2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
45 #define UBIFS_KMALLOC_OK (128*1024)
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 .shrink = ubifs_shrinker,
53 .seeks = DEFAULT_SEEKS,
57 * validate_inode - validate inode.
58 * @c: UBIFS file-system description object
59 * @inode: the inode to validate
61 * This is a helper function for 'ubifs_iget()' which validates various fields
62 * of a newly built inode to make sure they contain sane values and prevent
63 * possible vulnerabilities. Returns zero if the inode is all right and
64 * a non-zero error code if not.
66 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
69 const struct ubifs_inode *ui = ubifs_inode(inode);
71 if (inode->i_size > c->max_inode_sz) {
72 ubifs_err("inode is too large (%lld)",
73 (long long)inode->i_size);
77 if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
78 ubifs_err("unknown compression type %d", ui->compr_type);
82 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
85 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
88 if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
91 if (!ubifs_compr_present(ui->compr_type)) {
92 ubifs_warn("inode %lu uses '%s' compression, but it was not "
93 "compiled in", inode->i_ino,
94 ubifs_compr_name(ui->compr_type));
97 err = dbg_check_dir_size(c, inode);
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
108 struct ubifs_inode *ui;
110 dbg_gen("inode %lu", inum);
112 inode = iget_locked(sb, inum);
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
117 ui = ubifs_inode(inode);
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
125 ino_key_init(c, &key, inode->i_ino);
127 err = ubifs_tnc_lookup(c, &key, ino);
131 inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 inode->i_nlink = le32_to_cpu(ino->nlink);
133 inode->i_uid = le32_to_cpu(ino->uid);
134 inode->i_gid = le32_to_cpu(ino->gid);
135 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
136 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
138 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
140 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 inode->i_mode = le32_to_cpu(ino->mode);
142 inode->i_size = le64_to_cpu(ino->size);
144 ui->data_len = le32_to_cpu(ino->data_len);
145 ui->flags = le32_to_cpu(ino->flags);
146 ui->compr_type = le16_to_cpu(ino->compr_type);
147 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
149 ui->xattr_size = le32_to_cpu(ino->xattr_size);
150 ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 ui->synced_i_size = ui->ui_size = inode->i_size;
153 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
155 err = validate_inode(c, inode);
159 /* Disable read-ahead */
160 inode->i_mapping->backing_dev_info = &c->bdi;
162 switch (inode->i_mode & S_IFMT) {
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
206 union ubifs_dev_desc *dev;
208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
214 dev = (union ubifs_dev_desc *)ino->data;
215 if (ui->data_len == sizeof(dev->new))
216 rdev = new_decode_dev(le32_to_cpu(dev->new));
217 else if (ui->data_len == sizeof(dev->huge))
218 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
223 memcpy(ui->data, ino->data, ui->data_len);
224 inode->i_op = &ubifs_file_inode_operations;
225 init_special_inode(inode, inode->i_mode, rdev);
230 inode->i_op = &ubifs_file_inode_operations;
231 init_special_inode(inode, inode->i_mode, 0);
232 if (ui->data_len != 0) {
243 ubifs_set_inode_flags(inode);
244 unlock_new_inode(inode);
248 ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
249 dbg_dump_node(c, ino);
250 dbg_dump_inode(c, inode);
255 ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
260 static struct inode *ubifs_alloc_inode(struct super_block *sb)
262 struct ubifs_inode *ui;
264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
268 memset((void *)ui + sizeof(struct inode), 0,
269 sizeof(struct ubifs_inode) - sizeof(struct inode));
270 mutex_init(&ui->ui_mutex);
271 spin_lock_init(&ui->ui_lock);
272 return &ui->vfs_inode;
275 static void ubifs_destroy_inode(struct inode *inode)
277 struct ubifs_inode *ui = ubifs_inode(inode);
280 kmem_cache_free(ubifs_inode_slab, inode);
284 * Note, Linux write-back code calls this without 'i_mutex'.
286 static int ubifs_write_inode(struct inode *inode, int wait)
289 struct ubifs_info *c = inode->i_sb->s_fs_info;
290 struct ubifs_inode *ui = ubifs_inode(inode);
292 ubifs_assert(!ui->xattr);
293 if (is_bad_inode(inode))
296 mutex_lock(&ui->ui_mutex);
298 * Due to races between write-back forced by budgeting
299 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
300 * have already been synchronized, do not do this again. This might
301 * also happen if it was synchronized in an VFS operation, e.g.
305 mutex_unlock(&ui->ui_mutex);
310 * As an optimization, do not write orphan inodes to the media just
311 * because this is not needed.
313 dbg_gen("inode %lu, mode %#x, nlink %u",
314 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
315 if (inode->i_nlink) {
316 err = ubifs_jnl_write_inode(c, inode);
318 ubifs_err("can't write inode %lu, error %d",
323 mutex_unlock(&ui->ui_mutex);
324 ubifs_release_dirty_inode_budget(c, ui);
328 static void ubifs_delete_inode(struct inode *inode)
331 struct ubifs_info *c = inode->i_sb->s_fs_info;
332 struct ubifs_inode *ui = ubifs_inode(inode);
336 * Extended attribute inode deletions are fully handled in
337 * 'ubifs_removexattr()'. These inodes are special and have
338 * limited usage, so there is nothing to do here.
342 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
343 ubifs_assert(!atomic_read(&inode->i_count));
344 ubifs_assert(inode->i_nlink == 0);
346 truncate_inode_pages(&inode->i_data, 0);
347 if (is_bad_inode(inode))
350 ui->ui_size = inode->i_size = 0;
351 err = ubifs_jnl_delete_inode(c, inode);
354 * Worst case we have a lost orphan inode wasting space, so a
355 * simple error message is OK here.
357 ubifs_err("can't delete inode %lu, error %d",
362 ubifs_release_dirty_inode_budget(c, ui);
366 static void ubifs_dirty_inode(struct inode *inode)
368 struct ubifs_inode *ui = ubifs_inode(inode);
370 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
373 dbg_gen("inode %lu", inode->i_ino);
377 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
379 struct ubifs_info *c = dentry->d_sb->s_fs_info;
380 unsigned long long free;
381 __le32 *uuid = (__le32 *)c->uuid;
383 free = ubifs_get_free_space(c);
384 dbg_gen("free space %lld bytes (%lld blocks)",
385 free, free >> UBIFS_BLOCK_SHIFT);
387 buf->f_type = UBIFS_SUPER_MAGIC;
388 buf->f_bsize = UBIFS_BLOCK_SIZE;
389 buf->f_blocks = c->block_cnt;
390 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
391 if (free > c->report_rp_size)
392 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
397 buf->f_namelen = UBIFS_MAX_NLEN;
398 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
399 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
403 static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
405 struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
407 if (c->mount_opts.unmount_mode == 2)
408 seq_printf(s, ",fast_unmount");
409 else if (c->mount_opts.unmount_mode == 1)
410 seq_printf(s, ",norm_unmount");
412 if (c->mount_opts.bulk_read == 2)
413 seq_printf(s, ",bulk_read");
414 else if (c->mount_opts.bulk_read == 1)
415 seq_printf(s, ",no_bulk_read");
417 if (c->mount_opts.chk_data_crc == 2)
418 seq_printf(s, ",chk_data_crc");
419 else if (c->mount_opts.chk_data_crc == 1)
420 seq_printf(s, ",no_chk_data_crc");
422 if (c->mount_opts.override_compr) {
423 seq_printf(s, ",compr=");
424 seq_printf(s, ubifs_compr_name(c->mount_opts.compr_type));
430 static int ubifs_sync_fs(struct super_block *sb, int wait)
433 struct ubifs_info *c = sb->s_fs_info;
434 struct writeback_control wbc = {
435 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
437 .range_end = LLONG_MAX,
438 .nr_to_write = LONG_MAX,
441 if (sb->s_flags & MS_RDONLY)
445 * Synchronize write buffers, because 'ubifs_run_commit()' does not
446 * do this if it waits for an already running commit.
448 for (i = 0; i < c->jhead_cnt; i++) {
449 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
455 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
456 * pages, so synchronize them first, then commit the journal. Strictly
457 * speaking, it is not necessary to commit the journal here,
458 * synchronizing write-buffers would be enough. But committing makes
459 * UBIFS free space predictions much more accurate, so we want to let
460 * the user be able to get more accurate results of 'statfs()' after
461 * they synchronize the file system.
463 generic_sync_sb_inodes(sb, &wbc);
465 err = ubifs_run_commit(c);
469 return ubi_sync(c->vi.ubi_num);
473 * init_constants_early - initialize UBIFS constants.
474 * @c: UBIFS file-system description object
476 * This function initialize UBIFS constants which do not need the superblock to
477 * be read. It also checks that the UBI volume satisfies basic UBIFS
478 * requirements. Returns zero in case of success and a negative error code in
481 static int init_constants_early(struct ubifs_info *c)
483 if (c->vi.corrupted) {
484 ubifs_warn("UBI volume is corrupted - read-only mode");
489 ubifs_msg("read-only UBI device");
493 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
494 ubifs_msg("static UBI volume - read-only mode");
498 c->leb_cnt = c->vi.size;
499 c->leb_size = c->vi.usable_leb_size;
500 c->half_leb_size = c->leb_size / 2;
501 c->min_io_size = c->di.min_io_size;
502 c->min_io_shift = fls(c->min_io_size) - 1;
504 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
505 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
506 c->leb_size, UBIFS_MIN_LEB_SZ);
510 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
511 ubifs_err("too few LEBs (%d), min. is %d",
512 c->leb_cnt, UBIFS_MIN_LEB_CNT);
516 if (!is_power_of_2(c->min_io_size)) {
517 ubifs_err("bad min. I/O size %d", c->min_io_size);
522 * UBIFS aligns all node to 8-byte boundary, so to make function in
523 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
526 if (c->min_io_size < 8) {
531 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
532 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
535 * Initialize node length ranges which are mostly needed for node
538 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
539 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
540 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
541 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
542 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
543 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
545 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
546 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
547 c->ranges[UBIFS_ORPH_NODE].min_len =
548 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
549 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
550 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
551 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
552 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
553 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
554 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
555 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
557 * Minimum indexing node size is amended later when superblock is
558 * read and the key length is known.
560 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
562 * Maximum indexing node size is amended later when superblock is
563 * read and the fanout is known.
565 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
568 * Initialize dead and dark LEB space watermarks.
570 * Dead space is the space which cannot be used. Its watermark is
571 * equivalent to min. I/O unit or minimum node size if it is greater
572 * then min. I/O unit.
574 * Dark space is the space which might be used, or might not, depending
575 * on which node should be written to the LEB. Its watermark is
576 * equivalent to maximum UBIFS node size.
578 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
579 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
582 * Calculate how many bytes would be wasted at the end of LEB if it was
583 * fully filled with data nodes of maximum size. This is used in
584 * calculations when reporting free space.
586 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
588 /* Buffer size for bulk-reads */
589 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
590 if (c->max_bu_buf_len > c->leb_size)
591 c->max_bu_buf_len = c->leb_size;
596 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
597 * @c: UBIFS file-system description object
598 * @lnum: LEB the write-buffer was synchronized to
599 * @free: how many free bytes left in this LEB
600 * @pad: how many bytes were padded
602 * This is a callback function which is called by the I/O unit when the
603 * write-buffer is synchronized. We need this to correctly maintain space
604 * accounting in bud logical eraseblocks. This function returns zero in case of
605 * success and a negative error code in case of failure.
607 * This function actually belongs to the journal, but we keep it here because
608 * we want to keep it static.
610 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
612 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
616 * init_constants_sb - initialize UBIFS constants.
617 * @c: UBIFS file-system description object
619 * This is a helper function which initializes various UBIFS constants after
620 * the superblock has been read. It also checks various UBIFS parameters and
621 * makes sure they are all right. Returns zero in case of success and a
622 * negative error code in case of failure.
624 static int init_constants_sb(struct ubifs_info *c)
629 c->main_bytes = (long long)c->main_lebs * c->leb_size;
630 c->max_znode_sz = sizeof(struct ubifs_znode) +
631 c->fanout * sizeof(struct ubifs_zbranch);
633 tmp = ubifs_idx_node_sz(c, 1);
634 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
635 c->min_idx_node_sz = ALIGN(tmp, 8);
637 tmp = ubifs_idx_node_sz(c, c->fanout);
638 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
639 c->max_idx_node_sz = ALIGN(tmp, 8);
641 /* Make sure LEB size is large enough to fit full commit */
642 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
643 tmp = ALIGN(tmp, c->min_io_size);
644 if (tmp > c->leb_size) {
645 dbg_err("too small LEB size %d, at least %d needed",
651 * Make sure that the log is large enough to fit reference nodes for
652 * all buds plus one reserved LEB.
654 tmp64 = c->max_bud_bytes + c->leb_size - 1;
655 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
656 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
659 if (c->log_lebs < tmp) {
660 dbg_err("too small log %d LEBs, required min. %d LEBs",
666 * When budgeting we assume worst-case scenarios when the pages are not
667 * be compressed and direntries are of the maximum size.
669 * Note, data, which may be stored in inodes is budgeted separately, so
670 * it is not included into 'c->inode_budget'.
672 c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
673 c->inode_budget = UBIFS_INO_NODE_SZ;
674 c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
677 * When the amount of flash space used by buds becomes
678 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
679 * The writers are unblocked when the commit is finished. To avoid
680 * writers to be blocked UBIFS initiates background commit in advance,
681 * when number of bud bytes becomes above the limit defined below.
683 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
686 * Ensure minimum journal size. All the bytes in the journal heads are
687 * considered to be used, when calculating the current journal usage.
688 * Consequently, if the journal is too small, UBIFS will treat it as
691 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
692 if (c->bg_bud_bytes < tmp64)
693 c->bg_bud_bytes = tmp64;
694 if (c->max_bud_bytes < tmp64 + c->leb_size)
695 c->max_bud_bytes = tmp64 + c->leb_size;
697 err = ubifs_calc_lpt_geom(c);
705 * init_constants_master - initialize UBIFS constants.
706 * @c: UBIFS file-system description object
708 * This is a helper function which initializes various UBIFS constants after
709 * the master node has been read. It also checks various UBIFS parameters and
710 * makes sure they are all right.
712 static void init_constants_master(struct ubifs_info *c)
716 c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
719 * Calculate total amount of FS blocks. This number is not used
720 * internally because it does not make much sense for UBIFS, but it is
721 * necessary to report something for the 'statfs()' call.
723 * Subtract the LEB reserved for GC, the LEB which is reserved for
724 * deletions, minimum LEBs for the index, and assume only one journal
727 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
728 tmp64 *= (long long)c->leb_size - c->leb_overhead;
729 tmp64 = ubifs_reported_space(c, tmp64);
730 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
734 * take_gc_lnum - reserve GC LEB.
735 * @c: UBIFS file-system description object
737 * This function ensures that the LEB reserved for garbage collection is
738 * unmapped and is marked as "taken" in lprops. We also have to set free space
739 * to LEB size and dirty space to zero, because lprops may contain out-of-date
740 * information if the file-system was un-mounted before it has been committed.
741 * This function returns zero in case of success and a negative error code in
744 static int take_gc_lnum(struct ubifs_info *c)
748 if (c->gc_lnum == -1) {
749 ubifs_err("no LEB for GC");
753 err = ubifs_leb_unmap(c, c->gc_lnum);
757 /* And we have to tell lprops that this LEB is taken */
758 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
764 * alloc_wbufs - allocate write-buffers.
765 * @c: UBIFS file-system description object
767 * This helper function allocates and initializes UBIFS write-buffers. Returns
768 * zero in case of success and %-ENOMEM in case of failure.
770 static int alloc_wbufs(struct ubifs_info *c)
774 c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
779 /* Initialize journal heads */
780 for (i = 0; i < c->jhead_cnt; i++) {
781 INIT_LIST_HEAD(&c->jheads[i].buds_list);
782 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
786 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
787 c->jheads[i].wbuf.jhead = i;
790 c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
792 * Garbage Collector head likely contains long-term data and
793 * does not need to be synchronized by timer.
795 c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
796 c->jheads[GCHD].wbuf.timeout = 0;
802 * free_wbufs - free write-buffers.
803 * @c: UBIFS file-system description object
805 static void free_wbufs(struct ubifs_info *c)
810 for (i = 0; i < c->jhead_cnt; i++) {
811 kfree(c->jheads[i].wbuf.buf);
812 kfree(c->jheads[i].wbuf.inodes);
820 * free_orphans - free orphans.
821 * @c: UBIFS file-system description object
823 static void free_orphans(struct ubifs_info *c)
825 struct ubifs_orphan *orph;
827 while (c->orph_dnext) {
828 orph = c->orph_dnext;
829 c->orph_dnext = orph->dnext;
830 list_del(&orph->list);
834 while (!list_empty(&c->orph_list)) {
835 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
836 list_del(&orph->list);
838 dbg_err("orphan list not empty at unmount");
846 * free_buds - free per-bud objects.
847 * @c: UBIFS file-system description object
849 static void free_buds(struct ubifs_info *c)
851 struct rb_node *this = c->buds.rb_node;
852 struct ubifs_bud *bud;
856 this = this->rb_left;
857 else if (this->rb_right)
858 this = this->rb_right;
860 bud = rb_entry(this, struct ubifs_bud, rb);
861 this = rb_parent(this);
863 if (this->rb_left == &bud->rb)
864 this->rb_left = NULL;
866 this->rb_right = NULL;
874 * check_volume_empty - check if the UBI volume is empty.
875 * @c: UBIFS file-system description object
877 * This function checks if the UBIFS volume is empty by looking if its LEBs are
878 * mapped or not. The result of checking is stored in the @c->empty variable.
879 * Returns zero in case of success and a negative error code in case of
882 static int check_volume_empty(struct ubifs_info *c)
887 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
888 err = ubi_is_mapped(c->ubi, lnum);
889 if (unlikely(err < 0))
903 * UBIFS mount options.
905 * Opt_fast_unmount: do not run a journal commit before un-mounting
906 * Opt_norm_unmount: run a journal commit before un-mounting
907 * Opt_bulk_read: enable bulk-reads
908 * Opt_no_bulk_read: disable bulk-reads
909 * Opt_chk_data_crc: check CRCs when reading data nodes
910 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
911 * Opt_override_compr: override default compressor
912 * Opt_err: just end of array marker
925 static const match_table_t tokens = {
926 {Opt_fast_unmount, "fast_unmount"},
927 {Opt_norm_unmount, "norm_unmount"},
928 {Opt_bulk_read, "bulk_read"},
929 {Opt_no_bulk_read, "no_bulk_read"},
930 {Opt_chk_data_crc, "chk_data_crc"},
931 {Opt_no_chk_data_crc, "no_chk_data_crc"},
932 {Opt_override_compr, "compr=%s"},
937 * ubifs_parse_options - parse mount parameters.
938 * @c: UBIFS file-system description object
939 * @options: parameters to parse
940 * @is_remount: non-zero if this is FS re-mount
942 * This function parses UBIFS mount options and returns zero in case success
943 * and a negative error code in case of failure.
945 static int ubifs_parse_options(struct ubifs_info *c, char *options,
949 substring_t args[MAX_OPT_ARGS];
954 while ((p = strsep(&options, ","))) {
960 token = match_token(p, tokens, args);
962 case Opt_fast_unmount:
963 c->mount_opts.unmount_mode = 2;
966 case Opt_norm_unmount:
967 c->mount_opts.unmount_mode = 1;
971 c->mount_opts.bulk_read = 2;
974 case Opt_no_bulk_read:
975 c->mount_opts.bulk_read = 1;
978 case Opt_chk_data_crc:
979 c->mount_opts.chk_data_crc = 2;
980 c->no_chk_data_crc = 0;
982 case Opt_no_chk_data_crc:
983 c->mount_opts.chk_data_crc = 1;
984 c->no_chk_data_crc = 1;
986 case Opt_override_compr:
988 char *name = match_strdup(&args[0]);
992 if (!strcmp(name, "none"))
993 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
994 else if (!strcmp(name, "lzo"))
995 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
996 else if (!strcmp(name, "zlib"))
997 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
999 ubifs_err("unknown compressor \"%s\"", name);
1004 c->mount_opts.override_compr = 1;
1005 c->default_compr = c->mount_opts.compr_type;
1009 ubifs_err("unrecognized mount option \"%s\" "
1010 "or missing value", p);
1019 * destroy_journal - destroy journal data structures.
1020 * @c: UBIFS file-system description object
1022 * This function destroys journal data structures including those that may have
1023 * been created by recovery functions.
1025 static void destroy_journal(struct ubifs_info *c)
1027 while (!list_empty(&c->unclean_leb_list)) {
1028 struct ubifs_unclean_leb *ucleb;
1030 ucleb = list_entry(c->unclean_leb_list.next,
1031 struct ubifs_unclean_leb, list);
1032 list_del(&ucleb->list);
1035 while (!list_empty(&c->old_buds)) {
1036 struct ubifs_bud *bud;
1038 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1039 list_del(&bud->list);
1042 ubifs_destroy_idx_gc(c);
1043 ubifs_destroy_size_tree(c);
1049 * bu_init - initialize bulk-read information.
1050 * @c: UBIFS file-system description object
1052 static void bu_init(struct ubifs_info *c)
1054 ubifs_assert(c->bulk_read == 1);
1057 return; /* Already initialized */
1060 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1062 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1063 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1067 /* Just disable bulk-read */
1068 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1069 "disabling it", c->max_bu_buf_len);
1070 c->mount_opts.bulk_read = 1;
1077 * check_free_space - check if there is enough free space to mount.
1078 * @c: UBIFS file-system description object
1080 * This function makes sure UBIFS has enough free space to be mounted in
1081 * read/write mode. UBIFS must always have some free space to allow deletions.
1083 static int check_free_space(struct ubifs_info *c)
1085 ubifs_assert(c->dark_wm > 0);
1086 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1087 ubifs_err("insufficient free space to mount in read/write mode");
1091 * We return %-EINVAL instead of %-ENOSPC because it seems to
1092 * be the closest error code mentioned in the mount function
1101 * mount_ubifs - mount UBIFS file-system.
1102 * @c: UBIFS file-system description object
1104 * This function mounts UBIFS file system. Returns zero in case of success and
1105 * a negative error code in case of failure.
1107 * Note, the function does not de-allocate resources it it fails half way
1108 * through, and the caller has to do this instead.
1110 static int mount_ubifs(struct ubifs_info *c)
1112 struct super_block *sb = c->vfs_sb;
1113 int err, mounted_read_only = (sb->s_flags & MS_RDONLY);
1117 err = init_constants_early(c);
1121 err = ubifs_debugging_init(c);
1125 err = check_volume_empty(c);
1129 if (c->empty && (mounted_read_only || c->ro_media)) {
1131 * This UBI volume is empty, and read-only, or the file system
1132 * is mounted read-only - we cannot format it.
1134 ubifs_err("can't format empty UBI volume: read-only %s",
1135 c->ro_media ? "UBI volume" : "mount");
1140 if (c->ro_media && !mounted_read_only) {
1141 ubifs_err("cannot mount read-write - read-only media");
1147 * The requirement for the buffer is that it should fit indexing B-tree
1148 * height amount of integers. We assume the height if the TNC tree will
1152 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1153 if (!c->bottom_up_buf)
1156 c->sbuf = vmalloc(c->leb_size);
1160 if (!mounted_read_only) {
1161 c->ileb_buf = vmalloc(c->leb_size);
1166 if (c->bulk_read == 1)
1170 * We have to check all CRCs, even for data nodes, when we mount the FS
1171 * (specifically, when we are replaying).
1173 c->always_chk_crc = 1;
1175 err = ubifs_read_superblock(c);
1180 * Make sure the compressor which is set as default in the superblock
1181 * or overridden by mount options is actually compiled in.
1183 if (!ubifs_compr_present(c->default_compr)) {
1184 ubifs_err("'compressor \"%s\" is not compiled in",
1185 ubifs_compr_name(c->default_compr));
1189 err = init_constants_sb(c);
1193 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1194 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1195 c->cbuf = kmalloc(sz, GFP_NOFS);
1201 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1202 if (!mounted_read_only) {
1203 err = alloc_wbufs(c);
1207 /* Create background thread */
1208 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1209 if (IS_ERR(c->bgt)) {
1210 err = PTR_ERR(c->bgt);
1212 ubifs_err("cannot spawn \"%s\", error %d",
1216 wake_up_process(c->bgt);
1219 err = ubifs_read_master(c);
1223 init_constants_master(c);
1225 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1226 ubifs_msg("recovery needed");
1227 c->need_recovery = 1;
1228 if (!mounted_read_only) {
1229 err = ubifs_recover_inl_heads(c, c->sbuf);
1233 } else if (!mounted_read_only) {
1235 * Set the "dirty" flag so that if we reboot uncleanly we
1236 * will notice this immediately on the next mount.
1238 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1239 err = ubifs_write_master(c);
1244 err = ubifs_lpt_init(c, 1, !mounted_read_only);
1248 err = dbg_check_idx_size(c, c->old_idx_sz);
1252 err = ubifs_replay_journal(c);
1256 err = ubifs_mount_orphans(c, c->need_recovery, mounted_read_only);
1260 if (!mounted_read_only) {
1263 err = check_free_space(c);
1267 /* Check for enough log space */
1268 lnum = c->lhead_lnum + 1;
1269 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1270 lnum = UBIFS_LOG_LNUM;
1271 if (lnum == c->ltail_lnum) {
1272 err = ubifs_consolidate_log(c);
1277 if (c->need_recovery) {
1278 err = ubifs_recover_size(c);
1281 err = ubifs_rcvry_gc_commit(c);
1283 err = take_gc_lnum(c);
1287 err = dbg_check_lprops(c);
1290 } else if (c->need_recovery) {
1291 err = ubifs_recover_size(c);
1296 spin_lock(&ubifs_infos_lock);
1297 list_add_tail(&c->infos_list, &ubifs_infos);
1298 spin_unlock(&ubifs_infos_lock);
1300 if (c->need_recovery) {
1301 if (mounted_read_only)
1302 ubifs_msg("recovery deferred");
1304 c->need_recovery = 0;
1305 ubifs_msg("recovery completed");
1309 err = dbg_debugfs_init_fs(c);
1313 err = dbg_check_filesystem(c);
1317 c->always_chk_crc = 0;
1319 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1320 c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1321 if (mounted_read_only)
1322 ubifs_msg("mounted read-only");
1323 x = (long long)c->main_lebs * c->leb_size;
1324 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1325 "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1326 x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1327 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1328 "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1329 ubifs_msg("media format: %d (latest is %d)",
1330 c->fmt_version, UBIFS_FORMAT_VERSION);
1331 ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1332 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1333 c->report_rp_size, c->report_rp_size >> 10);
1335 dbg_msg("compiled on: " __DATE__ " at " __TIME__);
1336 dbg_msg("min. I/O unit size: %d bytes", c->min_io_size);
1337 dbg_msg("LEB size: %d bytes (%d KiB)",
1338 c->leb_size, c->leb_size >> 10);
1339 dbg_msg("data journal heads: %d",
1340 c->jhead_cnt - NONDATA_JHEADS_CNT);
1341 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1342 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1343 c->uuid[0], c->uuid[1], c->uuid[2], c->uuid[3],
1344 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1345 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1346 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1347 dbg_msg("fast unmount: %d", c->fast_unmount);
1348 dbg_msg("big_lpt %d", c->big_lpt);
1349 dbg_msg("log LEBs: %d (%d - %d)",
1350 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1351 dbg_msg("LPT area LEBs: %d (%d - %d)",
1352 c->lpt_lebs, c->lpt_first, c->lpt_last);
1353 dbg_msg("orphan area LEBs: %d (%d - %d)",
1354 c->orph_lebs, c->orph_first, c->orph_last);
1355 dbg_msg("main area LEBs: %d (%d - %d)",
1356 c->main_lebs, c->main_first, c->leb_cnt - 1);
1357 dbg_msg("index LEBs: %d", c->lst.idx_lebs);
1358 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1359 c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1360 dbg_msg("key hash type: %d", c->key_hash_type);
1361 dbg_msg("tree fanout: %d", c->fanout);
1362 dbg_msg("reserved GC LEB: %d", c->gc_lnum);
1363 dbg_msg("first main LEB: %d", c->main_first);
1364 dbg_msg("max. znode size %d", c->max_znode_sz);
1365 dbg_msg("max. index node size %d", c->max_idx_node_sz);
1366 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
1367 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1368 dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
1369 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1370 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
1371 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1372 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
1373 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1374 UBIFS_MAX_DENT_NODE_SZ);
1375 dbg_msg("dead watermark: %d", c->dead_wm);
1376 dbg_msg("dark watermark: %d", c->dark_wm);
1377 dbg_msg("LEB overhead: %d", c->leb_overhead);
1378 x = (long long)c->main_lebs * c->dark_wm;
1379 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1380 x, x >> 10, x >> 20);
1381 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1382 c->max_bud_bytes, c->max_bud_bytes >> 10,
1383 c->max_bud_bytes >> 20);
1384 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1385 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1386 c->bg_bud_bytes >> 20);
1387 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1388 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1389 dbg_msg("max. seq. number: %llu", c->max_sqnum);
1390 dbg_msg("commit number: %llu", c->cmt_no);
1395 spin_lock(&ubifs_infos_lock);
1396 list_del(&c->infos_list);
1397 spin_unlock(&ubifs_infos_lock);
1403 ubifs_lpt_free(c, 0);
1406 kfree(c->rcvrd_mst_node);
1408 kthread_stop(c->bgt);
1417 kfree(c->bottom_up_buf);
1418 ubifs_debugging_exit(c);
1423 * ubifs_umount - un-mount UBIFS file-system.
1424 * @c: UBIFS file-system description object
1426 * Note, this function is called to free allocated resourced when un-mounting,
1427 * as well as free resources when an error occurred while we were half way
1428 * through mounting (error path cleanup function). So it has to make sure the
1429 * resource was actually allocated before freeing it.
1431 static void ubifs_umount(struct ubifs_info *c)
1433 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1436 dbg_debugfs_exit_fs(c);
1437 spin_lock(&ubifs_infos_lock);
1438 list_del(&c->infos_list);
1439 spin_unlock(&ubifs_infos_lock);
1442 kthread_stop(c->bgt);
1447 ubifs_lpt_free(c, 0);
1450 kfree(c->rcvrd_mst_node);
1455 kfree(c->bottom_up_buf);
1456 ubifs_debugging_exit(c);
1460 * ubifs_remount_rw - re-mount in read-write mode.
1461 * @c: UBIFS file-system description object
1463 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1464 * mode. This function allocates the needed resources and re-mounts UBIFS in
1467 static int ubifs_remount_rw(struct ubifs_info *c)
1474 mutex_lock(&c->umount_mutex);
1475 c->remounting_rw = 1;
1476 c->always_chk_crc = 1;
1478 err = check_free_space(c);
1482 if (c->old_leb_cnt != c->leb_cnt) {
1483 struct ubifs_sb_node *sup;
1485 sup = ubifs_read_sb_node(c);
1490 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1491 err = ubifs_write_sb_node(c, sup);
1496 if (c->need_recovery) {
1497 ubifs_msg("completing deferred recovery");
1498 err = ubifs_write_rcvrd_mst_node(c);
1501 err = ubifs_recover_size(c);
1504 err = ubifs_clean_lebs(c, c->sbuf);
1507 err = ubifs_recover_inl_heads(c, c->sbuf);
1512 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1513 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1514 err = ubifs_write_master(c);
1519 c->ileb_buf = vmalloc(c->leb_size);
1525 err = ubifs_lpt_init(c, 0, 1);
1529 err = alloc_wbufs(c);
1533 ubifs_create_buds_lists(c);
1535 /* Create background thread */
1536 c->bgt = kthread_create(ubifs_bg_thread, c, c->bgt_name);
1537 if (IS_ERR(c->bgt)) {
1538 err = PTR_ERR(c->bgt);
1540 ubifs_err("cannot spawn \"%s\", error %d",
1544 wake_up_process(c->bgt);
1546 c->orph_buf = vmalloc(c->leb_size);
1552 /* Check for enough log space */
1553 lnum = c->lhead_lnum + 1;
1554 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1555 lnum = UBIFS_LOG_LNUM;
1556 if (lnum == c->ltail_lnum) {
1557 err = ubifs_consolidate_log(c);
1562 if (c->need_recovery)
1563 err = ubifs_rcvry_gc_commit(c);
1565 err = take_gc_lnum(c);
1569 if (c->need_recovery) {
1570 c->need_recovery = 0;
1571 ubifs_msg("deferred recovery completed");
1574 dbg_gen("re-mounted read-write");
1575 c->vfs_sb->s_flags &= ~MS_RDONLY;
1576 c->remounting_rw = 0;
1577 c->always_chk_crc = 0;
1578 mutex_unlock(&c->umount_mutex);
1585 kthread_stop(c->bgt);
1591 ubifs_lpt_free(c, 1);
1592 c->remounting_rw = 0;
1593 c->always_chk_crc = 0;
1594 mutex_unlock(&c->umount_mutex);
1599 * commit_on_unmount - commit the journal when un-mounting.
1600 * @c: UBIFS file-system description object
1602 * This function is called during un-mounting and re-mounting, and it commits
1603 * the journal unless the "fast unmount" mode is enabled.
1605 static void commit_on_unmount(struct ubifs_info *c)
1607 struct super_block *sb = c->vfs_sb;
1608 long long bud_bytes;
1611 * This function is called before the background thread is stopped, so
1612 * we may race with ongoing commit, which means we have to take
1613 * @c->bud_lock to access @c->bud_bytes.
1615 spin_lock(&c->buds_lock);
1616 bud_bytes = c->bud_bytes;
1617 spin_unlock(&c->buds_lock);
1619 if (!c->fast_unmount && !(sb->s_flags & MS_RDONLY) && bud_bytes)
1620 ubifs_run_commit(c);
1624 * ubifs_remount_ro - re-mount in read-only mode.
1625 * @c: UBIFS file-system description object
1627 * We rely on VFS to have stopped writing. Possibly the background thread could
1628 * be running a commit, however kthread_stop will wait in that case.
1630 static void ubifs_remount_ro(struct ubifs_info *c)
1634 ubifs_assert(!c->need_recovery);
1635 commit_on_unmount(c);
1637 mutex_lock(&c->umount_mutex);
1639 kthread_stop(c->bgt);
1643 for (i = 0; i < c->jhead_cnt; i++) {
1644 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1645 del_timer_sync(&c->jheads[i].wbuf.timer);
1649 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1650 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1651 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1652 err = ubifs_write_master(c);
1654 ubifs_ro_mode(c, err);
1657 ubifs_destroy_idx_gc(c);
1663 ubifs_lpt_free(c, 1);
1664 mutex_unlock(&c->umount_mutex);
1667 static void ubifs_put_super(struct super_block *sb)
1670 struct ubifs_info *c = sb->s_fs_info;
1672 ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1675 * The following asserts are only valid if there has not been a failure
1676 * of the media. For example, there will be dirty inodes if we failed
1677 * to write them back because of I/O errors.
1679 ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1680 ubifs_assert(c->budg_idx_growth == 0);
1681 ubifs_assert(c->budg_dd_growth == 0);
1682 ubifs_assert(c->budg_data_growth == 0);
1685 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1686 * and file system un-mount. Namely, it prevents the shrinker from
1687 * picking this superblock for shrinking - it will be just skipped if
1688 * the mutex is locked.
1690 mutex_lock(&c->umount_mutex);
1691 if (!(c->vfs_sb->s_flags & MS_RDONLY)) {
1693 * First of all kill the background thread to make sure it does
1694 * not interfere with un-mounting and freeing resources.
1697 kthread_stop(c->bgt);
1701 /* Synchronize write-buffers */
1703 for (i = 0; i < c->jhead_cnt; i++) {
1704 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1705 del_timer_sync(&c->jheads[i].wbuf.timer);
1709 * On fatal errors c->ro_media is set to 1, in which case we do
1710 * not write the master node.
1714 * We are being cleanly unmounted which means the
1715 * orphans were killed - indicate this in the master
1716 * node. Also save the reserved GC LEB number.
1720 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1721 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1722 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1723 err = ubifs_write_master(c);
1726 * Recovery will attempt to fix the master area
1727 * next mount, so we just print a message and
1728 * continue to unmount normally.
1730 ubifs_err("failed to write master node, "
1736 bdi_destroy(&c->bdi);
1737 ubi_close_volume(c->ubi);
1738 mutex_unlock(&c->umount_mutex);
1742 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1745 struct ubifs_info *c = sb->s_fs_info;
1747 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1749 err = ubifs_parse_options(c, data, 1);
1751 ubifs_err("invalid or unknown remount parameter");
1755 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1756 err = ubifs_remount_rw(c);
1759 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
1760 ubifs_remount_ro(c);
1762 if (c->bulk_read == 1)
1765 dbg_gen("disable bulk-read");
1773 struct super_operations ubifs_super_operations = {
1774 .alloc_inode = ubifs_alloc_inode,
1775 .destroy_inode = ubifs_destroy_inode,
1776 .put_super = ubifs_put_super,
1777 .write_inode = ubifs_write_inode,
1778 .delete_inode = ubifs_delete_inode,
1779 .statfs = ubifs_statfs,
1780 .dirty_inode = ubifs_dirty_inode,
1781 .remount_fs = ubifs_remount_fs,
1782 .show_options = ubifs_show_options,
1783 .sync_fs = ubifs_sync_fs,
1787 * open_ubi - parse UBI device name string and open the UBI device.
1788 * @name: UBI volume name
1789 * @mode: UBI volume open mode
1791 * There are several ways to specify UBI volumes when mounting UBIFS:
1792 * o ubiX_Y - UBI device number X, volume Y;
1793 * o ubiY - UBI device number 0, volume Y;
1794 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1795 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1797 * Alternative '!' separator may be used instead of ':' (because some shells
1798 * like busybox may interpret ':' as an NFS host name separator). This function
1799 * returns ubi volume object in case of success and a negative error code in
1802 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1807 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1808 return ERR_PTR(-EINVAL);
1810 /* ubi:NAME method */
1811 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1812 return ubi_open_volume_nm(0, name + 4, mode);
1814 if (!isdigit(name[3]))
1815 return ERR_PTR(-EINVAL);
1817 dev = simple_strtoul(name + 3, &endptr, 0);
1820 if (*endptr == '\0')
1821 return ubi_open_volume(0, dev, mode);
1824 if (*endptr == '_' && isdigit(endptr[1])) {
1825 vol = simple_strtoul(endptr + 1, &endptr, 0);
1826 if (*endptr != '\0')
1827 return ERR_PTR(-EINVAL);
1828 return ubi_open_volume(dev, vol, mode);
1831 /* ubiX:NAME method */
1832 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1833 return ubi_open_volume_nm(dev, ++endptr, mode);
1835 return ERR_PTR(-EINVAL);
1838 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1840 struct ubi_volume_desc *ubi = sb->s_fs_info;
1841 struct ubifs_info *c;
1845 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1849 spin_lock_init(&c->cnt_lock);
1850 spin_lock_init(&c->cs_lock);
1851 spin_lock_init(&c->buds_lock);
1852 spin_lock_init(&c->space_lock);
1853 spin_lock_init(&c->orphan_lock);
1854 init_rwsem(&c->commit_sem);
1855 mutex_init(&c->lp_mutex);
1856 mutex_init(&c->tnc_mutex);
1857 mutex_init(&c->log_mutex);
1858 mutex_init(&c->mst_mutex);
1859 mutex_init(&c->umount_mutex);
1860 mutex_init(&c->bu_mutex);
1861 init_waitqueue_head(&c->cmt_wq);
1863 c->old_idx = RB_ROOT;
1864 c->size_tree = RB_ROOT;
1865 c->orph_tree = RB_ROOT;
1866 INIT_LIST_HEAD(&c->infos_list);
1867 INIT_LIST_HEAD(&c->idx_gc);
1868 INIT_LIST_HEAD(&c->replay_list);
1869 INIT_LIST_HEAD(&c->replay_buds);
1870 INIT_LIST_HEAD(&c->uncat_list);
1871 INIT_LIST_HEAD(&c->empty_list);
1872 INIT_LIST_HEAD(&c->freeable_list);
1873 INIT_LIST_HEAD(&c->frdi_idx_list);
1874 INIT_LIST_HEAD(&c->unclean_leb_list);
1875 INIT_LIST_HEAD(&c->old_buds);
1876 INIT_LIST_HEAD(&c->orph_list);
1877 INIT_LIST_HEAD(&c->orph_new);
1879 c->highest_inum = UBIFS_FIRST_INO;
1880 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1882 ubi_get_volume_info(ubi, &c->vi);
1883 ubi_get_device_info(c->vi.ubi_num, &c->di);
1885 /* Re-open the UBI device in read-write mode */
1886 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1887 if (IS_ERR(c->ubi)) {
1888 err = PTR_ERR(c->ubi);
1893 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1894 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1895 * which means the user would have to wait not just for their own I/O
1896 * but the read-ahead I/O as well i.e. completely pointless.
1898 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1900 c->bdi.capabilities = BDI_CAP_MAP_COPY;
1901 c->bdi.unplug_io_fn = default_unplug_io_fn;
1902 err = bdi_init(&c->bdi);
1906 err = ubifs_parse_options(c, data, 0);
1913 sb->s_magic = UBIFS_SUPER_MAGIC;
1914 sb->s_blocksize = UBIFS_BLOCK_SIZE;
1915 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
1916 sb->s_dev = c->vi.cdev;
1917 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
1918 if (c->max_inode_sz > MAX_LFS_FILESIZE)
1919 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
1920 sb->s_op = &ubifs_super_operations;
1922 mutex_lock(&c->umount_mutex);
1923 err = mount_ubifs(c);
1925 ubifs_assert(err < 0);
1929 /* Read the root inode */
1930 root = ubifs_iget(sb, UBIFS_ROOT_INO);
1932 err = PTR_ERR(root);
1936 sb->s_root = d_alloc_root(root);
1940 mutex_unlock(&c->umount_mutex);
1948 mutex_unlock(&c->umount_mutex);
1950 bdi_destroy(&c->bdi);
1952 ubi_close_volume(c->ubi);
1958 static int sb_test(struct super_block *sb, void *data)
1962 return sb->s_dev == *dev;
1965 static int sb_set(struct super_block *sb, void *data)
1973 static int ubifs_get_sb(struct file_system_type *fs_type, int flags,
1974 const char *name, void *data, struct vfsmount *mnt)
1976 struct ubi_volume_desc *ubi;
1977 struct ubi_volume_info vi;
1978 struct super_block *sb;
1981 dbg_gen("name %s, flags %#x", name, flags);
1984 * Get UBI device number and volume ID. Mount it read-only so far
1985 * because this might be a new mount point, and UBI allows only one
1986 * read-write user at a time.
1988 ubi = open_ubi(name, UBI_READONLY);
1990 ubifs_err("cannot open \"%s\", error %d",
1991 name, (int)PTR_ERR(ubi));
1992 return PTR_ERR(ubi);
1994 ubi_get_volume_info(ubi, &vi);
1996 dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
1998 sb = sget(fs_type, &sb_test, &sb_set, &vi.cdev);
2005 /* A new mount point for already mounted UBIFS */
2006 dbg_gen("this ubi volume is already mounted");
2007 if ((flags ^ sb->s_flags) & MS_RDONLY) {
2012 sb->s_flags = flags;
2014 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2017 sb->s_fs_info = ubi;
2018 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2021 /* We do not support atime */
2022 sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2025 /* 'fill_super()' opens ubi again so we must close it here */
2026 ubi_close_volume(ubi);
2028 return simple_set_mnt(mnt, sb);
2031 up_write(&sb->s_umount);
2032 deactivate_super(sb);
2034 ubi_close_volume(ubi);
2038 static void ubifs_kill_sb(struct super_block *sb)
2040 struct ubifs_info *c = sb->s_fs_info;
2043 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
2044 * in order to be outside BKL.
2047 commit_on_unmount(c);
2048 /* The un-mount routine is actually done in put_super() */
2049 generic_shutdown_super(sb);
2052 static struct file_system_type ubifs_fs_type = {
2054 .owner = THIS_MODULE,
2055 .get_sb = ubifs_get_sb,
2056 .kill_sb = ubifs_kill_sb
2060 * Inode slab cache constructor.
2062 static void inode_slab_ctor(void *obj)
2064 struct ubifs_inode *ui = obj;
2065 inode_init_once(&ui->vfs_inode);
2068 static int __init ubifs_init(void)
2072 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2074 /* Make sure node sizes are 8-byte aligned */
2075 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2076 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2077 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2078 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2079 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2080 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2081 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2082 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2083 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2084 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2085 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2087 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2088 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2089 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2090 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2091 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2092 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2094 /* Check min. node size */
2095 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2096 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2097 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2098 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2100 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2101 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2102 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2103 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2105 /* Defined node sizes */
2106 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2107 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2108 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2109 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2112 * We use 2 bit wide bit-fields to store compression type, which should
2113 * be amended if more compressors are added. The bit-fields are:
2114 * @compr_type in 'struct ubifs_inode', @default_compr in
2115 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2117 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2120 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2121 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2123 if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2124 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2125 " at least 4096 bytes",
2126 (unsigned int)PAGE_CACHE_SIZE);
2130 err = register_filesystem(&ubifs_fs_type);
2132 ubifs_err("cannot register file system, error %d", err);
2137 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2138 sizeof(struct ubifs_inode), 0,
2139 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2141 if (!ubifs_inode_slab)
2144 register_shrinker(&ubifs_shrinker_info);
2146 err = ubifs_compressors_init();
2150 err = dbg_debugfs_init();
2157 ubifs_compressors_exit();
2159 unregister_shrinker(&ubifs_shrinker_info);
2160 kmem_cache_destroy(ubifs_inode_slab);
2162 unregister_filesystem(&ubifs_fs_type);
2165 /* late_initcall to let compressors initialize first */
2166 late_initcall(ubifs_init);
2168 static void __exit ubifs_exit(void)
2170 ubifs_assert(list_empty(&ubifs_infos));
2171 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2174 ubifs_compressors_exit();
2175 unregister_shrinker(&ubifs_shrinker_info);
2176 kmem_cache_destroy(ubifs_inode_slab);
2177 unregister_filesystem(&ubifs_fs_type);
2179 module_exit(ubifs_exit);
2181 MODULE_LICENSE("GPL");
2182 MODULE_VERSION(__stringify(UBIFS_VERSION));
2183 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2184 MODULE_DESCRIPTION("UBIFS - UBI File System");