[XFS] Catch errors returned from xfs_bmap_last_offset().
[linux-2.6] / fs / binfmt_elf.c
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/stat.h>
16 #include <linux/time.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/a.out.h>
20 #include <linux/errno.h>
21 #include <linux/signal.h>
22 #include <linux/binfmts.h>
23 #include <linux/string.h>
24 #include <linux/file.h>
25 #include <linux/fcntl.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/shm.h>
29 #include <linux/personality.h>
30 #include <linux/elfcore.h>
31 #include <linux/init.h>
32 #include <linux/highuid.h>
33 #include <linux/smp.h>
34 #include <linux/compiler.h>
35 #include <linux/highmem.h>
36 #include <linux/pagemap.h>
37 #include <linux/security.h>
38 #include <linux/syscalls.h>
39 #include <linux/random.h>
40 #include <linux/elf.h>
41 #include <linux/utsname.h>
42 #include <asm/uaccess.h>
43 #include <asm/param.h>
44 #include <asm/page.h>
45
46 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
47 static int load_elf_library(struct file *);
48 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
49                                 int, int, unsigned long);
50
51 /*
52  * If we don't support core dumping, then supply a NULL so we
53  * don't even try.
54  */
55 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
56 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit);
57 #else
58 #define elf_core_dump   NULL
59 #endif
60
61 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
62 #define ELF_MIN_ALIGN   ELF_EXEC_PAGESIZE
63 #else
64 #define ELF_MIN_ALIGN   PAGE_SIZE
65 #endif
66
67 #ifndef ELF_CORE_EFLAGS
68 #define ELF_CORE_EFLAGS 0
69 #endif
70
71 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
72 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
73 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
74
75 static struct linux_binfmt elf_format = {
76                 .module         = THIS_MODULE,
77                 .load_binary    = load_elf_binary,
78                 .load_shlib     = load_elf_library,
79                 .core_dump      = elf_core_dump,
80                 .min_coredump   = ELF_EXEC_PAGESIZE,
81                 .hasvdso        = 1
82 };
83
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
85
86 static int set_brk(unsigned long start, unsigned long end)
87 {
88         start = ELF_PAGEALIGN(start);
89         end = ELF_PAGEALIGN(end);
90         if (end > start) {
91                 unsigned long addr;
92                 down_write(&current->mm->mmap_sem);
93                 addr = do_brk(start, end - start);
94                 up_write(&current->mm->mmap_sem);
95                 if (BAD_ADDR(addr))
96                         return addr;
97         }
98         current->mm->start_brk = current->mm->brk = end;
99         return 0;
100 }
101
102 /* We need to explicitly zero any fractional pages
103    after the data section (i.e. bss).  This would
104    contain the junk from the file that should not
105    be in memory
106  */
107 static int padzero(unsigned long elf_bss)
108 {
109         unsigned long nbyte;
110
111         nbyte = ELF_PAGEOFFSET(elf_bss);
112         if (nbyte) {
113                 nbyte = ELF_MIN_ALIGN - nbyte;
114                 if (clear_user((void __user *) elf_bss, nbyte))
115                         return -EFAULT;
116         }
117         return 0;
118 }
119
120 /* Let's use some macros to make this stack manipulation a little clearer */
121 #ifdef CONFIG_STACK_GROWSUP
122 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
123 #define STACK_ROUND(sp, items) \
124         ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
125 #define STACK_ALLOC(sp, len) ({ \
126         elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
127         old_sp; })
128 #else
129 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
130 #define STACK_ROUND(sp, items) \
131         (((unsigned long) (sp - items)) &~ 15UL)
132 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
133 #endif
134
135 static int
136 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
137                 unsigned long load_addr, unsigned long interp_load_addr)
138 {
139         unsigned long p = bprm->p;
140         int argc = bprm->argc;
141         int envc = bprm->envc;
142         elf_addr_t __user *argv;
143         elf_addr_t __user *envp;
144         elf_addr_t __user *sp;
145         elf_addr_t __user *u_platform;
146         const char *k_platform = ELF_PLATFORM;
147         int items;
148         elf_addr_t *elf_info;
149         int ei_index = 0;
150         struct task_struct *tsk = current;
151         struct vm_area_struct *vma;
152
153         /*
154          * In some cases (e.g. Hyper-Threading), we want to avoid L1
155          * evictions by the processes running on the same package. One
156          * thing we can do is to shuffle the initial stack for them.
157          */
158
159         p = arch_align_stack(p);
160
161         /*
162          * If this architecture has a platform capability string, copy it
163          * to userspace.  In some cases (Sparc), this info is impossible
164          * for userspace to get any other way, in others (i386) it is
165          * merely difficult.
166          */
167         u_platform = NULL;
168         if (k_platform) {
169                 size_t len = strlen(k_platform) + 1;
170
171                 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
172                 if (__copy_to_user(u_platform, k_platform, len))
173                         return -EFAULT;
174         }
175
176         /* Create the ELF interpreter info */
177         elf_info = (elf_addr_t *)current->mm->saved_auxv;
178         /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
179 #define NEW_AUX_ENT(id, val) \
180         do { \
181                 elf_info[ei_index++] = id; \
182                 elf_info[ei_index++] = val; \
183         } while (0)
184
185 #ifdef ARCH_DLINFO
186         /* 
187          * ARCH_DLINFO must come first so PPC can do its special alignment of
188          * AUXV.
189          * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
190          * ARCH_DLINFO changes
191          */
192         ARCH_DLINFO;
193 #endif
194         NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
195         NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
196         NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
197         NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
198         NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
199         NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
200         NEW_AUX_ENT(AT_BASE, interp_load_addr);
201         NEW_AUX_ENT(AT_FLAGS, 0);
202         NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
203         NEW_AUX_ENT(AT_UID, tsk->uid);
204         NEW_AUX_ENT(AT_EUID, tsk->euid);
205         NEW_AUX_ENT(AT_GID, tsk->gid);
206         NEW_AUX_ENT(AT_EGID, tsk->egid);
207         NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
208         if (k_platform) {
209                 NEW_AUX_ENT(AT_PLATFORM,
210                             (elf_addr_t)(unsigned long)u_platform);
211         }
212         if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
213                 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
214         }
215 #undef NEW_AUX_ENT
216         /* AT_NULL is zero; clear the rest too */
217         memset(&elf_info[ei_index], 0,
218                sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
219
220         /* And advance past the AT_NULL entry.  */
221         ei_index += 2;
222
223         sp = STACK_ADD(p, ei_index);
224
225         items = (argc + 1) + (envc + 1) + 1;
226         bprm->p = STACK_ROUND(sp, items);
227
228         /* Point sp at the lowest address on the stack */
229 #ifdef CONFIG_STACK_GROWSUP
230         sp = (elf_addr_t __user *)bprm->p - items - ei_index;
231         bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
232 #else
233         sp = (elf_addr_t __user *)bprm->p;
234 #endif
235
236
237         /*
238          * Grow the stack manually; some architectures have a limit on how
239          * far ahead a user-space access may be in order to grow the stack.
240          */
241         vma = find_extend_vma(current->mm, bprm->p);
242         if (!vma)
243                 return -EFAULT;
244
245         /* Now, let's put argc (and argv, envp if appropriate) on the stack */
246         if (__put_user(argc, sp++))
247                 return -EFAULT;
248         argv = sp;
249         envp = argv + argc + 1;
250
251         /* Populate argv and envp */
252         p = current->mm->arg_end = current->mm->arg_start;
253         while (argc-- > 0) {
254                 size_t len;
255                 if (__put_user((elf_addr_t)p, argv++))
256                         return -EFAULT;
257                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
258                 if (!len || len > MAX_ARG_STRLEN)
259                         return 0;
260                 p += len;
261         }
262         if (__put_user(0, argv))
263                 return -EFAULT;
264         current->mm->arg_end = current->mm->env_start = p;
265         while (envc-- > 0) {
266                 size_t len;
267                 if (__put_user((elf_addr_t)p, envp++))
268                         return -EFAULT;
269                 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
270                 if (!len || len > MAX_ARG_STRLEN)
271                         return 0;
272                 p += len;
273         }
274         if (__put_user(0, envp))
275                 return -EFAULT;
276         current->mm->env_end = p;
277
278         /* Put the elf_info on the stack in the right place.  */
279         sp = (elf_addr_t __user *)envp + 1;
280         if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
281                 return -EFAULT;
282         return 0;
283 }
284
285 #ifndef elf_map
286
287 static unsigned long elf_map(struct file *filep, unsigned long addr,
288                 struct elf_phdr *eppnt, int prot, int type,
289                 unsigned long total_size)
290 {
291         unsigned long map_addr;
292         unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
293         unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
294         addr = ELF_PAGESTART(addr);
295         size = ELF_PAGEALIGN(size);
296
297         /* mmap() will return -EINVAL if given a zero size, but a
298          * segment with zero filesize is perfectly valid */
299         if (!size)
300                 return addr;
301
302         down_write(&current->mm->mmap_sem);
303         /*
304         * total_size is the size of the ELF (interpreter) image.
305         * The _first_ mmap needs to know the full size, otherwise
306         * randomization might put this image into an overlapping
307         * position with the ELF binary image. (since size < total_size)
308         * So we first map the 'big' image - and unmap the remainder at
309         * the end. (which unmap is needed for ELF images with holes.)
310         */
311         if (total_size) {
312                 total_size = ELF_PAGEALIGN(total_size);
313                 map_addr = do_mmap(filep, addr, total_size, prot, type, off);
314                 if (!BAD_ADDR(map_addr))
315                         do_munmap(current->mm, map_addr+size, total_size-size);
316         } else
317                 map_addr = do_mmap(filep, addr, size, prot, type, off);
318
319         up_write(&current->mm->mmap_sem);
320         return(map_addr);
321 }
322
323 #endif /* !elf_map */
324
325 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
326 {
327         int i, first_idx = -1, last_idx = -1;
328
329         for (i = 0; i < nr; i++) {
330                 if (cmds[i].p_type == PT_LOAD) {
331                         last_idx = i;
332                         if (first_idx == -1)
333                                 first_idx = i;
334                 }
335         }
336         if (first_idx == -1)
337                 return 0;
338
339         return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
340                                 ELF_PAGESTART(cmds[first_idx].p_vaddr);
341 }
342
343
344 /* This is much more generalized than the library routine read function,
345    so we keep this separate.  Technically the library read function
346    is only provided so that we can read a.out libraries that have
347    an ELF header */
348
349 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
350                 struct file *interpreter, unsigned long *interp_map_addr,
351                 unsigned long no_base)
352 {
353         struct elf_phdr *elf_phdata;
354         struct elf_phdr *eppnt;
355         unsigned long load_addr = 0;
356         int load_addr_set = 0;
357         unsigned long last_bss = 0, elf_bss = 0;
358         unsigned long error = ~0UL;
359         unsigned long total_size;
360         int retval, i, size;
361
362         /* First of all, some simple consistency checks */
363         if (interp_elf_ex->e_type != ET_EXEC &&
364             interp_elf_ex->e_type != ET_DYN)
365                 goto out;
366         if (!elf_check_arch(interp_elf_ex))
367                 goto out;
368         if (!interpreter->f_op || !interpreter->f_op->mmap)
369                 goto out;
370
371         /*
372          * If the size of this structure has changed, then punt, since
373          * we will be doing the wrong thing.
374          */
375         if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
376                 goto out;
377         if (interp_elf_ex->e_phnum < 1 ||
378                 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
379                 goto out;
380
381         /* Now read in all of the header information */
382         size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
383         if (size > ELF_MIN_ALIGN)
384                 goto out;
385         elf_phdata = kmalloc(size, GFP_KERNEL);
386         if (!elf_phdata)
387                 goto out;
388
389         retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
390                              (char *)elf_phdata,size);
391         error = -EIO;
392         if (retval != size) {
393                 if (retval < 0)
394                         error = retval; 
395                 goto out_close;
396         }
397
398         total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
399         if (!total_size) {
400                 error = -EINVAL;
401                 goto out_close;
402         }
403
404         eppnt = elf_phdata;
405         for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
406                 if (eppnt->p_type == PT_LOAD) {
407                         int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
408                         int elf_prot = 0;
409                         unsigned long vaddr = 0;
410                         unsigned long k, map_addr;
411
412                         if (eppnt->p_flags & PF_R)
413                                 elf_prot = PROT_READ;
414                         if (eppnt->p_flags & PF_W)
415                                 elf_prot |= PROT_WRITE;
416                         if (eppnt->p_flags & PF_X)
417                                 elf_prot |= PROT_EXEC;
418                         vaddr = eppnt->p_vaddr;
419                         if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
420                                 elf_type |= MAP_FIXED;
421                         else if (no_base && interp_elf_ex->e_type == ET_DYN)
422                                 load_addr = -vaddr;
423
424                         map_addr = elf_map(interpreter, load_addr + vaddr,
425                                         eppnt, elf_prot, elf_type, total_size);
426                         total_size = 0;
427                         if (!*interp_map_addr)
428                                 *interp_map_addr = map_addr;
429                         error = map_addr;
430                         if (BAD_ADDR(map_addr))
431                                 goto out_close;
432
433                         if (!load_addr_set &&
434                             interp_elf_ex->e_type == ET_DYN) {
435                                 load_addr = map_addr - ELF_PAGESTART(vaddr);
436                                 load_addr_set = 1;
437                         }
438
439                         /*
440                          * Check to see if the section's size will overflow the
441                          * allowed task size. Note that p_filesz must always be
442                          * <= p_memsize so it's only necessary to check p_memsz.
443                          */
444                         k = load_addr + eppnt->p_vaddr;
445                         if (BAD_ADDR(k) ||
446                             eppnt->p_filesz > eppnt->p_memsz ||
447                             eppnt->p_memsz > TASK_SIZE ||
448                             TASK_SIZE - eppnt->p_memsz < k) {
449                                 error = -ENOMEM;
450                                 goto out_close;
451                         }
452
453                         /*
454                          * Find the end of the file mapping for this phdr, and
455                          * keep track of the largest address we see for this.
456                          */
457                         k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
458                         if (k > elf_bss)
459                                 elf_bss = k;
460
461                         /*
462                          * Do the same thing for the memory mapping - between
463                          * elf_bss and last_bss is the bss section.
464                          */
465                         k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
466                         if (k > last_bss)
467                                 last_bss = k;
468                 }
469         }
470
471         /*
472          * Now fill out the bss section.  First pad the last page up
473          * to the page boundary, and then perform a mmap to make sure
474          * that there are zero-mapped pages up to and including the 
475          * last bss page.
476          */
477         if (padzero(elf_bss)) {
478                 error = -EFAULT;
479                 goto out_close;
480         }
481
482         /* What we have mapped so far */
483         elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
484
485         /* Map the last of the bss segment */
486         if (last_bss > elf_bss) {
487                 down_write(&current->mm->mmap_sem);
488                 error = do_brk(elf_bss, last_bss - elf_bss);
489                 up_write(&current->mm->mmap_sem);
490                 if (BAD_ADDR(error))
491                         goto out_close;
492         }
493
494         error = load_addr;
495
496 out_close:
497         kfree(elf_phdata);
498 out:
499         return error;
500 }
501
502 /*
503  * These are the functions used to load ELF style executables and shared
504  * libraries.  There is no binary dependent code anywhere else.
505  */
506
507 #define INTERPRETER_NONE 0
508 #define INTERPRETER_ELF 2
509
510 #ifndef STACK_RND_MASK
511 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
512 #endif
513
514 static unsigned long randomize_stack_top(unsigned long stack_top)
515 {
516         unsigned int random_variable = 0;
517
518         if ((current->flags & PF_RANDOMIZE) &&
519                 !(current->personality & ADDR_NO_RANDOMIZE)) {
520                 random_variable = get_random_int() & STACK_RND_MASK;
521                 random_variable <<= PAGE_SHIFT;
522         }
523 #ifdef CONFIG_STACK_GROWSUP
524         return PAGE_ALIGN(stack_top) + random_variable;
525 #else
526         return PAGE_ALIGN(stack_top) - random_variable;
527 #endif
528 }
529
530 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
531 {
532         struct file *interpreter = NULL; /* to shut gcc up */
533         unsigned long load_addr = 0, load_bias = 0;
534         int load_addr_set = 0;
535         char * elf_interpreter = NULL;
536         unsigned long error;
537         struct elf_phdr *elf_ppnt, *elf_phdata;
538         unsigned long elf_bss, elf_brk;
539         int elf_exec_fileno;
540         int retval, i;
541         unsigned int size;
542         unsigned long elf_entry;
543         unsigned long interp_load_addr = 0;
544         unsigned long start_code, end_code, start_data, end_data;
545         unsigned long reloc_func_desc = 0;
546         struct files_struct *files;
547         int executable_stack = EXSTACK_DEFAULT;
548         unsigned long def_flags = 0;
549         struct {
550                 struct elfhdr elf_ex;
551                 struct elfhdr interp_elf_ex;
552                 struct exec interp_ex;
553         } *loc;
554
555         loc = kmalloc(sizeof(*loc), GFP_KERNEL);
556         if (!loc) {
557                 retval = -ENOMEM;
558                 goto out_ret;
559         }
560         
561         /* Get the exec-header */
562         loc->elf_ex = *((struct elfhdr *)bprm->buf);
563
564         retval = -ENOEXEC;
565         /* First of all, some simple consistency checks */
566         if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
567                 goto out;
568
569         if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
570                 goto out;
571         if (!elf_check_arch(&loc->elf_ex))
572                 goto out;
573         if (!bprm->file->f_op||!bprm->file->f_op->mmap)
574                 goto out;
575
576         /* Now read in all of the header information */
577         if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
578                 goto out;
579         if (loc->elf_ex.e_phnum < 1 ||
580                 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
581                 goto out;
582         size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
583         retval = -ENOMEM;
584         elf_phdata = kmalloc(size, GFP_KERNEL);
585         if (!elf_phdata)
586                 goto out;
587
588         retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
589                              (char *)elf_phdata, size);
590         if (retval != size) {
591                 if (retval >= 0)
592                         retval = -EIO;
593                 goto out_free_ph;
594         }
595
596         files = current->files; /* Refcounted so ok */
597         retval = unshare_files();
598         if (retval < 0)
599                 goto out_free_ph;
600         if (files == current->files) {
601                 put_files_struct(files);
602                 files = NULL;
603         }
604
605         /* exec will make our files private anyway, but for the a.out
606            loader stuff we need to do it earlier */
607         retval = get_unused_fd();
608         if (retval < 0)
609                 goto out_free_fh;
610         get_file(bprm->file);
611         fd_install(elf_exec_fileno = retval, bprm->file);
612
613         elf_ppnt = elf_phdata;
614         elf_bss = 0;
615         elf_brk = 0;
616
617         start_code = ~0UL;
618         end_code = 0;
619         start_data = 0;
620         end_data = 0;
621
622         for (i = 0; i < loc->elf_ex.e_phnum; i++) {
623                 if (elf_ppnt->p_type == PT_INTERP) {
624                         /* This is the program interpreter used for
625                          * shared libraries - for now assume that this
626                          * is an a.out format binary
627                          */
628                         retval = -ENOEXEC;
629                         if (elf_ppnt->p_filesz > PATH_MAX || 
630                             elf_ppnt->p_filesz < 2)
631                                 goto out_free_file;
632
633                         retval = -ENOMEM;
634                         elf_interpreter = kmalloc(elf_ppnt->p_filesz,
635                                                   GFP_KERNEL);
636                         if (!elf_interpreter)
637                                 goto out_free_file;
638
639                         retval = kernel_read(bprm->file, elf_ppnt->p_offset,
640                                              elf_interpreter,
641                                              elf_ppnt->p_filesz);
642                         if (retval != elf_ppnt->p_filesz) {
643                                 if (retval >= 0)
644                                         retval = -EIO;
645                                 goto out_free_interp;
646                         }
647                         /* make sure path is NULL terminated */
648                         retval = -ENOEXEC;
649                         if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
650                                 goto out_free_interp;
651
652                         /*
653                          * The early SET_PERSONALITY here is so that the lookup
654                          * for the interpreter happens in the namespace of the 
655                          * to-be-execed image.  SET_PERSONALITY can select an
656                          * alternate root.
657                          *
658                          * However, SET_PERSONALITY is NOT allowed to switch
659                          * this task into the new images's memory mapping
660                          * policy - that is, TASK_SIZE must still evaluate to
661                          * that which is appropriate to the execing application.
662                          * This is because exit_mmap() needs to have TASK_SIZE
663                          * evaluate to the size of the old image.
664                          *
665                          * So if (say) a 64-bit application is execing a 32-bit
666                          * application it is the architecture's responsibility
667                          * to defer changing the value of TASK_SIZE until the
668                          * switch really is going to happen - do this in
669                          * flush_thread().      - akpm
670                          */
671                         SET_PERSONALITY(loc->elf_ex, 0);
672
673                         interpreter = open_exec(elf_interpreter);
674                         retval = PTR_ERR(interpreter);
675                         if (IS_ERR(interpreter))
676                                 goto out_free_interp;
677
678                         /*
679                          * If the binary is not readable then enforce
680                          * mm->dumpable = 0 regardless of the interpreter's
681                          * permissions.
682                          */
683                         if (file_permission(interpreter, MAY_READ) < 0)
684                                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
685
686                         retval = kernel_read(interpreter, 0, bprm->buf,
687                                              BINPRM_BUF_SIZE);
688                         if (retval != BINPRM_BUF_SIZE) {
689                                 if (retval >= 0)
690                                         retval = -EIO;
691                                 goto out_free_dentry;
692                         }
693
694                         /* Get the exec headers */
695                         loc->interp_ex = *((struct exec *)bprm->buf);
696                         loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
697                         break;
698                 }
699                 elf_ppnt++;
700         }
701
702         elf_ppnt = elf_phdata;
703         for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
704                 if (elf_ppnt->p_type == PT_GNU_STACK) {
705                         if (elf_ppnt->p_flags & PF_X)
706                                 executable_stack = EXSTACK_ENABLE_X;
707                         else
708                                 executable_stack = EXSTACK_DISABLE_X;
709                         break;
710                 }
711
712         /* Some simple consistency checks for the interpreter */
713         if (elf_interpreter) {
714                 retval = -ELIBBAD;
715                 /* Not an ELF interpreter */
716                 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
717                         goto out_free_dentry;
718                 /* Verify the interpreter has a valid arch */
719                 if (!elf_check_arch(&loc->interp_elf_ex))
720                         goto out_free_dentry;
721         } else {
722                 /* Executables without an interpreter also need a personality  */
723                 SET_PERSONALITY(loc->elf_ex, 0);
724         }
725
726         /* Flush all traces of the currently running executable */
727         retval = flush_old_exec(bprm);
728         if (retval)
729                 goto out_free_dentry;
730
731         /* Discard our unneeded old files struct */
732         if (files) {
733                 put_files_struct(files);
734                 files = NULL;
735         }
736
737         /* OK, This is the point of no return */
738         current->flags &= ~PF_FORKNOEXEC;
739         current->mm->def_flags = def_flags;
740
741         /* Do this immediately, since STACK_TOP as used in setup_arg_pages
742            may depend on the personality.  */
743         SET_PERSONALITY(loc->elf_ex, 0);
744         if (elf_read_implies_exec(loc->elf_ex, executable_stack))
745                 current->personality |= READ_IMPLIES_EXEC;
746
747         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
748                 current->flags |= PF_RANDOMIZE;
749         arch_pick_mmap_layout(current->mm);
750
751         /* Do this so that we can load the interpreter, if need be.  We will
752            change some of these later */
753         current->mm->free_area_cache = current->mm->mmap_base;
754         current->mm->cached_hole_size = 0;
755         retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
756                                  executable_stack);
757         if (retval < 0) {
758                 send_sig(SIGKILL, current, 0);
759                 goto out_free_dentry;
760         }
761         
762         current->mm->start_stack = bprm->p;
763
764         /* Now we do a little grungy work by mmaping the ELF image into
765            the correct location in memory. */
766         for(i = 0, elf_ppnt = elf_phdata;
767             i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
768                 int elf_prot = 0, elf_flags;
769                 unsigned long k, vaddr;
770
771                 if (elf_ppnt->p_type != PT_LOAD)
772                         continue;
773
774                 if (unlikely (elf_brk > elf_bss)) {
775                         unsigned long nbyte;
776                     
777                         /* There was a PT_LOAD segment with p_memsz > p_filesz
778                            before this one. Map anonymous pages, if needed,
779                            and clear the area.  */
780                         retval = set_brk (elf_bss + load_bias,
781                                           elf_brk + load_bias);
782                         if (retval) {
783                                 send_sig(SIGKILL, current, 0);
784                                 goto out_free_dentry;
785                         }
786                         nbyte = ELF_PAGEOFFSET(elf_bss);
787                         if (nbyte) {
788                                 nbyte = ELF_MIN_ALIGN - nbyte;
789                                 if (nbyte > elf_brk - elf_bss)
790                                         nbyte = elf_brk - elf_bss;
791                                 if (clear_user((void __user *)elf_bss +
792                                                         load_bias, nbyte)) {
793                                         /*
794                                          * This bss-zeroing can fail if the ELF
795                                          * file specifies odd protections. So
796                                          * we don't check the return value
797                                          */
798                                 }
799                         }
800                 }
801
802                 if (elf_ppnt->p_flags & PF_R)
803                         elf_prot |= PROT_READ;
804                 if (elf_ppnt->p_flags & PF_W)
805                         elf_prot |= PROT_WRITE;
806                 if (elf_ppnt->p_flags & PF_X)
807                         elf_prot |= PROT_EXEC;
808
809                 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
810
811                 vaddr = elf_ppnt->p_vaddr;
812                 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
813                         elf_flags |= MAP_FIXED;
814                 } else if (loc->elf_ex.e_type == ET_DYN) {
815                         /* Try and get dynamic programs out of the way of the
816                          * default mmap base, as well as whatever program they
817                          * might try to exec.  This is because the brk will
818                          * follow the loader, and is not movable.  */
819 #ifdef CONFIG_X86
820                         load_bias = 0;
821 #else
822                         load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
823 #endif
824                 }
825
826                 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
827                                 elf_prot, elf_flags, 0);
828                 if (BAD_ADDR(error)) {
829                         send_sig(SIGKILL, current, 0);
830                         retval = IS_ERR((void *)error) ?
831                                 PTR_ERR((void*)error) : -EINVAL;
832                         goto out_free_dentry;
833                 }
834
835                 if (!load_addr_set) {
836                         load_addr_set = 1;
837                         load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
838                         if (loc->elf_ex.e_type == ET_DYN) {
839                                 load_bias += error -
840                                              ELF_PAGESTART(load_bias + vaddr);
841                                 load_addr += load_bias;
842                                 reloc_func_desc = load_bias;
843                         }
844                 }
845                 k = elf_ppnt->p_vaddr;
846                 if (k < start_code)
847                         start_code = k;
848                 if (start_data < k)
849                         start_data = k;
850
851                 /*
852                  * Check to see if the section's size will overflow the
853                  * allowed task size. Note that p_filesz must always be
854                  * <= p_memsz so it is only necessary to check p_memsz.
855                  */
856                 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
857                     elf_ppnt->p_memsz > TASK_SIZE ||
858                     TASK_SIZE - elf_ppnt->p_memsz < k) {
859                         /* set_brk can never work. Avoid overflows. */
860                         send_sig(SIGKILL, current, 0);
861                         retval = -EINVAL;
862                         goto out_free_dentry;
863                 }
864
865                 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
866
867                 if (k > elf_bss)
868                         elf_bss = k;
869                 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
870                         end_code = k;
871                 if (end_data < k)
872                         end_data = k;
873                 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
874                 if (k > elf_brk)
875                         elf_brk = k;
876         }
877
878         loc->elf_ex.e_entry += load_bias;
879         elf_bss += load_bias;
880         elf_brk += load_bias;
881         start_code += load_bias;
882         end_code += load_bias;
883         start_data += load_bias;
884         end_data += load_bias;
885
886         /* Calling set_brk effectively mmaps the pages that we need
887          * for the bss and break sections.  We must do this before
888          * mapping in the interpreter, to make sure it doesn't wind
889          * up getting placed where the bss needs to go.
890          */
891         retval = set_brk(elf_bss, elf_brk);
892         if (retval) {
893                 send_sig(SIGKILL, current, 0);
894                 goto out_free_dentry;
895         }
896         if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
897                 send_sig(SIGSEGV, current, 0);
898                 retval = -EFAULT; /* Nobody gets to see this, but.. */
899                 goto out_free_dentry;
900         }
901
902         if (elf_interpreter) {
903                 unsigned long uninitialized_var(interp_map_addr);
904
905                 elf_entry = load_elf_interp(&loc->interp_elf_ex,
906                                             interpreter,
907                                             &interp_map_addr,
908                                             load_bias);
909                 if (!IS_ERR((void *)elf_entry)) {
910                         /*
911                          * load_elf_interp() returns relocation
912                          * adjustment
913                          */
914                         interp_load_addr = elf_entry;
915                         elf_entry += loc->interp_elf_ex.e_entry;
916                 }
917                 if (BAD_ADDR(elf_entry)) {
918                         force_sig(SIGSEGV, current);
919                         retval = IS_ERR((void *)elf_entry) ?
920                                         (int)elf_entry : -EINVAL;
921                         goto out_free_dentry;
922                 }
923                 reloc_func_desc = interp_load_addr;
924
925                 allow_write_access(interpreter);
926                 fput(interpreter);
927                 kfree(elf_interpreter);
928         } else {
929                 elf_entry = loc->elf_ex.e_entry;
930                 if (BAD_ADDR(elf_entry)) {
931                         force_sig(SIGSEGV, current);
932                         retval = -EINVAL;
933                         goto out_free_dentry;
934                 }
935         }
936
937         kfree(elf_phdata);
938
939         sys_close(elf_exec_fileno);
940
941         set_binfmt(&elf_format);
942
943 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
944         retval = arch_setup_additional_pages(bprm, executable_stack);
945         if (retval < 0) {
946                 send_sig(SIGKILL, current, 0);
947                 goto out;
948         }
949 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
950
951         compute_creds(bprm);
952         current->flags &= ~PF_FORKNOEXEC;
953         retval = create_elf_tables(bprm, &loc->elf_ex,
954                           load_addr, interp_load_addr);
955         if (retval < 0) {
956                 send_sig(SIGKILL, current, 0);
957                 goto out;
958         }
959         /* N.B. passed_fileno might not be initialized? */
960         current->mm->end_code = end_code;
961         current->mm->start_code = start_code;
962         current->mm->start_data = start_data;
963         current->mm->end_data = end_data;
964         current->mm->start_stack = bprm->p;
965
966 #ifdef arch_randomize_brk
967         if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1))
968                 current->mm->brk = current->mm->start_brk =
969                         arch_randomize_brk(current->mm);
970 #endif
971
972         if (current->personality & MMAP_PAGE_ZERO) {
973                 /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
974                    and some applications "depend" upon this behavior.
975                    Since we do not have the power to recompile these, we
976                    emulate the SVr4 behavior. Sigh. */
977                 down_write(&current->mm->mmap_sem);
978                 error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
979                                 MAP_FIXED | MAP_PRIVATE, 0);
980                 up_write(&current->mm->mmap_sem);
981         }
982
983 #ifdef ELF_PLAT_INIT
984         /*
985          * The ABI may specify that certain registers be set up in special
986          * ways (on i386 %edx is the address of a DT_FINI function, for
987          * example.  In addition, it may also specify (eg, PowerPC64 ELF)
988          * that the e_entry field is the address of the function descriptor
989          * for the startup routine, rather than the address of the startup
990          * routine itself.  This macro performs whatever initialization to
991          * the regs structure is required as well as any relocations to the
992          * function descriptor entries when executing dynamically links apps.
993          */
994         ELF_PLAT_INIT(regs, reloc_func_desc);
995 #endif
996
997         start_thread(regs, elf_entry, bprm->p);
998         if (unlikely(current->ptrace & PT_PTRACED)) {
999                 if (current->ptrace & PT_TRACE_EXEC)
1000                         ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP);
1001                 else
1002                         send_sig(SIGTRAP, current, 0);
1003         }
1004         retval = 0;
1005 out:
1006         kfree(loc);
1007 out_ret:
1008         return retval;
1009
1010         /* error cleanup */
1011 out_free_dentry:
1012         allow_write_access(interpreter);
1013         if (interpreter)
1014                 fput(interpreter);
1015 out_free_interp:
1016         kfree(elf_interpreter);
1017 out_free_file:
1018         sys_close(elf_exec_fileno);
1019 out_free_fh:
1020         if (files)
1021                 reset_files_struct(current, files);
1022 out_free_ph:
1023         kfree(elf_phdata);
1024         goto out;
1025 }
1026
1027 /* This is really simpleminded and specialized - we are loading an
1028    a.out library that is given an ELF header. */
1029 static int load_elf_library(struct file *file)
1030 {
1031         struct elf_phdr *elf_phdata;
1032         struct elf_phdr *eppnt;
1033         unsigned long elf_bss, bss, len;
1034         int retval, error, i, j;
1035         struct elfhdr elf_ex;
1036
1037         error = -ENOEXEC;
1038         retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1039         if (retval != sizeof(elf_ex))
1040                 goto out;
1041
1042         if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1043                 goto out;
1044
1045         /* First of all, some simple consistency checks */
1046         if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1047             !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1048                 goto out;
1049
1050         /* Now read in all of the header information */
1051
1052         j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1053         /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1054
1055         error = -ENOMEM;
1056         elf_phdata = kmalloc(j, GFP_KERNEL);
1057         if (!elf_phdata)
1058                 goto out;
1059
1060         eppnt = elf_phdata;
1061         error = -ENOEXEC;
1062         retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1063         if (retval != j)
1064                 goto out_free_ph;
1065
1066         for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1067                 if ((eppnt + i)->p_type == PT_LOAD)
1068                         j++;
1069         if (j != 1)
1070                 goto out_free_ph;
1071
1072         while (eppnt->p_type != PT_LOAD)
1073                 eppnt++;
1074
1075         /* Now use mmap to map the library into memory. */
1076         down_write(&current->mm->mmap_sem);
1077         error = do_mmap(file,
1078                         ELF_PAGESTART(eppnt->p_vaddr),
1079                         (eppnt->p_filesz +
1080                          ELF_PAGEOFFSET(eppnt->p_vaddr)),
1081                         PROT_READ | PROT_WRITE | PROT_EXEC,
1082                         MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1083                         (eppnt->p_offset -
1084                          ELF_PAGEOFFSET(eppnt->p_vaddr)));
1085         up_write(&current->mm->mmap_sem);
1086         if (error != ELF_PAGESTART(eppnt->p_vaddr))
1087                 goto out_free_ph;
1088
1089         elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1090         if (padzero(elf_bss)) {
1091                 error = -EFAULT;
1092                 goto out_free_ph;
1093         }
1094
1095         len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1096                             ELF_MIN_ALIGN - 1);
1097         bss = eppnt->p_memsz + eppnt->p_vaddr;
1098         if (bss > len) {
1099                 down_write(&current->mm->mmap_sem);
1100                 do_brk(len, bss - len);
1101                 up_write(&current->mm->mmap_sem);
1102         }
1103         error = 0;
1104
1105 out_free_ph:
1106         kfree(elf_phdata);
1107 out:
1108         return error;
1109 }
1110
1111 /*
1112  * Note that some platforms still use traditional core dumps and not
1113  * the ELF core dump.  Each platform can select it as appropriate.
1114  */
1115 #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
1116
1117 /*
1118  * ELF core dumper
1119  *
1120  * Modelled on fs/exec.c:aout_core_dump()
1121  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1122  */
1123 /*
1124  * These are the only things you should do on a core-file: use only these
1125  * functions to write out all the necessary info.
1126  */
1127 static int dump_write(struct file *file, const void *addr, int nr)
1128 {
1129         return file->f_op->write(file, addr, nr, &file->f_pos) == nr;
1130 }
1131
1132 static int dump_seek(struct file *file, loff_t off)
1133 {
1134         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
1135                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
1136                         return 0;
1137         } else {
1138                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
1139                 if (!buf)
1140                         return 0;
1141                 while (off > 0) {
1142                         unsigned long n = off;
1143                         if (n > PAGE_SIZE)
1144                                 n = PAGE_SIZE;
1145                         if (!dump_write(file, buf, n))
1146                                 return 0;
1147                         off -= n;
1148                 }
1149                 free_page((unsigned long)buf);
1150         }
1151         return 1;
1152 }
1153
1154 /*
1155  * Decide what to dump of a segment, part, all or none.
1156  */
1157 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1158                                    unsigned long mm_flags)
1159 {
1160         /* The vma can be set up to tell us the answer directly.  */
1161         if (vma->vm_flags & VM_ALWAYSDUMP)
1162                 goto whole;
1163
1164         /* Do not dump I/O mapped devices or special mappings */
1165         if (vma->vm_flags & (VM_IO | VM_RESERVED))
1166                 return 0;
1167
1168 #define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1169
1170         /* By default, dump shared memory if mapped from an anonymous file. */
1171         if (vma->vm_flags & VM_SHARED) {
1172                 if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1173                     FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1174                         goto whole;
1175                 return 0;
1176         }
1177
1178         /* Dump segments that have been written to.  */
1179         if (vma->anon_vma && FILTER(ANON_PRIVATE))
1180                 goto whole;
1181         if (vma->vm_file == NULL)
1182                 return 0;
1183
1184         if (FILTER(MAPPED_PRIVATE))
1185                 goto whole;
1186
1187         /*
1188          * If this looks like the beginning of a DSO or executable mapping,
1189          * check for an ELF header.  If we find one, dump the first page to
1190          * aid in determining what was mapped here.
1191          */
1192         if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) {
1193                 u32 __user *header = (u32 __user *) vma->vm_start;
1194                 u32 word;
1195                 /*
1196                  * Doing it this way gets the constant folded by GCC.
1197                  */
1198                 union {
1199                         u32 cmp;
1200                         char elfmag[SELFMAG];
1201                 } magic;
1202                 BUILD_BUG_ON(SELFMAG != sizeof word);
1203                 magic.elfmag[EI_MAG0] = ELFMAG0;
1204                 magic.elfmag[EI_MAG1] = ELFMAG1;
1205                 magic.elfmag[EI_MAG2] = ELFMAG2;
1206                 magic.elfmag[EI_MAG3] = ELFMAG3;
1207                 if (get_user(word, header) == 0 && word == magic.cmp)
1208                         return PAGE_SIZE;
1209         }
1210
1211 #undef  FILTER
1212
1213         return 0;
1214
1215 whole:
1216         return vma->vm_end - vma->vm_start;
1217 }
1218
1219 /* An ELF note in memory */
1220 struct memelfnote
1221 {
1222         const char *name;
1223         int type;
1224         unsigned int datasz;
1225         void *data;
1226 };
1227
1228 static int notesize(struct memelfnote *en)
1229 {
1230         int sz;
1231
1232         sz = sizeof(struct elf_note);
1233         sz += roundup(strlen(en->name) + 1, 4);
1234         sz += roundup(en->datasz, 4);
1235
1236         return sz;
1237 }
1238
1239 #define DUMP_WRITE(addr, nr, foffset)   \
1240         do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1241
1242 static int alignfile(struct file *file, loff_t *foffset)
1243 {
1244         static const char buf[4] = { 0, };
1245         DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1246         return 1;
1247 }
1248
1249 static int writenote(struct memelfnote *men, struct file *file,
1250                         loff_t *foffset)
1251 {
1252         struct elf_note en;
1253         en.n_namesz = strlen(men->name) + 1;
1254         en.n_descsz = men->datasz;
1255         en.n_type = men->type;
1256
1257         DUMP_WRITE(&en, sizeof(en), foffset);
1258         DUMP_WRITE(men->name, en.n_namesz, foffset);
1259         if (!alignfile(file, foffset))
1260                 return 0;
1261         DUMP_WRITE(men->data, men->datasz, foffset);
1262         if (!alignfile(file, foffset))
1263                 return 0;
1264
1265         return 1;
1266 }
1267 #undef DUMP_WRITE
1268
1269 #define DUMP_WRITE(addr, nr)    \
1270         if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \
1271                 goto end_coredump;
1272 #define DUMP_SEEK(off)  \
1273         if (!dump_seek(file, (off))) \
1274                 goto end_coredump;
1275
1276 static void fill_elf_header(struct elfhdr *elf, int segs,
1277                             u16 machine, u32 flags, u8 osabi)
1278 {
1279         memcpy(elf->e_ident, ELFMAG, SELFMAG);
1280         elf->e_ident[EI_CLASS] = ELF_CLASS;
1281         elf->e_ident[EI_DATA] = ELF_DATA;
1282         elf->e_ident[EI_VERSION] = EV_CURRENT;
1283         elf->e_ident[EI_OSABI] = ELF_OSABI;
1284         memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
1285
1286         elf->e_type = ET_CORE;
1287         elf->e_machine = machine;
1288         elf->e_version = EV_CURRENT;
1289         elf->e_entry = 0;
1290         elf->e_phoff = sizeof(struct elfhdr);
1291         elf->e_shoff = 0;
1292         elf->e_flags = flags;
1293         elf->e_ehsize = sizeof(struct elfhdr);
1294         elf->e_phentsize = sizeof(struct elf_phdr);
1295         elf->e_phnum = segs;
1296         elf->e_shentsize = 0;
1297         elf->e_shnum = 0;
1298         elf->e_shstrndx = 0;
1299         return;
1300 }
1301
1302 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1303 {
1304         phdr->p_type = PT_NOTE;
1305         phdr->p_offset = offset;
1306         phdr->p_vaddr = 0;
1307         phdr->p_paddr = 0;
1308         phdr->p_filesz = sz;
1309         phdr->p_memsz = 0;
1310         phdr->p_flags = 0;
1311         phdr->p_align = 0;
1312         return;
1313 }
1314
1315 static void fill_note(struct memelfnote *note, const char *name, int type, 
1316                 unsigned int sz, void *data)
1317 {
1318         note->name = name;
1319         note->type = type;
1320         note->datasz = sz;
1321         note->data = data;
1322         return;
1323 }
1324
1325 /*
1326  * fill up all the fields in prstatus from the given task struct, except
1327  * registers which need to be filled up separately.
1328  */
1329 static void fill_prstatus(struct elf_prstatus *prstatus,
1330                 struct task_struct *p, long signr)
1331 {
1332         prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1333         prstatus->pr_sigpend = p->pending.signal.sig[0];
1334         prstatus->pr_sighold = p->blocked.sig[0];
1335         prstatus->pr_pid = task_pid_vnr(p);
1336         prstatus->pr_ppid = task_pid_vnr(p->real_parent);
1337         prstatus->pr_pgrp = task_pgrp_vnr(p);
1338         prstatus->pr_sid = task_session_vnr(p);
1339         if (thread_group_leader(p)) {
1340                 /*
1341                  * This is the record for the group leader.  Add in the
1342                  * cumulative times of previous dead threads.  This total
1343                  * won't include the time of each live thread whose state
1344                  * is included in the core dump.  The final total reported
1345                  * to our parent process when it calls wait4 will include
1346                  * those sums as well as the little bit more time it takes
1347                  * this and each other thread to finish dying after the
1348                  * core dump synchronization phase.
1349                  */
1350                 cputime_to_timeval(cputime_add(p->utime, p->signal->utime),
1351                                    &prstatus->pr_utime);
1352                 cputime_to_timeval(cputime_add(p->stime, p->signal->stime),
1353                                    &prstatus->pr_stime);
1354         } else {
1355                 cputime_to_timeval(p->utime, &prstatus->pr_utime);
1356                 cputime_to_timeval(p->stime, &prstatus->pr_stime);
1357         }
1358         cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1359         cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1360 }
1361
1362 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1363                        struct mm_struct *mm)
1364 {
1365         unsigned int i, len;
1366         
1367         /* first copy the parameters from user space */
1368         memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1369
1370         len = mm->arg_end - mm->arg_start;
1371         if (len >= ELF_PRARGSZ)
1372                 len = ELF_PRARGSZ-1;
1373         if (copy_from_user(&psinfo->pr_psargs,
1374                            (const char __user *)mm->arg_start, len))
1375                 return -EFAULT;
1376         for(i = 0; i < len; i++)
1377                 if (psinfo->pr_psargs[i] == 0)
1378                         psinfo->pr_psargs[i] = ' ';
1379         psinfo->pr_psargs[len] = 0;
1380
1381         psinfo->pr_pid = task_pid_vnr(p);
1382         psinfo->pr_ppid = task_pid_vnr(p->real_parent);
1383         psinfo->pr_pgrp = task_pgrp_vnr(p);
1384         psinfo->pr_sid = task_session_vnr(p);
1385
1386         i = p->state ? ffz(~p->state) + 1 : 0;
1387         psinfo->pr_state = i;
1388         psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1389         psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1390         psinfo->pr_nice = task_nice(p);
1391         psinfo->pr_flag = p->flags;
1392         SET_UID(psinfo->pr_uid, p->uid);
1393         SET_GID(psinfo->pr_gid, p->gid);
1394         strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1395         
1396         return 0;
1397 }
1398
1399 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1400 {
1401         elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1402         int i = 0;
1403         do
1404                 i += 2;
1405         while (auxv[i - 2] != AT_NULL);
1406         fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1407 }
1408
1409 #ifdef CORE_DUMP_USE_REGSET
1410 #include <linux/regset.h>
1411
1412 struct elf_thread_core_info {
1413         struct elf_thread_core_info *next;
1414         struct task_struct *task;
1415         struct elf_prstatus prstatus;
1416         struct memelfnote notes[0];
1417 };
1418
1419 struct elf_note_info {
1420         struct elf_thread_core_info *thread;
1421         struct memelfnote psinfo;
1422         struct memelfnote auxv;
1423         size_t size;
1424         int thread_notes;
1425 };
1426
1427 /*
1428  * When a regset has a writeback hook, we call it on each thread before
1429  * dumping user memory.  On register window machines, this makes sure the
1430  * user memory backing the register data is up to date before we read it.
1431  */
1432 static void do_thread_regset_writeback(struct task_struct *task,
1433                                        const struct user_regset *regset)
1434 {
1435         if (regset->writeback)
1436                 regset->writeback(task, regset, 1);
1437 }
1438
1439 static int fill_thread_core_info(struct elf_thread_core_info *t,
1440                                  const struct user_regset_view *view,
1441                                  long signr, size_t *total)
1442 {
1443         unsigned int i;
1444
1445         /*
1446          * NT_PRSTATUS is the one special case, because the regset data
1447          * goes into the pr_reg field inside the note contents, rather
1448          * than being the whole note contents.  We fill the reset in here.
1449          * We assume that regset 0 is NT_PRSTATUS.
1450          */
1451         fill_prstatus(&t->prstatus, t->task, signr);
1452         (void) view->regsets[0].get(t->task, &view->regsets[0],
1453                                     0, sizeof(t->prstatus.pr_reg),
1454                                     &t->prstatus.pr_reg, NULL);
1455
1456         fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1457                   sizeof(t->prstatus), &t->prstatus);
1458         *total += notesize(&t->notes[0]);
1459
1460         do_thread_regset_writeback(t->task, &view->regsets[0]);
1461
1462         /*
1463          * Each other regset might generate a note too.  For each regset
1464          * that has no core_note_type or is inactive, we leave t->notes[i]
1465          * all zero and we'll know to skip writing it later.
1466          */
1467         for (i = 1; i < view->n; ++i) {
1468                 const struct user_regset *regset = &view->regsets[i];
1469                 do_thread_regset_writeback(t->task, regset);
1470                 if (regset->core_note_type &&
1471                     (!regset->active || regset->active(t->task, regset))) {
1472                         int ret;
1473                         size_t size = regset->n * regset->size;
1474                         void *data = kmalloc(size, GFP_KERNEL);
1475                         if (unlikely(!data))
1476                                 return 0;
1477                         ret = regset->get(t->task, regset,
1478                                           0, size, data, NULL);
1479                         if (unlikely(ret))
1480                                 kfree(data);
1481                         else {
1482                                 if (regset->core_note_type != NT_PRFPREG)
1483                                         fill_note(&t->notes[i], "LINUX",
1484                                                   regset->core_note_type,
1485                                                   size, data);
1486                                 else {
1487                                         t->prstatus.pr_fpvalid = 1;
1488                                         fill_note(&t->notes[i], "CORE",
1489                                                   NT_PRFPREG, size, data);
1490                                 }
1491                                 *total += notesize(&t->notes[i]);
1492                         }
1493                 }
1494         }
1495
1496         return 1;
1497 }
1498
1499 static int fill_note_info(struct elfhdr *elf, int phdrs,
1500                           struct elf_note_info *info,
1501                           long signr, struct pt_regs *regs)
1502 {
1503         struct task_struct *dump_task = current;
1504         const struct user_regset_view *view = task_user_regset_view(dump_task);
1505         struct elf_thread_core_info *t;
1506         struct elf_prpsinfo *psinfo;
1507         struct task_struct *g, *p;
1508         unsigned int i;
1509
1510         info->size = 0;
1511         info->thread = NULL;
1512
1513         psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1514         fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1515
1516         if (psinfo == NULL)
1517                 return 0;
1518
1519         /*
1520          * Figure out how many notes we're going to need for each thread.
1521          */
1522         info->thread_notes = 0;
1523         for (i = 0; i < view->n; ++i)
1524                 if (view->regsets[i].core_note_type != 0)
1525                         ++info->thread_notes;
1526
1527         /*
1528          * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1529          * since it is our one special case.
1530          */
1531         if (unlikely(info->thread_notes == 0) ||
1532             unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1533                 WARN_ON(1);
1534                 return 0;
1535         }
1536
1537         /*
1538          * Initialize the ELF file header.
1539          */
1540         fill_elf_header(elf, phdrs,
1541                         view->e_machine, view->e_flags, view->ei_osabi);
1542
1543         /*
1544          * Allocate a structure for each thread.
1545          */
1546         rcu_read_lock();
1547         do_each_thread(g, p)
1548                 if (p->mm == dump_task->mm) {
1549                         t = kzalloc(offsetof(struct elf_thread_core_info,
1550                                              notes[info->thread_notes]),
1551                                     GFP_ATOMIC);
1552                         if (unlikely(!t)) {
1553                                 rcu_read_unlock();
1554                                 return 0;
1555                         }
1556                         t->task = p;
1557                         if (p == dump_task || !info->thread) {
1558                                 t->next = info->thread;
1559                                 info->thread = t;
1560                         } else {
1561                                 /*
1562                                  * Make sure to keep the original task at
1563                                  * the head of the list.
1564                                  */
1565                                 t->next = info->thread->next;
1566                                 info->thread->next = t;
1567                         }
1568                 }
1569         while_each_thread(g, p);
1570         rcu_read_unlock();
1571
1572         /*
1573          * Now fill in each thread's information.
1574          */
1575         for (t = info->thread; t != NULL; t = t->next)
1576                 if (!fill_thread_core_info(t, view, signr, &info->size))
1577                         return 0;
1578
1579         /*
1580          * Fill in the two process-wide notes.
1581          */
1582         fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1583         info->size += notesize(&info->psinfo);
1584
1585         fill_auxv_note(&info->auxv, current->mm);
1586         info->size += notesize(&info->auxv);
1587
1588         return 1;
1589 }
1590
1591 static size_t get_note_info_size(struct elf_note_info *info)
1592 {
1593         return info->size;
1594 }
1595
1596 /*
1597  * Write all the notes for each thread.  When writing the first thread, the
1598  * process-wide notes are interleaved after the first thread-specific note.
1599  */
1600 static int write_note_info(struct elf_note_info *info,
1601                            struct file *file, loff_t *foffset)
1602 {
1603         bool first = 1;
1604         struct elf_thread_core_info *t = info->thread;
1605
1606         do {
1607                 int i;
1608
1609                 if (!writenote(&t->notes[0], file, foffset))
1610                         return 0;
1611
1612                 if (first && !writenote(&info->psinfo, file, foffset))
1613                         return 0;
1614                 if (first && !writenote(&info->auxv, file, foffset))
1615                         return 0;
1616
1617                 for (i = 1; i < info->thread_notes; ++i)
1618                         if (t->notes[i].data &&
1619                             !writenote(&t->notes[i], file, foffset))
1620                                 return 0;
1621
1622                 first = 0;
1623                 t = t->next;
1624         } while (t);
1625
1626         return 1;
1627 }
1628
1629 static void free_note_info(struct elf_note_info *info)
1630 {
1631         struct elf_thread_core_info *threads = info->thread;
1632         while (threads) {
1633                 unsigned int i;
1634                 struct elf_thread_core_info *t = threads;
1635                 threads = t->next;
1636                 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1637                 for (i = 1; i < info->thread_notes; ++i)
1638                         kfree(t->notes[i].data);
1639                 kfree(t);
1640         }
1641         kfree(info->psinfo.data);
1642 }
1643
1644 #else
1645
1646 /* Here is the structure in which status of each thread is captured. */
1647 struct elf_thread_status
1648 {
1649         struct list_head list;
1650         struct elf_prstatus prstatus;   /* NT_PRSTATUS */
1651         elf_fpregset_t fpu;             /* NT_PRFPREG */
1652         struct task_struct *thread;
1653 #ifdef ELF_CORE_COPY_XFPREGS
1654         elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
1655 #endif
1656         struct memelfnote notes[3];
1657         int num_notes;
1658 };
1659
1660 /*
1661  * In order to add the specific thread information for the elf file format,
1662  * we need to keep a linked list of every threads pr_status and then create
1663  * a single section for them in the final core file.
1664  */
1665 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1666 {
1667         int sz = 0;
1668         struct task_struct *p = t->thread;
1669         t->num_notes = 0;
1670
1671         fill_prstatus(&t->prstatus, p, signr);
1672         elf_core_copy_task_regs(p, &t->prstatus.pr_reg);        
1673         
1674         fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1675                   &(t->prstatus));
1676         t->num_notes++;
1677         sz += notesize(&t->notes[0]);
1678
1679         if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1680                                                                 &t->fpu))) {
1681                 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1682                           &(t->fpu));
1683                 t->num_notes++;
1684                 sz += notesize(&t->notes[1]);
1685         }
1686
1687 #ifdef ELF_CORE_COPY_XFPREGS
1688         if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1689                 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1690                           sizeof(t->xfpu), &t->xfpu);
1691                 t->num_notes++;
1692                 sz += notesize(&t->notes[2]);
1693         }
1694 #endif  
1695         return sz;
1696 }
1697
1698 struct elf_note_info {
1699         struct memelfnote *notes;
1700         struct elf_prstatus *prstatus;  /* NT_PRSTATUS */
1701         struct elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
1702         struct list_head thread_list;
1703         elf_fpregset_t *fpu;
1704 #ifdef ELF_CORE_COPY_XFPREGS
1705         elf_fpxregset_t *xfpu;
1706 #endif
1707         int thread_status_size;
1708         int numnote;
1709 };
1710
1711 static int fill_note_info(struct elfhdr *elf, int phdrs,
1712                           struct elf_note_info *info,
1713                           long signr, struct pt_regs *regs)
1714 {
1715 #define NUM_NOTES       6
1716         struct list_head *t;
1717         struct task_struct *g, *p;
1718
1719         info->notes = NULL;
1720         info->prstatus = NULL;
1721         info->psinfo = NULL;
1722         info->fpu = NULL;
1723 #ifdef ELF_CORE_COPY_XFPREGS
1724         info->xfpu = NULL;
1725 #endif
1726         INIT_LIST_HEAD(&info->thread_list);
1727
1728         info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote),
1729                               GFP_KERNEL);
1730         if (!info->notes)
1731                 return 0;
1732         info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1733         if (!info->psinfo)
1734                 return 0;
1735         info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1736         if (!info->prstatus)
1737                 return 0;
1738         info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1739         if (!info->fpu)
1740                 return 0;
1741 #ifdef ELF_CORE_COPY_XFPREGS
1742         info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1743         if (!info->xfpu)
1744                 return 0;
1745 #endif
1746
1747         info->thread_status_size = 0;
1748         if (signr) {
1749                 struct elf_thread_status *tmp;
1750                 rcu_read_lock();
1751                 do_each_thread(g, p)
1752                         if (current->mm == p->mm && current != p) {
1753                                 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
1754                                 if (!tmp) {
1755                                         rcu_read_unlock();
1756                                         return 0;
1757                                 }
1758                                 tmp->thread = p;
1759                                 list_add(&tmp->list, &info->thread_list);
1760                         }
1761                 while_each_thread(g, p);
1762                 rcu_read_unlock();
1763                 list_for_each(t, &info->thread_list) {
1764                         struct elf_thread_status *tmp;
1765                         int sz;
1766
1767                         tmp = list_entry(t, struct elf_thread_status, list);
1768                         sz = elf_dump_thread_status(signr, tmp);
1769                         info->thread_status_size += sz;
1770                 }
1771         }
1772         /* now collect the dump for the current */
1773         memset(info->prstatus, 0, sizeof(*info->prstatus));
1774         fill_prstatus(info->prstatus, current, signr);
1775         elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1776
1777         /* Set up header */
1778         fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1779
1780         /*
1781          * Set up the notes in similar form to SVR4 core dumps made
1782          * with info from their /proc.
1783          */
1784
1785         fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1786                   sizeof(*info->prstatus), info->prstatus);
1787         fill_psinfo(info->psinfo, current->group_leader, current->mm);
1788         fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1789                   sizeof(*info->psinfo), info->psinfo);
1790
1791         info->numnote = 2;
1792
1793         fill_auxv_note(&info->notes[info->numnote++], current->mm);
1794
1795         /* Try to dump the FPU. */
1796         info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1797                                                                info->fpu);
1798         if (info->prstatus->pr_fpvalid)
1799                 fill_note(info->notes + info->numnote++,
1800                           "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1801 #ifdef ELF_CORE_COPY_XFPREGS
1802         if (elf_core_copy_task_xfpregs(current, info->xfpu))
1803                 fill_note(info->notes + info->numnote++,
1804                           "LINUX", ELF_CORE_XFPREG_TYPE,
1805                           sizeof(*info->xfpu), info->xfpu);
1806 #endif
1807
1808         return 1;
1809
1810 #undef NUM_NOTES
1811 }
1812
1813 static size_t get_note_info_size(struct elf_note_info *info)
1814 {
1815         int sz = 0;
1816         int i;
1817
1818         for (i = 0; i < info->numnote; i++)
1819                 sz += notesize(info->notes + i);
1820
1821         sz += info->thread_status_size;
1822
1823         return sz;
1824 }
1825
1826 static int write_note_info(struct elf_note_info *info,
1827                            struct file *file, loff_t *foffset)
1828 {
1829         int i;
1830         struct list_head *t;
1831
1832         for (i = 0; i < info->numnote; i++)
1833                 if (!writenote(info->notes + i, file, foffset))
1834                         return 0;
1835
1836         /* write out the thread status notes section */
1837         list_for_each(t, &info->thread_list) {
1838                 struct elf_thread_status *tmp =
1839                                 list_entry(t, struct elf_thread_status, list);
1840
1841                 for (i = 0; i < tmp->num_notes; i++)
1842                         if (!writenote(&tmp->notes[i], file, foffset))
1843                                 return 0;
1844         }
1845
1846         return 1;
1847 }
1848
1849 static void free_note_info(struct elf_note_info *info)
1850 {
1851         while (!list_empty(&info->thread_list)) {
1852                 struct list_head *tmp = info->thread_list.next;
1853                 list_del(tmp);
1854                 kfree(list_entry(tmp, struct elf_thread_status, list));
1855         }
1856
1857         kfree(info->prstatus);
1858         kfree(info->psinfo);
1859         kfree(info->notes);
1860         kfree(info->fpu);
1861 #ifdef ELF_CORE_COPY_XFPREGS
1862         kfree(info->xfpu);
1863 #endif
1864 }
1865
1866 #endif
1867
1868 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1869                                         struct vm_area_struct *gate_vma)
1870 {
1871         struct vm_area_struct *ret = tsk->mm->mmap;
1872
1873         if (ret)
1874                 return ret;
1875         return gate_vma;
1876 }
1877 /*
1878  * Helper function for iterating across a vma list.  It ensures that the caller
1879  * will visit `gate_vma' prior to terminating the search.
1880  */
1881 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1882                                         struct vm_area_struct *gate_vma)
1883 {
1884         struct vm_area_struct *ret;
1885
1886         ret = this_vma->vm_next;
1887         if (ret)
1888                 return ret;
1889         if (this_vma == gate_vma)
1890                 return NULL;
1891         return gate_vma;
1892 }
1893
1894 /*
1895  * Actual dumper
1896  *
1897  * This is a two-pass process; first we find the offsets of the bits,
1898  * and then they are actually written out.  If we run out of core limit
1899  * we just truncate.
1900  */
1901 static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit)
1902 {
1903         int has_dumped = 0;
1904         mm_segment_t fs;
1905         int segs;
1906         size_t size = 0;
1907         struct vm_area_struct *vma, *gate_vma;
1908         struct elfhdr *elf = NULL;
1909         loff_t offset = 0, dataoff, foffset;
1910         unsigned long mm_flags;
1911         struct elf_note_info info;
1912
1913         /*
1914          * We no longer stop all VM operations.
1915          * 
1916          * This is because those proceses that could possibly change map_count
1917          * or the mmap / vma pages are now blocked in do_exit on current
1918          * finishing this core dump.
1919          *
1920          * Only ptrace can touch these memory addresses, but it doesn't change
1921          * the map_count or the pages allocated. So no possibility of crashing
1922          * exists while dumping the mm->vm_next areas to the core file.
1923          */
1924   
1925         /* alloc memory for large data structures: too large to be on stack */
1926         elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1927         if (!elf)
1928                 goto cleanup;
1929         
1930         segs = current->mm->map_count;
1931 #ifdef ELF_CORE_EXTRA_PHDRS
1932         segs += ELF_CORE_EXTRA_PHDRS;
1933 #endif
1934
1935         gate_vma = get_gate_vma(current);
1936         if (gate_vma != NULL)
1937                 segs++;
1938
1939         /*
1940          * Collect all the non-memory information about the process for the
1941          * notes.  This also sets up the file header.
1942          */
1943         if (!fill_note_info(elf, segs + 1, /* including notes section */
1944                             &info, signr, regs))
1945                 goto cleanup;
1946
1947         has_dumped = 1;
1948         current->flags |= PF_DUMPCORE;
1949   
1950         fs = get_fs();
1951         set_fs(KERNEL_DS);
1952
1953         DUMP_WRITE(elf, sizeof(*elf));
1954         offset += sizeof(*elf);                         /* Elf header */
1955         offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */
1956         foffset = offset;
1957
1958         /* Write notes phdr entry */
1959         {
1960                 struct elf_phdr phdr;
1961                 size_t sz = get_note_info_size(&info);
1962
1963                 sz += elf_coredump_extra_notes_size();
1964
1965                 fill_elf_note_phdr(&phdr, sz, offset);
1966                 offset += sz;
1967                 DUMP_WRITE(&phdr, sizeof(phdr));
1968         }
1969
1970         dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1971
1972         /*
1973          * We must use the same mm->flags while dumping core to avoid
1974          * inconsistency between the program headers and bodies, otherwise an
1975          * unusable core file can be generated.
1976          */
1977         mm_flags = current->mm->flags;
1978
1979         /* Write program headers for segments dump */
1980         for (vma = first_vma(current, gate_vma); vma != NULL;
1981                         vma = next_vma(vma, gate_vma)) {
1982                 struct elf_phdr phdr;
1983
1984                 phdr.p_type = PT_LOAD;
1985                 phdr.p_offset = offset;
1986                 phdr.p_vaddr = vma->vm_start;
1987                 phdr.p_paddr = 0;
1988                 phdr.p_filesz = vma_dump_size(vma, mm_flags);
1989                 phdr.p_memsz = vma->vm_end - vma->vm_start;
1990                 offset += phdr.p_filesz;
1991                 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1992                 if (vma->vm_flags & VM_WRITE)
1993                         phdr.p_flags |= PF_W;
1994                 if (vma->vm_flags & VM_EXEC)
1995                         phdr.p_flags |= PF_X;
1996                 phdr.p_align = ELF_EXEC_PAGESIZE;
1997
1998                 DUMP_WRITE(&phdr, sizeof(phdr));
1999         }
2000
2001 #ifdef ELF_CORE_WRITE_EXTRA_PHDRS
2002         ELF_CORE_WRITE_EXTRA_PHDRS;
2003 #endif
2004
2005         /* write out the notes section */
2006         if (!write_note_info(&info, file, &foffset))
2007                 goto end_coredump;
2008
2009         if (elf_coredump_extra_notes_write(file, &foffset))
2010                 goto end_coredump;
2011
2012         /* Align to page */
2013         DUMP_SEEK(dataoff - foffset);
2014
2015         for (vma = first_vma(current, gate_vma); vma != NULL;
2016                         vma = next_vma(vma, gate_vma)) {
2017                 unsigned long addr;
2018                 unsigned long end;
2019
2020                 end = vma->vm_start + vma_dump_size(vma, mm_flags);
2021
2022                 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2023                         struct page *page;
2024                         struct vm_area_struct *vma;
2025
2026                         if (get_user_pages(current, current->mm, addr, 1, 0, 1,
2027                                                 &page, &vma) <= 0) {
2028                                 DUMP_SEEK(PAGE_SIZE);
2029                         } else {
2030                                 if (page == ZERO_PAGE(0)) {
2031                                         if (!dump_seek(file, PAGE_SIZE)) {
2032                                                 page_cache_release(page);
2033                                                 goto end_coredump;
2034                                         }
2035                                 } else {
2036                                         void *kaddr;
2037                                         flush_cache_page(vma, addr,
2038                                                          page_to_pfn(page));
2039                                         kaddr = kmap(page);
2040                                         if ((size += PAGE_SIZE) > limit ||
2041                                             !dump_write(file, kaddr,
2042                                             PAGE_SIZE)) {
2043                                                 kunmap(page);
2044                                                 page_cache_release(page);
2045                                                 goto end_coredump;
2046                                         }
2047                                         kunmap(page);
2048                                 }
2049                                 page_cache_release(page);
2050                         }
2051                 }
2052         }
2053
2054 #ifdef ELF_CORE_WRITE_EXTRA_DATA
2055         ELF_CORE_WRITE_EXTRA_DATA;
2056 #endif
2057
2058 end_coredump:
2059         set_fs(fs);
2060
2061 cleanup:
2062         kfree(elf);
2063         free_note_info(&info);
2064         return has_dumped;
2065 }
2066
2067 #endif          /* USE_ELF_CORE_DUMP */
2068
2069 static int __init init_elf_binfmt(void)
2070 {
2071         return register_binfmt(&elf_format);
2072 }
2073
2074 static void __exit exit_elf_binfmt(void)
2075 {
2076         /* Remove the COFF and ELF loaders. */
2077         unregister_binfmt(&elf_format);
2078 }
2079
2080 core_initcall(init_elf_binfmt);
2081 module_exit(exit_elf_binfmt);
2082 MODULE_LICENSE("GPL");