adapter->netdev))
828                 igb_up(adapter);
829
830         clear_bit(__IGB_RESETTING, &adapter->state);
831         vfree(temp_ring);
832         return err;
833 }
834
835 /* ethtool register test data */
836 struct igb_reg_test {
837         u16 reg;
838         u16 reg_offset;
839         u16 array_len;
840         u16 test_type;
841         u32 mask;
842         u32 write;
843 };
844
845 /* In the hardware, registers are laid out either singly, in arrays
846  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
847  * most tests take place on arrays or single registers (handled
848  * as a single-element array) and special-case the tables.
849  * Table tests are always pattern tests.
850  *
851  * We also make provision for some required setup steps by specifying
852  * registers to be written without any read-back testing.
853  */
854
855 #define PATTERN_TEST    1
856 #define SET_READ_TEST   2
857 #define WRITE_NO_TEST   3
858 #define TABLE32_TEST    4
859 #define TABLE64_TEST_LO 5
860 #define TABLE64_TEST_HI 6
861
862 /* 82576 reg test */
863 static struct igb_reg_test reg_test_82576[] = {
864         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
866         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
867         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
868         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
869         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
870         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
871         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
872         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
873         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
874         /* Enable all RX queues before testing. */
875         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
876         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
877         /* RDH is read-only for 82576, only test RDT. */
878         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
879         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
880         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
881         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
882         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
883         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
884         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
885         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
886         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
887         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
888         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
889         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
890         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
891         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
892         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
893         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
894         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
895         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
896         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
897         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
898         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
899         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900         { 0, 0, 0, 0 }
901 };
902
903 /* 82575 register test */
904 static struct igb_reg_test reg_test_82575[] = {
905         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
906         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
907         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
908         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
910         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
912         /* Enable all four RX queues before testing. */
913         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
914         /* RDH is read-only for 82575, only test RDT. */
915         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
916         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
917         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
918         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
919         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
920         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
921         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
922         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
923         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
924         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
925         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
926         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
927         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
928         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
929         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
930         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
931         { 0, 0, 0, 0 }
932 };
933
934 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
935                              int reg, u32 mask, u32 write)
936 {
937         struct e1000_hw *hw = &adapter->hw;
938         u32 pat, val;
939         u32 _test[] =
940                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
941         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
942                 wr32(reg, (_test[pat] & write));
943                 val = rd32(reg);
944                 if (val != (_test[pat] & write & mask)) {
945                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
946                                 "failed: got 0x%08X expected 0x%08X\n",
947                                 reg, val, (_test[pat] & write & mask));
948                         *data = reg;
949                         return 1;
950                 }
951         }
952         return 0;
953 }
954
955 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
956                               int reg, u32 mask, u32 write)
957 {
958         struct e1000_hw *hw = &adapter->hw;
959         u32 val;
960         wr32(reg, write & mask);
961         val = rd32(reg);
962         if ((write & mask) != (val & mask)) {
963                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
964                         " got 0x%08X expected 0x%08X\n", reg,
965                         (val & mask), (write & mask));
966                 *data = reg;
967                 return 1;
968         }
969         return 0;
970 }
971
972 #define REG_PATTERN_TEST(reg, mask, write) \
973         do { \
974                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
975                         return 1; \
976         } while (0)
977
978 #define REG_SET_AND_CHECK(reg, mask, write) \
979         do { \
980                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
981                         return 1; \
982         } while (0)
983
984 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
985 {
986         struct e1000_hw *hw = &adapter->hw;
987         struct igb_reg_test *test;
988         u32 value, before, after;
989         u32 i, toggle;
990
991         toggle = 0x7FFFF3FF;
992
993         switch (adapter->hw.mac.type) {
994         case e1000_82576:
995                 test = reg_test_82576;
996                 break;
997         default:
998                 test = reg_test_82575;
999                 break;
1000         }
1001
1002         /* Because the status register is such a special case,
1003          * we handle it separately from the rest of the register
1004          * tests.  Some bits are read-only, some toggle, and some
1005          * are writable on newer MACs.
1006          */
1007         before = rd32(E1000_STATUS);
1008         value = (rd32(E1000_STATUS) & toggle);
1009         wr32(E1000_STATUS, toggle);
1010         after = rd32(E1000_STATUS) & toggle;
1011         if (value != after) {
1012                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1013                         "got: 0x%08X expected: 0x%08X\n", after, value);
1014                 *data = 1;
1015                 return 1;
1016         }
1017         /* restore previous status */
1018         wr32(E1000_STATUS, before);
1019
1020         /* Perform the remainder of the register test, looping through
1021          * the test table until we either fail or reach the null entry.
1022          */
1023         while (test->reg) {
1024                 for (i = 0; i < test->array_len; i++) {
1025                         switch (test->test_type) {
1026                         case PATTERN_TEST:
1027                                 REG_PATTERN_TEST(test->reg +
1028                                                 (i * test->reg_offset),
1029                                                 test->mask,
1030                                                 test->write);
1031                                 break;
1032                         case SET_READ_TEST:
1033                                 REG_SET_AND_CHECK(test->reg +
1034                                                 (i * test->reg_offset),
1035                                                 test->mask,
1036                                                 test->write);
1037                                 break;
1038                         case WRITE_NO_TEST:
1039                                 writel(test->write,
1040                                     (adapter->hw.hw_addr + test->reg)
1041                                         + (i * test->reg_offset));
1042                                 break;
1043                         case TABLE32_TEST:
1044                                 REG_PATTERN_TEST(test->reg + (i * 4),
1045                                                 test->mask,
1046                                                 test->write);
1047                                 break;
1048                         case TABLE64_TEST_LO:
1049                                 REG_PATTERN_TEST(test->reg + (i * 8),
1050                                                 test->mask,
1051                                                 test->write);
1052                                 break;
1053                         case TABLE64_TEST_HI:
1054                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1055                                                 test->mask,
1056                                                 test->write);
1057                                 break;
1058                         }
1059                 }
1060                 test++;
1061         }
1062
1063         *data = 0;
1064         return 0;
1065 }
1066
1067 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1068 {
1069         u16 temp;
1070         u16 checksum = 0;
1071         u16 i;
1072
1073         *data = 0;
1074         /* Read and add up the contents of the EEPROM */
1075         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1076                 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1077                     < 0) {
1078                         *data = 1;
1079                         break;
1080                 }
1081                 checksum += temp;
1082         }
1083
1084         /* If Checksum is not Correct return error else test passed */
1085         if ((checksum != (u16) NVM_SUM) && !(*data))
1086                 *data = 2;
1087
1088         return *data;
1089 }
1090
1091 static irqreturn_t igb_test_intr(int irq, void *data)
1092 {
1093         struct net_device *netdev = (struct net_device *) data;
1094         struct igb_adapter *adapter = netdev_priv(netdev);
1095         struct e1000_hw *hw = &adapter->hw;
1096
1097         adapter->test_icr |= rd32(E1000_ICR);
1098
1099         return IRQ_HANDLED;
1100 }
1101
1102 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1103 {
1104         struct e1000_hw *hw = &adapter->hw;
1105         struct net_device *netdev = adapter->netdev;
1106         u32 mask, ics_mask, i = 0, shared_int = true;
1107         u32 irq = adapter->pdev->irq;
1108
1109         *data = 0;
1110
1111         /* Hook up test interrupt handler just for this test */
1112         if (adapter->msix_entries)
1113                 /* NOTE: we don't test MSI-X interrupts here, yet */
1114                 return 0;
1115
1116         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1117                 shared_int = false;
1118                 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1119                         *data = 1;
1120                         return -1;
1121                 }
1122         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1123                                 netdev->name, netdev)) {
1124                 shared_int = false;
1125         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1126                  netdev->name, netdev)) {
1127                 *data = 1;
1128                 return -1;
1129         }
1130         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1131                 (shared_int ? "shared" : "unshared"));
1132         /* Disable all the interrupts */
1133         wr32(E1000_IMC, 0xFFFFFFFF);
1134         msleep(10);
1135
1136         /* Define all writable bits for ICS */
1137         switch(hw->mac.type) {
1138         case e1000_82575:
1139                 ics_mask = 0x37F47EDD;
1140                 break;
1141         case e1000_82576:
1142                 ics_mask = 0x77D4FBFD;
1143                 break;
1144         default:
1145                 ics_mask = 0x7FFFFFFF;
1146                 break;
1147         }
1148
1149         /* Test each interrupt */
1150         for (; i < 31; i++) {
1151                 /* Interrupt to test */
1152                 mask = 1 << i;
1153
1154                 if (!(mask & ics_mask))
1155                         continue;
1156
1157                 if (!shared_int) {
1158                         /* Disable the interrupt to be reported in
1159                          * the cause register and then force the same
1160                          * interrupt and see if one gets posted.  If
1161                          * an interrupt was posted to the bus, the
1162                          * test failed.
1163                          */
1164                         adapter->test_icr = 0;
1165
1166                         /* Flush any pending interrupts */
1167                         wr32(E1000_ICR, ~0);
1168
1169                         wr32(E1000_IMC, mask);
1170                         wr32(E1000_ICS, mask);
1171                         msleep(10);
1172
1173                         if (adapter->test_icr & mask) {
1174                                 *data = 3;
1175                                 break;
1176                         }
1177                 }
1178
1179                 /* Enable the interrupt to be reported in
1180                  * the cause register and then force the same
1181                  * interrupt and see if one gets posted.  If
1182                  * an interrupt was not posted to the bus, the
1183                  * test failed.
1184                  */
1185                 adapter->test_icr = 0;
1186
1187                 /* Flush any pending interrupts */
1188                 wr32(E1000_ICR, ~0);
1189
1190                 wr32(E1000_IMS, mask);
1191                 wr32(E1000_ICS, mask);
1192                 msleep(10);
1193
1194                 if (!(adapter->test_icr & mask)) {
1195                         *data = 4;
1196                         break;
1197                 }
1198
1199                 if (!shared_int) {
1200                         /* Disable the other interrupts to be reported in
1201                          * the cause register and then force the other
1202                          * interrupts and see if any get posted.  If
1203                          * an interrupt was posted to the bus, the
1204                          * test failed.
1205                          */
1206                         adapter->test_icr = 0;
1207
1208                         /* Flush any pending interrupts */
1209                         wr32(E1000_ICR, ~0);
1210
1211                         wr32(E1000_IMC, ~mask);
1212                         wr32(E1000_ICS, ~mask);
1213                         msleep(10);
1214
1215                         if (adapter->test_icr & mask) {
1216                                 *data = 5;
1217                                 break;
1218                         }
1219                 }
1220         }
1221
1222         /* Disable all the interrupts */
1223         wr32(E1000_IMC, ~0);
1224         msleep(10);
1225
1226         /* Unhook test interrupt handler */
1227         free_irq(irq, netdev);
1228
1229         return *data;
1230 }
1231
1232 static void igb_free_desc_rings(struct igb_adapter *adapter)
1233 {
1234         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1235         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1236         struct pci_dev *pdev = adapter->pdev;
1237         int i;
1238
1239         if (tx_ring->desc && tx_ring->buffer_info) {
1240                 for (i = 0; i < tx_ring->count; i++) {
1241                         struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1242                         if (buf->dma)
1243                                 pci_unmap_single(pdev, buf->dma, buf->length,
1244                                                  PCI_DMA_TODEVICE);
1245                         if (buf->skb)
1246                                 dev_kfree_skb(buf->skb);
1247                 }
1248         }
1249
1250         if (rx_ring->desc && rx_ring->buffer_info) {
1251                 for (i = 0; i < rx_ring->count; i++) {
1252                         struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1253                         if (buf->dma)
1254                                 pci_unmap_single(pdev, buf->dma,
1255                                                  IGB_RXBUFFER_2048,
1256                                                  PCI_DMA_FROMDEVICE);
1257                         if (buf->skb)
1258                                 dev_kfree_skb(buf->skb);
1259                 }
1260         }
1261
1262         if (tx_ring->desc) {
1263                 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1264                                     tx_ring->dma);
1265                 tx_ring->desc = NULL;
1266         }
1267         if (rx_ring->desc) {
1268                 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1269                                     rx_ring->dma);
1270                 rx_ring->desc = NULL;
1271         }
1272
1273         kfree(tx_ring->buffer_info);
1274         tx_ring->buffer_info = NULL;
1275         kfree(rx_ring->buffer_info);
1276         rx_ring->buffer_info = NULL;
1277
1278         return;
1279 }
1280
1281 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1282 {
1283         struct e1000_hw *hw = &adapter->hw;
1284         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1285         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1286         struct pci_dev *pdev = adapter->pdev;
1287         struct igb_buffer *buffer_info;
1288         u32 rctl;
1289         int i, ret_val;
1290
1291         /* Setup Tx descriptor ring and Tx buffers */
1292
1293         if (!tx_ring->count)
1294                 tx_ring->count = IGB_DEFAULT_TXD;
1295
1296         tx_ring->buffer_info = kcalloc(tx_ring->count,
1297                                        sizeof(struct igb_buffer),
1298                                        GFP_KERNEL);
1299         if (!tx_ring->buffer_info) {
1300                 ret_val = 1;
1301                 goto err_nomem;
1302         }
1303
1304         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1305         tx_ring->size = ALIGN(tx_ring->size, 4096);
1306         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1307                                              &tx_ring->dma);
1308         if (!tx_ring->desc) {
1309                 ret_val = 2;
1310                 goto err_nomem;
1311         }
1312         tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1313
1314         wr32(E1000_TDBAL(0),
1315                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1316         wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1317         wr32(E1000_TDLEN(0),
1318                         tx_ring->count * sizeof(union e1000_adv_tx_desc));
1319         wr32(E1000_TDH(0), 0);
1320         wr32(E1000_TDT(0), 0);
1321         wr32(E1000_TCTL,
1322                         E1000_TCTL_PSP | E1000_TCTL_EN |
1323                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1324                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1325
1326         for (i = 0; i < tx_ring->count; i++) {
1327                 union e1000_adv_tx_desc *tx_desc;
1328                 struct sk_buff *skb;
1329                 unsigned int size = 1024;
1330
1331                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
1332                 skb = alloc_skb(size, GFP_KERNEL);
1333                 if (!skb) {
1334                         ret_val = 3;
1335                         goto err_nomem;
1336                 }
1337                 skb_put(skb, size);
1338                 buffer_info = &tx_ring->buffer_info[i];
1339                 buffer_info->skb = skb;
1340                 buffer_info->length = skb->len;
1341                 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1342                                                   PCI_DMA_TODEVICE);
1343                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1344                 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1345                                               E1000_ADVTXD_PAYLEN_SHIFT;
1346                 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1347                 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1348                                                           E1000_TXD_CMD_IFCS |
1349                                                           E1000_TXD_CMD_RS |
1350                                                           E1000_ADVTXD_DTYP_DATA |
1351                                                           E1000_ADVTXD_DCMD_DEXT);
1352         }
1353
1354         /* Setup Rx descriptor ring and Rx buffers */
1355
1356         if (!rx_ring->count)
1357                 rx_ring->count = IGB_DEFAULT_RXD;
1358
1359         rx_ring->buffer_info = kcalloc(rx_ring->count,
1360                                        sizeof(struct igb_buffer),
1361                                        GFP_KERNEL);
1362         if (!rx_ring->buffer_info) {
1363                 ret_val = 4;
1364                 goto err_nomem;
1365         }
1366
1367         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1368         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1369                                              &rx_ring->dma);
1370         if (!rx_ring->desc) {
1371                 ret_val = 5;
1372                 goto err_nomem;
1373         }
1374         rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1375
1376         rctl = rd32(E1000_RCTL);
1377         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1378         wr32(E1000_RDBAL(0),
1379                         ((u64) rx_ring->dma & 0xFFFFFFFF));
1380         wr32(E1000_RDBAH(0),
1381                         ((u64) rx_ring->dma >> 32));
1382         wr32(E1000_RDLEN(0), rx_ring->size);
1383         wr32(E1000_RDH(0), 0);
1384         wr32(E1000_RDT(0), 0);
1385         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1386         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1387                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1388         wr32(E1000_RCTL, rctl);
1389         wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
1390
1391         for (i = 0; i < rx_ring->count; i++) {
1392                 union e1000_adv_rx_desc *rx_desc;
1393                 struct sk_buff *skb;
1394
1395                 buffer_info = &rx_ring->buffer_info[i];
1396                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
1397                 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1398                                 GFP_KERNEL);
1399                 if (!skb) {
1400                         ret_val = 6;
1401                         goto err_nomem;
1402                 }
1403                 skb_reserve(skb, NET_IP_ALIGN);
1404                 buffer_info->skb = skb;
1405                 buffer_info->dma = pci_map_single(pdev, skb->data,
1406                                                   IGB_RXBUFFER_2048,
1407                                                   PCI_DMA_FROMDEVICE);
1408                 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
1409                 memset(skb->data, 0x00, skb->len);
1410         }
1411
1412         return 0;
1413
1414 err_nomem:
1415         igb_free_desc_rings(adapter);
1416         return ret_val;
1417 }
1418
1419 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1420 {
1421         struct e1000_hw *hw = &adapter->hw;
1422
1423         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1424         igb_write_phy_reg(hw, 29, 0x001F);
1425         igb_write_phy_reg(hw, 30, 0x8FFC);
1426         igb_write_phy_reg(hw, 29, 0x001A);
1427         igb_write_phy_reg(hw, 30, 0x8FF0);
1428 }
1429
1430 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1431 {
1432         struct e1000_hw *hw = &adapter->hw;
1433         u32 ctrl_reg = 0;
1434
1435         hw->mac.autoneg = false;
1436
1437         if (hw->phy.type == e1000_phy_m88) {
1438                 /* Auto-MDI/MDIX Off */
1439                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1440                 /* reset to update Auto-MDI/MDIX */
1441                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1442                 /* autoneg off */
1443                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1444         }
1445
1446         ctrl_reg = rd32(E1000_CTRL);
1447
1448         /* force 1000, set loopback */
1449         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1450
1451         /* Now set up the MAC to the same speed/duplex as the PHY. */
1452         ctrl_reg = rd32(E1000_CTRL);
1453         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1454         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1455                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1456                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1457                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1458                      E1000_CTRL_SLU);    /* Set link up enable bit */
1459
1460         if (hw->phy.type == e1000_phy_m88)
1461                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1462
1463         wr32(E1000_CTRL, ctrl_reg);
1464
1465         /* Disable the receiver on the PHY so when a cable is plugged in, the
1466          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1467          */
1468         if (hw->phy.type == e1000_phy_m88)
1469                 igb_phy_disable_receiver(adapter);
1470
1471         udelay(500);
1472
1473         return 0;
1474 }
1475
1476 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1477 {
1478         return igb_integrated_phy_loopback(adapter);
1479 }
1480
1481 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1482 {
1483         struct e1000_hw *hw = &adapter->hw;
1484         u32 reg;
1485
1486         if (hw->phy.media_type == e1000_media_type_fiber ||
1487             hw->phy.media_type == e1000_media_type_internal_serdes) {
1488                 reg = rd32(E1000_RCTL);
1489                 reg |= E1000_RCTL_LBM_TCVR;
1490                 wr32(E1000_RCTL, reg);
1491
1492                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1493
1494                 reg = rd32(E1000_CTRL);
1495                 reg &= ~(E1000_CTRL_RFCE |
1496                          E1000_CTRL_TFCE |
1497                          E1000_CTRL_LRST);
1498                 reg |= E1000_CTRL_SLU |
1499                        E1000_CTRL_FD;
1500                 wr32(E1000_CTRL, reg);
1501
1502                 /* Unset switch control to serdes energy detect */
1503                 reg = rd32(E1000_CONNSW);
1504                 reg &= ~E1000_CONNSW_ENRGSRC;
1505                 wr32(E1000_CONNSW, reg);
1506
1507                 /* Set PCS register for forced speed */
1508                 reg = rd32(E1000_PCS_LCTL);
1509                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1510                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1511                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1512                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1513                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1514                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1515                 wr32(E1000_PCS_LCTL, reg);
1516
1517                 return 0;
1518         } else if (hw->phy.media_type == e1000_media_type_copper) {
1519                 return igb_set_phy_loopback(adapter);
1520         }
1521
1522         return 7;
1523 }
1524
1525 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1526 {
1527         struct e1000_hw *hw = &adapter->hw;
1528         u32 rctl;
1529         u16 phy_reg;
1530
1531         rctl = rd32(E1000_RCTL);
1532         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1533         wr32(E1000_RCTL, rctl);
1534
1535         hw->mac.autoneg = true;
1536         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1537         if (phy_reg & MII_CR_LOOPBACK) {
1538                 phy_reg &= ~MII_CR_LOOPBACK;
1539                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1540                 igb_phy_sw_reset(hw);
1541         }
1542 }
1543
1544 static void igb_create_lbtest_frame(struct sk_buff *skb,
1545                                     unsigned int frame_size)
1546 {
1547         memset(skb->data, 0xFF, frame_size);
1548         frame_size &= ~1;
1549         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1550         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1551         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1552 }
1553
1554 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1555 {
1556         frame_size &= ~1;
1557         if (*(skb->data + 3) == 0xFF)
1558                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1559                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1560                         return 0;
1561         return 13;
1562 }
1563
1564 static int igb_run_loopback_test(struct igb_adapter *adapter)
1565 {
1566         struct e1000_hw *hw = &adapter->hw;
1567         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1568         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1569         struct pci_dev *pdev = adapter->pdev;
1570         int i, j, k, l, lc, good_cnt;
1571         int ret_val = 0;
1572         unsigned long time;
1573
1574         wr32(E1000_RDT(0), rx_ring->count - 1);
1575
1576         /* Calculate the loop count based on the largest descriptor ring
1577          * The idea is to wrap the largest ring a number of times using 64
1578          * send/receive pairs during each loop
1579          */
1580
1581         if (rx_ring->count <= tx_ring->count)
1582                 lc = ((tx_ring->count / 64) * 2) + 1;
1583         else
1584                 lc = ((rx_ring->count / 64) * 2) + 1;
1585
1586         k = l = 0;
1587         for (j = 0; j <= lc; j++) { /* loop count loop */
1588                 for (i = 0; i < 64; i++) { /* send the packets */
1589                         igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1590                                                 1024);
1591                         pci_dma_sync_single_for_device(pdev,
1592                                 tx_ring->buffer_info[k].dma,
1593                                 tx_ring->buffer_info[k].length,
1594                                 PCI_DMA_TODEVICE);
1595                         k++;
1596                         if (k == tx_ring->count)
1597                                 k = 0;
1598                 }
1599                 wr32(E1000_TDT(0), k);
1600                 msleep(200);
1601                 time = jiffies; /* set the start time for the receive */
1602                 good_cnt = 0;
1603                 do { /* receive the sent packets */
1604                         pci_dma_sync_single_for_cpu(pdev,
1605                                         rx_ring->buffer_info[l].dma,
1606                                         IGB_RXBUFFER_2048,
1607                                         PCI_DMA_FROMDEVICE);
1608
1609                         ret_val = igb_check_lbtest_frame(
1610                                              rx_ring->buffer_info[l].skb, 1024);
1611                         if (!ret_val)
1612                                 good_cnt++;
1613                         l++;
1614                         if (l == rx_ring->count)
1615                                 l = 0;
1616                         /* time + 20 msecs (200 msecs on 2.4) is more than
1617                          * enough time to complete the receives, if it's
1618                          * exceeded, break and error off
1619                          */
1620                 } while (good_cnt < 64 && jiffies < (time + 20));
1621                 if (good_cnt != 64) {
1622                         ret_val = 13; /* ret_val is the same as mis-compare */
1623                         break;
1624                 }
1625                 if (jiffies >= (time + 20)) {
1626                         ret_val = 14; /* error code for time out error */
1627                         break;
1628                 }
1629         } /* end loop count loop */
1630         return ret_val;
1631 }
1632
1633 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1634 {
1635         /* PHY loopback cannot be performed if SoL/IDER
1636          * sessions are active */
1637         if (igb_check_reset_block(&adapter->hw)) {
1638                 dev_err(&adapter->pdev->dev,
1639                         "Cannot do PHY loopback test "
1640                         "when SoL/IDER is active.\n");
1641                 *data = 0;
1642                 goto out;
1643         }
1644         *data = igb_setup_desc_rings(adapter);
1645         if (*data)
1646                 goto out;
1647         *data = igb_setup_loopback_test(adapter);
1648         if (*data)
1649                 goto err_loopback;
1650         *data = igb_run_loopback_test(adapter);
1651         igb_loopback_cleanup(adapter);
1652
1653 err_loopback:
1654         igb_free_desc_rings(adapter);
1655 out:
1656         return *data;
1657 }
1658
1659 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1660 {
1661         struct e1000_hw *hw = &adapter->hw;
1662         *data = 0;
1663         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1664                 int i = 0;
1665                 hw->mac.serdes_has_link = false;
1666
1667                 /* On some blade server designs, link establishment
1668                  * could take as long as 2-3 minutes */
1669                 do {
1670                         hw->mac.ops.check_for_link(&adapter->hw);
1671                         if (hw->mac.serdes_has_link)
1672                                 return *data;
1673                         msleep(20);
1674                 } while (i++ < 3750);
1675
1676                 *data = 1;
1677         } else {
1678                 hw->mac.ops.check_for_link(&adapter->hw);
1679                 if (hw->mac.autoneg)
1680                         msleep(4000);
1681
1682                 if (!(rd32(E1000_STATUS) &
1683                       E1000_STATUS_LU))
1684                         *data = 1;
1685         }
1686         return *data;
1687 }
1688
1689 static void igb_diag_test(struct net_device *netdev,
1690                           struct ethtool_test *eth_test, u64 *data)
1691 {
1692         struct igb_adapter *adapter = netdev_priv(netdev);
1693         u16 autoneg_advertised;
1694         u8 forced_speed_duplex, autoneg;
1695         bool if_running = netif_running(netdev);
1696
1697         set_bit(__IGB_TESTING, &adapter->state);
1698         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1699                 /* Offline tests */
1700
1701                 /* save speed, duplex, autoneg settings */
1702                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1703                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1704                 autoneg = adapter->hw.mac.autoneg;
1705
1706                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1707
1708                 /* Link test performed before hardware reset so autoneg doesn't
1709                  * interfere with test result */
1710                 if (igb_link_test(adapter, &data[4]))
1711                         eth_test->flags |= ETH_TEST_FL_FAILED;
1712
1713                 if (if_running)
1714                         /* indicate we're in test mode */
1715                         dev_close(netdev);
1716                 else
1717                         igb_reset(adapter);
1718
1719                 if (igb_reg_test(adapter, &data[0]))
1720                         eth_test->flags |= ETH_TEST_FL_FAILED;
1721
1722                 igb_reset(adapter);
1723                 if (igb_eeprom_test(adapter, &data[1]))
1724                         eth_test->flags |= ETH_TEST_FL_FAILED;
1725
1726                 igb_reset(adapter);
1727                 if (igb_intr_test(adapter, &data[2]))
1728                         eth_test->flags |= ETH_TEST_FL_FAILED;
1729
1730                 igb_reset(adapter);
1731                 if (igb_loopback_test(adapter, &data[3]))
1732                         eth_test->flags |= ETH_TEST_FL_FAILED;
1733
1734                 /* restore speed, duplex, autoneg settings */
1735                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1736                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1737                 adapter->hw.mac.autoneg = autoneg;
1738
1739                 /* force this routine to wait until autoneg complete/timeout */
1740                 adapter->hw.phy.autoneg_wait_to_complete = true;
1741                 igb_reset(adapter);
1742                 adapter->hw.phy.autoneg_wait_to_complete = false;
1743
1744                 clear_bit(__IGB_TESTING, &adapter->state);
1745                 if (if_running)
1746                         dev_open(netdev);
1747         } else {
1748                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1749                 /* Online tests */
1750                 if (igb_link_test(adapter, &data[4]))
1751                         eth_test->flags |= ETH_TEST_FL_FAILED;
1752
1753                 /* Online tests aren't run; pass by default */
1754                 data[0] = 0;
1755                 data[1] = 0;
1756                 data[2] = 0;
1757                 data[3] = 0;
1758
1759                 clear_bit(__IGB_TESTING, &adapter->state);
1760         }
1761         msleep_interruptible(4 * 1000);
1762 }
1763
1764 static int igb_wol_exclusion(struct igb_adapter *adapter,
1765                              struct ethtool_wolinfo *wol)
1766 {
1767         struct e1000_hw *hw = &adapter->hw;
1768         int retval = 1; /* fail by default */
1769
1770         switch (hw->device_id) {
1771         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1772                 /* WoL not supported */
1773                 wol->supported = 0;
1774                 break;
1775         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1776         case E1000_DEV_ID_82576_FIBER:
1777         case E1000_DEV_ID_82576_SERDES:
1778                 /* Wake events not supported on port B */
1779                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1780                         wol->supported = 0;
1781                         break;
1782                 }
1783                 /* return success for non excluded adapter ports */
1784                 retval = 0;
1785                 break;
1786         case E1000_DEV_ID_82576_QUAD_COPPER:
1787                 /* quad port adapters only support WoL on port A */
1788                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1789                         wol->supported = 0;
1790                         break;
1791                 }
1792                 /* return success for non excluded adapter ports */
1793                 retval = 0;
1794                 break;
1795         default:
1796                 /* dual port cards only support WoL on port A from now on
1797                  * unless it was enabled in the eeprom for port B
1798                  * so exclude FUNC_1 ports from having WoL enabled */
1799                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1800                     !adapter->eeprom_wol) {
1801                         wol->supported = 0;
1802                         break;
1803                 }
1804
1805                 retval = 0;
1806         }
1807
1808         return retval;
1809 }
1810
1811 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1812 {
1813         struct igb_adapter *adapter = netdev_priv(netdev);
1814
1815         wol->supported = WAKE_UCAST | WAKE_MCAST |
1816                          WAKE_BCAST | WAKE_MAGIC;
1817         wol->wolopts = 0;
1818
1819         /* this function will set ->supported = 0 and return 1 if wol is not
1820          * supported by this hardware */
1821         if (igb_wol_exclusion(adapter, wol) ||
1822             !device_can_wakeup(&adapter->pdev->dev))
1823                 return;
1824
1825         /* apply any specific unsupported masks here */
1826         switch (adapter->hw.device_id) {
1827         default:
1828                 break;
1829         }
1830
1831         if (adapter->wol & E1000_WUFC_EX)
1832                 wol->wolopts |= WAKE_UCAST;
1833         if (adapter->wol & E1000_WUFC_MC)
1834                 wol->wolopts |= WAKE_MCAST;
1835         if (adapter->wol & E1000_WUFC_BC)
1836                 wol->wolopts |= WAKE_BCAST;
1837         if (adapter->wol & E1000_WUFC_MAG)
1838                 wol->wolopts |= WAKE_MAGIC;
1839
1840         return;
1841 }
1842
1843 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1844 {
1845         struct igb_adapter *adapter = netdev_priv(netdev);
1846         struct e1000_hw *hw = &adapter->hw;
1847
1848         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1849                 return -EOPNOTSUPP;
1850
1851         if (igb_wol_exclusion(adapter, wol) ||
1852             !device_can_wakeup(&adapter->pdev->dev))
1853                 return wol->wolopts ? -EOPNOTSUPP : 0;
1854
1855         switch (hw->device_id) {
1856         default:
1857                 break;
1858         }
1859
1860         /* these settings will always override what we currently have */
1861         adapter->wol = 0;
1862
1863         if (wol->wolopts & WAKE_UCAST)
1864                 adapter->wol |= E1000_WUFC_EX;
1865         if (wol->wolopts & WAKE_MCAST)
1866                 adapter->wol |= E1000_WUFC_MC;
1867         if (wol->wolopts & WAKE_BCAST)
1868                 adapter->wol |= E1000_WUFC_BC;
1869         if (wol->wolopts & WAKE_MAGIC)
1870                 adapter->wol |= E1000_WUFC_MAG;
1871
1872         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1873
1874         return 0;
1875 }
1876
1877 /* bit defines for adapter->led_status */
1878 #define IGB_LED_ON              0
1879
1880 static int igb_phys_id(struct net_device *netdev, u32 data)
1881 {
1882         struct igb_adapter *adapter = netdev_priv(netdev);
1883         struct e1000_hw *hw = &adapter->hw;
1884
1885         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1886                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1887
1888         igb_blink_led(hw);
1889         msleep_interruptible(data * 1000);
1890
1891         igb_led_off(hw);
1892         clear_bit(IGB_LED_ON, &adapter->led_status);
1893         igb_cleanup_led(hw);
1894
1895         return 0;
1896 }
1897
1898 static int igb_set_coalesce(struct net_device *netdev,
1899                             struct ethtool_coalesce *ec)
1900 {
1901         struct igb_adapter *adapter = netdev_priv(netdev);
1902         struct e1000_hw *hw = &adapter->hw;
1903         int i;
1904
1905         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1906             ((ec->rx_coalesce_usecs > 3) &&
1907              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1908             (ec->rx_coalesce_usecs == 2))
1909                 return -EINVAL;
1910
1911         /* convert to rate of irq's per second */
1912         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1913                 adapter->itr_setting = ec->rx_coalesce_usecs;
1914                 adapter->itr = IGB_START_ITR;
1915         } else {
1916                 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1917                 adapter->itr = adapter->itr_setting;
1918         }
1919
1920         for (i = 0; i < adapter->num_rx_queues; i++)
1921                 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1922
1923         return 0;
1924 }
1925
1926 static int igb_get_coalesce(struct net_device *netdev,
1927                             struct ethtool_coalesce *ec)
1928 {
1929         struct igb_adapter *adapter = netdev_priv(netdev);
1930
1931         if (adapter->itr_setting <= 3)
1932                 ec->rx_coalesce_usecs = adapter->itr_setting;
1933         else
1934                 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1935
1936         return 0;
1937 }
1938
1939
1940 static int igb_nway_reset(struct net_device *netdev)
1941 {
1942         struct igb_adapter *adapter = netdev_priv(netdev);
1943         if (netif_running(netdev))
1944                 igb_reinit_locked(adapter);
1945         return 0;
1946 }
1947
1948 static int igb_get_sset_count(struct net_device *netdev, int sset)
1949 {
1950         switch (sset) {
1951         case ETH_SS_STATS:
1952                 return IGB_STATS_LEN;
1953         case ETH_SS_TEST:
1954                 return IGB_TEST_LEN;
1955         default:
1956                 return -ENOTSUPP;
1957         }
1958 }
1959
1960 static void igb_get_ethtool_stats(struct net_device *netdev,
1961                                   struct ethtool_stats *stats, u64 *data)
1962 {
1963         struct igb_adapter *adapter = netdev_priv(netdev);
1964         u64 *queue_stat;
1965         int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1966         int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
1967         int j;
1968         int i;
1969
1970         igb_update_stats(adapter);
1971         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1972                 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1973                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1974                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1975         }
1976         for (j = 0; j < adapter->num_tx_queues; j++) {
1977                 int k;
1978                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1979                 for (k = 0; k < stat_count_tx; k++)
1980                         data[i + k] = queue_stat[k];
1981                 i += k;
1982         }
1983         for (j = 0; j < adapter->num_rx_queues; j++) {
1984                 int k;
1985                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1986                 for (k = 0; k < stat_count_rx; k++)
1987                         data[i + k] = queue_stat[k];
1988                 i += k;
1989         }
1990 }
1991
1992 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1993 {
1994         struct igb_adapter *adapter = netdev_priv(netdev);
1995         u8 *p = data;
1996         int i;
1997
1998         switch (stringset) {
1999         case ETH_SS_TEST:
2000                 memcpy(data, *igb_gstrings_test,
2001                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2002                 break;
2003         case ETH_SS_STATS:
2004                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2005                         memcpy(p, igb_gstrings_stats[i].stat_string,
2006                                ETH_GSTRING_LEN);
2007                         p += ETH_GSTRING_LEN;
2008                 }
2009                 for (i = 0; i < adapter->num_tx_queues; i++) {
2010                         sprintf(p, "tx_queue_%u_packets", i);
2011                         p += ETH_GSTRING_LEN;
2012                         sprintf(p, "tx_queue_%u_bytes", i);
2013                         p += ETH_GSTRING_LEN;
2014                 }
2015                 for (i = 0; i < adapter->num_rx_queues; i++) {
2016                         sprintf(p, "rx_queue_%u_packets", i);
2017                         p += ETH_GSTRING_LEN;
2018                         sprintf(p, "rx_queue_%u_bytes", i);
2019                         p += ETH_GSTRING_LEN;
2020                         sprintf(p, "rx_queue_%u_drops", i);
2021                         p += ETH_GSTRING_LEN;
2022                 }
2023 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2024                 break;
2025         }
2026 }
2027
2028 static struct ethtool_ops igb_ethtool_ops = {
2029         .get_settings           = igb_get_settings,
2030         .set_settings           = igb_set_settings,
2031         .get_drvinfo            = igb_get_drvinfo,
2032         .get_regs_len           = igb_get_regs_len,
2033         .get_regs               = igb_get_regs,
2034         .get_wol                = igb_get_wol,
2035         .set_wol                = igb_set_wol,
2036         .get_msglevel           = igb_get_msglevel,
2037         .set_msglevel           = igb_set_msglevel,
2038         .nway_reset             = igb_nway_reset,
2039         .get_link               = ethtool_op_get_link,
2040         .get_eeprom_len         = igb_get_eeprom_len,
2041         .get_eeprom             = igb_get_eeprom,
2042         .set_eeprom             = igb_set_eeprom,
2043         .get_ringparam          = igb_get_ringparam,
2044         .set_ringparam          = igb_set_ringparam,
2045         .get_pauseparam         = igb_get_pauseparam,
2046         .set_pauseparam         = igb_set_pauseparam,
2047         .get_rx_csum            = igb_get_rx_csum,
2048         .set_rx_csum            = igb_set_rx_csum,
2049         .get_tx_csum            = igb_get_tx_csum,
2050         .set_tx_csum            = igb_set_tx_csum,
2051         .get_sg                 = ethtool_op_get_sg,
2052         .set_sg                 = ethtool_op_set_sg,
2053         .get_tso                = ethtool_op_get_tso,
2054         .set_tso                = igb_set_tso,
2055         .self_test              = igb_diag_test,
2056         .get_strings            = igb_get_strings,
2057         .phys_id                = igb_phys_id,
2058         .get_sset_count         = igb_get_sset_count,
2059         .get_ethtool_stats      = igb_get_ethtool_stats,
2060         .get_coalesce           = igb_get_coalesce,
2061         .set_coalesce           = igb_set_coalesce,
2062 };
2063
2064 void igb_set_ethtool_ops(struct net_device *netdev)
2065 {
2066         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2067 }