bnx2: Fix logic to setup VLAN rx tagging.
[linux-2.6] / drivers / net / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
44
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65
66 /*
67  * Implementation notes:
68  *
69  * The DMA engine only allows for DMA within physical 64KB chunks of
70  * memory. The current approach of the driver (and stack) is to use
71  * linear blocks of memory for the skbuffs. However, as the data block
72  * is always the first part of the skb and skbs are 2^n aligned so we
73  * are guarantted to get the whole block within one 64KB align 64KB
74  * chunk.
75  *
76  * On the long term, relying on being able to allocate 64KB linear
77  * chunks of memory is not feasible and the skb handling code and the
78  * stack will need to know about I/O vectors or something similar.
79  */
80
81 static int __devinit rr_init_one(struct pci_dev *pdev,
82         const struct pci_device_id *ent)
83 {
84         struct net_device *dev;
85         static int version_disp;
86         u8 pci_latency;
87         struct rr_private *rrpriv;
88         void *tmpptr;
89         dma_addr_t ring_dma;
90         int ret = -ENOMEM;
91
92         dev = alloc_hippi_dev(sizeof(struct rr_private));
93         if (!dev)
94                 goto out3;
95
96         ret = pci_enable_device(pdev);
97         if (ret) {
98                 ret = -ENODEV;
99                 goto out2;
100         }
101
102         rrpriv = netdev_priv(dev);
103
104         SET_NETDEV_DEV(dev, &pdev->dev);
105
106         if (pci_request_regions(pdev, "rrunner")) {
107                 ret = -EIO;
108                 goto out;
109         }
110
111         pci_set_drvdata(pdev, dev);
112
113         rrpriv->pci_dev = pdev;
114
115         spin_lock_init(&rrpriv->lock);
116
117         dev->irq = pdev->irq;
118         dev->open = &rr_open;
119         dev->hard_start_xmit = &rr_start_xmit;
120         dev->stop = &rr_close;
121         dev->do_ioctl = &rr_ioctl;
122
123         dev->base_addr = pci_resource_start(pdev, 0);
124
125         /* display version info if adapter is found */
126         if (!version_disp) {
127                 /* set display flag to TRUE so that */
128                 /* we only display this string ONCE */
129                 version_disp = 1;
130                 printk(version);
131         }
132
133         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134         if (pci_latency <= 0x58){
135                 pci_latency = 0x58;
136                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
137         }
138
139         pci_set_master(pdev);
140
141         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
142                "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
143                dev->base_addr, dev->irq, pci_latency);
144
145         /*
146          * Remap the regs into kernel space.
147          */
148
149         rrpriv->regs = ioremap(dev->base_addr, 0x1000);
150
151         if (!rrpriv->regs){
152                 printk(KERN_ERR "%s:  Unable to map I/O register, "
153                         "RoadRunner will be disabled.\n", dev->name);
154                 ret = -EIO;
155                 goto out;
156         }
157
158         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159         rrpriv->tx_ring = tmpptr;
160         rrpriv->tx_ring_dma = ring_dma;
161
162         if (!tmpptr) {
163                 ret = -ENOMEM;
164                 goto out;
165         }
166
167         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168         rrpriv->rx_ring = tmpptr;
169         rrpriv->rx_ring_dma = ring_dma;
170
171         if (!tmpptr) {
172                 ret = -ENOMEM;
173                 goto out;
174         }
175
176         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177         rrpriv->evt_ring = tmpptr;
178         rrpriv->evt_ring_dma = ring_dma;
179
180         if (!tmpptr) {
181                 ret = -ENOMEM;
182                 goto out;
183         }
184
185         /*
186          * Don't access any register before this point!
187          */
188 #ifdef __BIG_ENDIAN
189         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190                 &rrpriv->regs->HostCtrl);
191 #endif
192         /*
193          * Need to add a case for little-endian 64-bit hosts here.
194          */
195
196         rr_init(dev);
197
198         dev->base_addr = 0;
199
200         ret = register_netdev(dev);
201         if (ret)
202                 goto out;
203         return 0;
204
205  out:
206         if (rrpriv->rx_ring)
207                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208                                     rrpriv->rx_ring_dma);
209         if (rrpriv->tx_ring)
210                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211                                     rrpriv->tx_ring_dma);
212         if (rrpriv->regs)
213                 iounmap(rrpriv->regs);
214         if (pdev) {
215                 pci_release_regions(pdev);
216                 pci_set_drvdata(pdev, NULL);
217         }
218  out2:
219         free_netdev(dev);
220  out3:
221         return ret;
222 }
223
224 static void __devexit rr_remove_one (struct pci_dev *pdev)
225 {
226         struct net_device *dev = pci_get_drvdata(pdev);
227
228         if (dev) {
229                 struct rr_private *rr = netdev_priv(dev);
230
231                 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
232                         printk(KERN_ERR "%s: trying to unload running NIC\n",
233                                dev->name);
234                         writel(HALT_NIC, &rr->regs->HostCtrl);
235                 }
236
237                 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
238                                     rr->evt_ring_dma);
239                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
240                                     rr->rx_ring_dma);
241                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
242                                     rr->tx_ring_dma);
243                 unregister_netdev(dev);
244                 iounmap(rr->regs);
245                 free_netdev(dev);
246                 pci_release_regions(pdev);
247                 pci_disable_device(pdev);
248                 pci_set_drvdata(pdev, NULL);
249         }
250 }
251
252
253 /*
254  * Commands are considered to be slow, thus there is no reason to
255  * inline this.
256  */
257 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
258 {
259         struct rr_regs __iomem *regs;
260         u32 idx;
261
262         regs = rrpriv->regs;
263         /*
264          * This is temporary - it will go away in the final version.
265          * We probably also want to make this function inline.
266          */
267         if (readl(&regs->HostCtrl) & NIC_HALTED){
268                 printk("issuing command for halted NIC, code 0x%x, "
269                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
270                 if (readl(&regs->Mode) & FATAL_ERR)
271                         printk("error codes Fail1 %02x, Fail2 %02x\n",
272                                readl(&regs->Fail1), readl(&regs->Fail2));
273         }
274
275         idx = rrpriv->info->cmd_ctrl.pi;
276
277         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
278         wmb();
279
280         idx = (idx - 1) % CMD_RING_ENTRIES;
281         rrpriv->info->cmd_ctrl.pi = idx;
282         wmb();
283
284         if (readl(&regs->Mode) & FATAL_ERR)
285                 printk("error code %02x\n", readl(&regs->Fail1));
286 }
287
288
289 /*
290  * Reset the board in a sensible manner. The NIC is already halted
291  * when we get here and a spin-lock is held.
292  */
293 static int rr_reset(struct net_device *dev)
294 {
295         struct rr_private *rrpriv;
296         struct rr_regs __iomem *regs;
297         u32 start_pc;
298         int i;
299
300         rrpriv = netdev_priv(dev);
301         regs = rrpriv->regs;
302
303         rr_load_firmware(dev);
304
305         writel(0x01000000, &regs->TX_state);
306         writel(0xff800000, &regs->RX_state);
307         writel(0, &regs->AssistState);
308         writel(CLEAR_INTA, &regs->LocalCtrl);
309         writel(0x01, &regs->BrkPt);
310         writel(0, &regs->Timer);
311         writel(0, &regs->TimerRef);
312         writel(RESET_DMA, &regs->DmaReadState);
313         writel(RESET_DMA, &regs->DmaWriteState);
314         writel(0, &regs->DmaWriteHostHi);
315         writel(0, &regs->DmaWriteHostLo);
316         writel(0, &regs->DmaReadHostHi);
317         writel(0, &regs->DmaReadHostLo);
318         writel(0, &regs->DmaReadLen);
319         writel(0, &regs->DmaWriteLen);
320         writel(0, &regs->DmaWriteLcl);
321         writel(0, &regs->DmaWriteIPchecksum);
322         writel(0, &regs->DmaReadLcl);
323         writel(0, &regs->DmaReadIPchecksum);
324         writel(0, &regs->PciState);
325 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
326         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
327 #elif (BITS_PER_LONG == 64)
328         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
329 #else
330         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
331 #endif
332
333 #if 0
334         /*
335          * Don't worry, this is just black magic.
336          */
337         writel(0xdf000, &regs->RxBase);
338         writel(0xdf000, &regs->RxPrd);
339         writel(0xdf000, &regs->RxCon);
340         writel(0xce000, &regs->TxBase);
341         writel(0xce000, &regs->TxPrd);
342         writel(0xce000, &regs->TxCon);
343         writel(0, &regs->RxIndPro);
344         writel(0, &regs->RxIndCon);
345         writel(0, &regs->RxIndRef);
346         writel(0, &regs->TxIndPro);
347         writel(0, &regs->TxIndCon);
348         writel(0, &regs->TxIndRef);
349         writel(0xcc000, &regs->pad10[0]);
350         writel(0, &regs->DrCmndPro);
351         writel(0, &regs->DrCmndCon);
352         writel(0, &regs->DwCmndPro);
353         writel(0, &regs->DwCmndCon);
354         writel(0, &regs->DwCmndRef);
355         writel(0, &regs->DrDataPro);
356         writel(0, &regs->DrDataCon);
357         writel(0, &regs->DrDataRef);
358         writel(0, &regs->DwDataPro);
359         writel(0, &regs->DwDataCon);
360         writel(0, &regs->DwDataRef);
361 #endif
362
363         writel(0xffffffff, &regs->MbEvent);
364         writel(0, &regs->Event);
365
366         writel(0, &regs->TxPi);
367         writel(0, &regs->IpRxPi);
368
369         writel(0, &regs->EvtCon);
370         writel(0, &regs->EvtPrd);
371
372         rrpriv->info->evt_ctrl.pi = 0;
373
374         for (i = 0; i < CMD_RING_ENTRIES; i++)
375                 writel(0, &regs->CmdRing[i]);
376
377 /*
378  * Why 32 ? is this not cache line size dependent?
379  */
380         writel(RBURST_64|WBURST_64, &regs->PciState);
381         wmb();
382
383         start_pc = rr_read_eeprom_word(rrpriv,
384                         offsetof(struct eeprom, rncd_info.FwStart));
385
386 #if (DEBUG > 1)
387         printk("%s: Executing firmware at address 0x%06x\n",
388                dev->name, start_pc);
389 #endif
390
391         writel(start_pc + 0x800, &regs->Pc);
392         wmb();
393         udelay(5);
394
395         writel(start_pc, &regs->Pc);
396         wmb();
397
398         return 0;
399 }
400
401
402 /*
403  * Read a string from the EEPROM.
404  */
405 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
406                                 unsigned long offset,
407                                 unsigned char *buf,
408                                 unsigned long length)
409 {
410         struct rr_regs __iomem *regs = rrpriv->regs;
411         u32 misc, io, host, i;
412
413         io = readl(&regs->ExtIo);
414         writel(0, &regs->ExtIo);
415         misc = readl(&regs->LocalCtrl);
416         writel(0, &regs->LocalCtrl);
417         host = readl(&regs->HostCtrl);
418         writel(host | HALT_NIC, &regs->HostCtrl);
419         mb();
420
421         for (i = 0; i < length; i++){
422                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
423                 mb();
424                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
425                 mb();
426         }
427
428         writel(host, &regs->HostCtrl);
429         writel(misc, &regs->LocalCtrl);
430         writel(io, &regs->ExtIo);
431         mb();
432         return i;
433 }
434
435
436 /*
437  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
438  * it to our CPU byte-order.
439  */
440 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
441                             size_t offset)
442 {
443         __be32 word;
444
445         if ((rr_read_eeprom(rrpriv, offset,
446                             (unsigned char *)&word, 4) == 4))
447                 return be32_to_cpu(word);
448         return 0;
449 }
450
451
452 /*
453  * Write a string to the EEPROM.
454  *
455  * This is only called when the firmware is not running.
456  */
457 static unsigned int write_eeprom(struct rr_private *rrpriv,
458                                  unsigned long offset,
459                                  unsigned char *buf,
460                                  unsigned long length)
461 {
462         struct rr_regs __iomem *regs = rrpriv->regs;
463         u32 misc, io, data, i, j, ready, error = 0;
464
465         io = readl(&regs->ExtIo);
466         writel(0, &regs->ExtIo);
467         misc = readl(&regs->LocalCtrl);
468         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
469         mb();
470
471         for (i = 0; i < length; i++){
472                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
473                 mb();
474                 data = buf[i] << 24;
475                 /*
476                  * Only try to write the data if it is not the same
477                  * value already.
478                  */
479                 if ((readl(&regs->WinData) & 0xff000000) != data){
480                         writel(data, &regs->WinData);
481                         ready = 0;
482                         j = 0;
483                         mb();
484                         while(!ready){
485                                 udelay(20);
486                                 if ((readl(&regs->WinData) & 0xff000000) ==
487                                     data)
488                                         ready = 1;
489                                 mb();
490                                 if (j++ > 5000){
491                                         printk("data mismatch: %08x, "
492                                                "WinData %08x\n", data,
493                                                readl(&regs->WinData));
494                                         ready = 1;
495                                         error = 1;
496                                 }
497                         }
498                 }
499         }
500
501         writel(misc, &regs->LocalCtrl);
502         writel(io, &regs->ExtIo);
503         mb();
504
505         return error;
506 }
507
508
509 static int __devinit rr_init(struct net_device *dev)
510 {
511         struct rr_private *rrpriv;
512         struct rr_regs __iomem *regs;
513         u32 sram_size, rev;
514         DECLARE_MAC_BUF(mac);
515
516         rrpriv = netdev_priv(dev);
517         regs = rrpriv->regs;
518
519         rev = readl(&regs->FwRev);
520         rrpriv->fw_rev = rev;
521         if (rev > 0x00020024)
522                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
523                        ((rev >> 8) & 0xff), (rev & 0xff));
524         else if (rev >= 0x00020000) {
525                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
526                        "later is recommended)\n", (rev >> 16),
527                        ((rev >> 8) & 0xff), (rev & 0xff));
528         }else{
529                 printk("  Firmware revision too old: %i.%i.%i, please "
530                        "upgrade to 2.0.37 or later.\n",
531                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
532         }
533
534 #if (DEBUG > 2)
535         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
536 #endif
537
538         /*
539          * Read the hardware address from the eeprom.  The HW address
540          * is not really necessary for HIPPI but awfully convenient.
541          * The pointer arithmetic to put it in dev_addr is ugly, but
542          * Donald Becker does it this way for the GigE version of this
543          * card and it's shorter and more portable than any
544          * other method I've seen.  -VAL
545          */
546
547         *(__be16 *)(dev->dev_addr) =
548           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
549         *(__be32 *)(dev->dev_addr+2) =
550           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
551
552         printk("  MAC: %s\n", print_mac(mac, dev->dev_addr));
553
554         sram_size = rr_read_eeprom_word(rrpriv, 8);
555         printk("  SRAM size 0x%06x\n", sram_size);
556
557         return 0;
558 }
559
560
561 static int rr_init1(struct net_device *dev)
562 {
563         struct rr_private *rrpriv;
564         struct rr_regs __iomem *regs;
565         unsigned long myjif, flags;
566         struct cmd cmd;
567         u32 hostctrl;
568         int ecode = 0;
569         short i;
570
571         rrpriv = netdev_priv(dev);
572         regs = rrpriv->regs;
573
574         spin_lock_irqsave(&rrpriv->lock, flags);
575
576         hostctrl = readl(&regs->HostCtrl);
577         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
578         wmb();
579
580         if (hostctrl & PARITY_ERR){
581                 printk("%s: Parity error halting NIC - this is serious!\n",
582                        dev->name);
583                 spin_unlock_irqrestore(&rrpriv->lock, flags);
584                 ecode = -EFAULT;
585                 goto error;
586         }
587
588         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
589         set_infoaddr(regs, rrpriv->info_dma);
590
591         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
592         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
593         rrpriv->info->evt_ctrl.mode = 0;
594         rrpriv->info->evt_ctrl.pi = 0;
595         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
596
597         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
598         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
599         rrpriv->info->cmd_ctrl.mode = 0;
600         rrpriv->info->cmd_ctrl.pi = 15;
601
602         for (i = 0; i < CMD_RING_ENTRIES; i++) {
603                 writel(0, &regs->CmdRing[i]);
604         }
605
606         for (i = 0; i < TX_RING_ENTRIES; i++) {
607                 rrpriv->tx_ring[i].size = 0;
608                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
609                 rrpriv->tx_skbuff[i] = NULL;
610         }
611         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
612         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
613         rrpriv->info->tx_ctrl.mode = 0;
614         rrpriv->info->tx_ctrl.pi = 0;
615         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
616
617         /*
618          * Set dirty_tx before we start receiving interrupts, otherwise
619          * the interrupt handler might think it is supposed to process
620          * tx ints before we are up and running, which may cause a null
621          * pointer access in the int handler.
622          */
623         rrpriv->tx_full = 0;
624         rrpriv->cur_rx = 0;
625         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
626
627         rr_reset(dev);
628
629         /* Tuning values */
630         writel(0x5000, &regs->ConRetry);
631         writel(0x100, &regs->ConRetryTmr);
632         writel(0x500000, &regs->ConTmout);
633         writel(0x60, &regs->IntrTmr);
634         writel(0x500000, &regs->TxDataMvTimeout);
635         writel(0x200000, &regs->RxDataMvTimeout);
636         writel(0x80, &regs->WriteDmaThresh);
637         writel(0x80, &regs->ReadDmaThresh);
638
639         rrpriv->fw_running = 0;
640         wmb();
641
642         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
643         writel(hostctrl, &regs->HostCtrl);
644         wmb();
645
646         spin_unlock_irqrestore(&rrpriv->lock, flags);
647
648         for (i = 0; i < RX_RING_ENTRIES; i++) {
649                 struct sk_buff *skb;
650                 dma_addr_t addr;
651
652                 rrpriv->rx_ring[i].mode = 0;
653                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
654                 if (!skb) {
655                         printk(KERN_WARNING "%s: Unable to allocate memory "
656                                "for receive ring - halting NIC\n", dev->name);
657                         ecode = -ENOMEM;
658                         goto error;
659                 }
660                 rrpriv->rx_skbuff[i] = skb;
661                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
662                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
663                 /*
664                  * Sanity test to see if we conflict with the DMA
665                  * limitations of the Roadrunner.
666                  */
667                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
668                         printk("skb alloc error\n");
669
670                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
671                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
672         }
673
674         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
675         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
676         rrpriv->rx_ctrl[4].mode = 8;
677         rrpriv->rx_ctrl[4].pi = 0;
678         wmb();
679         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
680
681         udelay(1000);
682
683         /*
684          * Now start the FirmWare.
685          */
686         cmd.code = C_START_FW;
687         cmd.ring = 0;
688         cmd.index = 0;
689
690         rr_issue_cmd(rrpriv, &cmd);
691
692         /*
693          * Give the FirmWare time to chew on the `get running' command.
694          */
695         myjif = jiffies + 5 * HZ;
696         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
697                 cpu_relax();
698
699         netif_start_queue(dev);
700
701         return ecode;
702
703  error:
704         /*
705          * We might have gotten here because we are out of memory,
706          * make sure we release everything we allocated before failing
707          */
708         for (i = 0; i < RX_RING_ENTRIES; i++) {
709                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
710
711                 if (skb) {
712                         pci_unmap_single(rrpriv->pci_dev,
713                                          rrpriv->rx_ring[i].addr.addrlo,
714                                          dev->mtu + HIPPI_HLEN,
715                                          PCI_DMA_FROMDEVICE);
716                         rrpriv->rx_ring[i].size = 0;
717                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
718                         dev_kfree_skb(skb);
719                         rrpriv->rx_skbuff[i] = NULL;
720                 }
721         }
722         return ecode;
723 }
724
725
726 /*
727  * All events are considered to be slow (RX/TX ints do not generate
728  * events) and are handled here, outside the main interrupt handler,
729  * to reduce the size of the handler.
730  */
731 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
732 {
733         struct rr_private *rrpriv;
734         struct rr_regs __iomem *regs;
735         u32 tmp;
736
737         rrpriv = netdev_priv(dev);
738         regs = rrpriv->regs;
739
740         while (prodidx != eidx){
741                 switch (rrpriv->evt_ring[eidx].code){
742                 case E_NIC_UP:
743                         tmp = readl(&regs->FwRev);
744                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
745                                "up and running\n", dev->name,
746                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
747                         rrpriv->fw_running = 1;
748                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
749                         wmb();
750                         break;
751                 case E_LINK_ON:
752                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
753                         break;
754                 case E_LINK_OFF:
755                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
756                         break;
757                 case E_RX_IDLE:
758                         printk(KERN_WARNING "%s: RX data not moving\n",
759                                dev->name);
760                         goto drop;
761                 case E_WATCHDOG:
762                         printk(KERN_INFO "%s: The watchdog is here to see "
763                                "us\n", dev->name);
764                         break;
765                 case E_INTERN_ERR:
766                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
767                                dev->name);
768                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769                                &regs->HostCtrl);
770                         wmb();
771                         break;
772                 case E_HOST_ERR:
773                         printk(KERN_ERR "%s: Host software error\n",
774                                dev->name);
775                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
776                                &regs->HostCtrl);
777                         wmb();
778                         break;
779                 /*
780                  * TX events.
781                  */
782                 case E_CON_REJ:
783                         printk(KERN_WARNING "%s: Connection rejected\n",
784                                dev->name);
785                         dev->stats.tx_aborted_errors++;
786                         break;
787                 case E_CON_TMOUT:
788                         printk(KERN_WARNING "%s: Connection timeout\n",
789                                dev->name);
790                         break;
791                 case E_DISC_ERR:
792                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
793                                dev->name);
794                         dev->stats.tx_aborted_errors++;
795                         break;
796                 case E_INT_PRTY:
797                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
798                                dev->name);
799                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
800                                &regs->HostCtrl);
801                         wmb();
802                         break;
803                 case E_TX_IDLE:
804                         printk(KERN_WARNING "%s: Transmitter idle\n",
805                                dev->name);
806                         break;
807                 case E_TX_LINK_DROP:
808                         printk(KERN_WARNING "%s: Link lost during transmit\n",
809                                dev->name);
810                         dev->stats.tx_aborted_errors++;
811                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812                                &regs->HostCtrl);
813                         wmb();
814                         break;
815                 case E_TX_INV_RNG:
816                         printk(KERN_ERR "%s: Invalid send ring block\n",
817                                dev->name);
818                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819                                &regs->HostCtrl);
820                         wmb();
821                         break;
822                 case E_TX_INV_BUF:
823                         printk(KERN_ERR "%s: Invalid send buffer address\n",
824                                dev->name);
825                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826                                &regs->HostCtrl);
827                         wmb();
828                         break;
829                 case E_TX_INV_DSC:
830                         printk(KERN_ERR "%s: Invalid descriptor address\n",
831                                dev->name);
832                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
833                                &regs->HostCtrl);
834                         wmb();
835                         break;
836                 /*
837                  * RX events.
838                  */
839                 case E_RX_RNG_OUT:
840                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
841                         break;
842
843                 case E_RX_PAR_ERR:
844                         printk(KERN_WARNING "%s: Receive parity error\n",
845                                dev->name);
846                         goto drop;
847                 case E_RX_LLRC_ERR:
848                         printk(KERN_WARNING "%s: Receive LLRC error\n",
849                                dev->name);
850                         goto drop;
851                 case E_PKT_LN_ERR:
852                         printk(KERN_WARNING "%s: Receive packet length "
853                                "error\n", dev->name);
854                         goto drop;
855                 case E_DTA_CKSM_ERR:
856                         printk(KERN_WARNING "%s: Data checksum error\n",
857                                dev->name);
858                         goto drop;
859                 case E_SHT_BST:
860                         printk(KERN_WARNING "%s: Unexpected short burst "
861                                "error\n", dev->name);
862                         goto drop;
863                 case E_STATE_ERR:
864                         printk(KERN_WARNING "%s: Recv. state transition"
865                                " error\n", dev->name);
866                         goto drop;
867                 case E_UNEXP_DATA:
868                         printk(KERN_WARNING "%s: Unexpected data error\n",
869                                dev->name);
870                         goto drop;
871                 case E_LST_LNK_ERR:
872                         printk(KERN_WARNING "%s: Link lost error\n",
873                                dev->name);
874                         goto drop;
875                 case E_FRM_ERR:
876                         printk(KERN_WARNING "%s: Framming Error\n",
877                                dev->name);
878                         goto drop;
879                 case E_FLG_SYN_ERR:
880                         printk(KERN_WARNING "%s: Flag sync. lost during "
881                                "packet\n", dev->name);
882                         goto drop;
883                 case E_RX_INV_BUF:
884                         printk(KERN_ERR "%s: Invalid receive buffer "
885                                "address\n", dev->name);
886                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887                                &regs->HostCtrl);
888                         wmb();
889                         break;
890                 case E_RX_INV_DSC:
891                         printk(KERN_ERR "%s: Invalid receive descriptor "
892                                "address\n", dev->name);
893                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894                                &regs->HostCtrl);
895                         wmb();
896                         break;
897                 case E_RNG_BLK:
898                         printk(KERN_ERR "%s: Invalid ring block\n",
899                                dev->name);
900                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
901                                &regs->HostCtrl);
902                         wmb();
903                         break;
904                 drop:
905                         /* Label packet to be dropped.
906                          * Actual dropping occurs in rx
907                          * handling.
908                          *
909                          * The index of packet we get to drop is
910                          * the index of the packet following
911                          * the bad packet. -kbf
912                          */
913                         {
914                                 u16 index = rrpriv->evt_ring[eidx].index;
915                                 index = (index + (RX_RING_ENTRIES - 1)) %
916                                         RX_RING_ENTRIES;
917                                 rrpriv->rx_ring[index].mode |=
918                                         (PACKET_BAD | PACKET_END);
919                         }
920                         break;
921                 default:
922                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
923                                dev->name, rrpriv->evt_ring[eidx].code);
924                 }
925                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
926         }
927
928         rrpriv->info->evt_ctrl.pi = eidx;
929         wmb();
930         return eidx;
931 }
932
933
934 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
935 {
936         struct rr_private *rrpriv = netdev_priv(dev);
937         struct rr_regs __iomem *regs = rrpriv->regs;
938
939         do {
940                 struct rx_desc *desc;
941                 u32 pkt_len;
942
943                 desc = &(rrpriv->rx_ring[index]);
944                 pkt_len = desc->size;
945 #if (DEBUG > 2)
946                 printk("index %i, rxlimit %i\n", index, rxlimit);
947                 printk("len %x, mode %x\n", pkt_len, desc->mode);
948 #endif
949                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
950                         dev->stats.rx_dropped++;
951                         goto defer;
952                 }
953
954                 if (pkt_len > 0){
955                         struct sk_buff *skb, *rx_skb;
956
957                         rx_skb = rrpriv->rx_skbuff[index];
958
959                         if (pkt_len < PKT_COPY_THRESHOLD) {
960                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
961                                 if (skb == NULL){
962                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
963                                         dev->stats.rx_dropped++;
964                                         goto defer;
965                                 } else {
966                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
967                                                                     desc->addr.addrlo,
968                                                                     pkt_len,
969                                                                     PCI_DMA_FROMDEVICE);
970
971                                         memcpy(skb_put(skb, pkt_len),
972                                                rx_skb->data, pkt_len);
973
974                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
975                                                                        desc->addr.addrlo,
976                                                                        pkt_len,
977                                                                        PCI_DMA_FROMDEVICE);
978                                 }
979                         }else{
980                                 struct sk_buff *newskb;
981
982                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
983                                         GFP_ATOMIC);
984                                 if (newskb){
985                                         dma_addr_t addr;
986
987                                         pci_unmap_single(rrpriv->pci_dev,
988                                                 desc->addr.addrlo, dev->mtu +
989                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
990                                         skb = rx_skb;
991                                         skb_put(skb, pkt_len);
992                                         rrpriv->rx_skbuff[index] = newskb;
993                                         addr = pci_map_single(rrpriv->pci_dev,
994                                                 newskb->data,
995                                                 dev->mtu + HIPPI_HLEN,
996                                                 PCI_DMA_FROMDEVICE);
997                                         set_rraddr(&desc->addr, addr);
998                                 } else {
999                                         printk("%s: Out of memory, deferring "
1000                                                "packet\n", dev->name);
1001                                         dev->stats.rx_dropped++;
1002                                         goto defer;
1003                                 }
1004                         }
1005                         skb->protocol = hippi_type_trans(skb, dev);
1006
1007                         netif_rx(skb);          /* send it up */
1008
1009                         dev->last_rx = jiffies;
1010                         dev->stats.rx_packets++;
1011                         dev->stats.rx_bytes += pkt_len;
1012                 }
1013         defer:
1014                 desc->mode = 0;
1015                 desc->size = dev->mtu + HIPPI_HLEN;
1016
1017                 if ((index & 7) == 7)
1018                         writel(index, &regs->IpRxPi);
1019
1020                 index = (index + 1) % RX_RING_ENTRIES;
1021         } while(index != rxlimit);
1022
1023         rrpriv->cur_rx = index;
1024         wmb();
1025 }
1026
1027
1028 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1029 {
1030         struct rr_private *rrpriv;
1031         struct rr_regs __iomem *regs;
1032         struct net_device *dev = (struct net_device *)dev_id;
1033         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1034
1035         rrpriv = netdev_priv(dev);
1036         regs = rrpriv->regs;
1037
1038         if (!(readl(&regs->HostCtrl) & RR_INT))
1039                 return IRQ_NONE;
1040
1041         spin_lock(&rrpriv->lock);
1042
1043         prodidx = readl(&regs->EvtPrd);
1044         txcsmr = (prodidx >> 8) & 0xff;
1045         rxlimit = (prodidx >> 16) & 0xff;
1046         prodidx &= 0xff;
1047
1048 #if (DEBUG > 2)
1049         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1050                prodidx, rrpriv->info->evt_ctrl.pi);
1051 #endif
1052         /*
1053          * Order here is important.  We must handle events
1054          * before doing anything else in order to catch
1055          * such things as LLRC errors, etc -kbf
1056          */
1057
1058         eidx = rrpriv->info->evt_ctrl.pi;
1059         if (prodidx != eidx)
1060                 eidx = rr_handle_event(dev, prodidx, eidx);
1061
1062         rxindex = rrpriv->cur_rx;
1063         if (rxindex != rxlimit)
1064                 rx_int(dev, rxlimit, rxindex);
1065
1066         txcon = rrpriv->dirty_tx;
1067         if (txcsmr != txcon) {
1068                 do {
1069                         /* Due to occational firmware TX producer/consumer out
1070                          * of sync. error need to check entry in ring -kbf
1071                          */
1072                         if(rrpriv->tx_skbuff[txcon]){
1073                                 struct tx_desc *desc;
1074                                 struct sk_buff *skb;
1075
1076                                 desc = &(rrpriv->tx_ring[txcon]);
1077                                 skb = rrpriv->tx_skbuff[txcon];
1078
1079                                 dev->stats.tx_packets++;
1080                                 dev->stats.tx_bytes += skb->len;
1081
1082                                 pci_unmap_single(rrpriv->pci_dev,
1083                                                  desc->addr.addrlo, skb->len,
1084                                                  PCI_DMA_TODEVICE);
1085                                 dev_kfree_skb_irq(skb);
1086
1087                                 rrpriv->tx_skbuff[txcon] = NULL;
1088                                 desc->size = 0;
1089                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1090                                 desc->mode = 0;
1091                         }
1092                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1093                 } while (txcsmr != txcon);
1094                 wmb();
1095
1096                 rrpriv->dirty_tx = txcon;
1097                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1098                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1099                      != rrpriv->dirty_tx)){
1100                         rrpriv->tx_full = 0;
1101                         netif_wake_queue(dev);
1102                 }
1103         }
1104
1105         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1106         writel(eidx, &regs->EvtCon);
1107         wmb();
1108
1109         spin_unlock(&rrpriv->lock);
1110         return IRQ_HANDLED;
1111 }
1112
1113 static inline void rr_raz_tx(struct rr_private *rrpriv,
1114                              struct net_device *dev)
1115 {
1116         int i;
1117
1118         for (i = 0; i < TX_RING_ENTRIES; i++) {
1119                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1120
1121                 if (skb) {
1122                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1123
1124                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1125                                 skb->len, PCI_DMA_TODEVICE);
1126                         desc->size = 0;
1127                         set_rraddr(&desc->addr, 0);
1128                         dev_kfree_skb(skb);
1129                         rrpriv->tx_skbuff[i] = NULL;
1130                 }
1131         }
1132 }
1133
1134
1135 static inline void rr_raz_rx(struct rr_private *rrpriv,
1136                              struct net_device *dev)
1137 {
1138         int i;
1139
1140         for (i = 0; i < RX_RING_ENTRIES; i++) {
1141                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1142
1143                 if (skb) {
1144                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1145
1146                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1147                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1148                         desc->size = 0;
1149                         set_rraddr(&desc->addr, 0);
1150                         dev_kfree_skb(skb);
1151                         rrpriv->rx_skbuff[i] = NULL;
1152                 }
1153         }
1154 }
1155
1156 static void rr_timer(unsigned long data)
1157 {
1158         struct net_device *dev = (struct net_device *)data;
1159         struct rr_private *rrpriv = netdev_priv(dev);
1160         struct rr_regs __iomem *regs = rrpriv->regs;
1161         unsigned long flags;
1162
1163         if (readl(&regs->HostCtrl) & NIC_HALTED){
1164                 printk("%s: Restarting nic\n", dev->name);
1165                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1166                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1167                 wmb();
1168
1169                 rr_raz_tx(rrpriv, dev);
1170                 rr_raz_rx(rrpriv, dev);
1171
1172                 if (rr_init1(dev)) {
1173                         spin_lock_irqsave(&rrpriv->lock, flags);
1174                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1175                                &regs->HostCtrl);
1176                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1177                 }
1178         }
1179         rrpriv->timer.expires = RUN_AT(5*HZ);
1180         add_timer(&rrpriv->timer);
1181 }
1182
1183
1184 static int rr_open(struct net_device *dev)
1185 {
1186         struct rr_private *rrpriv = netdev_priv(dev);
1187         struct pci_dev *pdev = rrpriv->pci_dev;
1188         struct rr_regs __iomem *regs;
1189         int ecode = 0;
1190         unsigned long flags;
1191         dma_addr_t dma_addr;
1192
1193         regs = rrpriv->regs;
1194
1195         if (rrpriv->fw_rev < 0x00020000) {
1196                 printk(KERN_WARNING "%s: trying to configure device with "
1197                        "obsolete firmware\n", dev->name);
1198                 ecode = -EBUSY;
1199                 goto error;
1200         }
1201
1202         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1203                                                256 * sizeof(struct ring_ctrl),
1204                                                &dma_addr);
1205         if (!rrpriv->rx_ctrl) {
1206                 ecode = -ENOMEM;
1207                 goto error;
1208         }
1209         rrpriv->rx_ctrl_dma = dma_addr;
1210         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1211
1212         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1213                                             &dma_addr);
1214         if (!rrpriv->info) {
1215                 ecode = -ENOMEM;
1216                 goto error;
1217         }
1218         rrpriv->info_dma = dma_addr;
1219         memset(rrpriv->info, 0, sizeof(struct rr_info));
1220         wmb();
1221
1222         spin_lock_irqsave(&rrpriv->lock, flags);
1223         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1224         readl(&regs->HostCtrl);
1225         spin_unlock_irqrestore(&rrpriv->lock, flags);
1226
1227         if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1228                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1229                        dev->name, dev->irq);
1230                 ecode = -EAGAIN;
1231                 goto error;
1232         }
1233
1234         if ((ecode = rr_init1(dev)))
1235                 goto error;
1236
1237         /* Set the timer to switch to check for link beat and perhaps switch
1238            to an alternate media type. */
1239         init_timer(&rrpriv->timer);
1240         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1241         rrpriv->timer.data = (unsigned long)dev;
1242         rrpriv->timer.function = &rr_timer;               /* timer handler */
1243         add_timer(&rrpriv->timer);
1244
1245         netif_start_queue(dev);
1246
1247         return ecode;
1248
1249  error:
1250         spin_lock_irqsave(&rrpriv->lock, flags);
1251         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1252         spin_unlock_irqrestore(&rrpriv->lock, flags);
1253
1254         if (rrpriv->info) {
1255                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1256                                     rrpriv->info_dma);
1257                 rrpriv->info = NULL;
1258         }
1259         if (rrpriv->rx_ctrl) {
1260                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1261                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1262                 rrpriv->rx_ctrl = NULL;
1263         }
1264
1265         netif_stop_queue(dev);
1266
1267         return ecode;
1268 }
1269
1270
1271 static void rr_dump(struct net_device *dev)
1272 {
1273         struct rr_private *rrpriv;
1274         struct rr_regs __iomem *regs;
1275         u32 index, cons;
1276         short i;
1277         int len;
1278
1279         rrpriv = netdev_priv(dev);
1280         regs = rrpriv->regs;
1281
1282         printk("%s: dumping NIC TX rings\n", dev->name);
1283
1284         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1285                readl(&regs->RxPrd), readl(&regs->TxPrd),
1286                readl(&regs->EvtPrd), readl(&regs->TxPi),
1287                rrpriv->info->tx_ctrl.pi);
1288
1289         printk("Error code 0x%x\n", readl(&regs->Fail1));
1290
1291         index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1292         cons = rrpriv->dirty_tx;
1293         printk("TX ring index %i, TX consumer %i\n",
1294                index, cons);
1295
1296         if (rrpriv->tx_skbuff[index]){
1297                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1298                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1299                 for (i = 0; i < len; i++){
1300                         if (!(i & 7))
1301                                 printk("\n");
1302                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1303                 }
1304                 printk("\n");
1305         }
1306
1307         if (rrpriv->tx_skbuff[cons]){
1308                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1309                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1310                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1311                        rrpriv->tx_ring[cons].mode,
1312                        rrpriv->tx_ring[cons].size,
1313                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1314                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1315                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1316                 for (i = 0; i < len; i++){
1317                         if (!(i & 7))
1318                                 printk("\n");
1319                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1320                 }
1321                 printk("\n");
1322         }
1323
1324         printk("dumping TX ring info:\n");
1325         for (i = 0; i < TX_RING_ENTRIES; i++)
1326                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1327                        rrpriv->tx_ring[i].mode,
1328                        rrpriv->tx_ring[i].size,
1329                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1330
1331 }
1332
1333
1334 static int rr_close(struct net_device *dev)
1335 {
1336         struct rr_private *rrpriv;
1337         struct rr_regs __iomem *regs;
1338         unsigned long flags;
1339         u32 tmp;
1340         short i;
1341
1342         netif_stop_queue(dev);
1343
1344         rrpriv = netdev_priv(dev);
1345         regs = rrpriv->regs;
1346
1347         /*
1348          * Lock to make sure we are not cleaning up while another CPU
1349          * is handling interrupts.
1350          */
1351         spin_lock_irqsave(&rrpriv->lock, flags);
1352
1353         tmp = readl(&regs->HostCtrl);
1354         if (tmp & NIC_HALTED){
1355                 printk("%s: NIC already halted\n", dev->name);
1356                 rr_dump(dev);
1357         }else{
1358                 tmp |= HALT_NIC | RR_CLEAR_INT;
1359                 writel(tmp, &regs->HostCtrl);
1360                 readl(&regs->HostCtrl);
1361         }
1362
1363         rrpriv->fw_running = 0;
1364
1365         del_timer_sync(&rrpriv->timer);
1366
1367         writel(0, &regs->TxPi);
1368         writel(0, &regs->IpRxPi);
1369
1370         writel(0, &regs->EvtCon);
1371         writel(0, &regs->EvtPrd);
1372
1373         for (i = 0; i < CMD_RING_ENTRIES; i++)
1374                 writel(0, &regs->CmdRing[i]);
1375
1376         rrpriv->info->tx_ctrl.entries = 0;
1377         rrpriv->info->cmd_ctrl.pi = 0;
1378         rrpriv->info->evt_ctrl.pi = 0;
1379         rrpriv->rx_ctrl[4].entries = 0;
1380
1381         rr_raz_tx(rrpriv, dev);
1382         rr_raz_rx(rrpriv, dev);
1383
1384         pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1385                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1386         rrpriv->rx_ctrl = NULL;
1387
1388         pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1389                             rrpriv->info, rrpriv->info_dma);
1390         rrpriv->info = NULL;
1391
1392         free_irq(dev->irq, dev);
1393         spin_unlock_irqrestore(&rrpriv->lock, flags);
1394
1395         return 0;
1396 }
1397
1398
1399 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1400 {
1401         struct rr_private *rrpriv = netdev_priv(dev);
1402         struct rr_regs __iomem *regs = rrpriv->regs;
1403         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1404         struct ring_ctrl *txctrl;
1405         unsigned long flags;
1406         u32 index, len = skb->len;
1407         u32 *ifield;
1408         struct sk_buff *new_skb;
1409
1410         if (readl(&regs->Mode) & FATAL_ERR)
1411                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1412                        readl(&regs->Fail1), readl(&regs->Fail2));
1413
1414         /*
1415          * We probably need to deal with tbusy here to prevent overruns.
1416          */
1417
1418         if (skb_headroom(skb) < 8){
1419                 printk("incoming skb too small - reallocating\n");
1420                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1421                         dev_kfree_skb(skb);
1422                         netif_wake_queue(dev);
1423                         return -EBUSY;
1424                 }
1425                 skb_reserve(new_skb, 8);
1426                 skb_put(new_skb, len);
1427                 skb_copy_from_linear_data(skb, new_skb->data, len);
1428                 dev_kfree_skb(skb);
1429                 skb = new_skb;
1430         }
1431
1432         ifield = (u32 *)skb_push(skb, 8);
1433
1434         ifield[0] = 0;
1435         ifield[1] = hcb->ifield;
1436
1437         /*
1438          * We don't need the lock before we are actually going to start
1439          * fiddling with the control blocks.
1440          */
1441         spin_lock_irqsave(&rrpriv->lock, flags);
1442
1443         txctrl = &rrpriv->info->tx_ctrl;
1444
1445         index = txctrl->pi;
1446
1447         rrpriv->tx_skbuff[index] = skb;
1448         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1449                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1450         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1451         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1452         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1453         wmb();
1454         writel(txctrl->pi, &regs->TxPi);
1455
1456         if (txctrl->pi == rrpriv->dirty_tx){
1457                 rrpriv->tx_full = 1;
1458                 netif_stop_queue(dev);
1459         }
1460
1461         spin_unlock_irqrestore(&rrpriv->lock, flags);
1462
1463         dev->trans_start = jiffies;
1464         return 0;
1465 }
1466
1467
1468 /*
1469  * Read the firmware out of the EEPROM and put it into the SRAM
1470  * (or from user space - later)
1471  *
1472  * This operation requires the NIC to be halted and is performed with
1473  * interrupts disabled and with the spinlock hold.
1474  */
1475 static int rr_load_firmware(struct net_device *dev)
1476 {
1477         struct rr_private *rrpriv;
1478         struct rr_regs __iomem *regs;
1479         size_t eptr, segptr;
1480         int i, j;
1481         u32 localctrl, sptr, len, tmp;
1482         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1483
1484         rrpriv = netdev_priv(dev);
1485         regs = rrpriv->regs;
1486
1487         if (dev->flags & IFF_UP)
1488                 return -EBUSY;
1489
1490         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1491                 printk("%s: Trying to load firmware to a running NIC.\n",
1492                        dev->name);
1493                 return -EBUSY;
1494         }
1495
1496         localctrl = readl(&regs->LocalCtrl);
1497         writel(0, &regs->LocalCtrl);
1498
1499         writel(0, &regs->EvtPrd);
1500         writel(0, &regs->RxPrd);
1501         writel(0, &regs->TxPrd);
1502
1503         /*
1504          * First wipe the entire SRAM, otherwise we might run into all
1505          * kinds of trouble ... sigh, this took almost all afternoon
1506          * to track down ;-(
1507          */
1508         io = readl(&regs->ExtIo);
1509         writel(0, &regs->ExtIo);
1510         sram_size = rr_read_eeprom_word(rrpriv, 8);
1511
1512         for (i = 200; i < sram_size / 4; i++){
1513                 writel(i * 4, &regs->WinBase);
1514                 mb();
1515                 writel(0, &regs->WinData);
1516                 mb();
1517         }
1518         writel(io, &regs->ExtIo);
1519         mb();
1520
1521         eptr = rr_read_eeprom_word(rrpriv,
1522                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1523         eptr = ((eptr & 0x1fffff) >> 3);
1524
1525         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1526         p2len = (p2len << 2);
1527         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1528         p2size = ((p2size & 0x1fffff) >> 3);
1529
1530         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1531                 printk("%s: eptr is invalid\n", dev->name);
1532                 goto out;
1533         }
1534
1535         revision = rr_read_eeprom_word(rrpriv,
1536                         offsetof(struct eeprom, manf.HeaderFmt));
1537
1538         if (revision != 1){
1539                 printk("%s: invalid firmware format (%i)\n",
1540                        dev->name, revision);
1541                 goto out;
1542         }
1543
1544         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1545         eptr +=4;
1546 #if (DEBUG > 1)
1547         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1548 #endif
1549
1550         for (i = 0; i < nr_seg; i++){
1551                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1552                 eptr += 4;
1553                 len = rr_read_eeprom_word(rrpriv, eptr);
1554                 eptr += 4;
1555                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1556                 segptr = ((segptr & 0x1fffff) >> 3);
1557                 eptr += 4;
1558 #if (DEBUG > 1)
1559                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1560                        dev->name, i, sptr, len, segptr);
1561 #endif
1562                 for (j = 0; j < len; j++){
1563                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1564                         writel(sptr, &regs->WinBase);
1565                         mb();
1566                         writel(tmp, &regs->WinData);
1567                         mb();
1568                         segptr += 4;
1569                         sptr += 4;
1570                 }
1571         }
1572
1573 out:
1574         writel(localctrl, &regs->LocalCtrl);
1575         mb();
1576         return 0;
1577 }
1578
1579
1580 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1581 {
1582         struct rr_private *rrpriv;
1583         unsigned char *image, *oldimage;
1584         unsigned long flags;
1585         unsigned int i;
1586         int error = -EOPNOTSUPP;
1587
1588         rrpriv = netdev_priv(dev);
1589
1590         switch(cmd){
1591         case SIOCRRGFW:
1592                 if (!capable(CAP_SYS_RAWIO)){
1593                         return -EPERM;
1594                 }
1595
1596                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1597                 if (!image){
1598                         printk(KERN_ERR "%s: Unable to allocate memory "
1599                                "for EEPROM image\n", dev->name);
1600                         return -ENOMEM;
1601                 }
1602
1603
1604                 if (rrpriv->fw_running){
1605                         printk("%s: Firmware already running\n", dev->name);
1606                         error = -EPERM;
1607                         goto gf_out;
1608                 }
1609
1610                 spin_lock_irqsave(&rrpriv->lock, flags);
1611                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1612                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1613                 if (i != EEPROM_BYTES){
1614                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1615                                dev->name);
1616                         error = -EFAULT;
1617                         goto gf_out;
1618                 }
1619                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1620                 if (error)
1621                         error = -EFAULT;
1622         gf_out:
1623                 kfree(image);
1624                 return error;
1625
1626         case SIOCRRPFW:
1627                 if (!capable(CAP_SYS_RAWIO)){
1628                         return -EPERM;
1629                 }
1630
1631                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1632                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1633                 if (!image || !oldimage) {
1634                         printk(KERN_ERR "%s: Unable to allocate memory "
1635                                "for EEPROM image\n", dev->name);
1636                         error = -ENOMEM;
1637                         goto wf_out;
1638                 }
1639
1640                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1641                 if (error) {
1642                         error = -EFAULT;
1643                         goto wf_out;
1644                 }
1645
1646                 if (rrpriv->fw_running){
1647                         printk("%s: Firmware already running\n", dev->name);
1648                         error = -EPERM;
1649                         goto wf_out;
1650                 }
1651
1652                 printk("%s: Updating EEPROM firmware\n", dev->name);
1653
1654                 spin_lock_irqsave(&rrpriv->lock, flags);
1655                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1656                 if (error)
1657                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1658                                dev->name);
1659
1660                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1661                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1662
1663                 if (i != EEPROM_BYTES)
1664                         printk(KERN_ERR "%s: Error reading back EEPROM "
1665                                "image\n", dev->name);
1666
1667                 error = memcmp(image, oldimage, EEPROM_BYTES);
1668                 if (error){
1669                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1670                                dev->name);
1671                         error = -EFAULT;
1672                 }
1673         wf_out:
1674                 kfree(oldimage);
1675                 kfree(image);
1676                 return error;
1677
1678         case SIOCRRID:
1679                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1680         default:
1681                 return error;
1682         }
1683 }
1684
1685 static struct pci_device_id rr_pci_tbl[] = {
1686         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1687                 PCI_ANY_ID, PCI_ANY_ID, },
1688         { 0,}
1689 };
1690 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1691
1692 static struct pci_driver rr_driver = {
1693         .name           = "rrunner",
1694         .id_table       = rr_pci_tbl,
1695         .probe          = rr_init_one,
1696         .remove         = __devexit_p(rr_remove_one),
1697 };
1698
1699 static int __init rr_init_module(void)
1700 {
1701         return pci_register_driver(&rr_driver);
1702 }
1703
1704 static void __exit rr_cleanup_module(void)
1705 {
1706         pci_unregister_driver(&rr_driver);
1707 }
1708
1709 module_init(rr_init_module);
1710 module_exit(rr_cleanup_module);
1711
1712 /*
1713  * Local variables:
1714  * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1715  * End:
1716  */