Merge branches 'timers/new-apis', 'timers/ntp' and 'timers/urgent' into timers/core
[linux-2.6] / arch / x86 / kernel / kvm.c
1 /*
2  * KVM paravirt_ops implementation
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  *
18  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19  * Copyright IBM Corporation, 2007
20  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
21  */
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30
31 #define MMU_QUEUE_SIZE 1024
32
33 struct kvm_para_state {
34         u8 mmu_queue[MMU_QUEUE_SIZE];
35         int mmu_queue_len;
36         enum paravirt_lazy_mode mode;
37 };
38
39 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
40
41 static struct kvm_para_state *kvm_para_state(void)
42 {
43         return &per_cpu(para_state, raw_smp_processor_id());
44 }
45
46 /*
47  * No need for any "IO delay" on KVM
48  */
49 static void kvm_io_delay(void)
50 {
51 }
52
53 static void kvm_mmu_op(void *buffer, unsigned len)
54 {
55         int r;
56         unsigned long a1, a2;
57
58         do {
59                 a1 = __pa(buffer);
60                 a2 = 0;   /* on i386 __pa() always returns <4G */
61                 r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
62                 buffer += r;
63                 len -= r;
64         } while (len);
65 }
66
67 static void mmu_queue_flush(struct kvm_para_state *state)
68 {
69         if (state->mmu_queue_len) {
70                 kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
71                 state->mmu_queue_len = 0;
72         }
73 }
74
75 static void kvm_deferred_mmu_op(void *buffer, int len)
76 {
77         struct kvm_para_state *state = kvm_para_state();
78
79         if (state->mode != PARAVIRT_LAZY_MMU) {
80                 kvm_mmu_op(buffer, len);
81                 return;
82         }
83         if (state->mmu_queue_len + len > sizeof state->mmu_queue)
84                 mmu_queue_flush(state);
85         memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
86         state->mmu_queue_len += len;
87 }
88
89 static void kvm_mmu_write(void *dest, u64 val)
90 {
91         __u64 pte_phys;
92         struct kvm_mmu_op_write_pte wpte;
93
94 #ifdef CONFIG_HIGHPTE
95         struct page *page;
96         unsigned long dst = (unsigned long) dest;
97
98         page = kmap_atomic_to_page(dest);
99         pte_phys = page_to_pfn(page);
100         pte_phys <<= PAGE_SHIFT;
101         pte_phys += (dst & ~(PAGE_MASK));
102 #else
103         pte_phys = (unsigned long)__pa(dest);
104 #endif
105         wpte.header.op = KVM_MMU_OP_WRITE_PTE;
106         wpte.pte_val = val;
107         wpte.pte_phys = pte_phys;
108
109         kvm_deferred_mmu_op(&wpte, sizeof wpte);
110 }
111
112 /*
113  * We only need to hook operations that are MMU writes.  We hook these so that
114  * we can use lazy MMU mode to batch these operations.  We could probably
115  * improve the performance of the host code if we used some of the information
116  * here to simplify processing of batched writes.
117  */
118 static void kvm_set_pte(pte_t *ptep, pte_t pte)
119 {
120         kvm_mmu_write(ptep, pte_val(pte));
121 }
122
123 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
124                            pte_t *ptep, pte_t pte)
125 {
126         kvm_mmu_write(ptep, pte_val(pte));
127 }
128
129 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
130 {
131         kvm_mmu_write(pmdp, pmd_val(pmd));
132 }
133
134 #if PAGETABLE_LEVELS >= 3
135 #ifdef CONFIG_X86_PAE
136 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
137 {
138         kvm_mmu_write(ptep, pte_val(pte));
139 }
140
141 static void kvm_set_pte_present(struct mm_struct *mm, unsigned long addr,
142                                 pte_t *ptep, pte_t pte)
143 {
144         kvm_mmu_write(ptep, pte_val(pte));
145 }
146
147 static void kvm_pte_clear(struct mm_struct *mm,
148                           unsigned long addr, pte_t *ptep)
149 {
150         kvm_mmu_write(ptep, 0);
151 }
152
153 static void kvm_pmd_clear(pmd_t *pmdp)
154 {
155         kvm_mmu_write(pmdp, 0);
156 }
157 #endif
158
159 static void kvm_set_pud(pud_t *pudp, pud_t pud)
160 {
161         kvm_mmu_write(pudp, pud_val(pud));
162 }
163
164 #if PAGETABLE_LEVELS == 4
165 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
166 {
167         kvm_mmu_write(pgdp, pgd_val(pgd));
168 }
169 #endif
170 #endif /* PAGETABLE_LEVELS >= 3 */
171
172 static void kvm_flush_tlb(void)
173 {
174         struct kvm_mmu_op_flush_tlb ftlb = {
175                 .header.op = KVM_MMU_OP_FLUSH_TLB,
176         };
177
178         kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
179 }
180
181 static void kvm_release_pt(unsigned long pfn)
182 {
183         struct kvm_mmu_op_release_pt rpt = {
184                 .header.op = KVM_MMU_OP_RELEASE_PT,
185                 .pt_phys = (u64)pfn << PAGE_SHIFT,
186         };
187
188         kvm_mmu_op(&rpt, sizeof rpt);
189 }
190
191 static void kvm_enter_lazy_mmu(void)
192 {
193         struct kvm_para_state *state = kvm_para_state();
194
195         paravirt_enter_lazy_mmu();
196         state->mode = paravirt_get_lazy_mode();
197 }
198
199 static void kvm_leave_lazy_mmu(void)
200 {
201         struct kvm_para_state *state = kvm_para_state();
202
203         mmu_queue_flush(state);
204         paravirt_leave_lazy(paravirt_get_lazy_mode());
205         state->mode = paravirt_get_lazy_mode();
206 }
207
208 static void paravirt_ops_setup(void)
209 {
210         pv_info.name = "KVM";
211         pv_info.paravirt_enabled = 1;
212
213         if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
214                 pv_cpu_ops.io_delay = kvm_io_delay;
215
216         if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
217                 pv_mmu_ops.set_pte = kvm_set_pte;
218                 pv_mmu_ops.set_pte_at = kvm_set_pte_at;
219                 pv_mmu_ops.set_pmd = kvm_set_pmd;
220 #if PAGETABLE_LEVELS >= 3
221 #ifdef CONFIG_X86_PAE
222                 pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
223                 pv_mmu_ops.set_pte_present = kvm_set_pte_present;
224                 pv_mmu_ops.pte_clear = kvm_pte_clear;
225                 pv_mmu_ops.pmd_clear = kvm_pmd_clear;
226 #endif
227                 pv_mmu_ops.set_pud = kvm_set_pud;
228 #if PAGETABLE_LEVELS == 4
229                 pv_mmu_ops.set_pgd = kvm_set_pgd;
230 #endif
231 #endif
232                 pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
233                 pv_mmu_ops.release_pte = kvm_release_pt;
234                 pv_mmu_ops.release_pmd = kvm_release_pt;
235                 pv_mmu_ops.release_pud = kvm_release_pt;
236
237                 pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
238                 pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
239         }
240 }
241
242 void __init kvm_guest_init(void)
243 {
244         if (!kvm_para_available())
245                 return;
246
247         paravirt_ops_setup();
248 }