2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 Jay Cliburn <jcliburn@gmail.com>
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/if_vlan.h>
28 #include <linux/etherdevice.h>
29 #include <linux/crc32.h>
30 #include <asm/byteorder.h>
35 * Reset the transmit and receive units; mask and clear all interrupts.
36 * hw - Struct containing variables accessed by shared code
37 * return : ATL1_SUCCESS or idle status (if error)
39 s32 atl1_reset_hw(struct atl1_hw *hw)
45 * Clear Interrupt mask to stop board from generating
46 * interrupts & Clear any pending interrupt events
49 * iowrite32(0, hw->hw_addr + REG_IMR);
50 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
54 * Issue Soft Reset to the MAC. This will reset the chip's
55 * transmit, receive, DMA. It will not effect
56 * the current PCI configuration. The global reset bit is self-
57 * clearing, and should clear within a microsecond.
59 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
60 ioread32(hw->hw_addr + REG_MASTER_CTRL);
62 iowrite16(1, hw->hw_addr + REG_GPHY_ENABLE);
63 ioread16(hw->hw_addr + REG_GPHY_ENABLE);
65 msleep(1); /* delay about 1ms */
67 /* Wait at least 10ms for All module to be Idle */
68 for (i = 0; i < 10; i++) {
69 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
72 msleep(1); /* delay 1 ms */
73 cpu_relax(); /* FIXME: is this still the right way to do this? */
77 printk (KERN_DEBUG "icr = %x\n", icr);
84 /* function about EEPROM
87 * return 0 if eeprom exist
89 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
92 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
93 if (value & SPI_FLASH_CTRL_EN_VPD) {
94 value &= ~SPI_FLASH_CTRL_EN_VPD;
95 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
98 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
99 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
102 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
108 return false; /* address do not align */
110 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
111 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
112 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
113 ioread32(hw->hw_addr + REG_VPD_CAP);
115 for (i = 0; i < 10; i++) {
117 control = ioread32(hw->hw_addr + REG_VPD_CAP);
118 if (control & VPD_CAP_VPD_FLAG)
121 if (control & VPD_CAP_VPD_FLAG) {
122 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
125 return false; /* timeout */
129 * Reads the value from a PHY register
130 * hw - Struct containing variables accessed by shared code
131 * reg_addr - address of the PHY register to read
133 s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
138 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
139 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
141 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
142 ioread32(hw->hw_addr + REG_MDIO_CTRL);
144 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
146 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
147 if (!(val & (MDIO_START | MDIO_BUSY)))
150 if (!(val & (MDIO_START | MDIO_BUSY))) {
151 *phy_data = (u16) val;
157 #define CUSTOM_SPI_CS_SETUP 2
158 #define CUSTOM_SPI_CLK_HI 2
159 #define CUSTOM_SPI_CLK_LO 2
160 #define CUSTOM_SPI_CS_HOLD 2
161 #define CUSTOM_SPI_CS_HI 3
163 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
168 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
169 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
171 value = SPI_FLASH_CTRL_WAIT_READY |
172 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
173 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
174 SPI_FLASH_CTRL_CLK_HI_MASK) <<
175 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
176 SPI_FLASH_CTRL_CLK_LO_MASK) <<
177 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
178 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
179 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
180 SPI_FLASH_CTRL_CS_HI_MASK) <<
181 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
182 SPI_FLASH_CTRL_INS_SHIFT;
184 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
186 value |= SPI_FLASH_CTRL_START;
187 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
188 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
190 for (i = 0; i < 10; i++) {
192 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
193 if (!(value & SPI_FLASH_CTRL_START))
197 if (value & SPI_FLASH_CTRL_START)
200 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
206 * get_permanent_address
207 * return 0 if get valid mac address,
209 static int atl1_get_permanent_address(struct atl1_hw *hw)
214 u8 eth_addr[ETH_ALEN];
217 if (is_valid_ether_addr(hw->perm_mac_addr))
221 addr[0] = addr[1] = 0;
223 if (!atl1_check_eeprom_exist(hw)) { /* eeprom exist */
226 /* Read out all EEPROM content */
229 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
231 if (reg == REG_MAC_STA_ADDR)
233 else if (reg == (REG_MAC_STA_ADDR + 4))
236 } else if ((control & 0xff) == 0x5A) {
238 reg = (u16) (control >> 16);
240 break; /* assume data end while encount an invalid KEYWORD */
242 break; /* read error */
247 * The following 2 lines are the Attansic originals. Saving for posterity.
248 * *(u32 *) & eth_addr[2] = LONGSWAP(addr[0]);
249 * *(u16 *) & eth_addr[0] = SHORTSWAP(*(u16 *) & addr[1]);
251 *(u32 *) & eth_addr[2] = swab32(addr[0]);
252 *(u16 *) & eth_addr[0] = swab16(*(u16 *) & addr[1]);
254 if (is_valid_ether_addr(eth_addr)) {
255 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
261 /* see if SPI FLAGS exist ? */
262 addr[0] = addr[1] = 0;
267 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
269 if (reg == REG_MAC_STA_ADDR)
271 else if (reg == (REG_MAC_STA_ADDR + 4))
274 } else if ((control & 0xff) == 0x5A) {
276 reg = (u16) (control >> 16);
278 break; /* data end */
280 break; /* read error */
285 * The following 2 lines are the Attansic originals. Saving for posterity.
286 * *(u32 *) & eth_addr[2] = LONGSWAP(addr[0]);
287 * *(u16 *) & eth_addr[0] = SHORTSWAP(*(u16 *) & addr[1]);
289 *(u32 *) & eth_addr[2] = swab32(addr[0]);
290 *(u16 *) & eth_addr[0] = swab16(*(u16 *) & addr[1]);
291 if (is_valid_ether_addr(eth_addr)) {
292 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
299 * Reads the adapter's MAC address from the EEPROM
300 * hw - Struct containing variables accessed by shared code
302 s32 atl1_read_mac_addr(struct atl1_hw *hw)
306 if (atl1_get_permanent_address(hw))
307 random_ether_addr(hw->perm_mac_addr);
309 for (i = 0; i < ETH_ALEN; i++)
310 hw->mac_addr[i] = hw->perm_mac_addr[i];
315 * Hashes an address to determine its location in the multicast table
316 * hw - Struct containing variables accessed by shared code
317 * mc_addr - the multicast address to hash
321 * set hash value for a multicast address
322 * hash calcu processing :
323 * 1. calcu 32bit CRC for multicast address
324 * 2. reverse crc with MSB to LSB
326 u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
328 u32 crc32, value = 0;
331 crc32 = ether_crc_le(6, mc_addr);
333 for (i = 0; i < 32; i++)
334 value |= (((crc32 >> i) & 1) << (31 - i));
340 * Sets the bit in the multicast table corresponding to the hash value.
341 * hw - Struct containing variables accessed by shared code
342 * hash_value - Multicast address hash value
344 void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
346 u32 hash_bit, hash_reg;
350 * The HASH Table is a register array of 2 32-bit registers.
351 * It is treated like an array of 64 bits. We want to set
352 * bit BitArray[hash_value]. So we figure out what register
353 * the bit is in, read it, OR in the new bit, then write
354 * back the new value. The register is determined by the
355 * upper 7 bits of the hash value and the bit within that
356 * register are determined by the lower 5 bits of the value.
358 hash_reg = (hash_value >> 31) & 0x1;
359 hash_bit = (hash_value >> 26) & 0x1F;
360 mta = ioread32((hw + REG_RX_HASH_TABLE) + (hash_reg << 2));
361 mta |= (1 << hash_bit);
362 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
366 * Writes a value to a PHY register
367 * hw - Struct containing variables accessed by shared code
368 * reg_addr - address of the PHY register to write
369 * data - data to write to the PHY
371 s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
376 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
377 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
379 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
380 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
381 ioread32(hw->hw_addr + REG_MDIO_CTRL);
383 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
385 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
386 if (!(val & (MDIO_START | MDIO_BUSY)))
390 if (!(val & (MDIO_START | MDIO_BUSY)))
397 * Make L001's PHY out of Power Saving State (bug)
398 * hw - Struct containing variables accessed by shared code
399 * when power on, L001's PHY always on Power saving State
400 * (Gigabit Link forbidden)
402 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
405 ret = atl1_write_phy_reg(hw, 29, 0x0029);
408 return atl1_write_phy_reg(hw, 30, 0);
412 *TODO: do something or get rid of this
414 s32 atl1_phy_enter_power_saving(struct atl1_hw *hw)
421 ret_val = atl1_write_phy_reg(hw, ...);
422 ret_val = atl1_write_phy_reg(hw, ...);
429 * Resets the PHY and make all config validate
430 * hw - Struct containing variables accessed by shared code
432 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
434 static s32 atl1_phy_reset(struct atl1_hw *hw)
439 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
440 hw->media_type == MEDIA_TYPE_1000M_FULL)
441 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
443 switch (hw->media_type) {
444 case MEDIA_TYPE_100M_FULL:
446 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
449 case MEDIA_TYPE_100M_HALF:
450 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
452 case MEDIA_TYPE_10M_FULL:
454 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
456 default: /* MEDIA_TYPE_10M_HALF: */
457 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
462 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
466 /* pcie serdes link may be down! */
467 printk(KERN_DEBUG "%s: autoneg caused pcie phy link down\n",
470 for (i = 0; i < 25; i++) {
472 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
473 if (!(val & (MDIO_START | MDIO_BUSY)))
477 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
479 "%s: pcie link down at least for 25ms\n",
488 * Configures PHY autoneg and flow control advertisement settings
489 * hw - Struct containing variables accessed by shared code
491 s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
494 s16 mii_autoneg_adv_reg;
495 s16 mii_1000t_ctrl_reg;
497 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
498 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
500 /* Read the MII 1000Base-T Control Register (Address 9). */
501 mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
504 * First we clear all the 10/100 mb speed bits in the Auto-Neg
505 * Advertisement Register (Address 4) and the 1000 mb speed bits in
506 * the 1000Base-T Control Register (Address 9).
508 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
509 mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK;
512 * Need to parse media_type and set up
513 * the appropriate PHY registers.
515 switch (hw->media_type) {
516 case MEDIA_TYPE_AUTO_SENSOR:
517 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
519 MII_AR_100TX_HD_CAPS |
520 MII_AR_100TX_FD_CAPS);
521 mii_1000t_ctrl_reg |= MII_AT001_CR_1000T_FD_CAPS;
524 case MEDIA_TYPE_1000M_FULL:
525 mii_1000t_ctrl_reg |= MII_AT001_CR_1000T_FD_CAPS;
528 case MEDIA_TYPE_100M_FULL:
529 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
532 case MEDIA_TYPE_100M_HALF:
533 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
536 case MEDIA_TYPE_10M_FULL:
537 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
541 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
545 /* flow control fixed to enable all */
546 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
548 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
549 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
551 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
555 ret_val = atl1_write_phy_reg(hw, MII_AT001_CR, mii_1000t_ctrl_reg);
563 * Configures link settings.
564 * hw - Struct containing variables accessed by shared code
565 * Assumes the hardware has previously been reset and the
566 * transmitter and receiver are not enabled.
568 static s32 atl1_setup_link(struct atl1_hw *hw)
574 * PHY will advertise value(s) parsed from
575 * autoneg_advertised and fc
576 * no matter what autoneg is , We will not wait link result.
578 ret_val = atl1_phy_setup_autoneg_adv(hw);
580 printk(KERN_DEBUG "%s: error setting up autonegotiation\n",
584 /* SW.Reset , En-Auto-Neg if needed */
585 ret_val = atl1_phy_reset(hw);
587 printk(KERN_DEBUG "%s: error resetting the phy\n",
591 hw->phy_configured = true;
595 static struct atl1_spi_flash_dev flash_table[] = {
596 /* MFR_NAME WRSR READ PRGM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */
597 {"Atmel", 0x00, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62},
598 {"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60},
599 {"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7},
602 static void atl1_init_flash_opcode(struct atl1_hw *hw)
604 if (hw->flash_vendor >= sizeof(flash_table) / sizeof(flash_table[0]))
605 hw->flash_vendor = 0; /* ATMEL */
608 iowrite8(flash_table[hw->flash_vendor].cmd_program,
609 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
610 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
611 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
612 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
613 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
614 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
615 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
616 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
617 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
618 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
619 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
620 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
621 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
622 iowrite8(flash_table[hw->flash_vendor].cmd_read,
623 hw->hw_addr + REG_SPI_FLASH_OP_READ);
627 * Performs basic configuration of the adapter.
628 * hw - Struct containing variables accessed by shared code
629 * Assumes that the controller has previously been reset and is in a
630 * post-reset uninitialized state. Initializes multicast table,
631 * and Calls routines to setup link
632 * Leaves the transmit and receive units disabled and uninitialized.
634 s32 atl1_init_hw(struct atl1_hw *hw)
638 /* Zero out the Multicast HASH table */
639 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
640 /* clear the old settings from the multicast hash table */
641 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
643 atl1_init_flash_opcode(hw);
645 if (!hw->phy_configured) {
646 /* enable GPHY LinkChange Interrrupt */
647 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
650 /* make PHY out of power-saving state */
651 ret_val = atl1_phy_leave_power_saving(hw);
654 /* Call a subroutine to configure the link */
655 ret_val = atl1_setup_link(hw);
661 * Detects the current speed and duplex settings of the hardware.
662 * hw - Struct containing variables accessed by shared code
663 * speed - Speed of the connection
664 * duplex - Duplex setting of the connection
666 s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
671 /* ; --- Read PHY Specific Status Register (17) */
672 ret_val = atl1_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
676 if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
677 return ATL1_ERR_PHY_RES;
679 switch (phy_data & MII_AT001_PSSR_SPEED) {
680 case MII_AT001_PSSR_1000MBS:
683 case MII_AT001_PSSR_100MBS:
686 case MII_AT001_PSSR_10MBS:
690 printk(KERN_DEBUG "%s: error getting speed\n",
692 return ATL1_ERR_PHY_SPEED;
695 if (phy_data & MII_AT001_PSSR_DPLX)
696 *duplex = FULL_DUPLEX;
698 *duplex = HALF_DUPLEX;
703 void atl1_set_mac_addr(struct atl1_hw *hw)
708 * 0: 6AF600DC 1: 000B
711 value = (((u32) hw->mac_addr[2]) << 24) |
712 (((u32) hw->mac_addr[3]) << 16) |
713 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
714 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
716 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
717 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));