4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
22 #include <asm/system.h>
25 static int numa_enabled = 1;
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 static int n_mem_addr_cells, n_mem_size_cells;
43 * We need somewhere to store start/end/node for each region until we have
44 * allocated the real node_data structures.
46 #define MAX_REGIONS (MAX_LMB_REGIONS*2)
48 unsigned long start_pfn;
49 unsigned long end_pfn;
51 } init_node_data[MAX_REGIONS] __initdata;
53 int __init early_pfn_to_nid(unsigned long pfn)
57 for (i = 0; init_node_data[i].end_pfn; i++) {
58 unsigned long start_pfn = init_node_data[i].start_pfn;
59 unsigned long end_pfn = init_node_data[i].end_pfn;
61 if ((start_pfn <= pfn) && (pfn < end_pfn))
62 return init_node_data[i].nid;
68 void __init add_region(unsigned int nid, unsigned long start_pfn,
73 dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
74 nid, start_pfn, pages);
76 for (i = 0; init_node_data[i].end_pfn; i++) {
77 if (init_node_data[i].nid != nid)
79 if (init_node_data[i].end_pfn == start_pfn) {
80 init_node_data[i].end_pfn += pages;
83 if (init_node_data[i].start_pfn == (start_pfn + pages)) {
84 init_node_data[i].start_pfn -= pages;
90 * Leave last entry NULL so we dont iterate off the end (we use
91 * entry.end_pfn to terminate the walk).
93 if (i >= (MAX_REGIONS - 1)) {
94 printk(KERN_ERR "WARNING: too many memory regions in "
95 "numa code, truncating\n");
99 init_node_data[i].start_pfn = start_pfn;
100 init_node_data[i].end_pfn = start_pfn + pages;
101 init_node_data[i].nid = nid;
104 /* We assume init_node_data has no overlapping regions */
105 void __init get_region(unsigned int nid, unsigned long *start_pfn,
106 unsigned long *end_pfn, unsigned long *pages_present)
111 *end_pfn = *pages_present = 0;
113 for (i = 0; init_node_data[i].end_pfn; i++) {
114 if (init_node_data[i].nid != nid)
117 *pages_present += init_node_data[i].end_pfn -
118 init_node_data[i].start_pfn;
120 if (init_node_data[i].start_pfn < *start_pfn)
121 *start_pfn = init_node_data[i].start_pfn;
123 if (init_node_data[i].end_pfn > *end_pfn)
124 *end_pfn = init_node_data[i].end_pfn;
127 /* We didnt find a matching region, return start/end as 0 */
128 if (*start_pfn == -1UL)
132 static void __cpuinit map_cpu_to_node(int cpu, int node)
134 numa_cpu_lookup_table[cpu] = node;
136 dbg("adding cpu %d to node %d\n", cpu, node);
138 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
139 cpu_set(cpu, numa_cpumask_lookup_table[node]);
142 #ifdef CONFIG_HOTPLUG_CPU
143 static void unmap_cpu_from_node(unsigned long cpu)
145 int node = numa_cpu_lookup_table[cpu];
147 dbg("removing cpu %lu from node %d\n", cpu, node);
149 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
150 cpu_clear(cpu, numa_cpumask_lookup_table[node]);
152 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
156 #endif /* CONFIG_HOTPLUG_CPU */
158 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
160 unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
161 struct device_node *cpu_node = NULL;
162 unsigned int *interrupt_server, *reg;
165 while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
166 /* Try interrupt server first */
167 interrupt_server = (unsigned int *)get_property(cpu_node,
168 "ibm,ppc-interrupt-server#s", &len);
170 len = len / sizeof(u32);
172 if (interrupt_server && (len > 0)) {
174 if (interrupt_server[len] == hw_cpuid)
178 reg = (unsigned int *)get_property(cpu_node,
180 if (reg && (len > 0) && (reg[0] == hw_cpuid))
188 /* must hold reference to node during call */
189 static int *of_get_associativity(struct device_node *dev)
191 return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
194 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
197 static int of_node_to_nid_single(struct device_node *device)
202 if (min_common_depth == -1)
205 tmp = of_get_associativity(device);
209 if (tmp[0] >= min_common_depth)
210 nid = tmp[min_common_depth];
212 /* POWER4 LPAR uses 0xffff as invalid node */
213 if (nid == 0xffff || nid >= MAX_NUMNODES)
219 /* Walk the device tree upwards, looking for an associativity id */
220 int of_node_to_nid(struct device_node *device)
222 struct device_node *tmp;
227 nid = of_node_to_nid_single(device);
232 device = of_get_parent(tmp);
239 EXPORT_SYMBOL_GPL(of_node_to_nid);
242 * In theory, the "ibm,associativity" property may contain multiple
243 * associativity lists because a resource may be multiply connected
244 * into the machine. This resource then has different associativity
245 * characteristics relative to its multiple connections. We ignore
246 * this for now. We also assume that all cpu and memory sets have
247 * their distances represented at a common level. This won't be
248 * true for heirarchical NUMA.
250 * In any case the ibm,associativity-reference-points should give
251 * the correct depth for a normal NUMA system.
253 * - Dave Hansen <haveblue@us.ibm.com>
255 static int __init find_min_common_depth(void)
258 unsigned int *ref_points;
259 struct device_node *rtas_root;
262 rtas_root = of_find_node_by_path("/rtas");
268 * this property is 2 32-bit integers, each representing a level of
269 * depth in the associativity nodes. The first is for an SMP
270 * configuration (should be all 0's) and the second is for a normal
271 * NUMA configuration.
273 ref_points = (unsigned int *)get_property(rtas_root,
274 "ibm,associativity-reference-points", &len);
276 if ((len >= 1) && ref_points) {
277 depth = ref_points[1];
279 dbg("NUMA: ibm,associativity-reference-points not found.\n");
282 of_node_put(rtas_root);
287 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
289 struct device_node *memory = NULL;
291 memory = of_find_node_by_type(memory, "memory");
293 panic("numa.c: No memory nodes found!");
295 *n_addr_cells = prom_n_addr_cells(memory);
296 *n_size_cells = prom_n_size_cells(memory);
300 static unsigned long __devinit read_n_cells(int n, unsigned int **buf)
302 unsigned long result = 0;
305 result = (result << 32) | **buf;
312 * Figure out to which domain a cpu belongs and stick it there.
313 * Return the id of the domain used.
315 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
318 struct device_node *cpu = find_cpu_node(lcpu);
325 nid = of_node_to_nid_single(cpu);
327 if (nid < 0 || !node_online(nid))
328 nid = any_online_node(NODE_MASK_ALL);
330 map_cpu_to_node(lcpu, nid);
337 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
338 unsigned long action,
341 unsigned long lcpu = (unsigned long)hcpu;
342 int ret = NOTIFY_DONE;
346 numa_setup_cpu(lcpu);
349 #ifdef CONFIG_HOTPLUG_CPU
351 case CPU_UP_CANCELED:
352 unmap_cpu_from_node(lcpu);
361 * Check and possibly modify a memory region to enforce the memory limit.
363 * Returns the size the region should have to enforce the memory limit.
364 * This will either be the original value of size, a truncated value,
365 * or zero. If the returned value of size is 0 the region should be
366 * discarded as it lies wholy above the memory limit.
368 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
372 * We use lmb_end_of_DRAM() in here instead of memory_limit because
373 * we've already adjusted it for the limit and it takes care of
374 * having memory holes below the limit.
380 if (start + size <= lmb_end_of_DRAM())
383 if (start >= lmb_end_of_DRAM())
386 return lmb_end_of_DRAM() - start;
389 static int __init parse_numa_properties(void)
391 struct device_node *cpu = NULL;
392 struct device_node *memory = NULL;
396 if (numa_enabled == 0) {
397 printk(KERN_WARNING "NUMA disabled by user\n");
401 min_common_depth = find_min_common_depth();
403 if (min_common_depth < 0)
404 return min_common_depth;
406 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
409 * Even though we connect cpus to numa domains later in SMP
410 * init, we need to know the node ids now. This is because
411 * each node to be onlined must have NODE_DATA etc backing it.
413 for_each_present_cpu(i) {
416 cpu = find_cpu_node(i);
418 nid = of_node_to_nid_single(cpu);
422 * Don't fall back to default_nid yet -- we will plug
423 * cpus into nodes once the memory scan has discovered
428 node_set_online(nid);
431 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
433 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
438 unsigned int *memcell_buf;
441 memcell_buf = (unsigned int *)get_property(memory,
442 "linux,usable-memory", &len);
443 if (!memcell_buf || len <= 0)
445 (unsigned int *)get_property(memory, "reg",
447 if (!memcell_buf || len <= 0)
451 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
453 /* these are order-sensitive, and modify the buffer pointer */
454 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
455 size = read_n_cells(n_mem_size_cells, &memcell_buf);
458 * Assumption: either all memory nodes or none will
459 * have associativity properties. If none, then
460 * everything goes to default_nid.
462 nid = of_node_to_nid_single(memory);
465 node_set_online(nid);
467 if (!(size = numa_enforce_memory_limit(start, size))) {
474 add_region(nid, start >> PAGE_SHIFT,
484 static void __init setup_nonnuma(void)
486 unsigned long top_of_ram = lmb_end_of_DRAM();
487 unsigned long total_ram = lmb_phys_mem_size();
490 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
491 top_of_ram, total_ram);
492 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
493 (top_of_ram - total_ram) >> 20);
495 for (i = 0; i < lmb.memory.cnt; ++i)
496 add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
497 lmb_size_pages(&lmb.memory, i));
501 void __init dump_numa_cpu_topology(void)
504 unsigned int cpu, count;
506 if (min_common_depth == -1 || !numa_enabled)
509 for_each_online_node(node) {
510 printk(KERN_DEBUG "Node %d CPUs:", node);
514 * If we used a CPU iterator here we would miss printing
515 * the holes in the cpumap.
517 for (cpu = 0; cpu < NR_CPUS; cpu++) {
518 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
524 printk("-%u", cpu - 1);
530 printk("-%u", NR_CPUS - 1);
535 static void __init dump_numa_memory_topology(void)
540 if (min_common_depth == -1 || !numa_enabled)
543 for_each_online_node(node) {
546 printk(KERN_DEBUG "Node %d Memory:", node);
550 for (i = 0; i < lmb_end_of_DRAM();
551 i += (1 << SECTION_SIZE_BITS)) {
552 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
570 * Allocate some memory, satisfying the lmb or bootmem allocator where
571 * required. nid is the preferred node and end is the physical address of
572 * the highest address in the node.
574 * Returns the physical address of the memory.
576 static void __init *careful_allocation(int nid, unsigned long size,
578 unsigned long end_pfn)
581 unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
583 /* retry over all memory */
585 ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
588 panic("numa.c: cannot allocate %lu bytes on node %d",
592 * If the memory came from a previously allocated node, we must
593 * retry with the bootmem allocator.
595 new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
597 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
601 panic("numa.c: cannot allocate %lu bytes on node %d",
606 dbg("alloc_bootmem %lx %lx\n", ret, size);
612 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
613 .notifier_call = cpu_numa_callback,
614 .priority = 1 /* Must run before sched domains notifier. */
617 void __init do_init_bootmem(void)
623 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
624 max_pfn = max_low_pfn;
626 if (parse_numa_properties())
629 dump_numa_memory_topology();
631 register_cpu_notifier(&ppc64_numa_nb);
632 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
633 (void *)(unsigned long)boot_cpuid);
635 for_each_online_node(nid) {
636 unsigned long start_pfn, end_pfn, pages_present;
637 unsigned long bootmem_paddr;
638 unsigned long bootmap_pages;
640 get_region(nid, &start_pfn, &end_pfn, &pages_present);
642 /* Allocate the node structure node local if possible */
643 NODE_DATA(nid) = careful_allocation(nid,
644 sizeof(struct pglist_data),
645 SMP_CACHE_BYTES, end_pfn);
646 NODE_DATA(nid) = __va(NODE_DATA(nid));
647 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
649 dbg("node %d\n", nid);
650 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
652 NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
653 NODE_DATA(nid)->node_start_pfn = start_pfn;
654 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
656 if (NODE_DATA(nid)->node_spanned_pages == 0)
659 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
660 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
662 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
663 bootmem_paddr = (unsigned long)careful_allocation(nid,
664 bootmap_pages << PAGE_SHIFT,
666 memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
668 dbg("bootmap_paddr = %lx\n", bootmem_paddr);
670 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
673 /* Add free regions on this node */
674 for (i = 0; init_node_data[i].end_pfn; i++) {
675 unsigned long start, end;
677 if (init_node_data[i].nid != nid)
680 start = init_node_data[i].start_pfn << PAGE_SHIFT;
681 end = init_node_data[i].end_pfn << PAGE_SHIFT;
683 dbg("free_bootmem %lx %lx\n", start, end - start);
684 free_bootmem_node(NODE_DATA(nid), start, end - start);
687 /* Mark reserved regions on this node */
688 for (i = 0; i < lmb.reserved.cnt; i++) {
689 unsigned long physbase = lmb.reserved.region[i].base;
690 unsigned long size = lmb.reserved.region[i].size;
691 unsigned long start_paddr = start_pfn << PAGE_SHIFT;
692 unsigned long end_paddr = end_pfn << PAGE_SHIFT;
694 if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
695 early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
698 if (physbase < end_paddr &&
699 (physbase+size) > start_paddr) {
701 if (physbase < start_paddr) {
702 size -= start_paddr - physbase;
703 physbase = start_paddr;
706 if (size > end_paddr - physbase)
707 size = end_paddr - physbase;
709 dbg("reserve_bootmem %lx %lx\n", physbase,
711 reserve_bootmem_node(NODE_DATA(nid), physbase,
716 /* Add regions into sparsemem */
717 for (i = 0; init_node_data[i].end_pfn; i++) {
718 unsigned long start, end;
720 if (init_node_data[i].nid != nid)
723 start = init_node_data[i].start_pfn;
724 end = init_node_data[i].end_pfn;
726 memory_present(nid, start, end);
731 void __init paging_init(void)
733 unsigned long zones_size[MAX_NR_ZONES];
734 unsigned long zholes_size[MAX_NR_ZONES];
737 memset(zones_size, 0, sizeof(zones_size));
738 memset(zholes_size, 0, sizeof(zholes_size));
740 for_each_online_node(nid) {
741 unsigned long start_pfn, end_pfn, pages_present;
743 get_region(nid, &start_pfn, &end_pfn, &pages_present);
745 zones_size[ZONE_DMA] = end_pfn - start_pfn;
746 zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
748 dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
749 zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
751 free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
756 static int __init early_numa(char *p)
761 if (strstr(p, "off"))
764 if (strstr(p, "debug"))
769 early_param("numa", early_numa);
771 #ifdef CONFIG_MEMORY_HOTPLUG
773 * Find the node associated with a hot added memory section. Section
774 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
775 * sections are fully contained within a single LMB.
777 int hot_add_scn_to_nid(unsigned long scn_addr)
779 struct device_node *memory = NULL;
781 int default_nid = any_online_node(NODE_MASK_ALL);
784 if (!numa_enabled || (min_common_depth < 0))
787 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
788 unsigned long start, size;
790 unsigned int *memcell_buf;
793 memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
794 if (!memcell_buf || len <= 0)
798 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
800 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
801 size = read_n_cells(n_mem_size_cells, &memcell_buf);
802 nid = of_node_to_nid_single(memory);
804 /* Domains not present at boot default to 0 */
805 if (nid < 0 || !node_online(nid))
808 if ((scn_addr >= start) && (scn_addr < (start + size))) {
813 if (--ranges) /* process all ranges in cell */
816 BUG(); /* section address should be found above */
819 /* Temporary code to ensure that returned node is not empty */
822 while (NODE_DATA(nid)->node_spanned_pages == 0) {
823 node_clear(nid, nodes);
824 nid = any_online_node(nodes);
828 #endif /* CONFIG_MEMORY_HOTPLUG */