Merge branches 'timers/new-apis', 'timers/ntp' and 'timers/urgent' into timers/core
[linux-2.6] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <asm/idle.h>
5 #include <linux/smp.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/ftrace.h>
12 #include <asm/system.h>
13 #include <asm/apic.h>
14
15 unsigned long idle_halt;
16 EXPORT_SYMBOL(idle_halt);
17 unsigned long idle_nomwait;
18 EXPORT_SYMBOL(idle_nomwait);
19
20 struct kmem_cache *task_xstate_cachep;
21
22 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
23 {
24         *dst = *src;
25         if (src->thread.xstate) {
26                 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
27                                                       GFP_KERNEL);
28                 if (!dst->thread.xstate)
29                         return -ENOMEM;
30                 WARN_ON((unsigned long)dst->thread.xstate & 15);
31                 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
32         }
33         return 0;
34 }
35
36 void free_thread_xstate(struct task_struct *tsk)
37 {
38         if (tsk->thread.xstate) {
39                 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
40                 tsk->thread.xstate = NULL;
41         }
42 }
43
44 void free_thread_info(struct thread_info *ti)
45 {
46         free_thread_xstate(ti->task);
47         free_pages((unsigned long)ti, get_order(THREAD_SIZE));
48 }
49
50 void arch_task_cache_init(void)
51 {
52         task_xstate_cachep =
53                 kmem_cache_create("task_xstate", xstate_size,
54                                   __alignof__(union thread_xstate),
55                                   SLAB_PANIC, NULL);
56 }
57
58 /*
59  * Idle related variables and functions
60  */
61 unsigned long boot_option_idle_override = 0;
62 EXPORT_SYMBOL(boot_option_idle_override);
63
64 /*
65  * Powermanagement idle function, if any..
66  */
67 void (*pm_idle)(void);
68 EXPORT_SYMBOL(pm_idle);
69
70 #ifdef CONFIG_X86_32
71 /*
72  * This halt magic was a workaround for ancient floppy DMA
73  * wreckage. It should be safe to remove.
74  */
75 static int hlt_counter;
76 void disable_hlt(void)
77 {
78         hlt_counter++;
79 }
80 EXPORT_SYMBOL(disable_hlt);
81
82 void enable_hlt(void)
83 {
84         hlt_counter--;
85 }
86 EXPORT_SYMBOL(enable_hlt);
87
88 static inline int hlt_use_halt(void)
89 {
90         return (!hlt_counter && boot_cpu_data.hlt_works_ok);
91 }
92 #else
93 static inline int hlt_use_halt(void)
94 {
95         return 1;
96 }
97 #endif
98
99 /*
100  * We use this if we don't have any better
101  * idle routine..
102  */
103 void default_idle(void)
104 {
105         if (hlt_use_halt()) {
106                 struct power_trace it;
107
108                 trace_power_start(&it, POWER_CSTATE, 1);
109                 current_thread_info()->status &= ~TS_POLLING;
110                 /*
111                  * TS_POLLING-cleared state must be visible before we
112                  * test NEED_RESCHED:
113                  */
114                 smp_mb();
115
116                 if (!need_resched())
117                         safe_halt();    /* enables interrupts racelessly */
118                 else
119                         local_irq_enable();
120                 current_thread_info()->status |= TS_POLLING;
121                 trace_power_end(&it);
122         } else {
123                 local_irq_enable();
124                 /* loop is done by the caller */
125                 cpu_relax();
126         }
127 }
128 #ifdef CONFIG_APM_MODULE
129 EXPORT_SYMBOL(default_idle);
130 #endif
131
132 void stop_this_cpu(void *dummy)
133 {
134         local_irq_disable();
135         /*
136          * Remove this CPU:
137          */
138         cpu_clear(smp_processor_id(), cpu_online_map);
139         disable_local_APIC();
140
141         for (;;) {
142                 if (hlt_works(smp_processor_id()))
143                         halt();
144         }
145 }
146
147 static void do_nothing(void *unused)
148 {
149 }
150
151 /*
152  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
153  * pm_idle and update to new pm_idle value. Required while changing pm_idle
154  * handler on SMP systems.
155  *
156  * Caller must have changed pm_idle to the new value before the call. Old
157  * pm_idle value will not be used by any CPU after the return of this function.
158  */
159 void cpu_idle_wait(void)
160 {
161         smp_mb();
162         /* kick all the CPUs so that they exit out of pm_idle */
163         smp_call_function(do_nothing, NULL, 1);
164 }
165 EXPORT_SYMBOL_GPL(cpu_idle_wait);
166
167 /*
168  * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
169  * which can obviate IPI to trigger checking of need_resched.
170  * We execute MONITOR against need_resched and enter optimized wait state
171  * through MWAIT. Whenever someone changes need_resched, we would be woken
172  * up from MWAIT (without an IPI).
173  *
174  * New with Core Duo processors, MWAIT can take some hints based on CPU
175  * capability.
176  */
177 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
178 {
179         struct power_trace it;
180
181         trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
182         if (!need_resched()) {
183                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
184                         clflush((void *)&current_thread_info()->flags);
185
186                 __monitor((void *)&current_thread_info()->flags, 0, 0);
187                 smp_mb();
188                 if (!need_resched())
189                         __mwait(ax, cx);
190         }
191         trace_power_end(&it);
192 }
193
194 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
195 static void mwait_idle(void)
196 {
197         struct power_trace it;
198         if (!need_resched()) {
199                 trace_power_start(&it, POWER_CSTATE, 1);
200                 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
201                         clflush((void *)&current_thread_info()->flags);
202
203                 __monitor((void *)&current_thread_info()->flags, 0, 0);
204                 smp_mb();
205                 if (!need_resched())
206                         __sti_mwait(0, 0);
207                 else
208                         local_irq_enable();
209                 trace_power_end(&it);
210         } else
211                 local_irq_enable();
212 }
213
214 /*
215  * On SMP it's slightly faster (but much more power-consuming!)
216  * to poll the ->work.need_resched flag instead of waiting for the
217  * cross-CPU IPI to arrive. Use this option with caution.
218  */
219 static void poll_idle(void)
220 {
221         struct power_trace it;
222
223         trace_power_start(&it, POWER_CSTATE, 0);
224         local_irq_enable();
225         while (!need_resched())
226                 cpu_relax();
227         trace_power_end(&it);
228 }
229
230 /*
231  * mwait selection logic:
232  *
233  * It depends on the CPU. For AMD CPUs that support MWAIT this is
234  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
235  * then depend on a clock divisor and current Pstate of the core. If
236  * all cores of a processor are in halt state (C1) the processor can
237  * enter the C1E (C1 enhanced) state. If mwait is used this will never
238  * happen.
239  *
240  * idle=mwait overrides this decision and forces the usage of mwait.
241  */
242 static int __cpuinitdata force_mwait;
243
244 #define MWAIT_INFO                      0x05
245 #define MWAIT_ECX_EXTENDED_INFO         0x01
246 #define MWAIT_EDX_C1                    0xf0
247
248 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
249 {
250         u32 eax, ebx, ecx, edx;
251
252         if (force_mwait)
253                 return 1;
254
255         if (c->cpuid_level < MWAIT_INFO)
256                 return 0;
257
258         cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
259         /* Check, whether EDX has extended info about MWAIT */
260         if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
261                 return 1;
262
263         /*
264          * edx enumeratios MONITOR/MWAIT extensions. Check, whether
265          * C1  supports MWAIT
266          */
267         return (edx & MWAIT_EDX_C1);
268 }
269
270 /*
271  * Check for AMD CPUs, which have potentially C1E support
272  */
273 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
274 {
275         if (c->x86_vendor != X86_VENDOR_AMD)
276                 return 0;
277
278         if (c->x86 < 0x0F)
279                 return 0;
280
281         /* Family 0x0f models < rev F do not have C1E */
282         if (c->x86 == 0x0f && c->x86_model < 0x40)
283                 return 0;
284
285         return 1;
286 }
287
288 static cpumask_t c1e_mask = CPU_MASK_NONE;
289 static int c1e_detected;
290
291 void c1e_remove_cpu(int cpu)
292 {
293         cpu_clear(cpu, c1e_mask);
294 }
295
296 /*
297  * C1E aware idle routine. We check for C1E active in the interrupt
298  * pending message MSR. If we detect C1E, then we handle it the same
299  * way as C3 power states (local apic timer and TSC stop)
300  */
301 static void c1e_idle(void)
302 {
303         if (need_resched())
304                 return;
305
306         if (!c1e_detected) {
307                 u32 lo, hi;
308
309                 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
310                 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
311                         c1e_detected = 1;
312                         if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
313                                 mark_tsc_unstable("TSC halt in AMD C1E");
314                         printk(KERN_INFO "System has AMD C1E enabled\n");
315                         set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
316                 }
317         }
318
319         if (c1e_detected) {
320                 int cpu = smp_processor_id();
321
322                 if (!cpu_isset(cpu, c1e_mask)) {
323                         cpu_set(cpu, c1e_mask);
324                         /*
325                          * Force broadcast so ACPI can not interfere. Needs
326                          * to run with interrupts enabled as it uses
327                          * smp_function_call.
328                          */
329                         local_irq_enable();
330                         clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
331                                            &cpu);
332                         printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
333                                cpu);
334                         local_irq_disable();
335                 }
336                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
337
338                 default_idle();
339
340                 /*
341                  * The switch back from broadcast mode needs to be
342                  * called with interrupts disabled.
343                  */
344                  local_irq_disable();
345                  clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
346                  local_irq_enable();
347         } else
348                 default_idle();
349 }
350
351 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
352 {
353 #ifdef CONFIG_X86_SMP
354         if (pm_idle == poll_idle && smp_num_siblings > 1) {
355                 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
356                         " performance may degrade.\n");
357         }
358 #endif
359         if (pm_idle)
360                 return;
361
362         if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
363                 /*
364                  * One CPU supports mwait => All CPUs supports mwait
365                  */
366                 printk(KERN_INFO "using mwait in idle threads.\n");
367                 pm_idle = mwait_idle;
368         } else if (check_c1e_idle(c)) {
369                 printk(KERN_INFO "using C1E aware idle routine\n");
370                 pm_idle = c1e_idle;
371         } else
372                 pm_idle = default_idle;
373 }
374
375 static int __init idle_setup(char *str)
376 {
377         if (!str)
378                 return -EINVAL;
379
380         if (!strcmp(str, "poll")) {
381                 printk("using polling idle threads.\n");
382                 pm_idle = poll_idle;
383         } else if (!strcmp(str, "mwait"))
384                 force_mwait = 1;
385         else if (!strcmp(str, "halt")) {
386                 /*
387                  * When the boot option of idle=halt is added, halt is
388                  * forced to be used for CPU idle. In such case CPU C2/C3
389                  * won't be used again.
390                  * To continue to load the CPU idle driver, don't touch
391                  * the boot_option_idle_override.
392                  */
393                 pm_idle = default_idle;
394                 idle_halt = 1;
395                 return 0;
396         } else if (!strcmp(str, "nomwait")) {
397                 /*
398                  * If the boot option of "idle=nomwait" is added,
399                  * it means that mwait will be disabled for CPU C2/C3
400                  * states. In such case it won't touch the variable
401                  * of boot_option_idle_override.
402                  */
403                 idle_nomwait = 1;
404                 return 0;
405         } else
406                 return -1;
407
408         boot_option_idle_override = 1;
409         return 0;
410 }
411 early_param("idle", idle_setup);
412