1 /* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */
3 Written 1996-1999 by Donald Becker.
5 The driver also contains updates by different kernel developers
6 (see incomplete list below).
7 Current maintainer is Andrey V. Savochkin <saw@saw.sw.com.sg>.
8 Please use this email address and linux-kernel mailing list for bug reports.
10 This software may be used and distributed according to the terms
11 of the GNU General Public License, incorporated herein by reference.
13 This driver is for the Intel EtherExpress Pro100 (Speedo3) design.
14 It should work with all i82557/558/559 boards.
17 1998 Apr - 2000 Feb Andrey V. Savochkin <saw@saw.sw.com.sg>
18 Serious fixes for multicast filter list setting, TX timeout routine;
19 RX ring refilling logic; other stuff
20 2000 Feb Jeff Garzik <jgarzik@pobox.com>
21 Convert to new PCI driver interface
22 2000 Mar 24 Dragan Stancevic <visitor@valinux.com>
23 Disabled FC and ER, to avoid lockups when when we get FCP interrupts.
24 2000 Jul 17 Goutham Rao <goutham.rao@intel.com>
25 PCI DMA API fixes, adding pci_dma_sync_single calls where neccesary
26 2000 Aug 31 David Mosberger <davidm@hpl.hp.com>
27 rx_align support: enables rx DMA without causing unaligned accesses.
30 static const char * const version =
31 "eepro100.c:v1.09j-t 9/29/99 Donald Becker\n"
32 "eepro100.c: $Revision: 1.36 $ 2000/11/17 Modified by Andrey V. Savochkin <saw@saw.sw.com.sg> and others\n";
34 /* A few user-configurable values that apply to all boards.
35 First set is undocumented and spelled per Intel recommendations. */
37 static int congenb /* = 0 */; /* Enable congestion control in the DP83840. */
38 static int txfifo = 8; /* Tx FIFO threshold in 4 byte units, 0-15 */
39 static int rxfifo = 8; /* Rx FIFO threshold, default 32 bytes. */
40 /* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */
41 static int txdmacount = 128;
42 static int rxdmacount /* = 0 */;
44 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) || defined(__mips__) || \
46 /* align rx buffers to 2 bytes so that IP header is aligned */
47 # define rx_align(skb) skb_reserve((skb), 2)
48 # define RxFD_ALIGNMENT __attribute__ ((aligned (2), packed))
50 # define rx_align(skb)
51 # define RxFD_ALIGNMENT
54 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx method.
55 Lower values use more memory, but are faster. */
56 static int rx_copybreak = 200;
58 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
59 static int max_interrupt_work = 20;
61 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */
62 static int multicast_filter_limit = 64;
64 /* 'options' is used to pass a transceiver override or full-duplex flag
65 e.g. "options=16" for FD, "options=32" for 100mbps-only. */
66 static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1};
67 static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1};
69 /* A few values that may be tweaked. */
70 /* The ring sizes should be a power of two for efficiency. */
71 #define TX_RING_SIZE 64
72 #define RX_RING_SIZE 64
73 /* How much slots multicast filter setup may take.
74 Do not descrease without changing set_rx_mode() implementaion. */
75 #define TX_MULTICAST_SIZE 2
76 #define TX_MULTICAST_RESERV (TX_MULTICAST_SIZE*2)
77 /* Actual number of TX packets queued, must be
78 <= TX_RING_SIZE-TX_MULTICAST_RESERV. */
79 #define TX_QUEUE_LIMIT (TX_RING_SIZE-TX_MULTICAST_RESERV)
80 /* Hysteresis marking queue as no longer full. */
81 #define TX_QUEUE_UNFULL (TX_QUEUE_LIMIT-4)
83 /* Operational parameters that usually are not changed. */
85 /* Time in jiffies before concluding the transmitter is hung. */
86 #define TX_TIMEOUT (2*HZ)
87 /* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/
88 #define PKT_BUF_SZ 1536
90 #include <linux/module.h>
92 #include <linux/kernel.h>
93 #include <linux/string.h>
94 #include <linux/errno.h>
95 #include <linux/ioport.h>
96 #include <linux/slab.h>
97 #include <linux/interrupt.h>
98 #include <linux/timer.h>
99 #include <linux/pci.h>
100 #include <linux/spinlock.h>
101 #include <linux/init.h>
102 #include <linux/mii.h>
103 #include <linux/delay.h>
104 #include <linux/bitops.h>
107 #include <asm/uaccess.h>
110 #include <linux/netdevice.h>
111 #include <linux/etherdevice.h>
112 #include <linux/rtnetlink.h>
113 #include <linux/skbuff.h>
114 #include <linux/ethtool.h>
117 static int debug = -1;
118 #define DEBUG_DEFAULT (NETIF_MSG_DRV | \
122 #define DEBUG ((debug >= 0) ? (1<<debug)-1 : DEBUG_DEFAULT)
125 MODULE_AUTHOR("Maintainer: Andrey V. Savochkin <saw@saw.sw.com.sg>");
126 MODULE_DESCRIPTION("Intel i82557/i82558/i82559 PCI EtherExpressPro driver");
127 MODULE_LICENSE("GPL");
128 module_param(use_io, int, 0);
129 module_param(debug, int, 0);
130 module_param_array(options, int, NULL, 0);
131 module_param_array(full_duplex, int, NULL, 0);
132 module_param(congenb, int, 0);
133 module_param(txfifo, int, 0);
134 module_param(rxfifo, int, 0);
135 module_param(txdmacount, int, 0);
136 module_param(rxdmacount, int, 0);
137 module_param(rx_copybreak, int, 0);
138 module_param(max_interrupt_work, int, 0);
139 module_param(multicast_filter_limit, int, 0);
140 MODULE_PARM_DESC(debug, "debug level (0-6)");
141 MODULE_PARM_DESC(options, "Bits 0-3: transceiver type, bit 4: full duplex, bit 5: 100Mbps");
142 MODULE_PARM_DESC(full_duplex, "full duplex setting(s) (1)");
143 MODULE_PARM_DESC(congenb, "Enable congestion control (1)");
144 MODULE_PARM_DESC(txfifo, "Tx FIFO threshold in 4 byte units, (0-15)");
145 MODULE_PARM_DESC(rxfifo, "Rx FIFO threshold in 4 byte units, (0-15)");
146 MODULE_PARM_DESC(txdmacount, "Tx DMA burst length; 128 - disable (0-128)");
147 MODULE_PARM_DESC(rxdmacount, "Rx DMA burst length; 128 - disable (0-128)");
148 MODULE_PARM_DESC(rx_copybreak, "copy breakpoint for copy-only-tiny-frames");
149 MODULE_PARM_DESC(max_interrupt_work, "maximum events handled per interrupt");
150 MODULE_PARM_DESC(multicast_filter_limit, "maximum number of filtered multicast addresses");
152 #define RUN_AT(x) (jiffies + (x))
154 #define netdevice_start(dev)
155 #define netdevice_stop(dev)
156 #define netif_set_tx_timeout(dev, tf, tm) \
158 (dev)->tx_timeout = (tf); \
159 (dev)->watchdog_timeo = (tm); \
167 I. Board Compatibility
169 This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's
170 single-chip fast Ethernet controller for PCI, as used on the Intel
171 EtherExpress Pro 100 adapter.
173 II. Board-specific settings
175 PCI bus devices are configured by the system at boot time, so no jumpers
176 need to be set on the board. The system BIOS should be set to assign the
177 PCI INTA signal to an otherwise unused system IRQ line. While it's
178 possible to share PCI interrupt lines, it negatively impacts performance and
179 only recent kernels support it.
181 III. Driver operation
184 The Speedo3 is very similar to other Intel network chips, that is to say
185 "apparently designed on a different planet". This chips retains the complex
186 Rx and Tx descriptors and multiple buffers pointers as previous chips, but
187 also has simplified Tx and Rx buffer modes. This driver uses the "flexible"
188 Tx mode, but in a simplified lower-overhead manner: it associates only a
189 single buffer descriptor with each frame descriptor.
191 Despite the extra space overhead in each receive skbuff, the driver must use
192 the simplified Rx buffer mode to assure that only a single data buffer is
193 associated with each RxFD. The driver implements this by reserving space
194 for the Rx descriptor at the head of each Rx skbuff.
196 The Speedo-3 has receive and command unit base addresses that are added to
197 almost all descriptor pointers. The driver sets these to zero, so that all
198 pointer fields are absolute addresses.
200 The System Control Block (SCB) of some previous Intel chips exists on the
201 chip in both PCI I/O and memory space. This driver uses the I/O space
202 registers, but might switch to memory mapped mode to better support non-x86
205 IIIB. Transmit structure
207 The driver must use the complex Tx command+descriptor mode in order to
208 have a indirect pointer to the skbuff data section. Each Tx command block
209 (TxCB) is associated with two immediately appended Tx Buffer Descriptor
210 (TxBD). A fixed ring of these TxCB+TxBD pairs are kept as part of the
211 speedo_private data structure for each adapter instance.
213 The newer i82558 explicitly supports this structure, and can read the two
214 TxBDs in the same PCI burst as the TxCB.
216 This ring structure is used for all normal transmit packets, but the
217 transmit packet descriptors aren't long enough for most non-Tx commands such
218 as CmdConfigure. This is complicated by the possibility that the chip has
219 already loaded the link address in the previous descriptor. So for these
220 commands we convert the next free descriptor on the ring to a NoOp, and point
221 that descriptor's link to the complex command.
223 An additional complexity of these non-transmit commands are that they may be
224 added asynchronous to the normal transmit queue, so we disable interrupts
225 whenever the Tx descriptor ring is manipulated.
227 A notable aspect of these special configure commands is that they do
228 work with the normal Tx ring entry scavenge method. The Tx ring scavenge
229 is done at interrupt time using the 'dirty_tx' index, and checking for the
230 command-complete bit. While the setup frames may have the NoOp command on the
231 Tx ring marked as complete, but not have completed the setup command, this
232 is not a problem. The tx_ring entry can be still safely reused, as the
233 tx_skbuff[] entry is always empty for config_cmd and mc_setup frames.
235 Commands may have bits set e.g. CmdSuspend in the command word to either
236 suspend or stop the transmit/command unit. This driver always flags the last
237 command with CmdSuspend, erases the CmdSuspend in the previous command, and
238 then issues a CU_RESUME.
239 Note: Watch out for the potential race condition here: imagine
240 erasing the previous suspend
241 the chip processes the previous command
242 the chip processes the final command, and suspends
244 the chip processes the next-yet-valid post-final-command.
245 So blindly sending a CU_RESUME is only safe if we do it immediately after
246 after erasing the previous CmdSuspend, without the possibility of an
247 intervening delay. Thus the resume command is always within the
248 interrupts-disabled region. This is a timing dependence, but handling this
249 condition in a timing-independent way would considerably complicate the code.
251 Note: In previous generation Intel chips, restarting the command unit was a
252 notoriously slow process. This is presumably no longer true.
254 IIIC. Receive structure
256 Because of the bus-master support on the Speedo3 this driver uses the new
257 SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer.
258 This scheme allocates full-sized skbuffs as receive buffers. The value
259 SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to
260 trade-off the memory wasted by passing the full-sized skbuff to the queue
261 layer for all frames vs. the copying cost of copying a frame to a
262 correctly-sized skbuff.
264 For small frames the copying cost is negligible (esp. considering that we
265 are pre-loading the cache with immediately useful header information), so we
266 allocate a new, minimally-sized skbuff. For large frames the copying cost
267 is non-trivial, and the larger copy might flush the cache of useful data, so
268 we pass up the skbuff the packet was received into.
272 Thanks to Steve Williams of Intel for arranging the non-disclosure agreement
273 that stated that I could disclose the information. But I still resent
274 having to sign an Intel NDA when I'm helping Intel sell their own product!
278 static int speedo_found1(struct pci_dev *pdev, void __iomem *ioaddr, int fnd_cnt, int acpi_idle_state);
280 /* Offsets to the various registers.
281 All accesses need not be longword aligned. */
282 enum speedo_offsets {
283 SCBStatus = 0, SCBCmd = 2, /* Rx/Command Unit command and status. */
285 SCBPointer = 4, /* General purpose pointer. */
286 SCBPort = 8, /* Misc. commands and operands. */
287 SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
288 SCBCtrlMDI = 16, /* MDI interface control. */
289 SCBEarlyRx = 20, /* Early receive byte count. */
291 /* Commands that can be put in a command list entry. */
293 CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000,
294 CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000,
295 CmdDump = 0x60000, CmdDiagnose = 0x70000,
296 CmdSuspend = 0x40000000, /* Suspend after completion. */
297 CmdIntr = 0x20000000, /* Interrupt after completion. */
298 CmdTxFlex = 0x00080000, /* Use "Flexible mode" for CmdTx command. */
300 /* Clear CmdSuspend (1<<30) avoiding interference with the card access to the
301 status bits. Previous driver versions used separate 16 bit fields for
302 commands and statuses. --SAW
304 #if defined(__alpha__)
305 # define clear_suspend(cmd) clear_bit(30, &(cmd)->cmd_status);
307 # define clear_suspend(cmd) ((__le16 *)&(cmd)->cmd_status)[1] &= ~cpu_to_le16(1<<14)
311 SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000,
312 SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400,
313 SCBTriggerIntr=0x0200, SCBMaskAll=0x0100,
314 /* The rest are Rx and Tx commands. */
315 CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050,
316 CUCmdBase=0x0060, /* CU Base address (set to zero) . */
317 CUDumpStats=0x0070, /* Dump then reset stats counters. */
318 RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006,
319 RxResumeNoResources=0x0007,
323 PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3,
326 /* The Speedo3 Rx and Tx frame/buffer descriptors. */
327 struct descriptor { /* A generic descriptor. */
328 volatile __le32 cmd_status; /* All command and status fields. */
329 __le32 link; /* struct descriptor * */
330 unsigned char params[0];
333 /* The Speedo3 Rx and Tx buffer descriptors. */
334 struct RxFD { /* Receive frame descriptor. */
335 volatile __le32 status;
336 __le32 link; /* struct RxFD * */
337 __le32 rx_buf_addr; /* void * */
341 /* Selected elements of the Tx/RxFD.status word. */
343 RxComplete=0x8000, RxOK=0x2000,
344 RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010,
345 RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002,
346 TxUnderrun=0x1000, StatusComplete=0x8000,
349 #define CONFIG_DATA_SIZE 22
350 struct TxFD { /* Transmit frame descriptor set. */
352 __le32 link; /* void * */
353 __le32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
354 __le32 count; /* # of TBD (=1), Tx start thresh., etc. */
355 /* This constitutes two "TBD" entries -- we only use one. */
356 #define TX_DESCR_BUF_OFFSET 16
357 __le32 tx_buf_addr0; /* void *, frame to be transmitted. */
358 __le32 tx_buf_size0; /* Length of Tx frame. */
359 __le32 tx_buf_addr1; /* void *, frame to be transmitted. */
360 __le32 tx_buf_size1; /* Length of Tx frame. */
361 /* the structure must have space for at least CONFIG_DATA_SIZE starting
362 * from tx_desc_addr field */
365 /* Multicast filter setting block. --SAW */
366 struct speedo_mc_block {
367 struct speedo_mc_block *next;
369 dma_addr_t frame_dma;
371 struct descriptor frame __attribute__ ((__aligned__(16)));
374 /* Elements of the dump_statistics block. This block must be lword aligned. */
375 struct speedo_stats {
376 __le32 tx_good_frames;
377 __le32 tx_coll16_errs;
378 __le32 tx_late_colls;
380 __le32 tx_lost_carrier;
383 __le32 tx_multi_colls;
384 __le32 tx_total_colls;
385 __le32 rx_good_frames;
387 __le32 rx_align_errs;
388 __le32 rx_resource_errs;
389 __le32 rx_overrun_errs;
390 __le32 rx_colls_errs;
395 enum Rx_ring_state_bits {
396 RrNoMem=1, RrPostponed=2, RrNoResources=4, RrOOMReported=8,
399 /* Do not change the position (alignment) of the first few elements!
400 The later elements are grouped for cache locality.
402 Unfortunately, all the positions have been shifted since there.
403 A new re-alignment is required. 2000/03/06 SAW */
404 struct speedo_private {
406 struct TxFD *tx_ring; /* Commands (usually CmdTxPacket). */
407 struct RxFD *rx_ringp[RX_RING_SIZE]; /* Rx descriptor, used as ring. */
408 /* The addresses of a Tx/Rx-in-place packets/buffers. */
409 struct sk_buff *tx_skbuff[TX_RING_SIZE];
410 struct sk_buff *rx_skbuff[RX_RING_SIZE];
411 /* Mapped addresses of the rings. */
412 dma_addr_t tx_ring_dma;
413 #define TX_RING_ELEM_DMA(sp, n) ((sp)->tx_ring_dma + (n)*sizeof(struct TxFD))
414 dma_addr_t rx_ring_dma[RX_RING_SIZE];
415 struct descriptor *last_cmd; /* Last command sent. */
416 unsigned int cur_tx, dirty_tx; /* The ring entries to be free()ed. */
417 spinlock_t lock; /* Group with Tx control cache line. */
418 u32 tx_threshold; /* The value for txdesc.count. */
419 struct RxFD *last_rxf; /* Last filled RX buffer. */
420 dma_addr_t last_rxf_dma;
421 unsigned int cur_rx, dirty_rx; /* The next free ring entry */
422 long last_rx_time; /* Last Rx, in jiffies, to handle Rx hang. */
423 struct net_device_stats stats;
424 struct speedo_stats *lstats;
425 dma_addr_t lstats_dma;
427 struct pci_dev *pdev;
428 struct timer_list timer; /* Media selection timer. */
429 struct speedo_mc_block *mc_setup_head; /* Multicast setup frame list head. */
430 struct speedo_mc_block *mc_setup_tail; /* Multicast setup frame list tail. */
431 long in_interrupt; /* Word-aligned dev->interrupt */
432 unsigned char acpi_pwr;
433 signed char rx_mode; /* Current PROMISC/ALLMULTI setting. */
434 unsigned int tx_full:1; /* The Tx queue is full. */
435 unsigned int flow_ctrl:1; /* Use 802.3x flow control. */
436 unsigned int rx_bug:1; /* Work around receiver hang errata. */
437 unsigned char default_port:8; /* Last dev->if_port value. */
438 unsigned char rx_ring_state; /* RX ring status flags. */
439 unsigned short phy[2]; /* PHY media interfaces available. */
440 unsigned short partner; /* Link partner caps. */
441 struct mii_if_info mii_if; /* MII API hooks, info */
442 u32 msg_enable; /* debug message level */
445 /* The parameters for a CmdConfigure operation.
446 There are so many options that it would be difficult to document each bit.
447 We mostly use the default or recommended settings. */
448 static const char i82557_config_cmd[CONFIG_DATA_SIZE] = {
449 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
451 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
453 static const char i82558_config_cmd[CONFIG_DATA_SIZE] = {
454 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
455 0, 0x2E, 0, 0x60, 0x08, 0x88,
456 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
459 /* PHY media interface chips. */
460 static const char * const phys[] = {
461 "None", "i82553-A/B", "i82553-C", "i82503",
462 "DP83840", "80c240", "80c24", "i82555",
463 "unknown-8", "unknown-9", "DP83840A", "unknown-11",
464 "unknown-12", "unknown-13", "unknown-14", "unknown-15", };
465 enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240,
466 S80C24, I82555, DP83840A=10, };
467 static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 };
468 #define EE_READ_CMD (6)
470 static int eepro100_init_one(struct pci_dev *pdev,
471 const struct pci_device_id *ent);
473 static int do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len);
474 static int mdio_read(struct net_device *dev, int phy_id, int location);
475 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
476 static int speedo_open(struct net_device *dev);
477 static void speedo_resume(struct net_device *dev);
478 static void speedo_timer(unsigned long data);
479 static void speedo_init_rx_ring(struct net_device *dev);
480 static void speedo_tx_timeout(struct net_device *dev);
481 static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev);
482 static void speedo_refill_rx_buffers(struct net_device *dev, int force);
483 static int speedo_rx(struct net_device *dev);
484 static void speedo_tx_buffer_gc(struct net_device *dev);
485 static irqreturn_t speedo_interrupt(int irq, void *dev_instance);
486 static int speedo_close(struct net_device *dev);
487 static struct net_device_stats *speedo_get_stats(struct net_device *dev);
488 static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
489 static void set_rx_mode(struct net_device *dev);
490 static void speedo_show_state(struct net_device *dev);
491 static const struct ethtool_ops ethtool_ops;
495 #ifdef honor_default_port
496 /* Optional driver feature to allow forcing the transceiver setting.
498 static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100,
499 0x2000, 0x2100, 0x0400, 0x3100};
502 /* How to wait for the command unit to accept a command.
503 Typically this takes 0 ticks. */
504 static inline unsigned char wait_for_cmd_done(struct net_device *dev,
505 struct speedo_private *sp)
508 void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
513 r = ioread8(cmd_ioaddr);
514 } while(r && --wait >= 0);
517 printk(KERN_ALERT "%s: wait_for_cmd_done timeout!\n", dev->name);
521 static int __devinit eepro100_init_one (struct pci_dev *pdev,
522 const struct pci_device_id *ent)
524 void __iomem *ioaddr;
526 int acpi_idle_state = 0, pm;
527 static int cards_found /* = 0 */;
528 unsigned long pci_base;
531 /* when built-in, we only print version if device is found */
532 static int did_version;
533 if (did_version++ == 0)
537 /* save power state before pci_enable_device overwrites it */
538 pm = pci_find_capability(pdev, PCI_CAP_ID_PM);
541 pci_read_config_word(pdev, pm + PCI_PM_CTRL, &pwr_command);
542 acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK;
545 if (pci_enable_device(pdev))
546 goto err_out_free_mmio_region;
548 pci_set_master(pdev);
550 if (!request_region(pci_resource_start(pdev, 1),
551 pci_resource_len(pdev, 1), "eepro100")) {
552 dev_err(&pdev->dev, "eepro100: cannot reserve I/O ports\n");
555 if (!request_mem_region(pci_resource_start(pdev, 0),
556 pci_resource_len(pdev, 0), "eepro100")) {
557 dev_err(&pdev->dev, "eepro100: cannot reserve MMIO region\n");
558 goto err_out_free_pio_region;
562 pci_bar = use_io ? 1 : 0;
563 pci_base = pci_resource_start(pdev, pci_bar);
564 if (DEBUG & NETIF_MSG_PROBE)
565 printk("Found Intel i82557 PCI Speedo at %#lx, IRQ %d.\n",
568 ioaddr = pci_iomap(pdev, pci_bar, 0);
570 dev_err(&pdev->dev, "eepro100: cannot remap IO\n");
571 goto err_out_free_mmio_region;
574 if (speedo_found1(pdev, ioaddr, cards_found, acpi_idle_state) == 0)
577 goto err_out_iounmap;
582 pci_iounmap(pdev, ioaddr);
583 err_out_free_mmio_region:
584 release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
585 err_out_free_pio_region:
586 release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
591 #ifdef CONFIG_NET_POLL_CONTROLLER
593 * Polling 'interrupt' - used by things like netconsole to send skbs
594 * without having to re-enable interrupts. It's not called while
595 * the interrupt routine is executing.
598 static void poll_speedo (struct net_device *dev)
600 /* disable_irq is not very nice, but with the funny lockless design
601 we have no other choice. */
602 disable_irq(dev->irq);
603 speedo_interrupt (dev->irq, dev);
604 enable_irq(dev->irq);
608 static int __devinit speedo_found1(struct pci_dev *pdev,
609 void __iomem *ioaddr, int card_idx, int acpi_idle_state)
611 struct net_device *dev;
612 struct speedo_private *sp;
618 dma_addr_t tx_ring_dma;
620 size = TX_RING_SIZE * sizeof(struct TxFD) + sizeof(struct speedo_stats);
621 tx_ring_space = pci_alloc_consistent(pdev, size, &tx_ring_dma);
622 if (tx_ring_space == NULL)
625 dev = alloc_etherdev(sizeof(struct speedo_private));
627 printk(KERN_ERR "eepro100: Could not allocate ethernet device.\n");
628 pci_free_consistent(pdev, size, tx_ring_space, tx_ring_dma);
632 SET_NETDEV_DEV(dev, &pdev->dev);
634 if (dev->mem_start > 0)
635 option = dev->mem_start;
636 else if (card_idx >= 0 && options[card_idx] >= 0)
637 option = options[card_idx];
642 if (dev_alloc_name(dev, dev->name) < 0)
643 goto err_free_unlock;
645 /* Read the station address EEPROM before doing the reset.
646 Nominally his should even be done before accepting the device, but
647 then we wouldn't have a device name with which to report the error.
648 The size test is for 6 bit vs. 8 bit address serial EEPROMs.
651 void __iomem *iobase;
652 int read_cmd, ee_size;
656 /* Use IO only to avoid postponed writes and satisfy EEPROM timing
658 iobase = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
660 goto err_free_unlock;
661 if ((do_eeprom_cmd(iobase, EE_READ_CMD << 24, 27) & 0xffe0000)
664 read_cmd = EE_READ_CMD << 24;
667 read_cmd = EE_READ_CMD << 22;
670 for (j = 0, i = 0, sum = 0; i < ee_size; i++) {
671 u16 value = do_eeprom_cmd(iobase, read_cmd | (i << 16), 27);
675 dev->dev_addr[j++] = value;
676 dev->dev_addr[j++] = value >> 8;
680 printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, "
681 "check settings before activating this device!\n",
683 /* Don't unregister_netdev(dev); as the EEPro may actually be
684 usable, especially if the MAC address is set later.
685 On the other hand, it may be unusable if MDI data is corrupted. */
687 pci_iounmap(pdev, iobase);
690 /* Reset the chip: stop Tx and Rx processes and clear counters.
691 This takes less than 10usec and will easily finish before the next
693 iowrite32(PortReset, ioaddr + SCBPort);
694 ioread32(ioaddr + SCBPort);
697 if (eeprom[3] & 0x0100)
698 product = "OEM i82557/i82558 10/100 Ethernet";
700 product = pci_name(pdev);
702 printk(KERN_INFO "%s: %s, %pM, IRQ %d.\n", dev->name, product,
703 dev->dev_addr, pdev->irq);
705 sp = netdev_priv(dev);
707 /* we must initialize this early, for mdio_{read,write} */
710 #if 1 || defined(kernel_bloat)
711 /* OK, this is pure kernel bloat. I don't like it when other drivers
712 waste non-pageable kernel space to emit similar messages, but I need
713 them for bug reports. */
715 const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"};
716 /* The self-test results must be paragraph aligned. */
717 volatile s32 *self_test_results;
718 int boguscnt = 16000; /* Timeout for set-test. */
719 if ((eeprom[3] & 0x03) != 0x03)
720 printk(KERN_INFO " Receiver lock-up bug exists -- enabling"
722 printk(KERN_INFO " Board assembly %4.4x%2.2x-%3.3d, Physical"
723 " connectors present:",
724 eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff);
725 for (i = 0; i < 4; i++)
726 if (eeprom[5] & (1<<i))
727 printk(connectors[i]);
728 printk("\n"KERN_INFO" Primary interface chip %s PHY #%d.\n",
729 phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f);
730 if (eeprom[7] & 0x0700)
731 printk(KERN_INFO " Secondary interface chip %s.\n",
732 phys[(eeprom[7]>>8)&7]);
733 if (((eeprom[6]>>8) & 0x3f) == DP83840
734 || ((eeprom[6]>>8) & 0x3f) == DP83840A) {
735 int mdi_reg23 = mdio_read(dev, eeprom[6] & 0x1f, 23) | 0x0422;
738 printk(KERN_INFO" DP83840 specific setup, setting register 23 to %4.4x.\n",
740 mdio_write(dev, eeprom[6] & 0x1f, 23, mdi_reg23);
742 if ((option >= 0) && (option & 0x70)) {
743 printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n",
744 (option & 0x20 ? 100 : 10),
745 (option & 0x10 ? "full" : "half"));
746 mdio_write(dev, eeprom[6] & 0x1f, MII_BMCR,
747 ((option & 0x20) ? 0x2000 : 0) | /* 100mbps? */
748 ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */
751 /* Perform a system self-test. */
752 self_test_results = (s32*) ((((long) tx_ring_space) + 15) & ~0xf);
753 self_test_results[0] = 0;
754 self_test_results[1] = -1;
755 iowrite32(tx_ring_dma | PortSelfTest, ioaddr + SCBPort);
758 } while (self_test_results[1] == -1 && --boguscnt >= 0);
760 if (boguscnt < 0) { /* Test optimized out. */
761 printk(KERN_ERR "Self test failed, status %8.8x:\n"
762 KERN_ERR " Failure to initialize the i82557.\n"
763 KERN_ERR " Verify that the card is a bus-master"
765 self_test_results[1]);
767 printk(KERN_INFO " General self-test: %s.\n"
768 KERN_INFO " Serial sub-system self-test: %s.\n"
769 KERN_INFO " Internal registers self-test: %s.\n"
770 KERN_INFO " ROM checksum self-test: %s (%#8.8x).\n",
771 self_test_results[1] & 0x1000 ? "failed" : "passed",
772 self_test_results[1] & 0x0020 ? "failed" : "passed",
773 self_test_results[1] & 0x0008 ? "failed" : "passed",
774 self_test_results[1] & 0x0004 ? "failed" : "passed",
775 self_test_results[0]);
777 #endif /* kernel_bloat */
779 iowrite32(PortReset, ioaddr + SCBPort);
780 ioread32(ioaddr + SCBPort);
783 /* Return the chip to its original power state. */
784 pci_set_power_state(pdev, acpi_idle_state);
786 pci_set_drvdata (pdev, dev);
787 SET_NETDEV_DEV(dev, &pdev->dev);
789 dev->irq = pdev->irq;
792 sp->msg_enable = DEBUG;
793 sp->acpi_pwr = acpi_idle_state;
794 sp->tx_ring = tx_ring_space;
795 sp->tx_ring_dma = tx_ring_dma;
796 sp->lstats = (struct speedo_stats *)(sp->tx_ring + TX_RING_SIZE);
797 sp->lstats_dma = TX_RING_ELEM_DMA(sp, TX_RING_SIZE);
798 init_timer(&sp->timer); /* used in ioctl() */
799 spin_lock_init(&sp->lock);
801 sp->mii_if.full_duplex = option >= 0 && (option & 0x10) ? 1 : 0;
803 if (full_duplex[card_idx] >= 0)
804 sp->mii_if.full_duplex = full_duplex[card_idx];
806 sp->default_port = option >= 0 ? (option & 0x0f) : 0;
808 sp->phy[0] = eeprom[6];
809 sp->phy[1] = eeprom[7];
811 sp->mii_if.phy_id = eeprom[6] & 0x1f;
812 sp->mii_if.phy_id_mask = 0x1f;
813 sp->mii_if.reg_num_mask = 0x1f;
814 sp->mii_if.dev = dev;
815 sp->mii_if.mdio_read = mdio_read;
816 sp->mii_if.mdio_write = mdio_write;
818 sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1;
819 if (((pdev->device > 0x1030 && (pdev->device < 0x103F)))
820 || (pdev->device == 0x2449) || (pdev->device == 0x2459)
821 || (pdev->device == 0x245D)) {
826 printk(KERN_INFO " Receiver lock-up workaround activated.\n");
828 /* The Speedo-specific entries in the device structure. */
829 dev->open = &speedo_open;
830 dev->hard_start_xmit = &speedo_start_xmit;
831 netif_set_tx_timeout(dev, &speedo_tx_timeout, TX_TIMEOUT);
832 dev->stop = &speedo_close;
833 dev->get_stats = &speedo_get_stats;
834 dev->set_multicast_list = &set_rx_mode;
835 dev->do_ioctl = &speedo_ioctl;
836 SET_ETHTOOL_OPS(dev, ðtool_ops);
837 #ifdef CONFIG_NET_POLL_CONTROLLER
838 dev->poll_controller = &poll_speedo;
841 if (register_netdevice(dev))
842 goto err_free_unlock;
853 static void do_slow_command(struct net_device *dev, struct speedo_private *sp, int cmd)
855 void __iomem *cmd_ioaddr = sp->regs + SCBCmd;
858 if (ioread8(cmd_ioaddr) == 0) break;
859 while(++wait <= 200);
861 printk(KERN_ERR "Command %4.4x never accepted (%d polls)!\n",
862 ioread8(cmd_ioaddr), wait);
864 iowrite8(cmd, cmd_ioaddr);
866 for (wait = 0; wait <= 100; wait++)
867 if (ioread8(cmd_ioaddr) == 0) return;
868 for (; wait <= 20000; wait++)
869 if (ioread8(cmd_ioaddr) == 0) return;
871 printk(KERN_ERR "Command %4.4x was not accepted after %d polls!"
872 " Current status %8.8x.\n",
873 cmd, wait, ioread32(sp->regs + SCBStatus));
876 /* Serial EEPROM section.
877 A "bit" grungy, but we work our way through bit-by-bit :->. */
878 /* EEPROM_Ctrl bits. */
879 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
880 #define EE_CS 0x02 /* EEPROM chip select. */
881 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
882 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
883 #define EE_ENB (0x4800 | EE_CS)
884 #define EE_WRITE_0 0x4802
885 #define EE_WRITE_1 0x4806
886 #define EE_OFFSET SCBeeprom
888 /* The fixes for the code were kindly provided by Dragan Stancevic
889 <visitor@valinux.com> to strictly follow Intel specifications of EEPROM
891 The publicly available sheet 64486302 (sec. 3.1) specifies 1us access
892 interval for serial EEPROM. However, it looks like that there is an
893 additional requirement dictating larger udelay's in the code below.
895 static int __devinit do_eeprom_cmd(void __iomem *ioaddr, int cmd, int cmd_len)
898 void __iomem *ee_addr = ioaddr + SCBeeprom;
900 iowrite16(EE_ENB, ee_addr); udelay(2);
901 iowrite16(EE_ENB | EE_SHIFT_CLK, ee_addr); udelay(2);
903 /* Shift the command bits out. */
905 short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
906 iowrite16(dataval, ee_addr); udelay(2);
907 iowrite16(dataval | EE_SHIFT_CLK, ee_addr); udelay(2);
908 retval = (retval << 1) | ((ioread16(ee_addr) & EE_DATA_READ) ? 1 : 0);
909 } while (--cmd_len >= 0);
910 iowrite16(EE_ENB, ee_addr); udelay(2);
912 /* Terminate the EEPROM access. */
913 iowrite16(EE_ENB & ~EE_CS, ee_addr);
917 static int mdio_read(struct net_device *dev, int phy_id, int location)
919 struct speedo_private *sp = netdev_priv(dev);
920 void __iomem *ioaddr = sp->regs;
921 int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
922 iowrite32(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI);
924 val = ioread32(ioaddr + SCBCtrlMDI);
925 if (--boguscnt < 0) {
926 printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val);
929 } while (! (val & 0x10000000));
933 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
935 struct speedo_private *sp = netdev_priv(dev);
936 void __iomem *ioaddr = sp->regs;
937 int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */
938 iowrite32(0x04000000 | (location<<16) | (phy_id<<21) | value,
939 ioaddr + SCBCtrlMDI);
941 val = ioread32(ioaddr + SCBCtrlMDI);
942 if (--boguscnt < 0) {
943 printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val);
946 } while (! (val & 0x10000000));
950 speedo_open(struct net_device *dev)
952 struct speedo_private *sp = netdev_priv(dev);
953 void __iomem *ioaddr = sp->regs;
956 if (netif_msg_ifup(sp))
957 printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq);
959 pci_set_power_state(sp->pdev, PCI_D0);
961 /* Set up the Tx queue early.. */
966 sp->in_interrupt = 0;
968 /* .. we can safely take handler calls during init. */
969 retval = request_irq(dev->irq, &speedo_interrupt, IRQF_SHARED, dev->name, dev);
974 dev->if_port = sp->default_port;
976 #ifdef oh_no_you_dont_unless_you_honour_the_options_passed_in_to_us
977 /* Retrigger negotiation to reset previous errors. */
978 if ((sp->phy[0] & 0x8000) == 0) {
979 int phy_addr = sp->phy[0] & 0x1f ;
980 /* Use 0x3300 for restarting NWay, other values to force xcvr:
986 #ifdef honor_default_port
987 mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
989 mdio_write(dev, phy_addr, MII_BMCR, 0x3300);
994 speedo_init_rx_ring(dev);
996 /* Fire up the hardware. */
997 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1000 netdevice_start(dev);
1001 netif_start_queue(dev);
1003 /* Setup the chip and configure the multicast list. */
1004 sp->mc_setup_head = NULL;
1005 sp->mc_setup_tail = NULL;
1006 sp->flow_ctrl = sp->partner = 0;
1007 sp->rx_mode = -1; /* Invalid -> always reset the mode. */
1009 if ((sp->phy[0] & 0x8000) == 0)
1010 sp->mii_if.advertising = mdio_read(dev, sp->phy[0] & 0x1f, MII_ADVERTISE);
1012 mii_check_link(&sp->mii_if);
1014 if (netif_msg_ifup(sp)) {
1015 printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n",
1016 dev->name, ioread16(ioaddr + SCBStatus));
1019 /* Set the timer. The timer serves a dual purpose:
1020 1) to monitor the media interface (e.g. link beat) and perhaps switch
1021 to an alternate media type
1022 2) to monitor Rx activity, and restart the Rx process if the receiver
1024 sp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
1025 sp->timer.data = (unsigned long)dev;
1026 sp->timer.function = &speedo_timer; /* timer handler */
1027 add_timer(&sp->timer);
1029 /* No need to wait for the command unit to accept here. */
1030 if ((sp->phy[0] & 0x8000) == 0)
1031 mdio_read(dev, sp->phy[0] & 0x1f, MII_BMCR);
1036 /* Start the chip hardware after a full reset. */
1037 static void speedo_resume(struct net_device *dev)
1039 struct speedo_private *sp = netdev_priv(dev);
1040 void __iomem *ioaddr = sp->regs;
1042 /* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */
1043 sp->tx_threshold = 0x01208000;
1045 /* Set the segment registers to '0'. */
1046 if (wait_for_cmd_done(dev, sp) != 0) {
1047 iowrite32(PortPartialReset, ioaddr + SCBPort);
1051 iowrite32(0, ioaddr + SCBPointer);
1052 ioread32(ioaddr + SCBPointer); /* Flush to PCI. */
1053 udelay(10); /* Bogus, but it avoids the bug. */
1055 /* Note: these next two operations can take a while. */
1056 do_slow_command(dev, sp, RxAddrLoad);
1057 do_slow_command(dev, sp, CUCmdBase);
1059 /* Load the statistics block and rx ring addresses. */
1060 iowrite32(sp->lstats_dma, ioaddr + SCBPointer);
1061 ioread32(ioaddr + SCBPointer); /* Flush to PCI */
1063 iowrite8(CUStatsAddr, ioaddr + SCBCmd);
1064 sp->lstats->done_marker = 0;
1065 wait_for_cmd_done(dev, sp);
1067 if (sp->rx_ringp[sp->cur_rx % RX_RING_SIZE] == NULL) {
1068 if (netif_msg_rx_err(sp))
1069 printk(KERN_DEBUG "%s: NULL cur_rx in speedo_resume().\n",
1072 iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
1073 ioaddr + SCBPointer);
1074 ioread32(ioaddr + SCBPointer); /* Flush to PCI */
1077 /* Note: RxStart should complete instantly. */
1078 do_slow_command(dev, sp, RxStart);
1079 do_slow_command(dev, sp, CUDumpStats);
1081 /* Fill the first command with our physical address. */
1083 struct descriptor *ias_cmd;
1086 (struct descriptor *)&sp->tx_ring[sp->cur_tx++ % TX_RING_SIZE];
1087 /* Avoid a bug(?!) here by marking the command already completed. */
1088 ias_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000);
1090 cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
1091 memcpy(ias_cmd->params, dev->dev_addr, 6);
1093 clear_suspend(sp->last_cmd);
1094 sp->last_cmd = ias_cmd;
1097 /* Start the chip's Tx process and unmask interrupts. */
1098 iowrite32(TX_RING_ELEM_DMA(sp, sp->dirty_tx % TX_RING_SIZE),
1099 ioaddr + SCBPointer);
1100 /* We are not ACK-ing FCP and ER in the interrupt handler yet so they should
1101 remain masked --Dragan */
1102 iowrite16(CUStart | SCBMaskEarlyRx | SCBMaskFlowCtl, ioaddr + SCBCmd);
1106 * Sometimes the receiver stops making progress. This routine knows how to
1107 * get it going again, without losing packets or being otherwise nasty like
1108 * a chip reset would be. Previously the driver had a whole sequence
1109 * of if RxSuspended, if it's no buffers do one thing, if it's no resources,
1110 * do another, etc. But those things don't really matter. Separate logic
1111 * in the ISR provides for allocating buffers--the other half of operation
1112 * is just making sure the receiver is active. speedo_rx_soft_reset does that.
1113 * This problem with the old, more involved algorithm is shown up under
1114 * ping floods on the order of 60K packets/second on a 100Mbps fdx network.
1117 speedo_rx_soft_reset(struct net_device *dev)
1119 struct speedo_private *sp = netdev_priv(dev);
1121 void __iomem *ioaddr;
1124 if (wait_for_cmd_done(dev, sp) != 0) {
1125 printk("%s: previous command stalled\n", dev->name);
1129 * Put the hardware into a known state.
1131 iowrite8(RxAbort, ioaddr + SCBCmd);
1133 rfd = sp->rx_ringp[sp->cur_rx % RX_RING_SIZE];
1135 rfd->rx_buf_addr = cpu_to_le32(0xffffffff);
1137 if (wait_for_cmd_done(dev, sp) != 0) {
1138 printk("%s: RxAbort command stalled\n", dev->name);
1141 iowrite32(sp->rx_ring_dma[sp->cur_rx % RX_RING_SIZE],
1142 ioaddr + SCBPointer);
1143 iowrite8(RxStart, ioaddr + SCBCmd);
1147 /* Media monitoring and control. */
1148 static void speedo_timer(unsigned long data)
1150 struct net_device *dev = (struct net_device *)data;
1151 struct speedo_private *sp = netdev_priv(dev);
1152 void __iomem *ioaddr = sp->regs;
1153 int phy_num = sp->phy[0] & 0x1f;
1155 /* We have MII and lost link beat. */
1156 if ((sp->phy[0] & 0x8000) == 0) {
1157 int partner = mdio_read(dev, phy_num, MII_LPA);
1158 if (partner != sp->partner) {
1159 int flow_ctrl = sp->mii_if.advertising & partner & 0x0400 ? 1 : 0;
1160 if (netif_msg_link(sp)) {
1161 printk(KERN_DEBUG "%s: Link status change.\n", dev->name);
1162 printk(KERN_DEBUG "%s: Old partner %x, new %x, adv %x.\n",
1163 dev->name, sp->partner, partner, sp->mii_if.advertising);
1165 sp->partner = partner;
1166 if (flow_ctrl != sp->flow_ctrl) {
1167 sp->flow_ctrl = flow_ctrl;
1168 sp->rx_mode = -1; /* Trigger a reload. */
1172 mii_check_link(&sp->mii_if);
1173 if (netif_msg_timer(sp)) {
1174 printk(KERN_DEBUG "%s: Media control tick, status %4.4x.\n",
1175 dev->name, ioread16(ioaddr + SCBStatus));
1177 if (sp->rx_mode < 0 ||
1178 (sp->rx_bug && jiffies - sp->last_rx_time > 2*HZ)) {
1179 /* We haven't received a packet in a Long Time. We might have been
1180 bitten by the receiver hang bug. This can be cleared by sending
1181 a set multicast list command. */
1182 if (netif_msg_timer(sp))
1183 printk(KERN_DEBUG "%s: Sending a multicast list set command"
1184 " from a timer routine,"
1185 " m=%d, j=%ld, l=%ld.\n",
1186 dev->name, sp->rx_mode, jiffies, sp->last_rx_time);
1189 /* We must continue to monitor the media. */
1190 sp->timer.expires = RUN_AT(2*HZ); /* 2.0 sec. */
1191 add_timer(&sp->timer);
1194 static void speedo_show_state(struct net_device *dev)
1196 struct speedo_private *sp = netdev_priv(dev);
1199 if (netif_msg_pktdata(sp)) {
1200 printk(KERN_DEBUG "%s: Tx ring dump, Tx queue %u / %u:\n",
1201 dev->name, sp->cur_tx, sp->dirty_tx);
1202 for (i = 0; i < TX_RING_SIZE; i++)
1203 printk(KERN_DEBUG "%s: %c%c%2d %8.8x.\n", dev->name,
1204 i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ',
1205 i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ',
1206 i, sp->tx_ring[i].status);
1208 printk(KERN_DEBUG "%s: Printing Rx ring"
1209 " (next to receive into %u, dirty index %u).\n",
1210 dev->name, sp->cur_rx, sp->dirty_rx);
1211 for (i = 0; i < RX_RING_SIZE; i++)
1212 printk(KERN_DEBUG "%s: %c%c%c%2d %8.8x.\n", dev->name,
1213 sp->rx_ringp[i] == sp->last_rxf ? 'l' : ' ',
1214 i == sp->dirty_rx % RX_RING_SIZE ? '*' : ' ',
1215 i == sp->cur_rx % RX_RING_SIZE ? '=' : ' ',
1216 i, (sp->rx_ringp[i] != NULL) ?
1217 (unsigned)sp->rx_ringp[i]->status : 0);
1222 void __iomem *ioaddr = sp->regs;
1223 int phy_num = sp->phy[0] & 0x1f;
1224 for (i = 0; i < 16; i++) {
1225 /* FIXME: what does it mean? --SAW */
1227 printk(KERN_DEBUG "%s: PHY index %d register %d is %4.4x.\n",
1228 dev->name, phy_num, i, mdio_read(dev, phy_num, i));
1235 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1237 speedo_init_rx_ring(struct net_device *dev)
1239 struct speedo_private *sp = netdev_priv(dev);
1240 struct RxFD *rxf, *last_rxf = NULL;
1241 dma_addr_t last_rxf_dma = 0 /* to shut up the compiler */;
1246 for (i = 0; i < RX_RING_SIZE; i++) {
1247 struct sk_buff *skb;
1248 skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
1250 rx_align(skb); /* Align IP on 16 byte boundary */
1251 sp->rx_skbuff[i] = skb;
1253 break; /* OK. Just initially short of Rx bufs. */
1254 skb->dev = dev; /* Mark as being used by this device. */
1255 rxf = (struct RxFD *)skb->data;
1256 sp->rx_ringp[i] = rxf;
1257 sp->rx_ring_dma[i] =
1258 pci_map_single(sp->pdev, rxf,
1259 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_BIDIRECTIONAL);
1260 skb_reserve(skb, sizeof(struct RxFD));
1262 last_rxf->link = cpu_to_le32(sp->rx_ring_dma[i]);
1263 pci_dma_sync_single_for_device(sp->pdev, last_rxf_dma,
1264 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1267 last_rxf_dma = sp->rx_ring_dma[i];
1268 rxf->status = cpu_to_le32(0x00000001); /* '1' is flag value only. */
1269 rxf->link = 0; /* None yet. */
1270 /* This field unused by i82557. */
1271 rxf->rx_buf_addr = cpu_to_le32(0xffffffff);
1272 rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
1273 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[i],
1274 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1276 sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1277 /* Mark the last entry as end-of-list. */
1278 last_rxf->status = cpu_to_le32(0xC0000002); /* '2' is flag value only. */
1279 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[RX_RING_SIZE-1],
1280 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1281 sp->last_rxf = last_rxf;
1282 sp->last_rxf_dma = last_rxf_dma;
1285 static void speedo_purge_tx(struct net_device *dev)
1287 struct speedo_private *sp = netdev_priv(dev);
1290 while ((int)(sp->cur_tx - sp->dirty_tx) > 0) {
1291 entry = sp->dirty_tx % TX_RING_SIZE;
1292 if (sp->tx_skbuff[entry]) {
1293 sp->stats.tx_errors++;
1294 pci_unmap_single(sp->pdev,
1295 le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
1296 sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
1297 dev_kfree_skb_irq(sp->tx_skbuff[entry]);
1298 sp->tx_skbuff[entry] = NULL;
1302 while (sp->mc_setup_head != NULL) {
1303 struct speedo_mc_block *t;
1304 if (netif_msg_tx_err(sp))
1305 printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
1306 pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
1307 sp->mc_setup_head->len, PCI_DMA_TODEVICE);
1308 t = sp->mc_setup_head->next;
1309 kfree(sp->mc_setup_head);
1310 sp->mc_setup_head = t;
1312 sp->mc_setup_tail = NULL;
1314 netif_wake_queue(dev);
1317 static void reset_mii(struct net_device *dev)
1319 struct speedo_private *sp = netdev_priv(dev);
1321 /* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */
1322 if ((sp->phy[0] & 0x8000) == 0) {
1323 int phy_addr = sp->phy[0] & 0x1f;
1324 int advertising = mdio_read(dev, phy_addr, MII_ADVERTISE);
1325 int mii_bmcr = mdio_read(dev, phy_addr, MII_BMCR);
1326 mdio_write(dev, phy_addr, MII_BMCR, 0x0400);
1327 mdio_write(dev, phy_addr, MII_BMSR, 0x0000);
1328 mdio_write(dev, phy_addr, MII_ADVERTISE, 0x0000);
1329 mdio_write(dev, phy_addr, MII_BMCR, 0x8000);
1330 #ifdef honor_default_port
1331 mdio_write(dev, phy_addr, MII_BMCR, mii_ctrl[dev->default_port & 7]);
1333 mdio_read(dev, phy_addr, MII_BMCR);
1334 mdio_write(dev, phy_addr, MII_BMCR, mii_bmcr);
1335 mdio_write(dev, phy_addr, MII_ADVERTISE, advertising);
1340 static void speedo_tx_timeout(struct net_device *dev)
1342 struct speedo_private *sp = netdev_priv(dev);
1343 void __iomem *ioaddr = sp->regs;
1344 int status = ioread16(ioaddr + SCBStatus);
1345 unsigned long flags;
1347 if (netif_msg_tx_err(sp)) {
1348 printk(KERN_WARNING "%s: Transmit timed out: status %4.4x "
1349 " %4.4x at %d/%d command %8.8x.\n",
1350 dev->name, status, ioread16(ioaddr + SCBCmd),
1351 sp->dirty_tx, sp->cur_tx,
1352 sp->tx_ring[sp->dirty_tx % TX_RING_SIZE].status);
1355 speedo_show_state(dev);
1357 if ((status & 0x00C0) != 0x0080
1358 && (status & 0x003C) == 0x0010) {
1359 /* Only the command unit has stopped. */
1360 printk(KERN_WARNING "%s: Trying to restart the transmitter...\n",
1362 iowrite32(TX_RING_ELEM_DMA(sp, dirty_tx % TX_RING_SIZE]),
1363 ioaddr + SCBPointer);
1364 iowrite16(CUStart, ioaddr + SCBCmd);
1370 del_timer_sync(&sp->timer);
1371 /* Reset the Tx and Rx units. */
1372 iowrite32(PortReset, ioaddr + SCBPort);
1373 /* We may get spurious interrupts here. But I don't think that they
1374 may do much harm. 1999/12/09 SAW */
1376 /* Disable interrupts. */
1377 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1378 synchronize_irq(dev->irq);
1379 speedo_tx_buffer_gc(dev);
1380 /* Free as much as possible.
1381 It helps to recover from a hang because of out-of-memory.
1382 It also simplifies speedo_resume() in case TX ring is full or
1383 close-to-be full. */
1384 speedo_purge_tx(dev);
1385 speedo_refill_rx_buffers(dev, 1);
1386 spin_lock_irqsave(&sp->lock, flags);
1389 dev->trans_start = jiffies;
1390 spin_unlock_irqrestore(&sp->lock, flags);
1391 set_rx_mode(dev); /* it takes the spinlock itself --SAW */
1392 /* Reset MII transceiver. Do it before starting the timer to serialize
1393 mdio_xxx operations. Yes, it's a paranoya :-) 2000/05/09 SAW */
1395 sp->timer.expires = RUN_AT(2*HZ);
1396 add_timer(&sp->timer);
1402 speedo_start_xmit(struct sk_buff *skb, struct net_device *dev)
1404 struct speedo_private *sp = netdev_priv(dev);
1405 void __iomem *ioaddr = sp->regs;
1408 /* Prevent interrupts from changing the Tx ring from underneath us. */
1409 unsigned long flags;
1411 spin_lock_irqsave(&sp->lock, flags);
1413 /* Check if there are enough space. */
1414 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
1415 printk(KERN_ERR "%s: incorrect tbusy state, fixed.\n", dev->name);
1416 netif_stop_queue(dev);
1418 spin_unlock_irqrestore(&sp->lock, flags);
1422 /* Calculate the Tx descriptor entry. */
1423 entry = sp->cur_tx++ % TX_RING_SIZE;
1425 sp->tx_skbuff[entry] = skb;
1426 sp->tx_ring[entry].status =
1427 cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex);
1428 if (!(entry & ((TX_RING_SIZE>>2)-1)))
1429 sp->tx_ring[entry].status |= cpu_to_le32(CmdIntr);
1430 sp->tx_ring[entry].link =
1431 cpu_to_le32(TX_RING_ELEM_DMA(sp, sp->cur_tx % TX_RING_SIZE));
1432 sp->tx_ring[entry].tx_desc_addr =
1433 cpu_to_le32(TX_RING_ELEM_DMA(sp, entry) + TX_DESCR_BUF_OFFSET);
1434 /* The data region is always in one buffer descriptor. */
1435 sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold);
1436 sp->tx_ring[entry].tx_buf_addr0 =
1437 cpu_to_le32(pci_map_single(sp->pdev, skb->data,
1438 skb->len, PCI_DMA_TODEVICE));
1439 sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len);
1441 /* workaround for hardware bug on 10 mbit half duplex */
1443 if ((sp->partner == 0) && (sp->chip_id == 1)) {
1444 wait_for_cmd_done(dev, sp);
1445 iowrite8(0 , ioaddr + SCBCmd);
1449 /* Trigger the command unit resume. */
1450 wait_for_cmd_done(dev, sp);
1451 clear_suspend(sp->last_cmd);
1452 /* We want the time window between clearing suspend flag on the previous
1453 command and resuming CU to be as small as possible.
1454 Interrupts in between are very undesired. --SAW */
1455 iowrite8(CUResume, ioaddr + SCBCmd);
1456 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
1458 /* Leave room for set_rx_mode(). If there is no more space than reserved
1459 for multicast filter mark the ring as full. */
1460 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
1461 netif_stop_queue(dev);
1465 spin_unlock_irqrestore(&sp->lock, flags);
1467 dev->trans_start = jiffies;
1472 static void speedo_tx_buffer_gc(struct net_device *dev)
1474 unsigned int dirty_tx;
1475 struct speedo_private *sp = netdev_priv(dev);
1477 dirty_tx = sp->dirty_tx;
1478 while ((int)(sp->cur_tx - dirty_tx) > 0) {
1479 int entry = dirty_tx % TX_RING_SIZE;
1480 int status = le32_to_cpu(sp->tx_ring[entry].status);
1482 if (netif_msg_tx_done(sp))
1483 printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n",
1485 if ((status & StatusComplete) == 0)
1486 break; /* It still hasn't been processed. */
1487 if (status & TxUnderrun)
1488 if (sp->tx_threshold < 0x01e08000) {
1489 if (netif_msg_tx_err(sp))
1490 printk(KERN_DEBUG "%s: TX underrun, threshold adjusted.\n",
1492 sp->tx_threshold += 0x00040000;
1494 /* Free the original skb. */
1495 if (sp->tx_skbuff[entry]) {
1496 sp->stats.tx_packets++; /* Count only user packets. */
1497 sp->stats.tx_bytes += sp->tx_skbuff[entry]->len;
1498 pci_unmap_single(sp->pdev,
1499 le32_to_cpu(sp->tx_ring[entry].tx_buf_addr0),
1500 sp->tx_skbuff[entry]->len, PCI_DMA_TODEVICE);
1501 dev_kfree_skb_irq(sp->tx_skbuff[entry]);
1502 sp->tx_skbuff[entry] = NULL;
1507 if (netif_msg_tx_err(sp) && (int)(sp->cur_tx - dirty_tx) > TX_RING_SIZE) {
1508 printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d,"
1510 dirty_tx, sp->cur_tx, sp->tx_full);
1511 dirty_tx += TX_RING_SIZE;
1514 while (sp->mc_setup_head != NULL
1515 && (int)(dirty_tx - sp->mc_setup_head->tx - 1) > 0) {
1516 struct speedo_mc_block *t;
1517 if (netif_msg_tx_err(sp))
1518 printk(KERN_DEBUG "%s: freeing mc frame.\n", dev->name);
1519 pci_unmap_single(sp->pdev, sp->mc_setup_head->frame_dma,
1520 sp->mc_setup_head->len, PCI_DMA_TODEVICE);
1521 t = sp->mc_setup_head->next;
1522 kfree(sp->mc_setup_head);
1523 sp->mc_setup_head = t;
1525 if (sp->mc_setup_head == NULL)
1526 sp->mc_setup_tail = NULL;
1528 sp->dirty_tx = dirty_tx;
1531 /* The interrupt handler does all of the Rx thread work and cleans up
1532 after the Tx thread. */
1533 static irqreturn_t speedo_interrupt(int irq, void *dev_instance)
1535 struct net_device *dev = (struct net_device *)dev_instance;
1536 struct speedo_private *sp;
1537 void __iomem *ioaddr;
1538 long boguscnt = max_interrupt_work;
1539 unsigned short status;
1540 unsigned int handled = 0;
1542 sp = netdev_priv(dev);
1545 #ifndef final_version
1546 /* A lock to prevent simultaneous entry on SMP machines. */
1547 if (test_and_set_bit(0, (void*)&sp->in_interrupt)) {
1548 printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
1550 sp->in_interrupt = 0; /* Avoid halting machine. */
1556 status = ioread16(ioaddr + SCBStatus);
1557 /* Acknowledge all of the current interrupt sources ASAP. */
1558 /* Will change from 0xfc00 to 0xff00 when we start handling
1559 FCP and ER interrupts --Dragan */
1560 iowrite16(status & 0xfc00, ioaddr + SCBStatus);
1562 if (netif_msg_intr(sp))
1563 printk(KERN_DEBUG "%s: interrupt status=%#4.4x.\n",
1566 if ((status & 0xfc00) == 0)
1571 if ((status & 0x5000) || /* Packet received, or Rx error. */
1572 (sp->rx_ring_state&(RrNoMem|RrPostponed)) == RrPostponed)
1573 /* Need to gather the postponed packet. */
1576 /* Always check if all rx buffers are allocated. --SAW */
1577 speedo_refill_rx_buffers(dev, 0);
1579 spin_lock(&sp->lock);
1581 * The chip may have suspended reception for various reasons.
1582 * Check for that, and re-prime it should this be the case.
1584 switch ((status >> 2) & 0xf) {
1587 case 1: /* Suspended */
1588 case 2: /* No resources (RxFDs) */
1589 case 9: /* Suspended with no more RBDs */
1590 case 10: /* No resources due to no RBDs */
1591 case 12: /* Ready with no RBDs */
1592 speedo_rx_soft_reset(dev);
1594 case 3: case 5: case 6: case 7: case 8:
1595 case 11: case 13: case 14: case 15:
1596 /* these are all reserved values */
1601 /* User interrupt, Command/Tx unit interrupt or CU not active. */
1602 if (status & 0xA400) {
1603 speedo_tx_buffer_gc(dev);
1605 && (int)(sp->cur_tx - sp->dirty_tx) < TX_QUEUE_UNFULL) {
1606 /* The ring is no longer full. */
1608 netif_wake_queue(dev); /* Attention: under a spinlock. --SAW */
1612 spin_unlock(&sp->lock);
1614 if (--boguscnt < 0) {
1615 printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n",
1617 /* Clear all interrupt sources. */
1618 /* Will change from 0xfc00 to 0xff00 when we start handling
1619 FCP and ER interrupts --Dragan */
1620 iowrite16(0xfc00, ioaddr + SCBStatus);
1625 if (netif_msg_intr(sp))
1626 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1627 dev->name, ioread16(ioaddr + SCBStatus));
1629 clear_bit(0, (void*)&sp->in_interrupt);
1630 return IRQ_RETVAL(handled);
1633 static inline struct RxFD *speedo_rx_alloc(struct net_device *dev, int entry)
1635 struct speedo_private *sp = netdev_priv(dev);
1637 struct sk_buff *skb;
1638 /* Get a fresh skbuff to replace the consumed one. */
1639 skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD));
1641 rx_align(skb); /* Align IP on 16 byte boundary */
1642 sp->rx_skbuff[entry] = skb;
1644 sp->rx_ringp[entry] = NULL;
1647 rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->data;
1648 sp->rx_ring_dma[entry] =
1649 pci_map_single(sp->pdev, rxf,
1650 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1652 skb_reserve(skb, sizeof(struct RxFD));
1653 rxf->rx_buf_addr = cpu_to_le32(0xffffffff);
1654 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
1655 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1659 static inline void speedo_rx_link(struct net_device *dev, int entry,
1660 struct RxFD *rxf, dma_addr_t rxf_dma)
1662 struct speedo_private *sp = netdev_priv(dev);
1663 rxf->status = cpu_to_le32(0xC0000001); /* '1' for driver use only. */
1664 rxf->link = 0; /* None yet. */
1665 rxf->count = cpu_to_le32(PKT_BUF_SZ << 16);
1666 sp->last_rxf->link = cpu_to_le32(rxf_dma);
1667 sp->last_rxf->status &= cpu_to_le32(~0xC0000000);
1668 pci_dma_sync_single_for_device(sp->pdev, sp->last_rxf_dma,
1669 sizeof(struct RxFD), PCI_DMA_TODEVICE);
1671 sp->last_rxf_dma = rxf_dma;
1674 static int speedo_refill_rx_buf(struct net_device *dev, int force)
1676 struct speedo_private *sp = netdev_priv(dev);
1680 entry = sp->dirty_rx % RX_RING_SIZE;
1681 if (sp->rx_skbuff[entry] == NULL) {
1682 rxf = speedo_rx_alloc(dev, entry);
1686 if (netif_msg_rx_err(sp) || !(sp->rx_ring_state & RrOOMReported)) {
1687 printk(KERN_WARNING "%s: can't fill rx buffer (force %d)!\n",
1689 sp->rx_ring_state |= RrOOMReported;
1691 speedo_show_state(dev);
1693 return -1; /* Better luck next time! */
1694 /* Borrow an skb from one of next entries. */
1695 for (forw = sp->dirty_rx + 1; forw != sp->cur_rx; forw++)
1696 if (sp->rx_skbuff[forw % RX_RING_SIZE] != NULL)
1698 if (forw == sp->cur_rx)
1700 forw_entry = forw % RX_RING_SIZE;
1701 sp->rx_skbuff[entry] = sp->rx_skbuff[forw_entry];
1702 sp->rx_skbuff[forw_entry] = NULL;
1703 rxf = sp->rx_ringp[forw_entry];
1704 sp->rx_ringp[forw_entry] = NULL;
1705 sp->rx_ringp[entry] = rxf;
1708 rxf = sp->rx_ringp[entry];
1710 speedo_rx_link(dev, entry, rxf, sp->rx_ring_dma[entry]);
1712 sp->rx_ring_state &= ~(RrNoMem|RrOOMReported); /* Mark the progress. */
1716 static void speedo_refill_rx_buffers(struct net_device *dev, int force)
1718 struct speedo_private *sp = netdev_priv(dev);
1720 /* Refill the RX ring. */
1721 while ((int)(sp->cur_rx - sp->dirty_rx) > 0 &&
1722 speedo_refill_rx_buf(dev, force) != -1);
1726 speedo_rx(struct net_device *dev)
1728 struct speedo_private *sp = netdev_priv(dev);
1729 int entry = sp->cur_rx % RX_RING_SIZE;
1730 int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx;
1734 if (netif_msg_intr(sp))
1735 printk(KERN_DEBUG " In speedo_rx().\n");
1736 /* If we own the next entry, it's a new packet. Send it up. */
1737 while (sp->rx_ringp[entry] != NULL) {
1741 pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
1742 sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1743 status = le32_to_cpu(sp->rx_ringp[entry]->status);
1744 pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff;
1746 if (!(status & RxComplete))
1749 if (--rx_work_limit < 0)
1752 /* Check for a rare out-of-memory case: the current buffer is
1753 the last buffer allocated in the RX ring. --SAW */
1754 if (sp->last_rxf == sp->rx_ringp[entry]) {
1755 /* Postpone the packet. It'll be reaped at an interrupt when this
1756 packet is no longer the last packet in the ring. */
1757 if (netif_msg_rx_err(sp))
1758 printk(KERN_DEBUG "%s: RX packet postponed!\n",
1760 sp->rx_ring_state |= RrPostponed;
1764 if (netif_msg_rx_status(sp))
1765 printk(KERN_DEBUG " speedo_rx() status %8.8x len %d.\n", status,
1767 if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) {
1768 if (status & RxErrTooBig)
1769 printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, "
1770 "status %8.8x!\n", dev->name, status);
1771 else if (! (status & RxOK)) {
1772 /* There was a fatal error. This *should* be impossible. */
1773 sp->stats.rx_errors++;
1774 printk(KERN_ERR "%s: Anomalous event in speedo_rx(), "
1779 struct sk_buff *skb;
1781 /* Check if the packet is long enough to just accept without
1782 copying to a properly sized skbuff. */
1783 if (pkt_len < rx_copybreak
1784 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1785 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1786 /* 'skb_put()' points to the start of sk_buff data area. */
1787 pci_dma_sync_single_for_cpu(sp->pdev, sp->rx_ring_dma[entry],
1788 sizeof(struct RxFD) + pkt_len,
1789 PCI_DMA_FROMDEVICE);
1791 #if 1 || USE_IP_CSUM
1792 /* Packet is in one chunk -- we can copy + cksum. */
1793 skb_copy_to_linear_data(skb, sp->rx_skbuff[entry]->data, pkt_len);
1794 skb_put(skb, pkt_len);
1796 skb_copy_from_linear_data(sp->rx_skbuff[entry],
1797 skb_put(skb, pkt_len),
1800 pci_dma_sync_single_for_device(sp->pdev, sp->rx_ring_dma[entry],
1801 sizeof(struct RxFD) + pkt_len,
1802 PCI_DMA_FROMDEVICE);
1805 /* Pass up the already-filled skbuff. */
1806 skb = sp->rx_skbuff[entry];
1808 printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n",
1812 sp->rx_skbuff[entry] = NULL;
1813 skb_put(skb, pkt_len);
1815 sp->rx_ringp[entry] = NULL;
1816 pci_unmap_single(sp->pdev, sp->rx_ring_dma[entry],
1817 PKT_BUF_SZ + sizeof(struct RxFD),
1818 PCI_DMA_FROMDEVICE);
1820 skb->protocol = eth_type_trans(skb, dev);
1822 dev->last_rx = jiffies;
1823 sp->stats.rx_packets++;
1824 sp->stats.rx_bytes += pkt_len;
1826 entry = (++sp->cur_rx) % RX_RING_SIZE;
1827 sp->rx_ring_state &= ~RrPostponed;
1828 /* Refill the recently taken buffers.
1829 Do it one-by-one to handle traffic bursts better. */
1830 if (alloc_ok && speedo_refill_rx_buf(dev, 0) == -1)
1834 /* Try hard to refill the recently taken buffers. */
1835 speedo_refill_rx_buffers(dev, 1);
1838 sp->last_rx_time = jiffies;
1844 speedo_close(struct net_device *dev)
1846 struct speedo_private *sp = netdev_priv(dev);
1847 void __iomem *ioaddr = sp->regs;
1850 netdevice_stop(dev);
1851 netif_stop_queue(dev);
1853 if (netif_msg_ifdown(sp))
1854 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n",
1855 dev->name, ioread16(ioaddr + SCBStatus));
1857 /* Shut off the media monitoring timer. */
1858 del_timer_sync(&sp->timer);
1860 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
1862 /* Shutting down the chip nicely fails to disable flow control. So.. */
1863 iowrite32(PortPartialReset, ioaddr + SCBPort);
1864 ioread32(ioaddr + SCBPort); /* flush posted write */
1866 * The chip requires a 10 microsecond quiet period. Wait here!
1870 free_irq(dev->irq, dev);
1871 speedo_show_state(dev);
1873 /* Free all the skbuffs in the Rx and Tx queues. */
1874 for (i = 0; i < RX_RING_SIZE; i++) {
1875 struct sk_buff *skb = sp->rx_skbuff[i];
1876 sp->rx_skbuff[i] = NULL;
1877 /* Clear the Rx descriptors. */
1879 pci_unmap_single(sp->pdev,
1881 PKT_BUF_SZ + sizeof(struct RxFD), PCI_DMA_FROMDEVICE);
1886 for (i = 0; i < TX_RING_SIZE; i++) {
1887 struct sk_buff *skb = sp->tx_skbuff[i];
1888 sp->tx_skbuff[i] = NULL;
1889 /* Clear the Tx descriptors. */
1891 pci_unmap_single(sp->pdev,
1892 le32_to_cpu(sp->tx_ring[i].tx_buf_addr0),
1893 skb->len, PCI_DMA_TODEVICE);
1898 /* Free multicast setting blocks. */
1899 for (i = 0; sp->mc_setup_head != NULL; i++) {
1900 struct speedo_mc_block *t;
1901 t = sp->mc_setup_head->next;
1902 kfree(sp->mc_setup_head);
1903 sp->mc_setup_head = t;
1905 sp->mc_setup_tail = NULL;
1906 if (netif_msg_ifdown(sp))
1907 printk(KERN_DEBUG "%s: %d multicast blocks dropped.\n", dev->name, i);
1909 pci_set_power_state(sp->pdev, PCI_D2);
1914 /* The Speedo-3 has an especially awkward and unusable method of getting
1915 statistics out of the chip. It takes an unpredictable length of time
1916 for the dump-stats command to complete. To avoid a busy-wait loop we
1917 update the stats with the previous dump results, and then trigger a
1920 Oh, and incoming frames are dropped while executing dump-stats!
1922 static struct net_device_stats *
1923 speedo_get_stats(struct net_device *dev)
1925 struct speedo_private *sp = netdev_priv(dev);
1926 void __iomem *ioaddr = sp->regs;
1928 /* Update only if the previous dump finished. */
1929 if (sp->lstats->done_marker == cpu_to_le32(0xA007)) {
1930 sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats->tx_coll16_errs);
1931 sp->stats.tx_window_errors += le32_to_cpu(sp->lstats->tx_late_colls);
1932 sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_underruns);
1933 sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats->tx_lost_carrier);
1934 /*sp->stats.tx_deferred += le32_to_cpu(sp->lstats->tx_deferred);*/
1935 sp->stats.collisions += le32_to_cpu(sp->lstats->tx_total_colls);
1936 sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats->rx_crc_errs);
1937 sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats->rx_align_errs);
1938 sp->stats.rx_over_errors += le32_to_cpu(sp->lstats->rx_resource_errs);
1939 sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats->rx_overrun_errs);
1940 sp->stats.rx_length_errors += le32_to_cpu(sp->lstats->rx_runt_errs);
1941 sp->lstats->done_marker = 0x0000;
1942 if (netif_running(dev)) {
1943 unsigned long flags;
1944 /* Take a spinlock to make wait_for_cmd_done and sending the
1945 command atomic. --SAW */
1946 spin_lock_irqsave(&sp->lock, flags);
1947 wait_for_cmd_done(dev, sp);
1948 iowrite8(CUDumpStats, ioaddr + SCBCmd);
1949 spin_unlock_irqrestore(&sp->lock, flags);
1955 static void speedo_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1957 struct speedo_private *sp = netdev_priv(dev);
1958 strncpy(info->driver, "eepro100", sizeof(info->driver)-1);
1959 strncpy(info->version, version, sizeof(info->version)-1);
1961 strcpy(info->bus_info, pci_name(sp->pdev));
1964 static int speedo_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1966 struct speedo_private *sp = netdev_priv(dev);
1967 spin_lock_irq(&sp->lock);
1968 mii_ethtool_gset(&sp->mii_if, ecmd);
1969 spin_unlock_irq(&sp->lock);
1973 static int speedo_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1975 struct speedo_private *sp = netdev_priv(dev);
1977 spin_lock_irq(&sp->lock);
1978 res = mii_ethtool_sset(&sp->mii_if, ecmd);
1979 spin_unlock_irq(&sp->lock);
1983 static int speedo_nway_reset(struct net_device *dev)
1985 struct speedo_private *sp = netdev_priv(dev);
1986 return mii_nway_restart(&sp->mii_if);
1989 static u32 speedo_get_link(struct net_device *dev)
1991 struct speedo_private *sp = netdev_priv(dev);
1992 return mii_link_ok(&sp->mii_if);
1995 static u32 speedo_get_msglevel(struct net_device *dev)
1997 struct speedo_private *sp = netdev_priv(dev);
1998 return sp->msg_enable;
2001 static void speedo_set_msglevel(struct net_device *dev, u32 v)
2003 struct speedo_private *sp = netdev_priv(dev);
2007 static const struct ethtool_ops ethtool_ops = {
2008 .get_drvinfo = speedo_get_drvinfo,
2009 .get_settings = speedo_get_settings,
2010 .set_settings = speedo_set_settings,
2011 .nway_reset = speedo_nway_reset,
2012 .get_link = speedo_get_link,
2013 .get_msglevel = speedo_get_msglevel,
2014 .set_msglevel = speedo_set_msglevel,
2017 static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2019 struct speedo_private *sp = netdev_priv(dev);
2020 struct mii_ioctl_data *data = if_mii(rq);
2021 int phy = sp->phy[0] & 0x1f;
2026 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2029 case SIOCGMIIREG: /* Read MII PHY register. */
2030 /* FIXME: these operations need to be serialized with MDIO
2031 access from the timeout handler.
2032 They are currently serialized only with MDIO access from the
2033 timer routine. 2000/05/09 SAW */
2034 saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
2035 t = del_timer_sync(&sp->timer);
2036 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2038 add_timer(&sp->timer); /* may be set to the past --SAW */
2039 pci_set_power_state(sp->pdev, saved_acpi);
2042 case SIOCSMIIREG: /* Write MII PHY register. */
2043 if (!capable(CAP_NET_ADMIN))
2045 saved_acpi = pci_set_power_state(sp->pdev, PCI_D0);
2046 t = del_timer_sync(&sp->timer);
2047 mdio_write(dev, data->phy_id, data->reg_num, data->val_in);
2049 add_timer(&sp->timer); /* may be set to the past --SAW */
2050 pci_set_power_state(sp->pdev, saved_acpi);
2057 /* Set or clear the multicast filter for this adaptor.
2058 This is very ugly with Intel chips -- we usually have to execute an
2059 entire configuration command, plus process a multicast command.
2060 This is complicated. We must put a large configuration command and
2061 an arbitrarily-sized multicast command in the transmit list.
2062 To minimize the disruption -- the previous command might have already
2063 loaded the link -- we convert the current command block, normally a Tx
2064 command, into a no-op and link it to the new command.
2066 static void set_rx_mode(struct net_device *dev)
2068 struct speedo_private *sp = netdev_priv(dev);
2069 void __iomem *ioaddr = sp->regs;
2070 struct descriptor *last_cmd;
2072 unsigned long flags;
2075 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2077 } else if ((dev->flags & IFF_ALLMULTI) ||
2078 dev->mc_count > multicast_filter_limit) {
2083 if (netif_msg_rx_status(sp))
2084 printk(KERN_DEBUG "%s: set_rx_mode %d -> %d\n", dev->name,
2085 sp->rx_mode, new_rx_mode);
2087 if ((int)(sp->cur_tx - sp->dirty_tx) > TX_RING_SIZE - TX_MULTICAST_SIZE) {
2088 /* The Tx ring is full -- don't add anything! Hope the mode will be
2089 * set again later. */
2094 if (new_rx_mode != sp->rx_mode) {
2095 u8 *config_cmd_data;
2097 spin_lock_irqsave(&sp->lock, flags);
2098 entry = sp->cur_tx++ % TX_RING_SIZE;
2099 last_cmd = sp->last_cmd;
2100 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
2102 sp->tx_skbuff[entry] = NULL; /* Redundant. */
2103 sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure);
2104 sp->tx_ring[entry].link =
2105 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2106 config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr;
2107 /* Construct a full CmdConfig frame. */
2108 memcpy(config_cmd_data, i82558_config_cmd, CONFIG_DATA_SIZE);
2109 config_cmd_data[1] = (txfifo << 4) | rxfifo;
2110 config_cmd_data[4] = rxdmacount;
2111 config_cmd_data[5] = txdmacount + 0x80;
2112 config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0;
2113 /* 0x80 doesn't disable FC 0x84 does.
2114 Disable Flow control since we are not ACK-ing any FC interrupts
2115 for now. --Dragan */
2116 config_cmd_data[19] = 0x84;
2117 config_cmd_data[19] |= sp->mii_if.full_duplex ? 0x40 : 0;
2118 config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05;
2119 if (sp->phy[0] & 0x8000) { /* Use the AUI port instead. */
2120 config_cmd_data[15] |= 0x80;
2121 config_cmd_data[8] = 0;
2123 /* Trigger the command unit resume. */
2124 wait_for_cmd_done(dev, sp);
2125 clear_suspend(last_cmd);
2126 iowrite8(CUResume, ioaddr + SCBCmd);
2127 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2128 netif_stop_queue(dev);
2131 spin_unlock_irqrestore(&sp->lock, flags);
2134 if (new_rx_mode == 0 && dev->mc_count < 4) {
2135 /* The simple case of 0-3 multicast list entries occurs often, and
2136 fits within one tx_ring[] entry. */
2137 struct dev_mc_list *mclist;
2138 __le16 *setup_params, *eaddrs;
2140 spin_lock_irqsave(&sp->lock, flags);
2141 entry = sp->cur_tx++ % TX_RING_SIZE;
2142 last_cmd = sp->last_cmd;
2143 sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
2145 sp->tx_skbuff[entry] = NULL;
2146 sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList);
2147 sp->tx_ring[entry].link =
2148 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2149 sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */
2150 setup_params = (__le16 *)&sp->tx_ring[entry].tx_desc_addr;
2151 *setup_params++ = cpu_to_le16(dev->mc_count*6);
2152 /* Fill in the multicast addresses. */
2153 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
2154 i++, mclist = mclist->next) {
2155 eaddrs = (__le16 *)mclist->dmi_addr;
2156 *setup_params++ = *eaddrs++;
2157 *setup_params++ = *eaddrs++;
2158 *setup_params++ = *eaddrs++;
2161 wait_for_cmd_done(dev, sp);
2162 clear_suspend(last_cmd);
2163 /* Immediately trigger the command unit resume. */
2164 iowrite8(CUResume, ioaddr + SCBCmd);
2166 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2167 netif_stop_queue(dev);
2170 spin_unlock_irqrestore(&sp->lock, flags);
2171 } else if (new_rx_mode == 0) {
2172 struct dev_mc_list *mclist;
2173 __le16 *setup_params, *eaddrs;
2174 struct speedo_mc_block *mc_blk;
2175 struct descriptor *mc_setup_frm;
2178 mc_blk = kmalloc(sizeof(*mc_blk) + 2 + multicast_filter_limit*6,
2180 if (mc_blk == NULL) {
2181 printk(KERN_ERR "%s: Failed to allocate a setup frame.\n",
2183 sp->rx_mode = -1; /* We failed, try again. */
2186 mc_blk->next = NULL;
2187 mc_blk->len = 2 + multicast_filter_limit*6;
2189 pci_map_single(sp->pdev, &mc_blk->frame, mc_blk->len,
2191 mc_setup_frm = &mc_blk->frame;
2193 /* Fill the setup frame. */
2194 if (netif_msg_ifup(sp))
2195 printk(KERN_DEBUG "%s: Constructing a setup frame at %p.\n",
2196 dev->name, mc_setup_frm);
2197 mc_setup_frm->cmd_status =
2198 cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList);
2199 /* Link set below. */
2200 setup_params = (__le16 *)&mc_setup_frm->params;
2201 *setup_params++ = cpu_to_le16(dev->mc_count*6);
2202 /* Fill in the multicast addresses. */
2203 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
2204 i++, mclist = mclist->next) {
2205 eaddrs = (__le16 *)mclist->dmi_addr;
2206 *setup_params++ = *eaddrs++;
2207 *setup_params++ = *eaddrs++;
2208 *setup_params++ = *eaddrs++;
2211 /* Disable interrupts while playing with the Tx Cmd list. */
2212 spin_lock_irqsave(&sp->lock, flags);
2214 if (sp->mc_setup_tail)
2215 sp->mc_setup_tail->next = mc_blk;
2217 sp->mc_setup_head = mc_blk;
2218 sp->mc_setup_tail = mc_blk;
2219 mc_blk->tx = sp->cur_tx;
2221 entry = sp->cur_tx++ % TX_RING_SIZE;
2222 last_cmd = sp->last_cmd;
2223 sp->last_cmd = mc_setup_frm;
2225 /* Change the command to a NoOp, pointing to the CmdMulti command. */
2226 sp->tx_skbuff[entry] = NULL;
2227 sp->tx_ring[entry].status = cpu_to_le32(CmdNOp);
2228 sp->tx_ring[entry].link = cpu_to_le32(mc_blk->frame_dma);
2230 /* Set the link in the setup frame. */
2231 mc_setup_frm->link =
2232 cpu_to_le32(TX_RING_ELEM_DMA(sp, (entry + 1) % TX_RING_SIZE));
2234 pci_dma_sync_single_for_device(sp->pdev, mc_blk->frame_dma,
2235 mc_blk->len, PCI_DMA_TODEVICE);
2237 wait_for_cmd_done(dev, sp);
2238 clear_suspend(last_cmd);
2239 /* Immediately trigger the command unit resume. */
2240 iowrite8(CUResume, ioaddr + SCBCmd);
2242 if ((int)(sp->cur_tx - sp->dirty_tx) >= TX_QUEUE_LIMIT) {
2243 netif_stop_queue(dev);
2246 spin_unlock_irqrestore(&sp->lock, flags);
2248 if (netif_msg_rx_status(sp))
2249 printk(" CmdMCSetup frame length %d in entry %d.\n",
2250 dev->mc_count, entry);
2253 sp->rx_mode = new_rx_mode;
2257 static int eepro100_suspend(struct pci_dev *pdev, pm_message_t state)
2259 struct net_device *dev = pci_get_drvdata (pdev);
2260 struct speedo_private *sp = netdev_priv(dev);
2261 void __iomem *ioaddr = sp->regs;
2263 pci_save_state(pdev);
2265 if (!netif_running(dev))
2268 del_timer_sync(&sp->timer);
2270 netif_device_detach(dev);
2271 iowrite32(PortPartialReset, ioaddr + SCBPort);
2273 /* XXX call pci_set_power_state ()? */
2274 pci_disable_device(pdev);
2275 pci_set_power_state (pdev, PCI_D3hot);
2279 static int eepro100_resume(struct pci_dev *pdev)
2281 struct net_device *dev = pci_get_drvdata (pdev);
2282 struct speedo_private *sp = netdev_priv(dev);
2283 void __iomem *ioaddr = sp->regs;
2286 pci_set_power_state(pdev, PCI_D0);
2287 pci_restore_state(pdev);
2289 rc = pci_enable_device(pdev);
2293 pci_set_master(pdev);
2295 if (!netif_running(dev))
2298 /* I'm absolutely uncertain if this part of code may work.
2300 - correct hardware reinitialization;
2301 - correct driver behavior between different steps of the
2303 - serialization with other driver calls.
2305 iowrite16(SCBMaskAll, ioaddr + SCBCmd);
2307 netif_device_attach(dev);
2309 sp->flow_ctrl = sp->partner = 0;
2311 sp->timer.expires = RUN_AT(2*HZ);
2312 add_timer(&sp->timer);
2315 #endif /* CONFIG_PM */
2317 static void __devexit eepro100_remove_one (struct pci_dev *pdev)
2319 struct net_device *dev = pci_get_drvdata (pdev);
2320 struct speedo_private *sp = netdev_priv(dev);
2322 unregister_netdev(dev);
2324 release_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1));
2325 release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
2327 pci_iounmap(pdev, sp->regs);
2328 pci_free_consistent(pdev, TX_RING_SIZE * sizeof(struct TxFD)
2329 + sizeof(struct speedo_stats),
2330 sp->tx_ring, sp->tx_ring_dma);
2331 pci_disable_device(pdev);
2335 static struct pci_device_id eepro100_pci_tbl[] = {
2336 { PCI_VENDOR_ID_INTEL, 0x1229, PCI_ANY_ID, PCI_ANY_ID, },
2337 { PCI_VENDOR_ID_INTEL, 0x1209, PCI_ANY_ID, PCI_ANY_ID, },
2338 { PCI_VENDOR_ID_INTEL, 0x1029, PCI_ANY_ID, PCI_ANY_ID, },
2339 { PCI_VENDOR_ID_INTEL, 0x1030, PCI_ANY_ID, PCI_ANY_ID, },
2340 { PCI_VENDOR_ID_INTEL, 0x1031, PCI_ANY_ID, PCI_ANY_ID, },
2341 { PCI_VENDOR_ID_INTEL, 0x1032, PCI_ANY_ID, PCI_ANY_ID, },
2342 { PCI_VENDOR_ID_INTEL, 0x1033, PCI_ANY_ID, PCI_ANY_ID, },
2343 { PCI_VENDOR_ID_INTEL, 0x1034, PCI_ANY_ID, PCI_ANY_ID, },
2344 { PCI_VENDOR_ID_INTEL, 0x1035, PCI_ANY_ID, PCI_ANY_ID, },
2345 { PCI_VENDOR_ID_INTEL, 0x1036, PCI_ANY_ID, PCI_ANY_ID, },
2346 { PCI_VENDOR_ID_INTEL, 0x1037, PCI_ANY_ID, PCI_ANY_ID, },
2347 { PCI_VENDOR_ID_INTEL, 0x1038, PCI_ANY_ID, PCI_ANY_ID, },
2348 { PCI_VENDOR_ID_INTEL, 0x1039, PCI_ANY_ID, PCI_ANY_ID, },
2349 { PCI_VENDOR_ID_INTEL, 0x103A, PCI_ANY_ID, PCI_ANY_ID, },
2350 { PCI_VENDOR_ID_INTEL, 0x103B, PCI_ANY_ID, PCI_ANY_ID, },
2351 { PCI_VENDOR_ID_INTEL, 0x103C, PCI_ANY_ID, PCI_ANY_ID, },
2352 { PCI_VENDOR_ID_INTEL, 0x103D, PCI_ANY_ID, PCI_ANY_ID, },
2353 { PCI_VENDOR_ID_INTEL, 0x103E, PCI_ANY_ID, PCI_ANY_ID, },
2354 { PCI_VENDOR_ID_INTEL, 0x1050, PCI_ANY_ID, PCI_ANY_ID, },
2355 { PCI_VENDOR_ID_INTEL, 0x1059, PCI_ANY_ID, PCI_ANY_ID, },
2356 { PCI_VENDOR_ID_INTEL, 0x1227, PCI_ANY_ID, PCI_ANY_ID, },
2357 { PCI_VENDOR_ID_INTEL, 0x2449, PCI_ANY_ID, PCI_ANY_ID, },
2358 { PCI_VENDOR_ID_INTEL, 0x2459, PCI_ANY_ID, PCI_ANY_ID, },
2359 { PCI_VENDOR_ID_INTEL, 0x245D, PCI_ANY_ID, PCI_ANY_ID, },
2360 { PCI_VENDOR_ID_INTEL, 0x5200, PCI_ANY_ID, PCI_ANY_ID, },
2361 { PCI_VENDOR_ID_INTEL, 0x5201, PCI_ANY_ID, PCI_ANY_ID, },
2364 MODULE_DEVICE_TABLE(pci, eepro100_pci_tbl);
2366 static struct pci_driver eepro100_driver = {
2368 .id_table = eepro100_pci_tbl,
2369 .probe = eepro100_init_one,
2370 .remove = __devexit_p(eepro100_remove_one),
2372 .suspend = eepro100_suspend,
2373 .resume = eepro100_resume,
2374 #endif /* CONFIG_PM */
2377 static int __init eepro100_init_module(void)
2382 return pci_register_driver(&eepro100_driver);
2385 static void __exit eepro100_cleanup_module(void)
2387 pci_unregister_driver(&eepro100_driver);
2390 module_init(eepro100_init_module);
2391 module_exit(eepro100_cleanup_module);
2395 * compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"